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Abstract—Grid-connected converters that are controlled ac-
cording to the Virtual Synchronous Machine (VSM) concept can
provide ancillary services (e.g., the inertial behavior and the grid
support during faults). The VSM is typically called VSG when
it is in charge of processing the full power generation of the
converter. The VSM can also operate as a Virtual Synchronous
Compensator (VSC) when the virtual part only provides ancillary
services and the conventional control structure of the converter
is in charge of the power generation. This way, the VSC always
operates at a very small load angle, showing higher damping and
better transient stability with respect to a VSG. Independently of
the operation mode (VSG or VSC), plant uncertainties such as
wrong grid impedance estimation, grid reconfigurations and the
influence of neighboring converters might affect the stability of
grid-connected converters. Recent papers applied the 𝛍-analysis
to the VSG to study its robust stability for a given set of plant
uncertainties. Nevertheless, the differences in terms of robustness
between a VSC and a VSG have never been investigated in the
literature. Therefore, this paper proposes a robust stability anal-
ysis applied to the Simplified Virtual Synchronous Compensator
(S-VSC), a solution available in the literature that can operate as
a virtual compensator or as a generator. The theoretical analysis
demonstrates that a VSM working as VSC is more robust than
the VSG mode operation. Moreover, this paper provides a method
to experimentally validate the 𝛍-analysis outcomes that confirm
the theoretical results.

Index Terms—robust stability, uncertainty, virtual synchronous
machine, virtual synchronous compensator

I. INTRODUCTION

Nowadays, conventional synchronous machines (SMs) guar-
antee grid frequency and voltage stability by providing an-
cillary services (e.g., inertial behavior, active and reactive
power regulation, support during faults). However, the ongoing
decommissioning of thermoelectric power plants (especially
coal-based) will reduce the number of synchronous generators
connected to the grid. Moreover, the power plants based
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Fig. 1. Scheme of the system under study.

on renewable energy sources (i.e., solar and wind) cannot
inherently provide inertial support, as they are connected to
the grid through static power electronic converters. The direct
consequences are the reduction of the total power system
inertia and the risk of compromising the grid frequency and
voltage stability. Therefore, most recent grid codes require
that even inverter-interfaced renewable energy sources must
provide ancillary services [1]–[4]. The typical scheme under
study consists of a three-phase inverter connected to the grid
through an LCL filter, as depicted in Fig. 1. Control algorithms
based on the Virtual Synchronous Machine (VSM) concept
allow grid-connected converters to behave like conventional
SMs, by providing grid services [5]–[7].

However, plant uncertainties (e.g., wrong grid impedance
estimation), grid reconfigurations and the influence of neigh-
boring converters might affect the stability of grid-connected
converters. For this reason, recent papers investigated the
robust stability of grid-connected converters for a given set
of uncertainties, by applying the μ-analysis [8], [9]. In the
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Fig. 2. Scheme of the grid-connected VSM control algorithm.

literature, this method has been applied to VSMs behaving
as Virtual Synchronous Generators (VSGs). Nevertheless, a
VSM can also operate as a Virtual Synchronous Compensator
(VSC) [10] when the virtual model is in charge only of the grid
services. The VSC always operates at a very small load angle,
showing better performance in terms of transient stability and
damping with respect to a VSG, as demonstrated in [10].
However, the differences in terms of robustness between a
VSC and a VSG have never been investigated in the literature.

As a first contribution, this paper proposes the robust stabil-
ity analysis of a VSM working both as a virtual compensator
and generator. The proposed method has been applied to the
Simplified Virtual Synchronous Compensator (S-VSC) [10]
since the S-VSC can operate as both a VSC and a VSG. The
theoretical results of the μ-analysis demonstrate that a VSM
working as a virtual compensator shows higher robustness with
respect to the VSG mode operation. Indeed, under the same
nominal condition, the converter controlled as a VSC is stable
for a larger range of uncertainty.

As a second contribution, this paper proposes for the first
time in the literature a generic method to experimentally
validate the μ-analysis outcomes. This approach is applied to
experimentally demonstrate the theoretical results of the μ-
analysis applied to the S-VSC model. The experimental results
highlight the advantage of working as a VSC instead of a VSG
from the robustness point of view.

This paper is organized as follows. Section II briefly
describes the main blocks of the S-VSC structure and the
difference between a virtual synchronous compensator and a
virtual synchronous generator. Section III provides a theoret-
ical description of the μ-analysis. Moreover, the analysis is
applied to the S-VSC both for a simplified case and for a more
general case. Next, in Section IV experimental tests validate
the robust stability analysis and the higher robustness of the
VSC mode operation over the VSG one. Finally, Section V
concludes the paper.

II. SIMPLIFIED VIRTUAL SYNCHRONOUS COMPENSATOR

The S-VSC is a voltage-input, current-output VSM [10],
whose model is detailed in Fig. 2. All the quantities are

expressed in per unit (pu), referred to the base values listed
in Table I and Table II. The S-VSC consists of three main
blocks:

• Mechanical Emulation: This block embeds the virtual
swing equation by providing the virtual speed ω𝑟 and the
virtual angle θ𝑟 from the virtual active power reference
𝑃∗
𝑣 and the virtual active power 𝑃𝑣 ;

• Excitation Control: it calculates the virtual excitation flux
λ𝑒 from the virtual reactive power reference 𝑄∗

𝑣 and the
virtual reactive power 𝑄𝑣 ;

• Electrical Equations: this block implements the virtual
stator equations. It receives as input θ𝑟 , ω𝑟 , the measured
voltage 𝑣𝑔 and λ𝑒. Its output is the virtual current 𝑖𝑣 , used
to calculate 𝑃𝑣 and 𝑄𝑣 .

A detailed description of each block can be found in [10].
Assuming the S-VSC as a black box (highlighted in blue in
Fig. 2) the inputs are 𝑃∗

𝑣 , 𝑄∗
𝑣 and 𝑣𝑔. The output is the virtual

current 𝑖𝑣 . Next, the virtual current is added to the current
reference 𝑖∗

𝑖
to retrieve the total current reference 𝑖∗. The

current reference 𝑖∗
𝑖

is obtained from the inverter references
𝑃∗
𝑖

and 𝑄∗
𝑖

through the Power to Current block. Therefore,
there are two kinds of power references: the virtual power
references 𝑃∗

𝑣 and 𝑄∗
𝑣 and the inverter power references 𝑃∗

𝑖

and 𝑄∗
𝑖
. The setpoints of power generation are indicated as 𝑃∗

and 𝑄∗.
If the S-VSC operates as a compensator (VSC mode), the

virtual power references 𝑃∗
𝑣 and 𝑄∗

𝑣 are always set to zero.
In this way, the virtual part of the control algorithm is in
charge only of the provision of the grid services, leaving
the setpoints of power generation 𝑃∗ and 𝑄∗ to the classical
inverter structure (i.e., 𝑃∗

𝑖
= 𝑃∗, 𝑄∗

𝑖
= 𝑄∗) [10]. This is the

main peculiarity of the S-VSC compared to the other solutions
available in the literature, where the VSMs work as a VSG.
Fig. 3 shows the control scheme of the S-VSC operating as a
virtual compensator. The virtual current changes only during
transients to provide grid services, such as inertial support.
In steady-state, it is equal to zero. In this way, the power
generation is linked to the fast dynamic of the current control
loop (hundreds of Hz).
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Fig. 4. Scheme of S-VSC model operating in VSG mode.

If the S-VSC operates as a generator (VSG mode), the
virtual part is in charge of processing the full power references
(i.e., 𝑃∗

𝑣 = 𝑃∗, 𝑄∗
𝑣 = 𝑄∗). Therefore, the Power to Current

block is not used and 𝑖𝑣 is equal to 𝑖∗, as depicted in Fig. 4.
This is the typical behavior of the majority of the VSM
solutions available in the literature. In this case, the power
generation follows the slower dynamic of the virtual machine
(several Hz), slowing down the response of the grid-connected
converter to the variations of the power references 𝑃∗, 𝑄∗ [10].

III. ROBUST STABILITY ANALYSIS

A. System under analysis

The goal of the μ-analysis is to validate the stability of a set
of systems that differ from a system considered as reference
(or rated), due to given uncertainties. The first step to perform
the analysis consists of creating a model of the system shown
in Fig. 1. In this paper, the system model is a state-space model
in the Laplace domain linearized around a specific operating
point (e.g., the nominal working point). The model is written in
pu values referred to the base values reported in Table I and
II. The schematic block of the system, illustrated in Fig. 5,
consists of the following subsystems expressed in the (𝑑, 𝑞)
reference frame rotating at ω𝑟 :

• Controller C is the state-space model of the inverter that is
controlled according to the S-VSC control algorithm. The
model is obtained by combining all the blocks depicted in
Fig. 2. The block C has the following inputs and outputs:

uC =
[
Δ𝑖𝑖𝑑 ,Δ𝑖𝑖𝑞 ,Δ𝑣𝑔𝑑 ,Δ𝑣𝑔𝑞 ,Δ𝑃

∗,Δ𝑄∗,Δω𝑔

]T (1)

yC =
[
Δ𝑒𝑖𝑑 ,Δ𝑒𝑖𝑞 ,Δω𝑟

]T (2)

where 𝑖𝑖 is the inverter current, 𝑒𝑖 is the inverter output
voltage (assumed equal to the voltage reference 𝑣∗ for the
modeling), while ω𝑔 is the grid frequency.
The detailed state-space model can be retrieved from [11];

C

Grid

LCL

Fig. 5. Block scheme of the nominal system under study.

• LCL is the state-space model of the LCL filter, with the
following inputs and outputs:

uLCL =
[
Δ𝑒𝑖𝑑 ,Δ𝑒𝑖𝑞 ,Δ𝑖𝑔𝑑 ,Δ𝑖𝑔𝑞 ,Δω𝑟

]T (3)

yLCL =
[
Δ𝑖𝑖𝑑 ,Δ𝑖𝑖𝑞 ,Δ𝑣𝑔𝑑 ,Δ𝑣𝑔𝑞

]T (4)

where 𝑖𝑔 is the grid current.
The detailed state-space model can be retrieved from [11];

• Grid is the state-space model of the grid. The grid is
modeled as a grid admittance. For this subsystem, the
detailed state-space model is reported here:{

𝑑xGrid
𝑑𝑡

= AGridxGrid + BGriduGrid

yGrid = CGridxGrid + DGriduGrid
(5)

xGrid =
[
Δ𝑖𝑔𝑑 ,Δ𝑖𝑔𝑞

]T (6)

uGrid =
[
Δ𝑣𝑔𝑑 ,Δ𝑣𝑔𝑞 ,Δ𝑒𝑔𝑑 ,Δ𝑒𝑔𝑞

]T (7)

yGrid =
[
Δ𝑖𝑔𝑑 ,Δ𝑖𝑔𝑞

]T (8)

AGrid = ω𝑏


−
𝑅𝑔

𝐿𝑔

ω𝑟𝑜

−ω𝑟𝑜 −
𝑅𝑔

𝐿𝑔

 ; CGrid = I2𝑥2 (9)

BGrid =
ω𝑏

𝐿𝑔

[
1 0 −1 0
0 1 0 −1

]
; DGrid = [0]2𝑥4 (10)

where 𝑒𝑔 is the grid voltage, 𝐿𝑔 is the grid inductance, 𝑅𝑔

is the grid resistance and ω𝑟𝑜 is the value of the virtual
speed at the linearized working point.

The overall state-space model of the system under study can
be finally retrieved by applying the Component Connection
Method (CCM) [12]–[14]. This is a widely-adopted solution
available in the literature which consists of merging the state-
space models of each subsystem into the overall state-space
representation of the entire system in a modular manner.

B. Nominal Plant and Uncertainty Function

The second step is to identify a nominal plant Pn and
a set of uncertain plants 𝚷u. The uncertainty of a system
can be modeled in several ways (e.g., parametric, additive,
multiplicative) [15], [16]. In this paper, the uncertainty is
multiplicative as follows [8]:

𝚷u = (I + W)Pn (11)
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Fig. 6. Bode diagram of the uncertainty function 𝑊𝑢 and its components.

where I is the identity matrix, W is a frequency-dependent
uncertainty matrix and 𝚷u is a set of plants which differ from
the nominal one for the given uncertainty W.

The nominal plant Pn chosen for the analysis is the grid
modeled by (5). Therefore, by considering the scheme of
Fig. 5, the Grid block presents a certain degree of uncertainty,
whereas both the Controller (block C) and the LCL filter
(block LCL) are known, i.e., they are not affected by any
uncertainty. For grid-connected converters, typical elements
of uncertainty are the estimation of the grid impedance,
grid reconfigurations and the effect of neighboring converters.
Consequently, the uncertainty function 𝑊𝑢 is built by consid-
ering the following uncertainties: 20% in the Short Circuit
Ratio (SCR), 33% in the ratio between the grid reactance
and resistance (i.e., X/R ratio) and additional resonant high-
frequency effects as in [9]. The uncertainty matrix W can be
finally built as follows:

W =

[
𝑊𝑑 0
0 𝑊𝑞

]
(12)

where 𝑊𝑑 and 𝑊𝑞 are the uncertainty functions for the 𝑑-
axis and 𝑞-axis, respectively. Moreover, 𝑊𝑑 = 𝑊𝑞 = 𝑊𝑢 .
Fig. 6 shows the Bode diagram of the uncertainty function
𝑊𝑢 together with its components. The uncertainty function is
obtained as an envelope of the single contributions [9]. The
uncertain plants belonging to Π𝑝 are obtained through all the
uncertainties subtended by 𝑊𝑢 .

C. Perturbation Matrix and MΔ structure

The third step of the μ-analysis is defining a set of perturbed
uncertain plants 𝚷p as follows:

𝚷p = (I + W𝚫)Pn (13)

where 𝚫 is the perturbation matrix.
The perturbation matrix 𝚫 is the unknown quantity and

therefore represents the result of the μ-analysis. A priori, it
is a generic matrix, which can be real or complex, diagonal
or full, structured or unstructured [15], [16]. Finally, the final
state-space model of the system can be built by adding the
uncertainty block W and the perturbation block Δ into the
scheme of Fig. 5 to obtain the final scheme illustrated in
Fig. 7. The uncertainty block contains the uncertainty matrix
W, whereas the perturbation block contains the perturbation
matrix 𝚫. A more compact representation of the block scheme

is proposed in Fig. 8a, where 𝐺 is the generalized plant
obtained through the CCM. The structure of Fig. 8a is called
CGΔ structure. For the fourth and final step, the CGΔ structure
is reduced to the NΔ structure shown in Fig. 8b, through the
linear fractional transformation (LFT) [15], [16]. Finally, the
MΔ structure of Fig. 8c is obtained by considering only the
inputs and outputs of M related to Δ. The MΔ structure is the
system suitable to apply the μ-analysis.

D. Theory of the μ-analysis

In control theory, the structured singular value (denoted as
SSV, or μ, here) is a mathematical concept that is defined to
get necessary and sufficient conditions for robust stability [16].
The definition of μ is strictly related to the theorem described
below [16]:

Theorem 1 (Determinant stability condition): Assume that
the nominal system M(𝑠) and the perturbations 𝚫(𝑠) are stable.
[...] Then, the MΔ structure of Fig. 8c is stable for all allowed
perturbations (we have robust stability) if and only if

det[I − M𝚫( 𝑗ω)] ≠ 0 ,∀ω,∀𝚫 such that | |𝚫| |∞ ≤ 1 (14)

The complete theorem and its proof can be found in [16].
In (14), | |𝚫| |∞ is the 𝐻∞ norm of 𝚫. Starting from (14), the μ-
analysis consists in finding, at each frequency ω, the smallest
matrix 𝚫min (i.e., 𝚫 with the smallest maximum singular value
σ) which makes the matrix I − M𝚫( 𝑗ω) singular (i.e., makes
its determinant equal to zero). The maximum singular value
σ is equal to | |𝚫| |∞. Then, μ is defined as the inverse of σ.
Mathematically, it results to:

μ(M) =Δ 1
min
𝚫

{σ(𝚫) | det(I − M𝚫) = 0} (15)

where μ is defined as μ = 1/σ(𝚫) at each frequency.
Equation (15) is strictly valid for structured 𝚫 (not full

matrix). However, (15) can be extended to the general un-
structured case (full matrix) as demonstrated in [16]. Finally,
the perturbation matrix 𝚫 is normalized such that σ(𝚫) ≤ 1.

By applying the μ-analysis, it results that:
• At each frequency value, the determinant of (15) may be

null for different values of 𝚫. Among all the possible
solutions, the robust stability condition is satisfied by
choosing the smallest matrix 𝚫min. Such matrix identifies,
at each frequency, the minimum condition to make the
system unstable (measured in terms of the amplitude of
its maximum singular value σ);

• Since (15) is calculated at each frequency value in the
considered range, 𝚫min is a function of the frequency
as well. Among all the 𝚫min matrices calculated at each
frequency ωℎ , there is a value of frequency ω𝑘 such that:

| |𝚫min ( 𝑗ω𝑘 ) | |∞ < | |𝚫min ( 𝑗ωℎ) | |∞ , ∀ ℎ ≠ 𝑘

𝚫min ( 𝑗ω𝑘 ) = 𝚫Min

μ𝑚𝑎𝑥 = μ(ω𝑘 ) = 1/σ(𝚫Min)
(16)

According to (16), 𝚫Min is the smallest perturbation
matrix along the entire range of frequency and μ𝑚𝑎𝑥 is
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the peak of μ along the entire range of frequency, both
calculated at the frequency ω𝑘 . Therefore, the minimum
perturbation to make the system unstable is 𝚫Min. Indeed,
according to (15), there no exist a smaller matrix 𝚫 which
nulls the determinant (i.e., makes the system unstable).
Moreover, the system will diverge at the frequency ω𝑘 .
Consequently, μ𝑚𝑎𝑥 represents an index of robustness
because it allows to identify:

- The minimum condition to make the system unstable.
The condition is fulfilled by 𝚫Min for the specific
frequency ω𝑘 ;

- The oscillation frequency of the smallest unstable
system (i.e., ω𝑘 );

- The set of perturbed stable plants within the given
set of uncertainty.

• The set of stable perturbed plants 𝚷p,s is obtained for all
the matrices 𝚫 such that σ(𝚫) < 1/μ𝑚𝑎𝑥 ;

• The set of unstable perturbed plants 𝚷p,u is obtained for
all the matrices 𝚫 such that σ(𝚫) > 1/μ𝑚𝑎𝑥 and for which
det(I − M𝚫) = 0.

In conclusion, based on the value of μ𝑚𝑎𝑥 , the following
conditions apply:

• If μ𝑚𝑎𝑥 = 1, all the plants in the set of uncertainty 𝚷u
are stable;

• If μ𝑚𝑎𝑥 > 1, not all the plants in the set of uncertainty
𝚷u are stable, but only the plants belonging to the set
𝚷p,s. Therefore, the higher is μ𝑚𝑎𝑥 , the smaller is the set
of stable plants for the given uncertainties;

• If μ𝑚𝑎𝑥 < 1, all the plants in the set of uncertainty 𝚷u
are stable. Moreover, even the perturbed plants for which
1 ≤ σ(𝚫) ≤ 1/μ𝑚𝑎𝑥 are stable.

Therefore, μ𝑚𝑎𝑥 provides the information on how large is
set of stable plants for the given uncertainty. Indeed, the lower

(a) (b) (c)

G

C

MN

Fig. 8. Structure steps for the μ-analysis: (a) CGΔ; (b) NΔ; (c) MΔ.

is μ𝑚𝑎𝑥 , the larger is the set of stable plants. In other words,
it quantifies the robustness of the system (i.e., the larger is the
set of stable plants, more robust is the system).

E. Physical meaning of the μ-analysis

First, the μ-analysis is performed for a simplified case to
clarify its physical meaning. For simplicity, the only element
of uncertainty is the SCR. Considering an uncertainty of 20%
in the SCR, the uncertainty matrix WSCR can be written as
follows:

WSCR = 𝑤𝑆𝐶𝑅

[
1 0
0 1

]
= 𝑤𝑆𝐶𝑅I2𝑥2 (17)

where 𝑤𝑆𝐶𝑅 = 0.25 for the entire frequency range, as it can
be observed in Fig. 6. Consequently, a set of uncertain plants
can be defined as follows:

𝚷u,SCR = (I + WSCR)Pn = (1 + 𝑤𝑆𝐶𝑅)Pn (18)

Next, the set of perturbed uncertain plants is defined as
follows:

𝚷p,SCR = (I + WSCR𝚫)Pn (19)

The μ-analysis is performed with the parameters listed in
Table I and for an inverter active power injection of 𝑃𝑖 = 0.2
pu. The parameters are the same as for the experimental setup.



Frequency (Hz)

Fig. 9. μ-analysis of the S-VSC considering only the SCR as uncertainty:
VSC operation in red, VSG operation in blue.
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Fig. 10. μ-analysis result for the S-VSC with the uncertainty W operating as
VSC.

The results for the S-VSC working both as VSC and VSG are
proposed in Fig. 9. As it can be observed in Fig. 9, the analysis
provides the value of μ in the considered frequency range. The
μ-analysis identifies which are the stable plants belonging to
the set of uncertain plants 𝚷u,SCR. The minimum perturbed
unstable plant Pp,u,min is obtained for the smallest perturbation
matrix 𝚫Min which fulfills (15), as follows:

Pp,u,min = (I + WSCR𝚫Min)Pn =
1

𝑘𝑆𝐶𝑅

I2𝑥2Pn (20)

where: 
𝚫Min = 𝑘ΔI2𝑥2

|𝑘Δ | = | |𝚫Min | |∞ = 1/μ𝑚𝑎𝑥

𝑘𝑆𝐶𝑅 = 1/(1 + 𝑤𝑆𝐶𝑅𝑘Δ)
(21)

According to (20), the minimum condition to make the
system unstable is matched for a grid impedance 𝑘𝑆𝐶𝑅-times
the nominal one. The set of stable perturbed plants can be
written as follows:

𝚷p,s,SCR = (I + WSCR𝚫s)Pn =
1

𝑘𝑆𝐶𝑅,𝑠

I2𝑥2Pn (22)

where: 
𝚫s = 𝑘Δ,𝑠I2𝑥2

|𝑘Δ,𝑠 | = | |𝚫s | |∞ < | |𝚫Min | |∞ = |𝑘Δ |
𝑘𝑆𝐶𝑅,𝑠 = 1/(1 + 𝑤𝑆𝐶𝑅𝑘Δ,𝑠) < 𝑘𝑆𝐶𝑅

(23)

According to (22) and (23), the systems for which the
grid impedance is lower than 𝑘𝑆𝐶𝑅-times the nominal value
are stable. For the VSC mode, μ𝑚𝑎𝑥 is equal to 0.278 at a
frequency of 0.972 Hz and 𝚫Min is −3.6 · I2𝑥2. Consequently,
𝑘𝑆𝐶𝑅 is equal to 10. This means that the minimum condition
to make the system unstable is to increase the grid impedance

Frequency (Hz)

( (

[ [

Fig. 11. μ-analysis result for the S-VSC with the uncertainty W operating as
VSC for different values of the inertia constant 𝐻 .

Frequency (Hz)

Fig. 12. μ-analysis result for the S-VSC with the uncertainty W operating as
VSC (red) and VSG (blue).

by 10 times. In this limit case, the system will diverge with
an oscillation frequency of 0.972 Hz. Similarly, for the VSG
mode, μ𝑚𝑎𝑥 is 0.292 with an oscillation frequency of 1.128 Hz,
𝚫Min is −3.43·I2𝑥2 and 𝑘𝑆𝐶𝑅 is 7. Therefore, in the VSG mode
operation, the system becomes unstable for a lower increase
of the grid impedance. This theoretical result demonstrates the
higher robustness of the VSC compared to the VSG because,
starting from the same nominal conditions, the S-VSC in VSC
mode is stable for a larger set of perturbed plants (i.e., plants
with a grid impedance from 7 to 10 times the nominal value).
This result is experimentally validated in Section IV.

F. Robust Stability Analysis of the S-VSC

In this subsection, the robust stability analysis of the S-VSC
is performed by considering the uncertainty function depicted
in Fig. 6. The parameters used for the analysis are listed in
Table II. They have been chosen as representative parameters
for a more generic case of a power plant connected to the
grid through power electronic converters. In this case, the
system is linearized around the nominal working point of the
inverter (i.e., 𝑃∗ = 1 pu). The result of the μ-analysis for the
S-VSC in VSC mode operation is proposed in Fig. 10. At each
frequency, the value of μ is related to a specific dynamic. For
instance, the virtual electromagnetic dynamic of the S-VSC
(i.e., power loops and virtual stator) influences the value of μ
only at low frequency (i.e., range between 0.1 Hz to 10 Hz). To
demonstrate this, the analysis is repeated for different values
of the virtual inertia constant 𝐻. The results are illustrated in
Fig. 11. It can be observed that μ changes only in the range
of frequency related to the virtual electromagnetic dynamic
(i.e., 0.1 Hz to 10 Hz). On the opposite, the value of μ at
high frequency (100 Hz to 10 kHz) does not change as it is
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Fig. 13. Picture of the experimental setup.

TABLE I
EXPERIMENTAL SETUP PARAMETERS.

Inverter Base Values
𝑆𝑁 4 kVA 𝑆𝑏 4 kVA ω𝑏 314 rad/s
𝐼𝑁 10 A 𝑉𝑏 120

√
2 V 𝐿𝑏 34.4 mH

𝑓𝑠𝑤 10 kHz 𝑍𝑏 10.8 Ω 𝐶𝑏 0.3 mF
VSM LCL Filter Grid

𝑅𝑣 0.02 pu 𝐿 𝑓 5 mH 𝐸𝑔 120
√

2 V
𝐿𝑣 0.2 pu 𝐶 𝑓 1.5 μF 𝐿𝑔 2.5 mH
𝐻 4 s 𝐿 𝑓 𝑔 0.5 mH 𝑅𝑔 0.5 Ω

mostly dependent on the current dynamic (i.e., current control
and LCL filter dynamic).

Next, the μ-analysis is performed for the VSG mode oper-
ation. The results for the VSC and the VSG mode operations
are compared in Fig. 12. It can be noted that in the VSG
mode operation, the peak of μ at low frequency is higher
than the VSC case, whereas in the high frequency range the
behavior of the two modes is almost the same. Therefore,
the difference between the VSC and VSG mode operation
influences only the response to low-frequency phenomena. It
can be concluded that even in this general case, the S-VSC is
more robust when operating as a virtual compensator because
μ𝑚𝑎𝑥,𝑉 𝑆𝐶 < μ𝑚𝑎𝑥,𝑉 𝑆𝐺 (i.e., 0.514 < 0.640). Indeed, under the
same conditions, the converter controlled as a compensator is
stable for a larger number of perturbed plants (or, equivalently,
for a larger set of uncertainty).

IV. EXPERIMENTAL VALIDATION

The experimental setup consists of a three-phase, two-
level inverter connected to a power amplifier through an LCL
filter. The power amplifier controlled by a Real-Time Digital
Simulator (RTDS) emulates the grid. Fig. 13 illustrates a
picture of the setup, while its main data are collected in Table
I. Two kinds of experimental tests are performed to validate
the theoretical results of the μ-analysis. As a first test, the
state-space (S-S) models used to perform the μ-analysis have
been validated through power references step variations.

Fig. 14a and Fig. 14b show the responses to the active
power reference step of the S-VSC working as VSC and VSG,
respectively. Both figures display the inverter active power
𝑃𝑖 , the virtual active power 𝑃𝑣 and the virtual frequency
𝑓 . Fig. 14c illustrates the response to the virtual reactive
power reference step, showing the inverter reactive power

TABLE II
SIMULATION PARAMETERS.

Inverter Base Values
𝑆𝑁 100 kVA 𝑆𝑏 100 kVA ω𝑏 314 rad/s
𝐼𝑁 205 A 𝑉𝑏 230

√
2 V 𝐿𝑏 5.1 mH

𝑓𝑠𝑤 10 kHz 𝑍𝑏 1.6 Ω 𝐶𝑏 2 mF
VSM LCL Filter Grid

𝑅𝑣 0.02 pu 𝐿 𝑓 0.05 pu 𝐸𝑔 230
√

2 V
𝐿𝑣 0.2 pu 𝐶 𝑓 0.05 pu 𝐿𝑔 0.02 pu
𝐻 4 s 𝐿 𝑓 𝑔 0.08 pu 𝑅𝑔 0.002 pu

𝑄𝑖 , the virtual reactive power 𝑄𝑣 and 𝑃𝑖 . In all cases, the
responses of the state-space models match the simulations and
the experimental results, thus demonstrating the validity of the
modeling procedure. The uncertainty function used to perform
the μ-analysis of subsection III-F replicates a general case
taking into account several sources of uncertainty. However,
it is not possible to experimentally validate such a general
case. For this reason, the outcome of the μ-analysis has been
validated for the simplified case described in subsection III-E.
As already stated in the previous section, an uncertainty only
on the SCR is equivalent to a variation of the grid impedance.

The first test consists of using a grid impedance 7 times
higher than the nominal one and applying an active power
reference step from 0 pu to 0.2 pu. The experimental result
for the VSG mode operation is proposed in Fig. 15a. It can
be observed that working as VSG, the S-VSC diverges at
1.101 Hz, matching the theoretical results. Under the same
conditions, the S-VSC operating as VSC slowly converges as
illustrated in Fig. 15b, demonstrating the higher robustness of
the virtual compensator operation. Finally, the grid impedance
is increased by 10 times. The VSC slowly diverges at a fre-
quency of about 0.989 Hz, validating the theoretical outcomes
of the μ-analysis as demonstrated in Fig. 15c.

V. CONCLUSION

Plant uncertainties (e.g., wrong grid impedance estimation),
grid reconfigurations and the influence of neighboring convert-
ers might affect the stability of grid-connected converters. The
μ-analysis is a valuable method to evaluate the robust stability
of grid-connected converters for a given set of uncertainty.
In the literature, this method has been applied to converters
behaving as VSGs to support the grid by providing ancillary
services. However, the differences in terms of robustness
between a VSC and a VSG have never been investigated in
the literature. Therefore, as a first contribution, this paper
proposed the robust stability analysis of a VSM working
both as a virtual compensator and generator. The theoretical
analysis demonstrated that a VSM working as a virtual com-
pensator shows higher robustness with respect to the VSG
mode operation. Indeed, under the same nominal condition,
the VSC operation is stable for a larger set of uncertain
plants. Moreover, the μ-analysis outcomes have never been
experimentally validated in the literature so far. Therefore, as
a second contribution, this paper provided the experimental
validation of the μ-analysis applied to the S-VSC control
algorithm. In conclusion, the theoretical analysis, validated by
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Fig. 14. (a) Active power reference step response in VSC mode; (b) Active power reference step response in VSG mode; (c) Reactive power reference step
response in VSG mode.
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Fig. 15. Instability tests in: (a) VSG mode with 𝑘𝑆𝐶𝑅 = 7; (b) VSC mode with 𝑘𝑆𝐶𝑅 = 7; (c) VSC mode with 𝑘𝑆𝐶𝑅 = 10.

experimental results, highlights the advantage of working as
a virtual compensator instead of a virtual generator from the
robustness point of view.
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