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This literature review rigorously examines the growing scientific interest in computational methods for 
Tissue Engineering and Regenerative Medicine biofabrication, a leading-edge area in biomedical innovation, 
emphasizing the need for accurate, multi-stage, and multi-component biofabrication process models. The paper 
presents a comprehensive bibliometric and contextual analysis, followed by a literature review, to shed light on 
the vast potential of computational methods in this domain. It reveals that most existing methods focus on single 
biofabrication process stages and components, and there is a significant gap in approaches that utilize accurate 
models encompassing both biological and technological aspects. This analysis underscores the indispensable role 
of these methods in understanding and effectively manipulating complex biological systems and the necessity for 
developing computational methods that span multiple stages and components. The review concludes that such 
comprehensive computational methods are essential for developing innovative and efficient Tissue Engineering 
and Regenerative Medicine biofabrication solutions, driving forward advancements in this dynamic and evolving 
field.
1. Introduction

Biofabrication is “the automated generation of biologically func-

tional products with the structural organization from living cells, bioactive 
molecules, biomaterials, cell aggregates such as micro-tissues, or hybrid cell-
material constructs, through Bioprinting or Bioassembly and subsequent 
tissue maturation processes” [1]. Tissue Engineering and Regenerative 
Medicine (TERM) is a challenging biofabrication application field bring-
ing the promise to revolutionize the biomedical sector [2]. TERM 
applications require biofabrication products to be biomimetic, that is, 
to recapitulate the structural and functional features of their in vivo

counterparts [3]. The degree of biomimesis in a product, based on the 
similarity of structural and functional features to physiological coun-
terparts, determines its quality and clinical relevance. In biofabrication 
“the process is the product”, i.e., biofabrication processes and the re-
sulting products are strictly intertwined, and so is their quality. Thus, 
ensuring product quality implies controlling process quality [4].

Quality control in TERM biofabrication requires analyzing the com-
plex features determining the product quality, considering them as a 
function of defined critical process parameters [5]. Multi-technology 
biofabrication processes combine existing technologies to consider the 
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product’s relevant scales and aspects, maximizing product quality [6]. 
Automation and digitalization optimize the execution of existing bio-
fabrication processes or parts [7]. Finally, searching for improved or 
new process schemes moves from inefficient trial-and-error paradigms 
to intelligent design [8].

Computational approaches play a role in each of these tasks. They 
work to harmonize multi-technology schemes with automation, opti-
mizing existing processes and supporting rational research design. This 
harmonization helps better organize the experimental activity to make 
process improvement more efficient [6]. Besides enabling existing tech-
nologies and experimental designs to work together, computational ap-
proaches have untapped potential to innovate biofabrication process de-
signs. To truly impact biomimetic quality, intelligent design approaches 
must rely on accurate models of biofabrication [9–11].

This work analyses the application of intelligent automation princi-
ples (Fig. 1.A) in modeling, design, and optimization (Fig. 1.B), with a 
focus on approaches combining simulation and optimization (Fig. 1.C) 
of TERM Biofabrication processes (Fig. 1.D). The following sections 
delve into various aspects of the field. Initially, Section 2 presents a 
bibliometric analysis that sets the stage for understanding the current 
scientific landscape. This is followed by Section 3, which examines and 
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Fig. 1. This work presents a review of the scientific literature on works that, 
following the principles of Intelligent Automation (A), leverage Process model-
ing, design and optimization (B), and in particular Simulation-optimization (C) 
techniques for TERM Biofabrication processes (D).

evaluates the technological context relevant to computational methods 
in TERM biofabrication. Subsequently, Section 4 offers a comprehen-
sive review of contemporary computational approaches in this domain, 
categorizing them according to the process stage they target. Finally, 
Section 5 synthesizes provided findings and discusses open challenges.

Statement of significance

Issue The central thrust of this review is to unveil the untapped po-
tential of computational methods in enhancing the capabilities and 
outcomes of TERM biofabrication.

What is already known Several computational approaches exist for dif-
ferent stages of the biofabrication process, and existing reviews analyze 
them thoroughly. Yet, existing analyses lack focus on the role of accu-
rate models of the biofabrication process in computational approaches 
to TERM biofabrication.

What this paper adds This work quantifies the relevance of the topic 
through the bibliometric and context analyses of the scientific domain 
of computational approaches to TERM biofabrication; subsequently, 
this work provides a review and analytical comparison of existing so-
lutions organized by biofabrication process stage, including solutions 
based on accurate models of the biofabrication process.

2. The growing attention toward computational approaches: a 
bibliometric analysis

Attention toward computational methods is increasing in the biofab-
rication field. As illustrated in [12], several approaches exist to analyze 
a scientific landscape. This section enriches the study with a brief biblio-
metric analysis of the relevant scientific landscape. The analysis relies 
on PubMed1 queries that combine keywords related to Biofabrication, 
TERM, and computational approaches, plus synonyms and adjacent 
terms to search publications on the platform.

2.1. Performance analysis

This analysis starts with the claim that the scientific community’s 
interest in biofabrication and TERM is rapidly growing, supporting the 
relevance of the proposed work in analyzing state-of-the-art scientific 
production on the topic. Query 1.1 supports this claim by quantifing 
the interest in Biofabrication and Query 1.2 focuses the quantification 
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Fig. 2. Total Publications per year on Biofabrication, with an highlight on the 
contributions on TERM Biofabrication (Queries 1.1-1.2).

on TERM Biofabrication. Results were analyzed considering the period 
between 2002 and 2021 and using the Total Publications (TP) count as 
a performance metric [12].

Query 1.1 (Biofabrication): (“Biofabricat*” OR “Bioman-

ufactur*” OR “Bioassembl*” OR “Bioprint*” OR “Biomate-

rial*”)

Query 1.2 (TERM Biofabrication): (“Biofabricat*” OR
“Biomanufactur*” OR “Bioassembl*” OR “Bioprint*” OR
“Biomaterial*”) AND (“Regenerative Medicine” OR “Tissue 
Engineering”)

Query 1.1 retrieved 108,008 TP while Query 1.2 produced 
28,549 TP, issued between 2002 and 2021. Fig. 2 shows a steady in-
crease in yearly TP during the last two decades, indicating a growing 
interest of the scientific community in the field. The term Biofabrica-
tion, in general, reported 1,221 TP in 2002, growing up to 12,921 TP in 
2021 with a 958% increase. Of these publications, the portion on TERM 
Biofabrication grew from about 12% of the total (149 over 1,221 TP) in 
2002 to about 27% in 2021 (3,516 over 12,921 TP).

Considering the 28,549 TP on TERM Biofabrication, the analysis 
considered publications on computational approaches to TERM Bio-
fabrication (Query 2.1), and more specifically on computational ap-
proaches to TERM Biofabrication based on either modeling or optimiza-
tion (Query 2.2), finally narrowing down the focus on computational 
methods to TERM Biofabrication based on combined modeling and op-
timization (Query 2.3).

Query 2.1 (Computational approaches to TERM Biofab-
rication): (“Biofabricat*” OR “Biomanufactur*” OR
“Bioassembl*” OR “Bioprint*” OR “Biomaterial*”) AND
(“Regenerative Medicine” OR “Tissue Engineering”) AND
(“In silico” OR “In-silico” OR “Comput*”);

Query 2.2 (Computational approaches to TERM Biofab-
rication based on either modeling or optimization): 
(“Biofabricat*” OR “Biomanufactur*” OR “Bioassembl*” 
OR “Bioprint*” OR “Biomaterial*”) AND (“Regenerative 
Medicine” OR “Tissue Engineering”) AND (“In silico” OR
“In-silico” OR “Comput*”) AND (“Optim*” OR “Simulat*” 

OR “Model*”)

https://pubmed.ncbi.nlm.nih.gov/
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Fig. 3. Total Publications per year on TERM Biofabrication, with an highlight on 
the contributions on Computational approaches to TERM Biofabrication (Queries 
1.2 and 2.1).

Fig. 4. Total Publications on TERM Biofabrication aggregated over five-year 
periods, with a highlight on the contributions on Computational approaches to 
TERM Biofabrication (Queries 1.2 and 2.1), that constitute between 5-6% of TP 
across all periods from 2002 to 2021.

Query 2.3 (Computational approaches to TERM Biofabri-
cation based on modeling and optimization combined): 
(“Biofabricat*” OR “Biomanufactur*” OR “Bioassembl*” 
OR “Bioprint*” OR “Biomaterial*”) AND (“Regenerative 
Medicine” OR “Tissue Engineering”) AND (“In silico” OR
“In-silico” OR “Comput*”) AND (“Optim*” AND “Simulat*” 
AND “Model*”)

Starting from the result of Query 1.2, Queries 2.1-2.2 re-
trieved 1,642 TP for computational approaches to TERM Biofabrication 
(about 6%). Among these, 966 TP discuss computational approaches to 
TERM Biofabrication based on either modeling or optimization (about 
60%). Fig. 3 shows the TP per year for TERM Biofabrication, highlight-
ing the presence of scientific activity on Computational approaches to 
TERM Biofabrication in time, which constitutes 5% (101 publications) 
of TP between 2002 and 2006, and 6% (785 publications) for the period 
between 2017 and 2021, as illustrated in Fig. 4. Fig. 5 shows that publi-
cations on computational approaches to TERM Biofabrication based on 
either modeling or optimization constitute 50% (50 over 100 publica-
tions) of TP on computational methods to TERM Biofabrication between 
2002 and 2006 and the 57% (785 publications) for the period between 
2017 and 2021.

Finally, Fig. 6 illustrates the TP between 2002 and 2021 on compu-
tational approaches to TERM Biofabrication based on either modeling 
or optimization (Query 2.2, 966 TP), highlighting the contributions 
of computational methods to TERM Biofabrication based on combined 
modeling and optimization (Query 2.3).

2.2. Science mapping

After quantitatively analyzing publications in the reference scien-
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tific domains, this section aims to analyze and visualize the structure of 
Computational and Structural Biotechnology Journal 23 (2024) 601–616

Fig. 5. Total Publications on Computational approaches to TERM Biofabrication

(Query 2.1) aggregated over five-years periods, with a highlight on the con-
tributions on Computational approaches to TERM Biofabrication based on either 
modeling or optimization (Query 2.2), that constitute 50% of TP between 2002 
and 2007 (50 publications), grow to 63% for the period between 2012 and 2016 
(312 publications), and decrease to 57% for the period between 2017 and 2021 
(449 publications).

Fig. 6. Total Publications between 2002 and 2021 on Computational approaches 
to TERM Biofabrication based on either modeling or optimization (Query 2.2, 966 
TP), highlighting the 4% (38 TP) on Computational approaches to TERM Biofab-

rication based on combined modeling and optimization (Query 2.3).

these domains by performing science mapping [13]. The analysis lever-
aged the VosViewer tool [14,15] to search publications on the PubMed 
platform [16]. The analysis focused on results of Queries 2.2-3 sum-
marized in Fig. 5 and Fig. 6.

The first step of the analysis was constructing a co-occurrence 
network from the PubMed file generated with Query 2.2. The co-
occurrence network emerged from text analysis of the Title and Abstract

fields of each publication, then performing clustering analysis over the 
obtained network. Due to the high heterogeneity of terms in text data, 
this step employed a thesaurus file. Different versions of the same terms 
or concepts (plurals or singulars, synonyms, very close terms) were 
considered under the same umbrella term to facilitate network homo-
geneity and visualization.

Fig. 7 shows the text-based co-occurrence map based on Query 
2.2. Different colors indicate separate clusters within the network. 
While the green cluster at the top includes clinical and biological 
concepts, the blue cluster at the bottom centers on technological ap-
proaches and research organization, and the smaller third cluster in 
orange contains terms related to biomaterial properties. Interestingly, 
terms about computational approaches exist in both the blue and or-
ange clusters, with a predominance in the larger blue cluster. Fig. 8
provides an enlarged view over the portion of the map where terms 
referring to computational approaches emerge.

A simplified text-based co-occurrence map on Query 2.2 devis-
ing a different thesaurus file was also created to simplify situations 

where different concepts of the same domain group under the same 
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Fig. 7. Text-based terms co-occurrence map of Computational approaches to TERM Biofabrication based on either modeling or optimization (Query 2.2). The map is based 
on text analysis over PubMed files and extracts co-occurrence information from the bibliographic database file obtained from the PubMed platform with Query 
2.2 performing binary counting of terms occurrences over the Title and Abstract fields, and considering the 60% most relevant terms among those occurring in at 
least ten documents (290 over 483). The relative size of term nodes indicates total occurrences and link strength indicates co-occurrences. Colors indicate the three 
different clusters in the network. Clustering relied on Association Strength as a normalization method and a Resolution parameter value of 1.00.
umbrella terms. In particular, all terms related to modeling, simulation, 
and computational aids combine under the term “computational ap-

proaches.” “Regenerative medicine,” “scaffolds,” and “bioprinting” sim-

ilarly grouped several synonyms and adjacent terms. This approach cre-

ated nodes with higher total occurrences and aggregated co-occurrence 
links, creating a simpler network that was easier to visualize.

Fig. 9 shows the resulting simplified co-occurrence map, which has 
two clusters. The green cluster on the bottom left centers over biological 
and clinical aspects. In contrast, the blue cluster on the top right centers 
on technology. Computational approaches belong to this cluster.

The second step of this analysis devised a second map from biblio-

graphic data summarizing results of Query 2.2, in particular creating 
a co-occurrence network of MeSH keywords, employing the Fractional 
counting method, and considering only the 38 keywords occurring at 
least three times. Due to the high homogeneity of MeSH keywords in 
bibliometric data, this step did not employ a thesaurus file. Fig. 10 il-

lustrates the co-occurrence network of keywords obtained and the two 
clusters identified. The top blue cluster includes more details about the 
biological aspects of tissue engineering. The green cluster on the bot-

tom contains more terms about computational modeling and analysis 
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approaches.
To conclude, the analysis targeted the subset of 38 TP obtained with
Query 2.3, and Fig. 11 shows the text-based terms co-occurrence net-
work with the related clusters.

2.3. The untapped potential of computational methods for TERM 
biofabrication

Together, the performance analysis and science mapping results in 
this section suggest that the scientific interest in TERM biofabrication 
is rapidly growing. Publications on computational approaches to TERM 
biofabrication constitute a small but constant portion of scientific pro-
duction, and about half of them consistently center on modeling or 
optimizing biofabrication processes. Approaches that combine simula-
tion and optimization are a small subset of the total publications on 
either simulation or optimization: current approaches tackle specific 
computational problems separately, in addition to separate biofabrica-
tion process stages (see Section 4). Science mapping shows that com-
putational approaches link several clinical and biological aspects and 
biofabrication technologies. These findings highlight the applicability 
of computational approaches to many aspects of biofabrication and the 
lack of comprehensive approaches targeting multiple of its challenges 
together, describing their untapped potential to tackle different stages 

and issues in designing a biofabrication process.
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Fig. 8. Enlarged portion of the text-based terms co-occurrence map of Total Publications between 2002 and 2021 on Computational approaches to TERM Biofabrication 
based on either modeling or optimization (Query 2.2). The map is based on text analysis over PubMed files. It extracts co-occurrence information from the bibliographic 
database file obtained from the PubMed platform with Query 2.2 performing binary counting of terms occurrences over the Title and Abstract fields and considering 
the 60% most relevant terms among those occurring in at least ten documents (290 over 483). The relative size of nodes indicates term occurrences, and link 
strength indicates co-occurrences. Colors indicate the three different clusters in the network. Clustering relied on Association Strength as a normalization method 
and a Resolution parameter value of 1.00.
3. Computational methods for intelligent biofabrication: the 
technological context

In order to provide a context to this review, the following sec-
tions analyze the significant innovative trends in TERM biofabrication 
that are paving the way for extensive usage of computational meth-
ods in this field. In particular, they highlight the growing tendency of 
combining multiple technologies in biofabrication (Subsection 3.1), the 
increasing diffusion of automation and digitalization to optimize biofab-
rication processes (Subsection 3.2), the employment of research design 
techniques (Subsection 3.3) and finally the importance of comprising 
process complexity into computational approaches to biofabrication 
(Subsection 3.4).

3.1. Multi-technology biofabrication harmonizes combined capabilities

Biomimetic TERM products must replicate the complex and hier-
archical structure of their in vivo counterparts. However, individual 
biofabrication technologies aim to control particular aspects of the final 
product. Such limitation appears even when considering a single class 
of technologies. Biomimetic scaffolds, for instance, must have a hier-
archical architecture, including application-specific surface properties. 
However, each fabrication approach usually targets a specific resolution 
range, which limits fabricating hierarchical structures [2]. In order to 
overcome this limitation, hybrid biofabrication process schemes com-
bine different fabrication approaches to expand the dimensional range 
covered and thus achieve biomimetic architectures [17].

Extending this reasoning to different classes of technologies, one can 
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say that biofabrication approaches are today designed to control partial 
aspects of the final product. For example, bioprinting approaches con-
trol spatial organization. Automated culture systems control functional 
maturation. Directed differentiation of cells governs the functional spe-
cialization of the biological building blocks for biofabrication.

Therefore, to control product quality, biofabrication processes can 
combine different technologies. Multi-technology biofabrication defines 
the combination of heterogeneous technological approaches, ranging 
from additive manufacturing to automation and computational process 
design, working together towards fully biomimetic TERM products [6]. 
Multi-technology biofabrication goes beyond combining different tech-
niques, focusing more on their synergistic integration. Computational 
methods are crucial in enabling integration and rational harmonization 
in multi-technology procedures.

3.2. Automation and digitalization optimize processes

Biomanufacturing is moving towards fully integrating the Industry 
4.0 principles in designing, executing, and optimizing manufacturing 
processes. Indeed, research automation and digitalization are spreading 
in the life sciences domain. For instance, fast biofoundries in synthetic 
biology are “specialized laboratories that combine software-based design 
and automated or semi-automated pipelines to build and test genetic devices”

[18].
Several biomanufacturing applications rely on Robotic Process Au-

tomation (RPA), i.e., the use of a “pre-configured software instance that 
uses business rules and predefined activity choreography to complete the au-

tonomous execution of a combination of processes, activities, transactions, 

and tasks [...]” [19,20]. Digitalization is a fundamental part of process 
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Fig. 9. Simplified text-based terms co-occurrence map of Computational approaches to TERM Biofabrication based on either modeling or optimization (Query 2.2). The 
map is based on text analysis over PubMed files and extracts co-occurrence information from the bibliographic database file obtained from the PubMed platform with 
Query 2.2 performing binary counting of terms occurrences over the Title and Abstract fields, and considering the 60% most relevant terms among those occurring in 
at least 30 documents (151 over 24820). The relative size of term nodes indicates total occurrences and link strength indicates co-occurrences. Colors indicate the 
three different clusters in the network. Clustering relied on Association Strength as a normalization method and a Resolution parameter value of 1.00.
automation, and it includes two main aspects: the digitization of exist-
ing operations and the creation of digital twins of existing processes. 
The digitization of existing laboratory processes is the transformation 
of analogical and manual operations into digital and semi-automated 
processes, i.e., the compilation of a laboratory diary or the acquisition 
and storage of newly collected data. Digitization and automation can 
work together to increase biofabrication process traceability, control, 
and quality [21].

Digital Twins (DTs) [22,23], are “complete virtual descriptions” of 
a physical process that are “accurate to both micro and macro-level”

(adapted from [24]). They act as a digital counterpart of a physical pro-
cess, dynamically modeling and analyzing it to actuate and modify the 
system in a risk-free environment, supporting new understanding and 
rational organizing of research activities. These technologies can serve 
different scopes in biomanufacturing, from version control systems for 
synthetic biology [25] to bioprocess modeling [26] and optimization 
[27]. DTs and computational approaches have a growing role in devel-
oping biomimetic TERM biofabrication products by supporting process 
execution optimization and intelligent process design [28,29].

3.3. Research design goes beyond empirical trials

Empirical methods face inherent limitations in exploring extensive 
and complex process design spaces due to the high resource costs 
and time demands associated with in vitro experiments. Automation 
and digitalization can enhance in vitro experimental campaigns by en-
abling a more significant number of experiments, thus broadening the 
exploration of the design space. However, adhering strictly to a trial-
and-error experimental paradigm, even with these advancements, often 
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leads to only incremental innovations, improving existing process de-
signs based on literature that might be incomplete, unreliable, and 
non-reproducible [30], and often chosen for popularity rather than per-
formance [31].

Traditional trial-and-error methods, such as One Factor at A Time 
(OFAT) campaigns, that explore ranges of relevant system parameters 
one at a time [32], are costly in terms of time and resources. They 
also fail to recognize interdependencies among system variables, which 
hampers the ability to connect experimental results to realistic process 
designs. Actual designs control multiple variables simultaneously. These 
limitations result in OFAT yielding sub-optimal processes and products 
[23].

In contrast, factorial experimental design, which supports testing 
under multiple conditions, has proven effective in investigating opti-
mal conditions for stem cell differentiation [33]. Design-of-Experiments 
(DoE) computational techniques [34,23] enable a more efficient, sys-
tematic exploration and exploitation of complex design spaces [32,8,
35], showing adequacy in tackling multi-factorial problems in the opti-
mization of directed cell differentiation [36,37] and in the development 
of tissue engineering scaffolds [38].

3.4. White-box models to optimize process design

Artificial Intelligence (AI) technologies offer the potential to au-
tomatically adjust experimental strategies as new data is generated, 
thereby maximizing information extraction and enhancing process im-
provement efficiency [7,39]. Computational tools and AI are instrumen-
tal in moving beyond traditional experimental trial-and-error methods 
[40,41], paving the way for the adoption of intelligent automation, 
which utilizes AI in automated and digitized processes to aid research 

design and result analysis [40,41].
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Fig. 10. Bibliographic data-based co-occurrence map of Computational approaches to TERM Biofabrication based on either modeling or optimization (Query 2.2). The 
map is based on a bibliographic analysis of PubMed files. It extracts MeSH keywords co-occurrence information from the bibliographic database file obtained from 
the PubMed platform with Query 2.2, performing Fractional counting of keyword occurrences and considering the ones occurring in at least 30 documents (52 over 
1348). The relative size of nodes indicates keyword occurrences and link strength indicates the number of co-occurrences. Colors indicate the two different clusters 
in the network. Clustering relied on Association Strength as a normalization method and a Resolution parameter value of 0.8.
Computational Design Space Exploration (DSE) benefits from the 
integration of computational biofabrication models with optimization 
strategies, enhancing both research and process design by increasing the 
accuracy of bioprocess representation [34] and applying it for process 
optimization [7,39]. The design space of a biomanufacturing process is 
a multidimensional space defined by input variables and process param-
eters that influence product quality [5]. However, modeling the intri-
cate biological complexity inherent in biofabrication processes presents 
substantial challenges to model-based DSE approaches.

In this direction, several computational approaches sustain biofabri-
cation in general [29,42], and its process modeling in particular. While 
Machine Learning (ML) and Artificial Neural Networks (ANNs) offer 
black-box models of the system, computer simulations provide white-
box models that capture mechanistic relationships and analyze complex 
dynamics under various conditions [43]. To support model-based DSE, 
white-box models of biofabrication must be accurate and predictive, 
as well as strike a balance between the holistic and hypothesis-driven 
modeling approaches.

Holistic modeling takes a comprehensive approach, encompassing 
numerous components and interactions, akin to viewing the entire sys-
tem through a wide-angle lens. These models need to consider multi-
level systems, from individual bioprocesses to multicellular aggregates 
[44], and are expected to support dynamic simulations of complex bi-
ological processes [45,46]. Although excellent for identifying emergent 
properties, the complexity of such models can be computationally in-
tensive and come with many uncertain parameters [47]. High model 
complexity creates a vast and probabilistic design space, challenging 
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both in vitro experimentation [48] and computational DSE.
Conversely, hypothesis-driven modeling focuses on testing specific 
aspects of the system [49], offering more targeted and manageable 
studies but potentially overlooking broader system interactions. This 
approach yields simpler models with lower computational demands, fa-
cilitating model-based computational DSE.

Ultimately, holistic and hypothesis-driven models respond to the 
challenge of incorporating biological complexity into biofabrication 
models. Both approaches can include the biological aspects of biofab-
rication processes to support their computational designs. Thus, both 
approaches or a combination thereof in hybrid models [50] provide 
valuable white-box modeling tools [49], with a positive impact on 
TERM biofabrication.

4. Computational methods for intelligent biofabrication: a review 
of state-of-the-art solutions

As thoroughly reviewed in [51], process design, modeling, and 
optimization find many applications to the different stages of TERM 
biofabrication. This section provides a review of the state-of-the-art 
computational methods applied to TERM biofabrication, including and 
not limited to the publications from Query 2.3 (see Section 2), fo-
cusing on techniques combining modeling and optimization meth-
ods. The review organizes around selected critical stages for TERM 
biofabrication [52], in particular: Product modeling and quality con-

trol (Fig. 12.A-E, Subsection 4.1), Biomaterials qualification (Fig. 12.B, 
Subsection 4.2), Fabrication (Fig. 12.C, Subsection 4.3) and Maturation
(Fig. 12.D, Subsection 4.4).
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Fig. 11. Text-based terms co-occurrence map of Computational approaches to TERM Biofabrication based on modeling and optimization combined (Query 2.3). The map is 
based on text analysis over PubMed files. It extracts co-occurrence information from the bibliographic database file obtained from the PubMed platform with Query 
2.3 performing full counting of terms occurrences over the Title and Abstract fields and considering the 30 terms occurring in at least six documents. The relative 
size of term nodes indicates total occurrences and link strength indicates co-occurrences. Colors indicate the two different clusters in the network. Clustering relied 
on Association Strength as a normalization method and a Resolution parameter value 0.70.
4.1. Product modeling and quality control

Product modeling (Fig. 12.A) aims at defining the target product 
from expert knowledge or following a data-driven process using med-
ical imaging to determine the desired features in the product. Quality 
control (Fig. 12.E) assesses the presence of the desired functional and 
structural features defined in the product model, especially if biofabri-
cation has a biomimetic purpose (Fig. 12.A). Product modeling includes 
retrieving and using information on the product, its design, and the def-
inition of the desired features. The ultimate goal of TERM biofabrication 
is fulfilling a patient’s clinical need for regeneration. This goal implies 
that a biofabricated product must be biomimetic; that is, it must faith-
fully recapitulate the biological structures to regenerate. This principle 
guides the product design and modeling and defines quality metrics for 
the biofabrication products obtained. In particular, for TERM applica-
tions, the quality of the product is often reflected in biomimetic fidelity 
to its in vivo counterpart since the ultimate goal is regeneration.

4.1.1. Data-driven reconstructions

Computational tools support automated data-driven modeling of the 
functional and structural features to replicate the natural system, in-
creasing biomimetic fidelity in a TERM biofabrication product. Image-
based Computer-Aided Design (CAD) models can build on processed 
images acquired directly from patients, including Magnetic Resonance 
Imaging (MRI) or Computed Tomography (CT) scans that are later con-
verted to Digital Imaging and Communications in Medicine (DICOM) 
format [53] and then to Standard Tassellation Language (STL) files for 
printing [54]. This process finds application in orthodontic regenera-
tion [55] and soft-tissue engineering [56] as well as in the generation 
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of three-dimensional (3D) heart valves [57].
However, tissue images per se fail to provide information at the 
single-cell level. Thus, reconstructed 3D tissue models usually lack 
multi-scale cellular resolution and tissue- or organ-specific properties.

Computational methods support the development of TERM product 
models beyond image processing, by allowing the discovery of tissue 
architectures from imaging and spectral data, bridging the information 
from the in vivo tissue microenvironment to the construct properties at 
the scale that the bioprinting technology chosen can fabricate [58]. To 
this aim, Deep learning (DL) super-resolution unsupervised approaches 
[59] can transform low-resolution images into higher-resolution ver-
sions, narrowing the gap between the average resolution of medical 
images on the millimeter scale and the resolution of bioprinting tech-
nologies, which lies on the micrometer scale [60]. This transformation 
allows extracting biological features at the cellular level in an unbiased 
and data-driven manner. For example, authors in [61] leveraged a Con-
volutional Neural Network (CNN) to classify cells according to their cell 
cycle phase. These initiatives support the data-driven construction and 
enrichment of Intelligent Digital Twins (IDTs) comprising a multi-scale 
model of the target products’ architectural and functional features, for 
which is crucial to build and curate supporting databases [62].

4.1.2. Computer-assisted design

CAD is a technology used for creating precise two-dimensional (2D) 
and 3D models of physical components, widely used in industries such 
as engineering, architecture, and manufacturing. It improves design 
accuracy and efficiency and facilitates easy modifications, often inte-
grating with other technologies like Computer-Aided Manufacturing 
(CAM) and 3D printing for simplified product development. Bio-CAD, 
bio-CAM, and bio-CAE apply CAD, CAM, and Computer-Aided Engi-
neering (CAE) to biological processes and subprocesses. The bio-CAD 
process supports the design of tissue and organ blueprints, the bio-CAM 

method the manufacturing of biological products, and the bio-CAE the 
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Fig. 12. Overview of a biofabrication process: (A) medical images and expert knowledge define a model for the target product, which guides the (B) choice and 
combination of biomaterials and cells used for (C) fabrication via bioprinting and bioassembly, followed by (C) construct maturation; (D) evaluation of the quality 
of the mature product relies on measuring its closeness to the structural and functional features of the defined target.
creation of complex architectures, and the validation and optimization 
of biomanufacturing tools and bioproducts [63,64]. CAD is the most 
widely employed method for designing scaffolds from scratch or using 
3D scans of the target biofabrication product [65], and supports the 
design of scaffolds providing the localized control of biomolecules dis-
tribution for tissue engineering and drug release [66].

Bio-CAD models also rely on computational methods. Several ap-
proaches exist to translate a model into a physiologically relevant 
product through computer-controlled Rapid Prototyping (RP) [67–69]. 
Computational modeling of tissue- and organ-level biological complex-
ity combine with bio-CAD to embed complex functionality into TERM 
products, optimizing them and increasing their quality. For instance, 
ML techniques predict material properties related to various mixture 
compositions of the bio-inks and support scaffold designs by learn-
ing from an extensive database of materials and designs [70,71]. ML 
also supports multi-objective optimization of material process variables 
[72].

Biofabrication products are poised for subsequent maturation, 
adapting to the stimuli received during maturation. Thus, product 
design must consider the cellular component’s role in the product’s 
evolution to its final form, requiring consideration of the product’s 
evolution after the initial construction and under different environ-
ments. Computational approaches support this by guiding product 
design considering potential functional responses to different stimuli 
[73], following the four-dimensional (4D) printing paradigm [74], pro-
ducing dynamic structures whose functionality, shapes, and properties 
change based on the environmental inputs. Since cells are the main ac-
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tors of transformation and response to the environment, product design 
must consider their behavior in predicting the final product form. Com-

putational tools help in this by modeling intracellular, cell-cell, and 
cell-biomaterials interactions during fabrication [62] and subsequent 
maturation [75–77].

This concept finds unique declination according to the specific bio-

fabrication product and regenerative application. For example, inte-

grating computational modeling in heart valve design could predict 
long-term in vivo performance, remodeling, and failure under non-

physiological pressure loading in a translational sheep model [78]. 
Bioprosthetic heart valve (BHV) presents unique challenges for compu-

tational design: standard Finite Elements Methods (FEM) can simulate 
the effect of hydrostatic forcing on a closed BHV, but this approach fails 
to account for transient responses during valve opening and closing. 
Nonetheless, the latter effects are not negligible since they contribute 
to long-term structural fatigue and thus to the risk of BHV transplant 
failure. Thus, BHV computational design must rely on models of the sur-

rounding hemodynamics that support the accurate simulation of these 
effects, as provided in [79], where authors propose a complete mechan-

ical model of a BHV based on the immersogeometric Fluid-Structure 
Interaction (FSI) methodology.

In conclusion, computational methods support the product design 
and quality in TERM biofabrication by automated data-driven extrac-

tion of target product features and by handling the complex computer-

assisted design of dynamic products that evolve independently and after 

complex responses to environmental stimuli.
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4.1.3. Scaffolds

Porous scaffolds for TERM products must have certain biological, 
biomechanical, and biomaterial-related functionalities, including suit-
able pores size and geometry, allowing nutrients to diffuse uniformly 
and cells of the engineered tissue to invade the scaffold. Secondly, 
scaffold surfaces must have physical-chemical properties, ensuring bio-
compatibility; that is, they must allow cells to adhere and develop the 
expected phenotypes. During fabrication, scaffold material must exhibit 
mechanical properties supporting the bearing of required loads during 
regeneration. Finally, scaffolds must be biodegradable or bioabsorbable 
once sufficient tissue has formed to guarantee mechanical support to 
the TERM product.

The role of computational methods in scaffold fabrication is to iden-
tify optimal trade-offs considering this set of complex requirements 
[80,38]. Moreover, the comprehensive analytical and numerical mod-
eling of the 3D and 4D additive manufacturing benefits biofabrication 
with understanding, predictive modeling, and optimization of the bio-
fabrication process at different scales [81].

Most computational approaches in the literature target optimizing 
the mechanical and chemical properties of bone graft scaffolds [82], in-
cluding porosity, micro-architecture, Young’s modulus, and dissolution 
rate. In [83], the authors propose a general design optimization scheme 
for 3D internal scaffold architecture to find a good trade-off between 
elastic properties and porosity. They introduce the homogenization-
based topology optimization algorithm, demonstrating that the method 
can produce biomimetic structures mimicking anisotropic bone stiffness 
obtained with scaffolds of widely different porosity. In [84], authors 
propose a 3D computational model based on Sussman–Bathe hypere-
lastic material behavior to study interpenetrated polymer networks for 
cartilage repairing, quantitatively simulating the distribution of fluid 
fluxes and nutrient supply within the different regions of a construct.

While these properties are pivotal for scaffold quality, considering 
cell-material interactions is crucial to the modeling and designing of 
TERM bone grafts. Computational design must account for the influ-
ence of growth factors and other biochemical signals and the accurate 
simulation of dissolution processes, including the impact of degrada-
tion products such as calcium ions and inorganic phosphate on bone 
formation biological processes. In bone tissue engineering, the passage 
from scaffold design to manufacturing requires compliance with the de-
sign control requirement that must undergo verification in a finished 
device. Authors in [85] propose a computational approach to investi-
gate the accuracy of the final properties of polycaprolactone scaffolds 
fabricated by selective laser sintering [86].

On the structural optimization front, Topology Optimization (TO) 
aims to optimize scaffold printing by organizing material placement in 
space. For instance, different TO approaches such as Solid Isotropic Ma-
terial with Penalization (SIMP) [87], Bidirectional Evolutionary Struc-
tural Optimization (BESO) [88], and level-set [89] support the design 
of differentially dense and stiff structures. In [90], authors leverage 
TO on the performance of a chitosan hydrogel bioprinted soft actuator 
while maintaining the material’s volume fraction. Triply periodic min-
imal surfaces (TPMS) recently inspired the fabrication of biomimetic 
porous scaffolds since they support cell adhesion, migration, and prolif-
eration. A versatile design method for TPMS sheet scaffolds, which can 
satisfy multiple requirements simultaneously, was proposed in [91]. In 
these applications, TO does not consider cell-related aspects: optimized 
parameters only involve a single scale and cell-free biomaterials.

However, the geometric properties of scaffolds for tissue engineer-
ing directly affect cellular deposition. Computational tools sustain the 
design of scaffolds with varying controlled geometrical and functional 
properties throughout their structure [92,93], such as varying porosity 
[94]. Models of cellular behavior can help choose geometrical proper-
ties ranges to use for scaffolds. For example, computational models of 
osteoblasts support the prediction of the growth of bone matrix tissue 
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in scaffolds with different pores geometry [95].
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Nevertheless, TO approaches easily extend to cell-laden and multi-
scale biomaterials. For instance, in [96], authors present a level-set-
based topology optimization algorithm and a time-dependent shape 
derivative to optimize scaffold architecture for femur models, showing 
significant advantages in continuing bone growth compared to stiffness-
based topology optimization, time-independent design, and typical scaf-
fold constructs. The common usage of topology optimization and mod-
els of biological responses to different scaffold properties prove effective 
in supporting scaffold design [97]. In [98], authors leverage Three Di-
mensional Convolutional Neural Network (3D-CNN) surrogate models 
to optimize multi-scale topology on non-parametric micro-scale struc-
tures. Authors in [99] present different computational approaches, in-
cluding surface hit detection and ordering and prediction of relevant 
surface properties and cell responses, aiming at optimizing surfaces to 
influence cell behavior.

In this direction, FEM is a powerful modeling and optimization tool 
for biomechanical research [100–104], which supports the modeling of 
not only biomechanical and geometrical aspects of the cell-free scaf-
fold, but also of dynamical features and the responses of specific cell 
types during later construct maturation [105]. Authors in [106] opti-
mize geometrical features of scaffolds, maximizing bone growth rate 
with an algorithm relying on parametric Finite Elements (FE) models of 
scaffolds, computational models of cells, and optimization methods.

Similarly, reaction-diffusion models [107] support the evaluation 
of geometric and mechanical properties of scaffolds [108], as well as 
the rational design of waveguides for cells within biomaterials [109]. 
The computational simulation of 3D bone tissue regeneration based 
on the voxel FE method, including new bone formation and scaffold 
degradation, is at the core a model-driven computational framework 
for designing and optimizing a porous scaffold microstructure in [110].

Computational modeling of the bone formation process helps design 
optimal combinations of calcium-based biomaterials and cell culture 
conditions to maximize the quantity of formed bone in [111]. FE anal-
ysis, Computational Fluid Dynamics (CFD) and mathematical modeling 
support the choice of optimal mechanical properties of a scaffold for 
cartilage regeneration [112,113]. The simulation of matrix degradation 
processes informs the fabrication of a cartilage-like construct to study 
cartilage degradation in osteoarthritis in [114].

Considering cardiovascular applications, a notable example is scaf-
folds for in situ cardiovascular tissue engineering. This approach uses 
a synthetic, biodegradable scaffold as a temporary framework for in-
coming cells to develop their own Extra-Cellular Matrix (ECM), which 
gradually breaks down, allowing tissue regeneration. Computational 
models are pivotal in factoring in the role of incoming cells in prod-
uct quality, directly impacting the clinical outcome [115].

Vascularization of constructs is still a major limiting factor in the 
size and quality of TERM products. Computational design must com-
prise the multiple interdependent regulatory mechanisms in the cross-
talk between endothelial cells and native tissue cells to recapitulate the 
formation of new functional blood vessels. A computational model of 
vascular adaptation and a formal optimization method support tissue-
engineered vascular graft design in [116]. Computational simulations 
and microvascular network analysis supported optimization of the ge-
ometry and oxygen distribution within hydrogel constructs in [117].

Scaffolds are crucial in fabricating biomimetic liver models [118,
119]. Computational modeling finds application in the characterization 
of vascular load in scaffolds for liver engineering for their rational de-
sign [120,121].

For wound healing applications, computational tools support the 
image-based automatic structural design of scaffolds and localized con-
trol of biomolecule distribution to sustain healing over time [66,122].

Another example of the unique challenges posed to scaffold design 
by different TERM applications is nerve regeneration. The computa-
tional design allowed exploring the impact of various structural features 

on their properties to increase biomimicry and optimize porosity and 
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permeability for the design of nerve guidance conduits, tubular tissue 
engineering scaffolds used for nerve regeneration [123].

In conclusion, computational methods support scaffold design and 
optimization in TERM biofabrication by automatically finding optimal 
trade-offs between application-specific requirements, which also ex-
tends to the requirements posed by the complex cellular processes they 
host.

4.2. Biomaterials qualification

The definition of the product model guides the selection of biomate-
rials and cells to employ (Fig. 12.B). TERM biofabrication relies on ei-
ther the bioassembly of building blocks based on living cells, bioprinting 
of biomaterials, or a combination of the two [124] (see Subsection 4.3). 
Therefore, the qualification of inorganic and organic biomaterials used 
for these two processes dramatically affects the quality of the final prod-
uct. The specific combinations of biomaterials must carefully adjust to 
the scopes and machinery available for biofabrication. For example, 
a bio-ink must be biocompatible with the cell type to be printed and 
printable using bioprinting technology. Cells for preparing cell-laden 
materials or seeded in cell-free scaffolds undergo selection, culture, and 
differentiation before fabrication. Computational tools sustain such bio-
materials’ rational design and development in several ways, combining 
the non-trivial composition of multiple mechanical and biological prop-
erties, which often conflict.

4.2.1. Inorganic biomaterials

Computational approaches support biomaterials characterization 
and explore optimal trade-offs between different desired features of bio-
materials. A notable example in bioprinting is the trade-off between the 
degree of biocompatibility for the cells employed and the printability, 
considering the bioprinting technology of choice. Failure Modes and Ef-
fects Analysis (FMEA) and Quality Function Deployment (QFD) support 
the identification of functional requirements for a specific application 
in the design of a new biomaterial. In contrast, Multi-attribute Deci-
sion Making (MADM) approaches support selecting the best constituent 
materials to employ. The combination with DoE allows searching the 
biomaterial design space efficiently, saving on experimental resources 
[125,126].

Extending these approaches, Multi-objective Decision Making
(MODM) tackles biomaterial design problems that seek to satisfy multi-
ple goals concurrently, e.g., adequate stiffness and degradation proper-
ties in bone scaffolds.

Computational multi-objective optimization provides multiple op-
timal solutions. Computational models of biomaterials support DSE by 
testing the optimal solutions in silico. For example, a model of viscoelas-
tic materials mimicking soft biological tissues demonstrates its capabil-
ity to capture complex viscoelastic behavior observed experimentally 
[127]. Such accurate, validated models of physical and chemical bio-
material behaviors support the computational testing of the generated 
optimal solutions to prioritize subsequent experimental tests further, 
saving time and resources.

This reasoning extends to cell-laden biomaterials. Embedding com-
putational models of biological components into biomaterial design and 
optimization for the design of biomaterials, providing more accurate 
and comprehensive product quality prediction, further minimizes the 
experimental costs of iterative material synthesis and testing [38]. In 
this direction, modeling of organic and inorganic components, com-
bined with optimization solutions, supports the characterization and 
the choice of optimal biomaterials composition given a specific TERM 
application. For example, FE modeling and optimization support the 
characterization of polyvinyl alcohol as a potential biomaterial for car-
tilage tissue engineering scaffolds in [128]. The joint consideration of 
both inorganic substrates and cellular components allowed the creation 
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of an in silico design library based on numerical modeling to predict 
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composite biomaterials performance and support their design, applying 
it to articular cartilage engineering for patients in [129].

4.2.2. Organic biomaterials

While several computational approaches target the design and opti-
mization of inorganic biomaterials, factoring in their interactions with 
cells, other approaches focus on the cellular component only, in par-
ticular, to guide the selection, design, and culture of cells and cell 
aggregates such as spheroids.

Computational approaches play a pivotal role in the strategic selec-
tion of cell strains for TERM biofabrication. Within this realm, cells are 
frequently sourced from the patient themselves, necessitating careful 
consideration regarding the types of cells to utilize. This involves mak-
ing informed decisions about directing the differentiation processes of 
patient-derived induced Pluripotent Stem Cells (iPSC) towards specific 
cell types for regenerative applications. In this direction, computational 
methods proved capable of supporting the design of directed differ-
entiation or transdifferentiation processes of cells. A computational 
framework that combines gene expression data with regulatory network 
information can predict the reprogramming factors necessary to induce 
cell transdifferentiation for TERM applications [130]. Furthermore, an-
other computational framework is the base of a design tool for finding 
combinations of signals efficiently inducing cell conversions based on 
a stochastic gene regulatory network model embedding information on 
the transcriptional and epigenetic landscape of cells in [131].

Self-assembled 3D cell spheroids can replicate tissue functional-
ity, working as building blocks for TERM products and supporting in 
vitro tissue maturation before fabrication by bioprinting or bioassem-
bly, increasing the efficiency of overall fabrication processes of TERM 
products. Computational methods sustain the rational fabrication of 
spheroids to tune them to specific application needs. For example, com-
putation combines with experimental activity to support the modulation 
of non-geometrical parameters in the design of the fabrication process 
of 3D articular chondrocytes spheroids. In contrast, CFD modeling un-
derlies the optimization of geometrical features of the culture chip, 
modulation of cell-related features such as cell concentration, flow rate, 
and seeding time to model cell trapping follows in [132].

In conclusion, computational methods support biomaterials qualifi-
cation for TERM biofabrication by sustaining the rational choice and 
combination of inorganic and organic constituents of biomaterials, tak-
ing into account biological requirements to optimize inorganic bio-
materials, as well as the delicate nature of biological components in 
cell-laden constructs.

4.3. Fabrication

Fabrication of spatially-organized TERM constructs (Fig. 12.C) em-
ploys raw cells and biomaterials and relies on various techniques. 
Among them, this review focuses on bioprinting and bioassembly. Bio-
printing is “the use of computer-aided transfer processes for patterning and 
assembling living and non-living materials with a prescribed two- or three-

dimensional (2D or 3D) organization to produce bioengineered structures 
serving in regenerative medicine, pharmacokinetic and basic cell biology 
studies” (adapted from [133]). Bioassembly is “the fabrication of hier-

archical constructs with a prescribed 2D or 3D organization through the 
automated assembly of pre-formed cell-containing fabrication units gener-

ated via cell-driven self-organization or through the preparation of hybrid 
cell-material building blocks, typically by applying enabling technologies, in-

cluding microfabricated molds or microfluidics” [1].

4.3.1. Printing process

Bioprinting applies to both inorganic scaffolds and cell-embedded 
bioinks. The computational optimization of bioprinting processes po-
tentially has various objectives [58]. Some endeavors aim to maximize 

printing fidelity: the similarity between the product models and the 
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actual bioprinted product. Other approaches maximize biomimetic fi-
delity: the construct’s biological, mechanical, and rheological similarity 
to its in vivo counterpart. Other approaches tackle the challenge of 
the joint optimization of printing and biomimetic fidelity in bioprint-
ing. For example, computational analysis underlies the tuning of flow 
parameters to optimize needle geometry for the biofabrication of high-
resolution, fragile cell transfer of printed human iPSC with a low-cost 
3D printer for precise cell placement and stem cell differentiation in 
[134].

Several computational DoE approaches target the optimization of 
significant process parameters in Fused Deposition Modeling (FDM), a 
rapid additive manufacturing prototyping technique [135]. DL methods 
proved able to optimize the bioprinting process by elucidating the com-
plex relationships among the various printing parameters and predict-
ing their optimal configurations for specific objectives [136,137,60]. 
For example, a multi-objective optimization approach improves print-
ing accuracy and stability in [138]. In contrast, a ML approach underlies 
effective and accurate drop-on-demand printing control in [139]. Com-
putational methods also sustain quality control in the printing process. 
For example, a CNN supports the data-driven detection of printing 
anomalies towards real-time process adjustment to ensure high print-
ing quality in [140].

Computational optimization also targets the design of fabrication 
processes and systems. A fuzzy Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS) Multi-criteria Decision Making 
(MCDM) process allows for identifying the best bioprinting process to 
optimize the biomechanical properties of the construct given a starting 
printing material in [141]. Multi-physics computational models support 
the design of an extruder system for the biofabrication of vascular net-
works, intending to maintain cell viability during the printing process 
[142].

4.3.2. Cell seeding

Maximizing the number of cells uniformly occupying the available 
space within scaffolds facilitates tissue culture functionality and reduces 
tissue maturation time. Thus, cell seeding is a critical step in the bio-
fabrication of TERM products. Computational methods combine with 
experimental activity to design effective cell seeding techniques. For 
instance, a combination of FEM to predict the scaffold permeability 
effects on cell seeding effectiveness and a fully factorial experimental 
design allowed to assess the relative importance of permeability, thick-
ness, and coating on cell seeding efficiency and uniformity in [143]. As 
an additional example, the simulation of the cellular interactions with 
biomaterials, cells, and dynamic media in a scenario where cell seeding 
occurs under perfusion conditions helped to optimize the seeding time, 
and the number of cells seeded in the scaffold in [144].

4.3.3. Spheroid bioassembly

Spheroid fusion, the aggregation of spheroids into larger constructs, 
is an approach for efficiently constructing larger tissues. With the in-
crease in construct size, oxygen, and metabolites are no longer uni-
formly accessible to cells across the construct, hampering their viability 
and thus the quality of fabrication products. Computational methods 
support modeling cellular needs during spheroid-dependent fabrication, 
predicting their viability under different process parameters. For exam-
ple, a hybrid discrete-continuous heuristic model, combining a cellular 
Potts-type approach with field equations, describes metabolic effects 
over cells during spheroid-dependent fabrication in [145].

In conclusion, computational methods sustain the multi-objective 
optimization of the fabrication stage of TERM biofabrication by nav-
igating complex trade-offs between fabrication parameters, benefiting 
from the explicit modeling of the role of cells in ensuring final product 
quality. This advantage applies to both inorganic and organic compo-
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nents of fabricated products.
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4.4. Maturation

Automated culture systems include different technologies ranging 
from microfluidic devices to bioreactors (Fig. 12.D), which automati-
cally administer signals to guide product maturation towards the de-
sired structural and functional features. In biofabrication, the matura-
tion stage is a critical stage where the biofabricated structures undergo 
cellular development, differentiation, and extracellular matrix forma-
tion to achieve functional characteristics akin to natural tissues [52]. 
The dynamical modulation of environmental stimuli administered to 
the construct affects product maturation and, ultimately, the emergence 
of the desired functional and structural features. Computational meth-
ods support the characterization and design of the maturation process, 
allowing prediction of how the administered stimuli make the desired 
features emerge [146]. For example, DL approaches to support the 
prediction of functional activations from environmental stimuli of dif-
ferent kinds [60]. ANNs predicted the induction of osteogenesis from 
sets of biomechanical loading parameters values [147]. Computational 
approaches also target the overall biofabrication process design by pre-
dicting the final product features and the respective product quality 
based on the set of administered stimuli and their organization in time 
and space.

For example, modeling the identity and quality of stimuli, includ-
ing their complex behavior in the physical environment, combines with 
experimentation to link biological responses to mechanical stimulation, 
improving the understanding of the cause-effect relationship of mechan-
ical loading in [148].

As a notable computational approach, SIMulation using Metropolis 
Monte Carlo method (SIMMMC) supports the 3D modeling of specific 
biological systems, including living cells and biomaterials, and simu-
lates construct evolution from the structural and functional perspective, 
based on the Metropolis Monte Carlo (MMC) modeling of living cells, 
biomaterials, and cellular medium [149].

Maturation often relies on automated culture systems such as biore-
actors of varying sizes and designs. Computational methods support the 
optimization of bioreactor design. For example, CFD modeling allows 
the optimization of the flow profile when designing the perfusion cham-
ber of a perfusion bioreactor system to engineer human cartilage grafts 
in [150].

Construct maturation’s success in bioreactors relies heavily on cell 
viability and proliferation. Computational models of the micro- and 
the macro-scale combine with CFD to simulate cell colonization pro-
cesses in a perfusion bioreactor and perform model-based optimization 
of the perfusion flow rate to maximize cell colonization in [151]. A 
model of tissue growth inside 3D scaffolds in a perfusion bioreac-
tor combines with a multi-objective optimization method to find the 
most cost-effective medium refreshment strategy for maximizing tissue 
growth while minimizing experimental costs in [152]. Discrete simu-
lation of intra- and extracellular processes combines with evolutionary 
computation to perform the DSE of process designs to generate opti-
mal biofabrication protocols to maximize size and control geometry of 
human epithelial monolayers in silico in [153]. Continuous simulation 
of tissue dynamics based on vertex models of cells (leveraging on the
PalaCell2D simulation framework [154]) combine with a deep Re-
inforcement Learning (RL) approach to generate optimal protocols for 
epithelial sheets culture for maximizing the total number of cells pro-
duced and optimizing the spatial organization within the cell aggregate 
in [155].

In conclusion, computational methods support the maturation stage 
of TERM biofabrication by modeling the dynamic processes taking place 
within the developing construct and predicting the effect of the adminis-
tered stimuli over them to explore several process outcomes and support 

the choice of optimal process designs for specific target products.
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5. Open challenges and future trends

This review aimed to present computational methods for modeling, 
designing, and optimizing TERM biofabrication processes, with a fo-
cus on encompassing biological complexity through diverse modeling 
approaches from holistic to hypothesis-driven. The predominance of 
TERM bone or cartilage engineering in publications aligns with science 
mapping results (Section 2), while the infrequent application in more 
complex tissue or organ biofabrication reflects current limitations in 
mimicking biological complexity (Section 1). Despite these limitations, 
computational tools show promise in advancing the biofabrication of 
complex TERM products, thus expanding the range of regenerative ap-
plications. However, current computational models often simplify the 
intricate relationship between organic and inorganic components in bio-
fabrication or focus narrowly on single process aspects, limiting their 
impact on process design and product quality.

To fully realize the potential of computational optimization in TERM 
biofabrication, a truly interdisciplinary approach is necessary, incorpo-
rating diverse scientific and technological elements and addressing the 
underlying biological complexity for holistic process modeling, design, 
and optimization, while developing strategies to improve their com-
putational feasibility. In particular, future computational methods in 
TERM biofabrication should address the following key challenges.

Interdisciplinary enabling: Computational methods must become fa-
cilitators of interdisciplinary collaboration, catering to the varied sci-
entific backgrounds of researchers in TERM biofabrication [1]. They 
should ensure usability and accessibility, promoting findability and di-
rect reusability of solutions [156] to accelerate collaborative scientific 
advancement. The sharing of novel solutions should leverage on sci-
entific reproducibility tools like Docker or Singularity container 
platforms [157]. In general, novel methods shall truly enable interdis-
ciplinary collaboration, to mediate the synthesis of diverse perspectives 
into models, and providing modular and reusable solutions for model-
based optimization.

Intrinsic flexibility: Computational methods must adapt to new bio-
fabrication processes and targets, especially in optimizing clinically rel-
evant products. They should support personalized medicine principles, 
adapting to specific patient needs [158–160] and the complex norma-
tive scenario for clinical translation [161,162]. Future approaches shall 
reach extensive flexibility over of patient- and regulation- dependent 
constraint specifications to seamlessly adapt to different clinical appli-
cations.

Multi-component modeling: computational methods must rely on ac-
curate models of the several inorganic and biological components in 
biofabrication [2,6], accurately predicting cellular behavior during fab-
rication and maturation, and sustaining the optimization of the process 
design accordingly [9]. Multi-component models can rely on diverse ap-
proaches on the broad spectrum between holistic, comprehensive mod-
eling and hypothesis-driven modeling [49]. Future approaches shall 
find the right trade-off between these two, or sustain hybrid modeling, 
consistently combining model components based on different modeling 
strategies [50].

Multi-stage modeling: computational methods must comprise the mul-
tiple process stages composing a TERM biofabrication process [163,
164], drawing meaningful relations between them to support multi-
stage modeling and optimization. In this perspective, computational 
models shall either model multiple stages together, or support the us-
age of hybrid models [50] that cover multiple stages by composition of 
multiple single-stage models.

Abstraction tuning: Computational methods must develop to sustain 
tunable abstraction in TERM biofabrication models. The abstraction 
of mechanistic models into behavioral models, while preserving good 
model prediction accuracy and explainability, is an established strat-
egy to enhance computational feasibility of model-based DSE in other 
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sustain tunable abstraction in model-based DSE of TERM biofabrication 
processes.

Computational scale-up: Computational methods must enhance the 
feasibility of model-based DSE for TERM biofabrication, especially 
when dealing with large design spaces. Heuristic and meta-heuristic 
optimization strategies in model-based DSE can efficiently explore huge 
design spaces [43]. Novel computational methods shall implement and 
innovate such techniques towards a general increase in the exploration 
of large TERM biofabrication process design spaces.

These advances will make computational approaches the key for 
unlocking the potential of TERM biofabrication for faster clinical trans-
lation, targeting more complex applications and reaching improved 
clinical outcomes.
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