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Abstract

Multi-modal learning has gained significant attention due to its ability to enhance machine learning
algorithms. However, it brings challenges related to modality heterogeneity and domain shift. In this
work, we address these challenges by proposing a new approach called Relative Norm Alignment
(RNA) loss. RNA loss exploits the observation that variations in marginal distributions between
modalities manifest as discrepancies in their mean feature norms, and rebalances feature norms across
domains, modalities, and classes. This rebalancing improves the accuracy of models on test data from
unseen (“target”) distributions. In the context of Unsupervised Domain Adaptation (UDA), we use
unlabeled target data to enhance feature transferability. We achieve this by combining RNA loss
with an adversarial domain loss and an Information Maximization term that regularizes predictions
on target data. We present a comprehensive analysis and ablation of our method for both Domain
Generalization and UDA settings, testing our approach on different modalities for tasks such as
first and third person action recognition, object recognition, and fatigue detection. Experimental
results show that our approach achieves competitive or state-of-the-art performance on the proposed
benchmarks, showing the versatility and effectiveness of our method in a wide range of applications.

Keywords: Multi-modal learning, Norm alignment, Domain Generalization, Unsupervised Domain
Adaptation

1 Introduction

Humans have the ability to perceive the world
around them through signals that come from mul-
tiple sensory systems. Our perceptual experiences
can be visual, auditory, tactile, olfactory, and
gustatory. Psychologists and neurologists agree
that our perception does not depend on a single
modality at a single time, but is fundamentally

multi-modal in nature [1, 2]. Moreover, the inter-
pretation of data from one sensory channel is
influenced by data from other modalities [3, 4].

The same ability to effectively process and
integrate information from multiple sensory chan-
nels has been shown to significantly improve the
performance of current machine learning algo-
rithms. For example, recent video understanding
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Fig. 1 Overview of Relative Norm Alignment (RNA) loss for RGB and audio modalities. Given visual and audio input
from both source and target domains, we perform an alignment at feature level by re-balancing (i) the mean feature norms of
visual and audio modalities (cross-modal alignment, Lg

RNA), (ii) per-class mean feature norms of visual and audio modalities
(per-class alignment, Lc

RNA) and (iii) mean feature norms of source and target features independently for each modality

(cross-domain alignment, Lmod
RNA).

models use complementary audio-visual [5] and
appearance-motion information [6–8] to improve
accuracy and generalization performance. Object
recognition algorithms use depth information to
extract more accurate information and classify
objects more effectively [9, 10], and so on.

Despite its potential benefits, Multi-Modal
Learning (MML) also comes with some challenges,
such as learning how to summarize data while
retaining their complementary information [11] or
understanding how to effectively combine infor-
mation from multiple modalities when making a
prediction [12]. The same issue is addressed in
[13] when data from multiple views are used. Het-
erogeneity between modalities is another critical
issue, as the difference between their marginal
distributions may prevent the model from learn-
ing equally from all of them [14]. Another well-
known problem in the literature is the so-called
“domain shift”, i.e., that a model trained on a
labeled source dataset does not generalize well
to an unseen target dataset. Different modali-
ties may be affected differently by the domain
shift [15]. For example, when using audio-visual
data for egocentric action recognition, the action
“cut” in a cooking scenario may reveal differences

between domains [16], as cutting boards in differ-
ent kitchens may differ in their visual and auditory
impressions (e.g., wooden cutting board vs. plas-
tic cutting board), different types of food may be
cut, and so on. This highlights the need for robust
models that can handle variation across modalities
and domains.

To address both the cross-modal and cross-
domain challenges in MML, we recently proposed
in [16] a simple but effective audio-visual approach
in the context of egocentric action recognition. We
observed that differences in the marginal distri-
butions of the audio and visual modalities could
lead to variations in feature informativeness that
do not only negatively affect the training pro-
cess and lead to suboptimal performance, but also
typically translate into discrepancies between the
mean norms of their features. This imbalance in
norms leads the network to “favor” the modal-
ity with the larger features, which prevents the
model from fully exploiting the synergies and com-
plementarities between modalities and reduces its
generalization capabilities [17].

To tackle this issue, in [16] we proposed to
reduce such imbalance with a simple loss called
Relative Norm Alignment (RNA) loss. In the
Domain Generalization (DG) setting, i.e., when
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the model does not have access to the target data
at training time, this loss attempts to align the
average norms of the different modalities to a
common value. This objective also leads to suc-
cessful transfer between source and target [17–20].
In the Unsupervised Domain Adaptation (UDA)
setting, i.e., when target data are available dur-
ing training, RNA is defined as the sum of two
domain-specific terms that aim to achieve a cross-
modality norm balance on both source and target
domains. However, in this setting, the RNA loss
operated separately on the two domains (cross-
modal alignment, Fig. 1), resulting in discrepan-
cies between the mean feature norms of the two.
This discrepancy can be explained by the pres-
ence of domain-specific features from the source
domain that may have low activations in the
target domain.

To improve the effectiveness of RNA, in this
work we extend it to independently align feature
norms for each modality across domains (cross-
modal alignment, Fig. 1) so that the network
can prioritize more transferable features [20]. In
addition, we address the problem of imbalanced
feature norms between classes by introducing an
intra- and inter-domain alignment component per
class (per-class alignment, Fig. 1), resulting in
improved overall accuracy.

Furthermore, we combine RNA with two addi-
tional components in UDA settings. First, we
incorporate an adversarial loss to improve domain-
invariant feature learning. Second, we observe that
the original RNA loss only affects the modality
embedding models and neglects the classification
layers. To mitigate the prediction uncertainty in
the target domain, we extend the training loss of
the model with an Information Maximization term
that uses pseudo-labels on target data.

The solution we propose differs from previ-
ous approaches in that it is simple, it does not
require changes to the training process and, dif-
ferently from recent constrastive-learning based
approaches [21–23], it does not require effective
mining of hard negative samples. This makes our
solution a desirable choice for a broader range
of modalities and tasks. In particular, we extend
the audio-visual loss proposed in [16] to a variety
of visual and nonvisual modalities (optical flow,
event data, depth, EGG, facial keypoints) and to
a variety of tasks, including first- and third-person
action recognition, object recognition, and fatigue

detection. Despite its simplicity, experiments show
that our approach performs equally well, if not
better, than existing methods, with a leaner and
more efficient implementation.

In summary, the main contributions of this
work are as follows:

• it updates the definition of RNA to improve the
transferability of features between domains in
DG and UDA settings;

• it introduces the use of pseudo-labeling to reg-
ularize predictions in the context of transfer
learning between source and target;

• it addresses the challenges of multi-modal
domain shift by extending our analysis to mul-
tiple modalities and multiple tasks;

• it presents a comprehensive analysis and abla-
tion of our approach in both DG and UDA
settings, showing state-of-the-art or competitive
performances on all benchmarks.

2 Related Work

MML has gained popularity due to its potential
for better performance, robustness, and deeper
understanding. Previous surveys [12, 24] have dis-
cussed the challenges and opportunities of MML.
Here we focus on the problem of generalizing MML
across domains, and in particular explore com-
puter vision applications that are most relevant to
the experiments in our work.

Domain Adaptation. In DG, the goal is to
build a model that uses knowledge from one or
multiple source domains, without having access
to data from the target domain during training,
to improve the generalization performance of the
model to any unseen domain. In such a setting,
the lack of knowledge about the target distri-
butions prevents the possibility to estimate the
domain discrepancy between source and target
domains. Computer vision based DG approaches
have mainly focused on image data and can be
broadly classified into several categories. Feature-
based methods aim to learn domain-invariant rep-
resentations by aligning domain distributions with
metrics such as MMD [25, 26] or CORAL [27],
or with domain adversarial networks [28]. Data-
based methods increase the amount of train-
ing data to prevent overfitting or use style
transfer to reduce the domain sensitivity [29–
34]. Meta-Learning methods simulate the shift
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in distributions between domains [35–37]. Self-
Supervision [38] uses auxiliary tasks to learn
generalizable representations.

In the context of video data, VideoDG [39]
observes that it is important to find a balance
between the ability to generalize and the ability
to discriminate. To achieve this, the relation-
ships between frames in the source domain are
extended to ensure that they can generalize to
potential target domains while maintaining their
discriminative capabilities.

As for UDA methods (which can benefit from
unlabeled target data available during training),
they can be broadly divided into two categories:
discrepancy-based and adversarial-based meth-
ods. Discrepancy-based methods minimize a dis-
tance metric between the source and target distri-
butions [20, 40, 41]. Adversarial-based methods,
on the other hand, use adversarial training to align
source and target distributions [42, 43]. Another
research direction focuses on incorporating self-
supervised learning as an auxiliary task to improve
feature learning, as in [38].

While the aforementioned approaches have
mainly been applied to standard image classifica-
tion tasks, there has also been a significant amount
of research on UDA for video-related tasks, such
as action detection [44], segmentation [45], and
classification [6, 22, 46–49].

In video classification, several methods have
been proposed to align the temporal dynamics
of the feature space. TA3N [46] uses a multi-
level adversarial framework with temporal relation
and attention mechanisms to achieve this goal.
TCoN [49] aligns feature distributions between
source and target domains with a cross-domain
co-attention mechanism that focuses on aligning
temporal relationship features to increase robust-
ness across domains. In [47], the network is trained
to solve an auxiliary self-supervised task on source
and target data. SAVA [50] addresses the domain
adaptation problem by proposing to use clip order
prediction as an auxiliary task to be solved in
both source and target domains. In addition, Con-
trastive Learning (CL) methods have also been
proposed for UDA in video analysis. For example,
CoMix [21] introduced a new framework for con-
trastive learning that aims to learn discriminative
invariant feature representations.

Multi-Modal Adaptation and General-
ization. Several methods have been proposed to

exploit the availability of multiple modalities for
domain adaptation. They can be divided into
three main categories: adversarial approaches, co-
training, and contrastive learning based methods.

Adversarial-based approaches, such as
MDANN [51] and AUDA [52], focus on learn-
ing discriminative and domain adaptive features
under an adversarial objective, showing their
effectiveness in cross-domain emotion recognition
using audio-visual data and cross-media retrieval
using images and text from different domains.
MM-SADA [6] is another approach that extends
adversarial alignment to a self-supervised task
based on modality correspondence.

Co-training methods such as DLMM [15] and
XM-UDA [53] exploit the diverse properties of
the different modalities by treating the classifiers
of the various modalities as a set of teacher/s-
tudent models trained with a curriculum learn-
ing approach. These methods have been applied
to tasks such as event recognition using audio-
visual data, fatigue detection using EEG signals
and facial keypoints, and action recognition using
RGB images and optical flow.

Contrastive learning based methods such as
STCDA [22] and the approach described in [23]
exploit the complementarity of different modal-
ities to regularize both cross-modal and cross-
domain feature representations. They treat each
modality as a view and perform contrastive learn-
ing across modalities and domains to align rep-
resentations between source and target domains
in each modality. CIA [54] uses cross-modal inter-
action and generative modelling to align cross-
domain representations.

RNA-Net [16] addresses multi-modal video DG
by using both audio and RGB features, but rec-
ognizes that the simple fusion of multi-modal
information may not improve generalizability. To
overcome this problem, a cross-modal audio-visual
Relative Norm Alignment (RNA) loss is proposed
to align the relative feature norms of audio and
visual modalities from source domains, result-
ing in domain-invariant audio-visual features. In
this work, we further extend this approach to
improve feature transferability across domains in
both UDA and DG settings, and address the issues
of multi-modal domain shift across different tasks
and datasets.

Norm Alignment. Several works highlighted
the existence of a strong correlation between the
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mean feature norms and the amount of “valu-
able” information for classification [19, 55, 56]
and the negative impact of different feature norms
on multiview clustering approaches [57]. In par-
ticular, the cross-entropy loss has been shown
to promote well-separated features with a high
norm value [55]. Starting from this observation,
the authors of [20] show that the main reason
behind performance degradation on unseen data
is the reduction in feature norms compared to the
source domain. This stems from the fact that the
supervision on the source domain causes the clas-
sifier to rely on domain-specific features that may
not be present in the target domain, thus reducing
the activations in the representation of the target
features and consequently the norms of the target
features. To address this problem, [20] introduced
a loss that forces the norms between the two
domains to adapt to increasingly larger scalars,
resulting in improved transfer between domains.

Similarly, [17] proposed a regularization objec-
tive that promotes uniform feature norms between
source and target representations while also induc-
ing progressively higher norm values. Further-
more, they introduced an inter-class norm align-
ment objective, based on the observation that
classes with higher confidence are associated with
larger feature norms, to soften distribution biases
towards the most frequent classes, whose higher
classification confidence is typically associated
with larger feature norms.

Subsequent works have demonstrated the
effectiveness of incorporating this regularization
term into various approaches to learn domain-
invariant features, such as the adversarial distri-
bution adaptation network proposed in [18] and
the hierarchical transfer network described in [58].

In this work, we apply the concept of norm
alignment to domain adaptation by extending it
to a multi-modal setting, where the alignment is
performed not only between domains, but also
across modalities and classes. This allows us to
better handle the complexity of multi-modal data
and improve the transferability of features across
different domains and modalities.

3 Proposed method

In the following, we detail the proposed Rela-
tive Norm Alignment (RNA) loss, which aims to
mitigate the domain shift in MML by aligning

the mean feature norms from different modali-
ties (cross-modal alignment) and from different
domains (cross-domain alignment), both globally
and at class level.

3.1 Intuition and motivation

Joint training of multi-modal models may result
in sub-optimal synergies between the different
modalities. This observation has been theoreti-
cally demonstrated in [59], showing that naive
joint training prevents efficient learning from all
modalities. From an optimization perspective, the
modality with better performance contributes to
lower joint discriminative loss and dominates the
training progress, while smaller gradient updates
are propagated through the other modalities, lead-
ing to an under-optimized situation in which the
dominant modality learn faster than the oth-
ers [60]. In turn, the cross entropy loss encourages
the network to learn more separable features [61],
thus increasing their feature norms unevenly. This
problem becomes particularly relevant in cross-
domain scenarios, where the accuracy drop is
further exacerbated by domain shift.

For this reason, in this work we introduce a
new loss function based on the mean features norm
of the different modalities. This loss promotes
balanced learning and synergistic integration of
modalities. By addressing the issues of modality
imbalances and domain shift, RNA improves the
model’s ability to effectively exploit multi-modal
information and improve overall performance.

3.2 Setting

Suppose we observe data XS = {(xs,i, ys,i)}ns
i=1

from a source distribution S, where ns is the
total number of samples, each associated with
a label ys,i from the label space Ys. Each sam-
ple xs,i contains multiple modalities, i.e., xs,i =
{x1

s,i, . . . , x
M
s,i}, where xm

s,i denotes the m
th modal-

ity of the i th sample and M is the number of
modalities. The target domain T comprises nt

annotated target samples XT = {xt,i}nt

i=1, each
characterized by the same M modalities of the
source samples (i.e., xt,i = {x1

t,i, . . . , x
M
t,i}).

We assume that the distributions of all
involved domains are different, i.e., Dj

d1
̸= Dk

d2
,

where d1 and d2 are the domains (source or tar-
get) and j and k represent different modalities on
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Fig. 2 Labeled source and unlabeled target samples from
the modalities u (e.g., visual) and v (e.g., audio) are fed
to the respective feature extractors. LRNA aims to balance
the relative feature norms of the two modalities, through
a combination of the (domain-specific) cross-modal com-
ponents (Lg

RNA and Lc
RNA) and the cross-domain ones

(Lmod
RNA) in each u and v modality. In DG, only the compo-

nents computed on the source are used.

the same domain and the same or different modal-
ities on different domains. We also assume that the
label space is shared between sources and targets,
i.e., Ys = Yt.

3.3 RNA for Domain Adaptation

In the following, without loss of generality, we
consider a single-source single-target problem in
which two modalities are available. In Sec. 3.5 we
show how the approach can be extended to any
number of modalities.

We denote each input sample i as xi =
(xu

i , x
v
i ), where u and v represent the two modal-

ities (e.g., visual and audio modality). As shown
in Fig. 2, each input modality m is fed to a sep-
arate features extractor Fm. The features fm

i =
Fm(xm

i ) are then processed by a classifier Gm,
which outputs the score predictions for the mth

modality of the i th sample. Finally, the predic-
tion scores from all modalities are combined using
a late fusion approach to obtain the final predic-
tions. In UDA settings, the Fm feature extractors
are shared between source and target.

As previously mentioned, in this work we
extend the approach introduced in [16], which
proposes to train the entire architecture by mini-
mizing the following loss:

L = LC + Lg
RNA

where LC is the standard cross-entropy loss on
source data. The latter aims at globally minimiz-
ing the difference between the feature norms of the
two modalities and is defined as:

Lg
RNA(u, v) = λg

(
E[h(Xu)]

E[h(Xv)]
− E[h(Xv)]

E[h(Xu)]

)2

(1)

where h(xm
i ) = (∥·∥2 ◦ Fm)(xm

i ) is the L2-
norm of mth modality features of the i th sample,
E[h(Xm)] = 1/B

∑
xm
i ∈Xm h(xm

i ) is the average

norm for the mth modality of the B samples com-
posing the batch, and λg weights Lg

RNA. To ensure
that all features have the same dimension, we
project them to a common shape using a fully
connected layer when this condition is not met.

In DG, the RNA objective is defined as
LRNA = Lg

RNA(S) while in UDA LRNA =
Lg
RNA(S) + Lg

RNA(T ), where Lg
RNA(S) and

Lg
RNA(T ) are the loss in Eq. 1 applied to the

source and target domains, respectively.
The dividend/divisor structure of Lg

RNA pro-
motes a relative adjustment between the global
norm of the two modalities aimed at achieving an
optimal equilibrium between the two. The square
of the difference forces the network to take larger
steps when the ratio of the two modality norms
is too different, leading to faster convergence. We
note that Eq. 1 redefines the loss presented in [16]
to ensure a symmetric form (i.e., Lg

RNA(u, v) =
Lg
RNA(v, u)).

3.4 RNA extensions

While the results in [16] show the effectiveness
of Lg

RNA in reducing domain shifts, the formu-
lation in Eq. 1 has two major limitations. First,
the global cross-modal alignment performed by
Lg
RNA may also lead to unbalanced norms between

modalities at the class level, which in turn tends
to favor one modality over the others when mak-
ing decisions about particular classes. Second, in
UDA, the alignment is performed separately for
each domain. As a result, the average feature
norms may still show large differences between
source and target domains. These differences can
be attributed to the presence of domain-specific
features that originate from training in the source
domain and may have low activations in the target
domain [17, 20], affecting overall accuracy.
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Fig. 3 Individual effects of LRNA components on feature
norms. Each diagram shows norms per class for a single
modality and domain (u or v for source or target). 1st row:
Lg
RNA minimizes overall average norms (larger bars on the

right) of u and v modalities. 2nd row: Lc
RNA achieves bal-

anced norms at class level. 3rd row: Lmod
RNA balances class

and average norms of the same modality across domains.
The diagrams show the norms before (left) and after (right)
applying the corresponding LRNA component.

To address both problems, we propose the fol-
lowing extensions to the RNA formulation. First,
we introduce an intra-domain class constraint
Lc
RNA to address the cross-modal norm imbalance

at class level, defined as follows:

Lc
RNA(u, v) = λc

C∑
c=1

(
E[h(Xu

c )]

E[h(Xv
c )]

− E[h(Xv
c )]

E[h(Xu
c )]

)2

3 where λc weights the loss, and E[h(Xm
c )] denotes

the average norm of the features of modality m
for samples of class c, with C the total number of
classes. We note that in computing Lc

RNA for the
target, the pseudo-labels are used to assign the
target samples to classes.

The second extension of LRNA addresses the
problem of different norms in different domains
by re-balancing the average and per-class norms
of features in each modality across domains, so
that the network can focus on features that are
more transferable between domains [20]. To this
end, we include the following term in the RNA
formulation:

Lmod
RNA(ms,mt) = Lg

RNA(ms,mt) + Lc
RNA(ms,mt)

where m ∈ {u, v}. Combining the three compo-
nents we have previously defined, the extended

RNA formulation in DG settings becomes:

LRNA = Lg
RNA(us, vs) + Lc

RNA(us, vs) (2)

and the one for UDA setting is:

LRNA =Lg
RNA(us, vs) + Lg

RNA(ut, vt)+

Lc
RNA(us, vs) + Lc

RNA(ut, vt)+

Lmod
RNA(us, ut) + Lmod

RNA(vs, vt)

(3)

The individual contribution of the three losses
is exemplified in Fig. 3. Lg

RNA globally aligns the
norms of modalities for each domain. Lc

RNA aligns
the norms of modalities per class for each domain.
Lmod
RNA aligns the norms between domains, sepa-

rately for each modality. Taken together, the three
losses act synergistically. In DG, Lc

RNA supports
the work of Lg

RNA, which in turn facilitates the
alignment of norms per class to a common value.
The addition of Lmod

RNA in UDA helps the other
two components to ensure that the average and
per-class norms of the different modalities are also
aligned between source and target.

3.5 Extension to multiple modalities

The RNA objective in Eqs. 2 and 3 can be trivially
extended to more than two modalities. In DG, the
loss can be rewritten as:

LRNA = LRNA(S) =
M∑
i=1

M∑
j=i+1

LRNA(is, js) (4)

where i and j span the M modalities. Similarly,
the UDA loss becomes:

LRNA = LRNA(S) + LRNA(T ) +

M∑
i=1

Lmod
RNA(is, it)

where LRNA(S) and LRNA(T ) are the loss in Eq. 4
for the source and target domains, respectively.

3.6 Learning objective in UDA

In addition to the loss defined in Eq. 3, to further
improve the domain invariant properties of the
features (and thus reduce the divergence between
domains), we apply an adversarial domain align-
ment [62, 63]. We follow the recipe used in other
recent UDA work [6, 46, 48, 64], and introduce a
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classifier that predicts whether features are from
the source or the target. This classifier is directly
connected to the feature extractors via a Gradient
Reversal Layer (GRL) [62]. The domain classifica-
tion loss Ld is then multiplied by a weight λd and
added to the total loss.

The loss we have introduced so far (i.e., the
combination of LRNA and Ld) aims to improve
the informative and domain invariant properties
of the embeddings of the different modalities.
However, these two loss components affect the fea-
ture extractors Fm and are not back-propagated
through the classifier, which therefore only sees
the source data and thus has no way to benefit
from the target data. The result is that during
training, the classifier focuses only on how best
to integrate the multi-modal features to improve
accuracy in the source domain, and completely
ignores the classification uncertainty on target.

One approach commonly used in UDA to
improve class discrimination in the target domain
is to use a mutual information criterion [65]
applied to the target data that not only min-
imizes the prediction uncertainty, but also pro-
motes a uniform distribution of samples between
classes. This is achieved through an Information
Maximization (IM) loss defined as the difference
between the average entropy of the outputs and
the entropy of the average output:

LIM = −Ex∈XT

C∑
c=1

pc(x) log pc(x) +

C∑
c=1

p̄c log p̄c

where C is the total number of classes, pc is the
posterior probability for class c, and p̄c is the mean
output score for the current batch.

When we put all the pieces together, we train
the model in the UDA setting to minimize the
following loss:

L = LC + LRNA + λdLd + λIMLIM

where LRNA is from Eq. 3 and λIM is the IM loss
weight.

4 Experiments

In this section, we aim to verify the effectiveness
of our proposed approach through an empiri-
cal evaluation on different multi-modal bench-
marks corresponding to a variety of datasets and
tasks. These range from action classification (on
EPIC-Kitchens-55 [66], EPIC-Kitchens-100 [67],
and UCF-HMDB [46]) to object recognition (on
ROD [68]) and fatigue classification (on CogBea-
con [69]).

In the analysis, the results are obtained and
presented as follows. When a dataset includes dif-
ferent domains, we optimized the models using
the average accuracy over all the domain splits
reported in the respective experimental proto-
col. Results were obtained using the same set of
hyperparameters for all splits. Therefore, in the
following, we excluded from evaluation the meth-
ods for which it was obvious (either from the
description or from the available source code) that
the hyperparameters were optimized for each split.

The rest of the section is organized as follows.
We begin by introducing the experimental bench-
marks used in our work (Sec. 4.1). The ablation
study is given in Sec. 4.2, and the results are
presented from Sec. 4.3 to Sec. 4.7.

4.1 Datasets

EPIC-Kitchens-55 (EK55). This is a large-
scale egocentric video benchmark recorded by 32
participants in their own kitchens while perform-
ing unscripted activities [66]. RGB, Audio and
Flow data are available in the dataset. To validate
our approach, we use the experimental proto-
col defined in [6]. According to this protocol, (i)
we only use the three kitchens with the largest
amount of annotated samples (hereafter referred
to as D1, D2, and D3) and (ii) we consider only
verb classification task and a subset of eight labels.
The challenges lie not only in the large domain
shift that exists between the different kitchens,
but also in the unbalanced distribution of classes
within and between domains.

EPIC-Kitchens-100 (EK100). EK100 [67]
extends EK55 to 45 kitchens, with almost 100
hours of video and 89,977 annotated action seg-
ments. The UDA setting of EK100 is defined as
two domains, Source (containing labeled training
data from 16 participants collected in 2018) and
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Target (i.e., unlabeled videos from the same 16
participants in the same kitchens but collected
two years later). The segments are annotated
with 97 nouns and 300 verbs corresponding to
3,369 unique action classes, largely unbalanced
and characterised by a long-tailed distribution.

UCF-HMDB. The UCF-HMDB dataset [46]
was published to study video domain adapta-
tion in third-person action classification. The
dataset consists of 3,209 videos from the original
UCF101 [70] and HMDB51 [71] datasets, which
define the source and target domains used in DG
e UDA. The videos are annotated with 12 classes.

ROD. ROD [68] is an image-based dataset
developed for object recognition tasks. ROD con-
sists of 41,877 samples of 300 everyday objects
grouped into 51 categories and captured by
an RGB-D camera. ROD is coupled with Syn-
ROD [9], which contains photorealistic renderings
from 3D models of the same categories as ROD,
and N-ROD [72], which extends both datasets to
event modality by introducing real event record-
ings obtained from ROD samples, as well as
simulated events extracted from SynROD’s syn-
thetic images. Following the settings proposed
in [9, 72], this dataset allows the exploration of
domain shift between synthetic (source domain)
and real data (target domain) in a multi-modal
object classification task using RGB-Depth and
RGB-Event.

CogBeacon. CogBeacon is a multi-modal
dataset collected to analyze the effects of cognitive
fatigue on human performance [69]. Volunteers
completed three different computerized versions
(V1, V2, and V3) of the Wisconsin Card Sort-
ing Test, a test widely used in experimental and
clinical psychology [73]. Experimental sessions are
divided into rounds in which subjects can sig-
nal their cognitive fatigue (i.e., sample classes
are “fatigue” and “no-fatigue”, with a strong
class imbalance towards fatigue in split V3). Two
modalities are available: (i) EEG data, and (ii)
user’s movements and facial expressions (recorded
by capturing 68 facial keypoints and the face
bounding box).

4.2 Ablation studies

In this section, we present the ablation studies of
our approach, all of which have been performed
using EK100, as this is the largest and most

diverse of all the benchmarks used in our work,
thus increasing the statistical significance of these
studies.

4.2.1 Experimental settings

For the sake of clarity, we introduce here the
details of the experimental settings used to obtain
the results discussed in this Section and in
Section 4.3.

Evaluation Protocol. We follow the exper-
imental setup for UDA proposed in [67], where
the fine-grained nature of the dataset annotations
combined with the large domain and temporal
shifts between the source and target domains
make the adaptation task very challenging. All the
experiments in this section (and in Section 4.3)
use all three modalities (RGB, Audio, and Flow)
available in the dataset. The setting includes a val-
idation split, for which labels are available, and a
non-annotated test split. The results of this work
are reported on the former, although previous
work has also demonstrated the effectiveness of
RNA on test data as well [74, 75]. Performance is
evaluated in terms of Top-1 and Top-5 accuracy of
verb and noun predictions and on the combination
of the two predictions (action).

Input. RGB, Flow and Audio are processed
following [76] by uniformly sampling 25 frames
and 1.28 seconds audio segments along the action.
During both training and inference, five of these
segments are selected for each modality and fed to
the network.

Implementation Details. Frame-level fea-
tures fm ∈ R25×1024 from each modality m
are extracted using a TBN architecture [76] pre-
trained on Kinetics [77] and fine-tuned on the
source domain, following the recipe from [67].
Our model is trained on pre-extracted features
using this backbone. Five frame features for each
segment are uniformly selected and fed to a lin-
ear layer, followed by a ReLU activation and
dropout with probability 0.5. Frame features are
temporally aggregated using a TRN [78] mod-
ule to obtain action-level features f ′

m ∈ R1024.1

To account for the multi-task nature of this set-
ting, we map the features into two components
f ′
m,v , f ′

m,n ∈ R256 using a single linear layer,

1Up to this point, the implementation closely follows the
official code provided for the EK100 UDA challenge [67].
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Fig. 4 Verb feature norms across different modalities and settings (DG and UDA). Light ( ) and dark colors (
) denote source and target validation domains, respectively. (a) In the “Source Only” setting, different modalities

and domains result in unbalanced feature norms. (b) LRNA in DG improves the alignment between different modalities,
but leaves a gap between the source and target domains. (c) Finally, the contribution of Lmod in LRNA reduces this gap in
UDA, resulting in more consistent feature norms across different modalities and domains.

which we call verb and noun features. These are
fed to two separate classifiers to obtain the modal-
ity logits for the verb (ym,v) and the noun (ym,n).
Since this benchmark includes a single source and
a single target domain, the network is trained for
action recognition by applying cross-entropy loss
to the sum of per-modality logits. We extend RNA
to work in this multi-task context by applying the
alignment losses separately to the verb and noun
features, immediately before the final classifier.
Applying the RNA losses to these features ensures
that the alignment effect provided by RNA is as
close as possible to the classifier, which is heavily
influenced by the feature norm values. The net-
work is trained for 30 epochs using a batch size of
128 samples and SGD optimizer with momentum
0.9 and weight decay 10−4. The learning rate is
initially set to 0.003 and decreased by a factor of
10 after epochs 10 and 20.

4.2.2 Effects of LRNA on norm
alignment

We begin by discussing the contribution of the
components of the proposed LRNA loss. Its goal
is to mitigate domain shift issues by balancing
the mean feature norms of the different modali-
ties globally (Lg

RNA), at the class level (Lc
RNA),

and across domains (Lmod
RNA). In the following, we

present the results of experiments in which these
components are introduced incrementally.

Global alignment: a qualitative analysis.
In Fig. 4 we report the mean feature norms for
each modality. For simplicity, we will base our
discussion on the verb feature norms, since the
same observations apply to nouns. In particular,
in Fig. 4 we show how the average norms of verb

features for different modalities change on DG and
UDA with the contribution of LRNA.

A preliminary qualitative analysis of the data
presented in Fig. 4 shows that LRNA in DG
(Fig. 4b) leads to a better alignment of the aver-
age feature norms of the different modalities and
to an overall increase of their values with respect
to the “Source Only” (Fig. 4a). Recall that the
norm formulation in Eq. 2 attempts to solve the
alignment task at the batch level, and thus does
not guarantee an exact alignment of all average
norms. In Fig. 4b, we can also observe the increase
in Flow norm in DG compared to “Source Only”
(Fig. 4a). Previous studies have shown that Flow
is the modality least affected by domain shift in
egocentric action recognition [6], potentially allow-
ing for greater generalization. This could explain
why, in DG, the network pays more attention to
this modality.

In addition, the availability of target data
in UDA enables LRNA to improve the balance
between the norms of the different modalities, so
that the model can better use the contributions
of each modality to make its final decisions. This
improved mutual contribution between modali-
ties (reflected in the increased accuracy reported
in Table 2) may explain the (relatively) lower
norm of Flow in UDA, which is balanced by
increased norms of (i.e., attention to) the other
two modalities (RGB and Audio).

Global alignment: a quantitative analy-
sis. To facilitate the assessment of the balancing
effect of LRNA between “Source Only”, DG and
UDA norms, we also introduce a quantitative met-
ric. We use the coefficient of variation (CV) as a
measure of the norm imbalance, with lower CVs
indicating more balanced sets of values. CV is
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Fig. 5 Feature norms of the top 10 most and least common classes from the target validation split of EPIC-Kitchens-100.
While Lg

RNA improves the alignment of different modalities, there is still an imbalance between classes. The addition of the
per-class variant of RNA greatly improves this alignment, resulting in more uniform feature norms across different classes.

Method CVS CVT CVS+T

Source Only 0.126 0.076 0.101

Lg
RNA 0.089 (+29.3%) 0.121 (-59.8%) 0.103 (-2.1%)

Lg
RNA + Lc

RNA (DG) 0.075 (+40.4%) 0.098 (-28.7%) 0.081 (+20.1%)

LRNA (UDA) 0.049 (+61.0%) 0.059 (+22.7%) 0.049 (+50.7%)

Table 1 Coefficient of variation for DG and UDA
feature norms. CVS , CVT and CVS+T are the CVs of
the source, target and combined domain(s) respectively.
For clarity, we also report the percentages of improvement
with respect to the “Source Only” experiment.

defined as follows:

CV =
σ

µ

where σ is the standard deviation and µ is the
mean of the observed norm values. The CV val-
ues obtained are summarized in Table 1, where,
for better clarity, we also report the percentage of
improvement (%) with respect to the CV values
of the “Source Only”.

As for the average feature norms in DG
(Fig. 4b), we have a 40.4% decrease in CV com-
pared to the “Source Only”. It is interesting to
note that the application of Lg

RNA alone only con-
tributes to a 29.3% reduction of CV, highlighting
the (positive) combined effect of Lg

RNA and Lc
RNA.

For the target domain in DG, we can observe
that the imbalance between modalities increases
(instead of decreasing) by 28.7%, which highlights
the need for an alignment loss that works not only
between modalities but also between domains.

In UDA, the ability to use the target data
contributes to a larger reduction in CV over the
“Source Only” on both source (by 61.0%) and tar-
get domains (22.7%). When we consider the total
imbalance (i.e., we calculate CV considering all
source and target values together), CV shows an

improvement of 20.1% in DG and of 50.7% in
UDA. These values are reflected in progressively
greater accuracy in the DG and UDA settings
compared to the “Source Only” settings (Table 2).

Class alignment. For assessing the contribu-
tion of Lc

RNA, we show in Fig. 5 the evolution
of the verb norms of the ten most frequent and
the least frequent classes in the DG settings. In
the “Source Only” (Fig. 5a) the per-class mean
features norms are largely unbalanced. While the
exclusive use of Lg

RNA contributes to a better
global balance of the modality norms, it has a
small effect on the balancing of the norms per-class
(Fig. 5b). On the contrary, when Lc

RNA is also min-
imized, we can observe a significant improvement
of their alignment (Fig. 5c).

These qualitative observations are also
reflected in the CV metric computed on the class
norms. Indeed, the use of Lg

RNA leads to a minor
improvement in “Source Only” CV (37.8% and
19.5%, respectively, for source and target features)
compared to that obtained by the combination of
Lg
RNA and Lc

RNA (62.5% and 49.1%).
Overall effect on feature norms. To give

further insight into the impact of LRNA, we show
in Fig. 6 a scatter plot of the validation set in DG.
This diagram is obtained by plotting the RGB,
Flow and Audio feature norms of each sample in
a 3D space whose axes are the norms of the three
modalities. To make the plot easier to read, rather
than using a single 3D representation, we present
it as three separate sections along the coordinate
planes defined by the feature pairs. The goal of
these visualizations is to illustrate the changes in
the shape of the resulting manifold.

It can be seen that the “Source Only” fea-
tures are widely distributed and correspond to a

11



S
o
u
rc
e
O
n
ly

O
u
r

(a) Flow v. RGB (b) Audio v. RGB (c) Audio v. Flow

Fig. 6 Comparison of the feature norms before (top) and after (bottom) application of Lg
RNA and Lc

RNA. The dots
represent the samples in the validation dataset. The color bar on the right represents increasing density values. The original
features, i.e. “Source Only”, show a wide range of values and an irregular shape, reflecting the misalignment between the
features norms of the two modalities. The RNA loss re-balances the two, as evidenced by the more globular distribution
while also shifting the average norms towards higher values.

Method Verb@1 Noun@1 Action@1 ∆ Acc.

Source only 46.79 26.79 18.29 -

DG

Lg
RNA 49.53 27.50 18.91 1.36

Lc
RNA 50.51 27.75 19.44 1.94

Lg
RNA + Lc

RNA 50.75 27.92 19.81 2.20

UDA

Lg
RNA 49.98 27.79 19.44 1.78

Lg
RNA + Lc

RNA 50.46 28.49 19.77 2.28

Lg
RNA + Lc

RNA + Lmod
RNA 49.94 29.48 19.87 2.48

LRNA + Ld 50.59 29.38 20.04 2.71

LRNA + LIM 51.04 28.86 19.97 2.67

LRNA + Ld + LIM 50.82 29.19 20.05 2.73

Table 2 Ablation on different loss components. ∆ Acc. is
the average accuracy improvement for the verb, noun and
action metrics. Best in bold and the runner-up underlined.

manifold with a largely irregular shape. This is
due to misalignment between the feature norms of
the different modalities. When the LRNA loss is
applied, the manifold becomes more spherical and
compact, reflecting the improvement in the align-
ment of the modality norms. It is also possible to
note an increase in the average feature norm val-
ues that moves the manifold towards the upper
right region of the 2D dimensional plots.

4.2.3 Effect of loss components

Table 2 details the contribution of the different
loss components to the final performance in both

Method Verb@1 Noun@1 Action@1 ∆ Acc.

RGB + Flow

Source Only 44.80 25.35 16.33 -

Our (DG) 45.95 26.65 16.94 1.02

Our (UDA) 47.64 26.49 16.91 1.52

RGB + Audio

Source Only 39.91 24.18 14.84 -

Our (DG) 42.04 25.54 15.67 1.44

Our (UDA) 42.26 26.45 15.98 1.92

Flow + Audio

Source Only 45.11 21.98 15.37 -

Our (DG) 48.87 23.44 16.49 2.12

Our (UDA) 48.42 23.51 16.71 2.06

RGB + Flow + Audio

Source Only 46.79 26.79 18.29 -

Our (DG) 50.75 27.92 19.81 2.20

Our (UDA) 50.82 29.19 20.05 2.73

Table 3 Top-1 classification accuracies (%) on modality
pairs on EPIC-Kitchens-100 [67]. ∆ Acc. is the average
accuracy improvement for the verb, noun and action
metrics.

DG and UDA settings. For better evaluation, we
also show the average improvement in Top-1 accu-
racy of verb, noun, and action with respect to
“Source Only” (∆ Acc). The combination of global
and class components in DG (Lg

RNA + Lc
RNA, ∆

Acc. = 2.20) improves accuracy over Lg
RNA and

Lc
RNA alone (1.36 and 1.94, respectively), showing
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that the combination of the two components effec-
tively reduces domain shift. Indeed, while Lg

NRA

Lg
NRA aligns modalities globally, possibly penaliz-

ing minority classes in unbalanced distributions,
Lc
NRA enforces alignment for each class individ-

ually. The ability to use target data in UDA
boost the accuracy improvement to 1.78 for Lg

RNA

and 2.28 for Lg
RNA + Lc

RNA), with Lmod
RNA further

contributing to reach an average improvement of
2.48.

As explained in Sec. 3.6, the learning objective
in the UDA setting also benefits from two other
losses, namely the adversarial domain loss Ld,
which aims to improve the transferability of fea-
tures across domains, and the Information Max-
imization loss LIM, which aims to minimize the
classification uncertainty between target classes.
Ld provides a stronger improvement in this par-
ticular case (2.71), while LIM has a minimal effect
on the overall accuracy. However, we note that the
mutual contribution of the latter two terms (Ld

and LIM) also depends on the task and bench-
mark considered, as other experiments show more
pronounced benefits for LIM.

4.2.4 Multi-modal adaptation
capabilities

Another interesting question is whether the pro-
posed method allows effective integration of multi-
ple modalities in the final decision and whether the
use of multiple modalities also helps to improve
the domain adaptation capabilities of the model.

Table 3 summarizes the results obtained com-
paring experiments with modality pairs and with
all three modalities. It shows that the latter not
only outperforms all other modality pairs in terms
of results, but also shows better generalization
properties, showing an improved delta compared
to its “Source only” (2.73) compared to 2.06,
the best two-modality improvement obtained with
Flow + Audio. These results suggest that our
method is effective in combining the different
modalities to improve the overall accuracy and the
generalizability of the features obtained.

4.2.5 Modality drop

In Table 4, we present an experiment to inves-
tigate the impact of modality imbalance during
training. In particular, we investigate the sce-
nario in which a modality is “unexpectedly” lost

Method Verb@1 Noun@1 Action@1 ∆ Acc.

No Audio @ Test

Source only 41.61 21.91 13.07 -

DG 44.03 24.44 14.89 2.26

UDA (LRNA) 44.08 24.77 15.25 2.50

No Flow @ Test

Source only 30.58 20.33 10.63 -

DG 36.88 22.82 12.89 3.69

UDA (LRNA) 36.67 21.83 12.46 3.14

No RGB @ Test

Source only 37.69 17.99 12.41 -

DG 46.70 18.92 13.53 3.69

UDA (LRNA) 46.51 19.37 13.55 3.78

Table 4 Modality drop. All configurations are trained
on all input modalities. At inference time, we simulate
the loss of a modality, resulting in large performance
drops that RNA helps mitigate.

at inference time, without a training strategy
accounting for this possibility. This scenario, also
presented in [79], is relevant because there may be
constraints at inference time, such as power, com-
putational or privacy constraints, or an anomaly
of an input device that prevent the use of all
modalities.

The basic idea of our approach is to help the
model learn equally from the different modalities
by integrating their contribution. While it is clear
that the unexpected loss leads to a drop in accu-
racy, we can also expect that the effect of RNA is
to make the model more robust to such a modal-
ity drop than the “Source Only” model, since the
latter is less able to exploit the synergies between
modalities and, thus, more vulnerable to dom-
inant modalities. This expectation is confirmed
by the results in Table 4, which are consistent
with the observations of [79], and show different
but consistent effects on “Source Only” when dif-
ferent modalities are dropped at test time (i.e.,
large accuracy drops compared to the results in
Table 2). At the same time, these results show that
the balancing effect of RNA can potentially help
the model reduce the impact of the lost modal-
ity, as it can take advantage of a better mutual
contribution from the remaining ones.

4.3 Experiments on EK100

Unlike the following benchmarks, where we
describe the experimental protocol, inputs, imple-
mentation details, and baselines used to evaluate
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the results, in this section we present only the
baselines for EK100, as the previous elements were
introduced in Sec. 4.2.1.

Baselines. We compare our method with
MM-SADA [6], TA3N [46], and CIA [54]. As for
MM-SADA, the original approach works only with
RGB and Flow modalities. Therefore, to integrate
the Audio modality, we use two separate branches,
one for RGB-Flow and the other for RGB-Audio
modalities (as in [16]). The adversarial branch is
applied individually to each modality.

Results. Results are given as Top-1 and Top-5
accuracy for verb, noun, and action. For each base-
line, we also report the relative “Source Only”,
average improvement in terms of Top-1 accuracy.
For the DG setting, we compare our approach to
two alternative methods. The first is MM-SADA
(SS), a modified version of MM-SADA, which
applies only the original self-supervised alignment
task to the source domain modalities and does not
consider the adversarial alignment component of
the method (which requires target data). The sec-
ond approach is Gradient Blending (GB), which
attempts to find an optimal mixture of modali-
ties according to their overfitting behavior. Such a
mixture is achieved by combining a cross-entropy
loss for each modality and a loss for their fusion
with appropriate weights2.

Analyzing the accuracy across different labels,
we observe that GB performs best, while our
approach ranks as the runner-up and MM-SADA
(SS) lags slightly behind. However, when consid-
ering the improvements relative to the “Source
Only” baseline, our method shows higher delta
accuracy compared to GB. This result seems to
indicate that our method makes a more signifi-
cant contribution to reducing the domain shift. We
also find the approach proposed in [11] interesting
as it shares similarities with our method in terms
of improving the balance between modalities for
better classification accuracy. To investigate this
further, we perform additional experiments by
applying our method to the “Source Only” results
obtained from Gradient Blending, i.e., using mul-
tiple classification losses but without reweighting
them. These additional experiments are indicated
with a † symbol. The results shown in Table 3

2The original version of GB uses only RGB and Audio. The
optimal weights for combining losses were taken from [80], and
the weight for the missing component, i.e., Flow, was tuned
appropriately for this work

are promising. Our method achieves the best
action accuracy and is competitive with GB (and
also comparable with CIA, the state-of-the-art in
UDA). It is important to note that our standard
solution addresses the alignment problem with an
adaptive approach that, unlike GB, is independent
of the model and dataset used and requires only
two hyperparameters: λg and λc.

In the UDA experiments, we observe that
although our method ranks second in terms of
action accuracy, it has better delta accuracy
improvements compared to all other competitors.
Furthermore, the results on other evaluation met-
rics are comparable to those of the other proposed
baselines. It is noteworthy that a significant por-
tion of the improvements can be observed in
the DG phase, where the target domain is not
accessed. This observation highlights the general-
ization advantage of RNA in coping with domain
shifts.

4.4 Experiments on EK55

Evaluation Protocol. We adopt the experimen-
tal protocol of [6] and evaluate performance in
a single-source setting (Di → Dj) on the three
domains described in Sec. 4.1. Despite the small
size of this setting compared to EK100, it remains
a highly valued and challenging benchmark in the
field of egocentric action recognition due to the
large domain shift between these domains and the
unbalanced label distribution. In the experiments,
we restrict our analysis to the RGB+Flow and
RGB+Audio modality combinations, which are
the ones recent work in the literature focus on.

Baselines. We compare our results with sev-
eral state-of-the-art UDA methods. The first
group (GRL [28], MMD [41], AdaBN [81], and
MCD [40]) includes approaches originally devel-
oped as image-based methods and later adapted to
work with video inputs. The second group includes
more recent methods such as MM-SADA [6],
the contrastive-based methods proposed in [23]
and [22] (STCDA), and the recently published
CIA [54]. In our comparison, we use the results
reported in the original paper for each baseline.

Input. As for the input, different sampling
strategies are used to allow a fair comparison with
the existing baselines. When using dense sam-
pling, a clip of 16 consecutive frames is randomly
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Methods Network Verb@1 Noun@1 Action@1 Verb@5 Noun@5 Action@5 ∆ Acc.

DG

Source Only TBN-TRN 47.14 27.35 18.99 75.27 49.36 41.82 -

MM-SADA (SS) [6] TBN-TRN 47.76 27.93 19.15 77.07 49.77 42.90 0.45

Source Only TBN-TRN 50.27 29.04 19.96 81.74 52.14 46.74 -

GB [11] TBN-TRN 50.18 29.60 20.26 81.82 52.57 46.86 0.26

Source Only TBN-TRN 46.79 26.79 18.29 75.39 48.44 41.36 -

Our (DG) TBN-TRN 50.75 27.92 19.81 80.64 51.37 45.33 2.20

Source Only† TBN-TRN 49.81 28.55 19.77 81.10 51.90 46.22 -

Our† (DG) TBN-TRN 50.20 29.31 20.30 81.58 52.68 46.76 0.56

UDA

Source Only TBN-TRN 46.70 27.78 19.20 75.42 48.27 42.12 -

TA3N [46] TBN-TRN 48.44 28.87 19.61 75.95 50.12 43.36 1.08

Source Only TBN-TRN 47.14 27.35 18.99 75.27 49.36 41.82 -

MM-SADA [6] TBN-TRN 48.44 28.26 19.25 77.56 50.59 43.41 0.82

Source Only TBN-TRN 47.69 28.48 19.61 - - - -

CIA [54] TBN-TRN 48.34 29.50 20.30 - - - 0.79

Source Only TBN-TRN 46.79 26.79 18.29 75.39 48.44 41.36 -

Our (UDA) TBN-TRN 50.82 29.19 20.05 80.89 52.18 46.04 2.73

Table 5 Classification accuracies (%) on EPIC-Kitchens-100 [67]. Results are reported in terms of Top-1 and Top-5
classification accuracy for the noun, verb and action metrics. ∆ Acc. is the average Top-1 accuracy improvement. †These
experiments are trained using the cross entropy loss on both the fused logits as well as on the per-modality logits. Best in
bold, runner-up underlined.

sampled from the video. When using uniform sam-
pling, 16 frames evenly distributed over the video
are sampled. At test time, the same sampling
strategy is used as in training, except that five
clips are fed into the network instead of one, as
suggested in [82], and the predictions are aver-
aged. Following the experimental setting from [6],
during training, random clipping, scale shifts, and
horizontal flipping are used for data augmenta-
tion, while in testing, only central cropping is
applied. As for the aural information, we follow
[76] and convert the audio track into a 256× 256
matrix representing the log spectrogram of the sig-
nal. The audio clip is first extracted from the video
and sampled at 24kHz. Then, the Short-Time
Fourier Transform (STFT) is calculated with a
window length of 10ms, a skip size of 5ms, and
256 frequency bands. For the Flow input, we use
the same sampling strategy as for RGB.

Implementation Details. Both the RGB
and Flow streams use an I3D model [83] pre-
trained on Kinetics [77], following the experimen-
tal setting from [6]. Following [76], the audio
feature extractor uses the BN-Inception model [84]
pre-trained on ImageNet [85]. The feature extrac-
tion backbones are trained end-to-end. For each
modality m, features have shape fm ∈ R1024.
Logits are computed separately for each modality

using a linear layer and summed. We train the net-
work for 5000 iterations using the SGD optimizer
using momentum 0.9 and weight decay 10−7. The
learning rate for RGB and Flow is set to 0.001 and
reduced to 2× 10−4 at step 3000, while for Audio
the learning rate is set to 0.001 and decremented
by a factor of 10 at steps {1000, 2000, 3000}. The
batch size is set to 128.

Results. We begin by discussing the UDA
results, which are summarized in Table 6. Given
the relevance of sampling strategies in the video
context, especially for the RGB+Flow combi-
nation [86], we divide the results into different
sections based on the sampling used for each
modality: dense (D) or uniform (U). Most base-
lines use dense sampling (D-D), while CIA is the
only method that uses uniform sampling (U-U)
for both modalities. In both cases, we compare
the baselines to our UDA method using the same
sampling strategy.

The results show that CIA with uniform sam-
pling outperforms the dense sampling-based meth-
ods. This observation confirms the findings in [86],
which emphasizes that uniform sampling usually
allows the network to learn more information.
We also observe that our UDA approach achieves
state-of-the-art results for both dense and uniform
samplings.
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Method Sampling D1→D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 Mean

RGB + Flow

Source Only D-D 42.00 41.20 42.50 46.50 44.30 56.30 45.47

GRL [28] D-D 50.20 44.70 46.90 50.80 50.20 53.60 49.40

MMD [41] D-D 46.60 39.20 43.10 48.50 48.30 55.20 46.82

AdaBN [81] D-D 47.00 40.30 44.60 48.80 47.80 54.70 47.20

MCD [40] D-D 46.50 43.50 42.10 51.00 47.90 52.70 47.28

DAAA [48] D-D 50.00 43.50 46.50 51.50 51.00 53.70 49.37

MM-SADA [6] D-D 49.50 44.10 48.20 52.70 50.90 56.10 50.25

Kim et al. [23] D-D 50.30 46.30 49.50 52.00 51.50 56.30 50.98

STCDA [22] D-D 52.00 45.50 49.00 52.50 52.60 55.60 51.20

Our (UDA) D-D 50.84 47.14 48.86 54.38 50.6 58.43 51.71

Source Only U-U 43.20 42.50 43.0 48.0 43.0 55.50 45.90

CIA [54] U-U 52.50 47.80 49.80 53.20 52.20 57.60 52.18

Our (UDA) U-U 52.84 47.49 54.41 54.11 55.53 61.64 54.34

Source Only D-U 54.25 50.72 54.87 56.41 51.65 61.27 54.86

Our (DG) D-U 56.00 50.39 56.25 56.37 56.73 61.63 56.23

Our (UDA) D-U 57.33 52.84 57.19 56.78 57.27 62.03 57.24

RGB + Audio

Source Only D-D 39.03 39.17 35.27 47.52 40.255 49.98 41.87

GRL [28] D-D 41.02 43.04 39.36 49.25 38.77 50.56 43.67

MMD [41] D-D 42.40 43.84 40.87 48.13 41.46 50.03 44.46

AdaBN [81] D-D 36.64 42.57 33.97 46.63 40.51 51.2 41.92

MM-SADA [6] D-D 48.90 46.66 39.51 50.89 45.42 55.14 47.75

Our (DG) D-D 42.55 41.77 42.73 51.09 42.63 54.24 46.21

Our (UDA) D-D 46.65 47.22 46.18 52.30 44.04 56.18 48.76

Table 6 Classification accuracies (%) on EPIC-Kitchens-55 [66], using the evaluation protocol from [6], divided by
modalities. Results are grouped by the sampling strategy used for a fair comparison. Best in bold, runner-up underlined.

To further confirm the importance of sampling,
we conduct experiments with a mixed sampling
strategy (i.e., D for RGB and U for Flow, Table 6).
Since none of the baselines use this sampling, we
only present our results for the “Source Only”,
DG, and UDA methods. We note that the “Source
Only” method already achieves remarkable results
(up to 3% better than our method with uniform
sampling), which are further improved in both
DG and UDA (despite the smaller difference with
the “Source Only” compared to other samplings).
One possible explanation for the improved per-
formance with mixed sampling is that it allows
for better exploitation of the distinct properties
of the two modalities. Dense sampling facilitates
a more accurate characterization of static appear-
ance information (RGB) over a short temporal
range, while uniform sampling enables the use of
a wider temporal range to capture the dynamic
information conveyed by Flow.

When combining RGB and Audio modali-
ties, our UDA approach consistently achieves the
best results (7% improvement over “Source Only”
and 1% improvement over the state-of-the-art
method). This result confirms the potential of our

method, even when dealing with the fusion of
heterogeneous modalities.

Finally, we discuss the results we obtained
in DG for both modality combinations. For
RGB+Flow, we report the results obtained with
the mixed sampling strategy (D-U), i.e., the
sampling that yields the best performance. In
this setting, our method improves the “Source
Only” by up to 2% and 5% for RGB+Flow
and RGB+Audio, respectively. Furthermore, the
performance obtained in the DG setting is com-
parable to that of the UDA setting, with a devi-
ation of -1.01% and -2.55% for RGB+Flow and
RGB+Audio, respectively. Although no other DG
methods are available for comparison in this con-
text, these results show that the DG setting can
compete with several existing UDA methods that
benefit from target data during training.

4.5 Experiments on UCF-HMDB

Evaluation Protocol.We follow the same exper-
imental setting proposed in [78], which includes
the U → H and H → U shifts in a multi-modal set-
ting that includes the RGB and Flow modalities
available with this dataset.
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Method U→H H→U Mean

Source Only 82.8 90.7 86.7

MM-SADA [6] 84.2 91.1 87.6

Source Only [22] 82.8 89.8 86.3

STCDA [22] 83.1 92.1 87.6

Source Only [23] 82.8 90.7 86.7

Kim et al. [23] 84.7 92.8 88.7

Source Only [54] 86.1 92.5 89.3

CIA [54] 88.3 94.1 91.2

Source Only (conc) [54] 85.8 93.5 89.5

CIA (conc) [54] 90.6 94.2 92.4

Source Only 83.6 94.1 88.9

Our (DG) 83.3 94.9 89.1

Our (UDA) 86.4 94.3 90.4

Table 7 Classification accuracies (%) on
UCF-HMDB on RGB+Flow combination. Best
in bold, runner-up underlined.

Input. For both RGB and Flow, the train-
ing input consists of 16 consecutive frames with
resolution 224 x 224 pixels. In testing, we use
five clips uniformly sampled across the video and
average the predictions. We use the same data
augmentations as described in Sec. 4.4 for EK55.

Baselines. We compare our approach with
various multi-modal UDA approaches (MM-
SADA [6], STCDA [22], the method of Kim et
al. [23] and CIA [54]). To allow a fair compari-
son, all multi-modal results are based on the same
backbones and the same pre-training.

Implementation Details. The backbone for
both RGB and Flow is an I3D pre-trained on
Kinetics [77]. The learning rate is set to 0.01
and we train the model for 20 epochs with batch
size of 32. We use SGD as the optimizer with a
momentum of 0.9 and a weight decay of 10−7.

Results. In Table 7, we present the classifica-
tion accuracy of our method and several baselines.
To ensure a fair comparison, we report the results
of the “Source Only” model from the original
paper for all baselines.

In absolute terms, our approach achieves very
competitive performance under the UDA setting
and is the second best of all methods in terms of
accuracy, outperforming all baselines except CIA.
However, the better “Source Only” result of CIA,
which was difficult to reproduce in our experi-
ments, should be emphasized. This result could
be attributed to its particular architectural design
choices and the integration of spatial consensus
between RGB and Flow modalities. However, it
should be noted that the method proposed by CIA
cannot be easily extended to other modalities, as

shown by their work on integrating the Audio
modality in EK100 [54]. In contrast, our approach
provides a more versatile and adaptable solution
that can be applied to different modalities without
significant architectural changes.

Furthermore, our approach shows remarkable
domain shift reduction capabilities. When we com-
pare the performance gains of our method with
other baselines, we observe that our approach
achieves improvements over the “Source Only”
baseline that are comparable to those obtained
by other methods. For example, MM-SADA,
STCDA, Kim et al. [23], and CIA show gains of
0.9%, 1.3%, 2%, and 1.9%, respectively, while our
approach achieves a gain of 1.5%, with a maxi-
mum improvement of up to 3% in the U→ H shift.
This highlights the effectiveness of our method
in adapting to target domains and mitigating the
negative effects of domain shift.

4.6 Experiments on ROD

Evaluation Protocol. We follow the experimen-
tal protocol in [9] for RGB-depth modalities, and
the one in [72] for RGB-event. The studied shift
is a synthetic-to-real domain shift, with synthetic
source data and real target data (SynROD →
ROD). RGB and depth modality in the synthetic
domain are rendered, while events in the synthetic
domain are simulated using ESIM [87].

Baselines. We compare our results with
standard image-based UDA methods, namely
GRL [28], MMD [41], SAFN [20] and Entropy [88],
which we extend to operate on multiple modali-
ties. We also compare with Relative Rotation [9], a
method specifically designed to operate on multi-
ple modalities. It consists in a self-supervised task
asking the network to predict the relative rotation
between two modalities of the same input sample,
e.g., an RGB and a depth image.

Input. Event representations, depth images
and RGB images are pre-processed and aug-
mented during training following the procedure
in [9]. Depth images are colorized with surface nor-
mal encoding, as in [89]. Input images are normal-
ized with the same mean and variance used for the
ImageNet pre-training, while we kept event repre-
sentations un-normalized as this provided better
performance. We use voxelgrid representation for
events with 9 bins as in [72].
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Implementation Details. All backbones are
implemented using ResNet-18 [90], pre-trained on
ImageNet [85]. All the parameters of the network,
including the pre-trained parameters, are updated
during training, as in [9]. We train all network
configurations using SGD as optimizer, batch size
64 and weight decay 0.003.

Results. Table 8 provides a comparison of
our method with different baselines for the
SynROD→ROD adaptation task using RGB,
depth, and event modalities.

In UDA setting, our method shows remark-
able performance gains over all baselines for both
RGB+Depth and RGB+Event combinations. For
RGB+Depth, our approach achieves improve-
ments of up to 20% over the baselines. these
results deomonstrate the capability of our method
in reducing the domain shift and improving clas-
sification accuracy when adapting from the syn-
thetic domain (SynROD) to the real-world domain
(ROD). Our method also achieves improvements
of up to 10% over the baseline values for the
RGB+Event combination. This is a further evi-
dence of the effectiveness of our method in han-
dling the domain shift and improving classification
accuracy even in the presence of event data.

However, for DG, the performance gains are
relatively smaller compared to the Source Only
model for both modality combinations. This can
be attributed to the inherent challenges of the
synthetic-to-real setting, where there is a signifi-
cant gap between the feature distributions of the
source (SynROD) and target (ROD) domains. The
unavailability of target data during training limits
the generalization capabilities of the model, result-
ing in modest improvements over Source Only. In
contrast, in UDA setting, our method achieves
better performance by effectively using the target
domain information to bridge the domain gap.

Thus, we can conclude that the success of
our method in mitigating the shift from syn-
thetic to real domains highlights its poten-
tial for various fields and applications, such as
robotics, autonomous driving, and augmented
reality, where synthetic training data are largely
used.

4.7 Experiments on CogBeacon

Evaluation Protocol. We follow the experimen-
tal protocol in the supplemental of [15], evaluating

RGB + D RGB + E

Source Only 47.70 49.19
GRL [28] 59.51 55.11
MMD [41] 62.57 62.39
SAFN [20] 62.40 66.87
Entropy [88] 63.12 66.23
Relative Rotation [9] 66.68 66.68
Our (DG) 50.06 50.61
Our (UDA) 82.36 78.52

Table 8 SynROD→ROD accuracy (%)
results. Best in bold, runner-up underlined.

the performance in the single-source setting (Vi →
Vj) using three different domains (V1, V2, and
V3), for a total of six splits.

Baselines. We compare our results with those
in [15] (in particular with DLMM, the Differ-
entiated Learning framework proposed in [15])
and with those obtained in our experiments
with different UDA methods, namely SAFN [20],
GRL [28], MMD [41], and MM-SADA [6]. These
two lists of results are presented separately in
Table 9 because the number of samples does not
match that used in [15] (i.e., we have 2,240,
2,432, and 2,300 for domains V1, V2, and V3,
respectively).

Input. The EEG signals are characterized
using a total of 24 temporal and spectral features
(see [69] for details). The face data are represented
as a vector combining the average values of the
face data and their standard deviation, yielding a
total of 280 values.

Implementation details. Both backbones
are implemented by three 1D convolutional blocks
with kernel size three and stride one, followed by
a MaxPool layer and ReLU as the activation func-
tion. The output channels are 16, 32 and 64 for
EEG signals and 8, 16 and 32 for the face keypoint
model. The latter ends with a fully connected
layer with an output of 64 to match the output
of the EEG backbone. Model weights are ran-
domly initialized. Predictions for each modality
are computed with a single FC layer followed by
a LogSoftmax. We train the model for 90 epochs
using Adam as the optimizer. In all experiments,
the learning rate was set to 1e−3 and decremented
by a factor of 10 after 70 epochs.

Results. In Table 9, we present the classifica-
tion accuracy of our method and several baselines
for the CogBeacon dataset.
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Results from [15] Ours

Source Only 63.64 Source Only 61.80
MDANN [51] 66.83 SAFN [20] 64.01
MCD [40] 66.75 GRL [28] 64.24
CBST [91] 67.71 MM-SADA [6] 65.40
MM-SADA [6] 67.75 MMD [41] 65.58
DLMM [15] 70.47 Our (DG) 62.64

Our (UDA) 68.63

Table 9 CogBeacon accuracy (%) results.
Best in bold, runner-up underlined.

When we compare our approach to the “Source
Only” baseline, we observe a significant improve-
ment in the UDA setting. Our UDA accuracy
of 68.63% significantly outperforms the “Source
Only”’s accuracy of 61.80%. On the other hand,
the improvement in the DG setting is not so signif-
icant, with an accuracy of 62.64%. However, even
in this setting, we observe a potential for softening
the domain shift and achieve better performance.

It is worth noting that, on our settings, our
method outperforms the other UDA methods used
for comparison. Among the UDA baselines, MMD
achieves the highest accuracy of 65.58%, which
is 3.05% less than our method. We are also
competitive with more complex domain match-
ing approaches such as CBST, which involve
the generation of pseudo-labels or the use of
confidence-based selection strategies [91].

However, compared to the results reported
in [15], our method falls behind DLMM, which
achieves 70.47% accuracy, significantly better
than our results. Nevertheless, a more detailed
analysis reveals interesting insights when consid-
ering the improvements over the “Source Only”
baseline. DLMM achieves an improvement of
6.83%, while our method has an improvement of
7.03%, which can be considered equivalent. That
said, it is worth mentioning that our approach
is characterized by its simplicity compared to
DLMM. DLMM requires multiple training stages
and uses a more complex curriculum learning
approach with teacher/student models for differ-
ent modalities. In contrast, our method requires
is lighter and simpler to train, making it a more
practical option for real-world applications.

4.8 Limitations

The proposed approach provides interesting per-
formance in many cases, as shown by our exper-
iments with a variety of tasks and scenarios.

While the simplicity of the method is certainly a
strength, it may be viewed as less effective when
compared to methods developed and tuned for a
specific task and benchmark. However, we believe
that this limitation does not undermine the overall
effectiveness of the proposed approach, as it pro-
vides a viable alternative for addressing various
tasks without requiring significant computational
resources or architectural changes.

Another limitation we observed arises from
the fact that in many real-world cases the data
distributions are strongly unbalanced, leading to
lower precision for the tail classes [92]. The lit-
erature shows how this imbalance translates into
unbalanced norms of classification weights per
class [93, 94] as well as unbalanced norms of fea-
tures per class [95, 96]. In developing our method,
we expected that balancing the norms per class
could have a positive effect also in rebalancing
the weights of the classifier for the tail classes.
However, our experimental results show that this
effect is not present. This opens up possibilities
for future developments to incorporate this objec-
tive into RNA as an additional component that
rebalances the weights of the classifier.

5 Conclusion

This work introduces a novel approach to address
the problem of multi-modal domain adaptation.
Our method is motivated by the observation that
differences in the marginal distributions of modal-
ities can significantly affect the training process,
leading to suboptimal performance and imbal-
ances in feature norms. To tackle these issues, we
introduced the Relative Norm Alignment (RNA)
loss, which aims to balance the norms of features
extracted by the network across different domains
and modalities to improve overall accuracy. This
loss is combined with adversarial domain loss and
Information Maximization in UDA settings to
enhance feature transferability and regularization
in the target domain. Our experimental results
have shown that the proposed RNA approach
can either outperform or compete with several
state-of-the-art methods in various multi-modal
classification tasks, demonstrating its effectiveness
and flexibility. Most notably, our approach is char-
acterized by its simplicity and lightweight nature,
allowing it to be easily integrated into differ-
ent architectures and contexts without requiring
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complex modifications. This inherent adaptability
makes RNA a promising solution for real-world
applications where multi-modal data is preva-
lent. Future research will further explore RNA’s
capabilities and adaptability to diverse domains
and modalities, addressing challenges in unbal-
anced data distributions, and investigating the
integration with other techniques for domain shift
mitigation and improved generalization.
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