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Abstract: In this paper, we present an overview of all analytical engineering solutions delivered
over the past 60 years for corrosion problems in pressure vessels. We briefly detail the strengths and
weaknesses of existing approaches, thus demonstrating the need for novel uniform corrosion analysis
methods for both current and new applications. To complement the review, we also present a new
analytical model allowing the estimation of the lifetime of pressured elastic vessels with mechanically
assisted corrosion. Both internal/external pressure and internal/external corrosion are captured, and
dissolution-driven corrosion is also considered. The readily implemented method improves existing
analytical approaches and is shown to be effective for thin and thick shells, as well as various loading
and corrosion intensity and geometrical conditions.

Keywords: pressure vessels; mechanically-assisted corrosion; variable boundary; analytical solution;
stress; thickness; life

1. Introduction
1.1. Corrosion Research

Corrosion problems are common in pressure vessels of iron or steel during operation [1,
2]. Chemical corrosion [3] often occurs when they operate in dry environments. Conversely,
in a humid (or water) environment, electrochemical corrosion occurs. These two types of
corrosion will cause the loss of metal, which will in turn cause the container to crack, thus
losing stability/ultimate bearing capacity, shortening the service life, and greatly increasing
the risk of various accidents and losses of the container. This problem also widely exists in
other similar metal components, such as aerial vehicles [4], liquid hydrogen transportation
pipelines [5], high temperature furnace devices, [6], oil (gas) pipelines [7], chemical building
components [8], marine platform components [9], marine submarines [10], and wearable
device components [11,12]. These are used as air/land/sea infrastructure, equipment
(devices), and other important military or pharmaceutical components.

1.2. Corrosion Problems of Pressure Vessels

Regarding the corrosion of pressure vessels, many studies have focused on the specific
development process of electrochemistry and the chemistry of metals [13–20]. Furthermore,
other researchers do not discuss the chemistry process, and all possible chemical reactions
are modeled with the help of certain kinetic phenomenological laws. In this paper, we
mainly focus on such phenomenological models since other types of models, such as
quantitative or analytical models, are relatively lacking [21].

1.2.1. Phenomenological Model

In the study of the phenomenological models, the corrosion process is usually re-
garded as uniform wear or dissolution of materials. [19] In pressure vessels, this is often
assisted by mechanical stress. In order to establish this model, the relationship between the
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corrosion rate and stress of the stressed component (a circular tube) [22] must therefore first
be understood.

In [23], a linear model, largely from experience, was proposed. The authors of [24]
had some difficulties in expressing the effect of temperature on corrosion rate and mechan-
ical stress. In the papers of Gutman et al. [25–27], an Arrhenius temperature model was
introduced and, considering the classical thermodynamic laws, it was combined with a
significant amount of experimental data. This model explained the relationship between
environmental temperature, stress, and velocity, although it has some problems in ex-
pressing the inhibition phenomenon in corrosion processes. In [25], a corrosion inhibition
coefficient was established and a mixed model with both polynomial and exponential terms
was adopted. This model has been used previously to explain such corrosion inhibition
phenomenon described above, but it still has problems in explaining coating protection
and rupture phenomena. Quadratic, cubic, and general cubic polynomial models were
proposed in [28]. These models have been instrumental in improving the description
of existing experimental data and phenomena, but they have difficulties in expressing
threshold stress explicitly (including temperature) and in capturing the phenomenon of
coating breakage.

Recently, an idea has been advanced in [28] to introduce a stress threshold quantity
into the model explained in [29], leading to a segmented corrosion model. However, it
gives some results that are inconsistent with experimental phenomena when describing
vessel corrosion problems with small stresses. In order to improve the above models, in
2016 Gutman, based on the model in [25], formulated a new one. Even though it achieved
the purpose of simultaneously describing the relationship between media activation energy,
it was not suitable for characterizing the mechanical stress induced by temperature and did
not sufficiently describe its interaction with corrosion rate. Moreover, it had difficulties in
describing some experimental phenomena consistently. In regards to this problem, in [30]
the temperature,Tj, along with a threshold temperature, Tth

j , plus an empirical parameter,
βi/βo, was introduced into the model already presented in [31]. However, this parameter
lacks a clear physical interpretation. This last model [30] enables one to describe the effect
of thermal stress on corrosion rate and mechanical stress and presents the monotonical
effect of temperature difference between the outer and inner surface on corrosion rate and
lifetime. However, it has some computational difficulties for a case with a temperature
larger than the temperature threshold.

1.2.2. Experimental Research and Data

Most of the phenomenological models described above did not provide related experi-
mental validation. However, before these phenomenological models were proposed, a large
amount of experimental data had already been accumulated [25–27,32–34]. By reviewing
the experimental research from these works, we obtained effective experiments and their
data. Some of them have direct or indirect contributions (relationships) to several of the
corrosion models successively proposed by Gutman’s team. If these data can be employed
properly to verify the corresponding corrosion model, the lack of current model validation
will be improved.

1.2.3. Theories on Corrosion Lifetime (Including Failure Criteria)
Existing Shell Stresses Distribution Equations

The accurate expression for the stress distribution (mechanical stress) on the sphere
shell in the absence of temperature effects comes in the form of Lamé formulas. Researchers
have always adopted the formulas of this equation with different assumptions (sometimes
adding certain new terms, such as temperature) in different periods to obtain an analytical
solution. In [23], such a stress distribution equation is proposed with a constant average
diameter. In the works of [32,34–36], the average diameter is replaced by the mid-surface
radius, rc, but it is still constant. In [31], based on Lamé formulas, new assumptions were
introduced, but they performed poorly in mathematical operations (e.g., Taylor expansion)
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with an intermediate variable, η, less than or close to 1.0. In [35], the mid-plane radius, rc,
was introduced into the first-order Lamé stress distribution equation. From the conclusions,
an analytical solution was obtained that was as simple as the ones based on Laplace laws,
but with better accuracy. However, it is difficult to describe the change of temperature
stress on mechanical stress and corrosion rate. The model [30] was further improved by
introducing the outer/inner radius ratio, η, and adding the temperature term. However, it
has a little difficulty in expressing the effect of the inner and outer temperature values on
the stress, and also adds further complexity in implementation.

In summary, the key to achieving a better model is to obtain a new analytical solution
expressed by a new proper intermediate variable. For example, it will be possible to
implement using the analytical solution based on x proposed in this paper.

Analytical Relationship between Vessel Stress/Thickness and Time

The first solution is based on Laplace laws, such as those in [36]. It uses a stress
distribution format expressed as a constant midplane radius. There are still difficulties
in a broader range of applications, but there is better accuracy in such applications. The
second solution is that adopted in [35], which can be applied in a broader range and,
simultaneously, ensures better accuracy. When used for medium and thick shells, it is
difficult and laborious to maintain a sufficient accuracy.

Recently, [37] used the Southwell plot method, where an estimation method is pro-
posed for the critical thickness, critical life, and critical stress of the shell, while the accurate
failure criterion is avoided.

Failure Criteria for Further Life Problems (or Critical Stress or Critical Thickness) and Its
Assumptions

Researchers have proposed different failure criteria to study the pressure vessel corro-
sion problem (life problem) [38], and they have various forms [23,27,32,34–36,39,40] but
when stressed shells fail under the action of corrosion as well as force or pressure, their
critical state will move in both space and time. However, if we want to find it precisely
in time and space, there are still some difficulties, even though [38,41] discovered this
phenomenon and [30] redefines failure (lifetime).

1.3. Aspects Requiring Further Analysis

Here we briefly detail the strengths and weaknesses of the existing approaches:

• It is challenging to improve (or create a new model) the current corrosion kinetic
models based on the existing amount of test data. One reason is the restricted amount
of data from real engineering applications required to verify or improve the validity of
those models used in the corrosion problem of pressure vessels. Another is the huge
money and time cost of data collection for shells with a generally long lifetime.

• The assumptions of the stress distribution equation need to be further optimized.
These simplified stress distribution equations, based on Lamé formulas or Laplace
laws, are not perfect. For some, there are many assumptions, resulting in a decrease
in accuracy or a narrow range of applications. Some, with few assumptions, make
it difficult to obtain an analytical solution that is easy to program or friendly to
engineering applications.

• Delivering difficulties of existing analytical methods.
• New applications (beyond pressure vessels) urgently need more efficient and easy-to-

program analytical methods.

In general, we still lack an analytical solution that is simple enough in form that can
analyze both thin and thick shells, adapt to complex working conditions, and maintain
accurate and rapid expressions. Furthermore, the need is increased by vessels becoming more
advanced and complex in industry and other related land or sea infrastructure components.
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1.4. Suggested Improvement in Analysis of the Vessel Corrosion Problems

After the previous considerations regarding the current research situation, we will
seek to improve the analytical theory of general corrosion problems to cover the lifetime
problem of corroded pressure vessels.

Under this theoretical framework, we will use valid test data and data processing
techniques to verify the existing corrosion models and select a more appropriate one. In
addition, we will employ mathematical techniques to establish time-varying failure criteria.
Our goal is to obtain a new analytical method and use it more effectively to predict the
lifetime of pressured elastic spherical shells with mechanically assisted corrosion. This new
method will likely meet the higher demand for security assessments or regular inspections
in new applications.

In Section 2 of the paper, we introduce the problem formulation. Section 3 is devoted
to solving this formulation in order to obtain a new analytical method. Section 4 will
address case studies of particular interest to showcase the solution’s predictive capabilities.
Section 5 summarizes and discusses our findings.

2. Problem Formulation
2.1. Characterization of Shell State

We know that the boundary state can theoretically characterize the state of the shell,
S(t), including stress and geometry, and can be described by the state of the mass point on
the inner surface, Bi(t). Therefore, we can choose any point, M, on the inner boundary of
the shell as the research object, as shown in Figure 1. The purpose is to obtain the spatial
position (h, rc) of this point and the associated stress, σ(t), in time, and then to obtain h∗, t∗

of the shell, which is in a critical state of failure.
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Figure 1. Characterization for shell, S, boundary, B, and a trajectory of a point, M, lying at
the boundary.

As the corrosion progresses, the boundary points (such as M) may dissolve in the next
moment, and the new interior points (such as Mn) will become new boundary points.

2.1.1. For Solving h and rc (Solution of the Problem for Stresses)

Following our predecessors’ practice, this paper starts fundamentally from the accurate
solution for the stress balance equation, known as Lamé formulas:

σθ(ri) =
r3

i
r3

o − r3
i

(
1 +

r3
o

2ri
3

)
Pi −

r3
o

r3
o − r3

i

(
1 +

r3
i

2ri
3

)
Po, (1a)

σθ(ro) =
r3

i
r3

o − r3
i

(
1 +

r3
o

2ro3

)
Pi −

r3
o

r3
o − r3

i

(
1 +

r3
i

2ro3

)
Po. (1b)
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Firstly, in order to help in decoupling differential equations later, we introduce a new
intermediate variable, x: x = h/rc. Then, using x to rewrite the Equation (1) [42], and also
by conducting Taylor expansion considering that x is typically less than unity, we obtain:

σθ(ri) =

[(
1

2x
− x2

48
− 1

4
+

3x
8

)
Pi −

(
1

2x
+

x2

16
+

3
4
+

3x
8

)
Po

]
w(x), (2a)

and

σθ(ro) =

[(
1

2x
− x2

16
− 3

4
+

3x
8

)
Pi −

(
1

2x
+

x2

48
+

1
4
+

3x
8

)
Po

]
w(x). (2b)

Here, w(x) = 1/ (1 + x2

12 ).
Equation (2) can be easily rewritten as:

σθ(ri) = f (x)(pi − po)−
pi + 3po

4
, (3a)

and
σθ(ro) = f (x)(pi − po)−

3pi + po

4
. (3b)

Physically, Equation (3) represents the coefficient of the time-variant thickness-to-
radius ratio that describes the effect of corrosion on the effective stress of the shell under
internal and external pressures.

According to existing kinetic corrosion equations [43], the relationship between vi, vo,
σ(rj), and t is given by Equation (4).

vj =
drj

dt
=
[
aj + mjσ

(
rj
)]

e−bt. (4)

Considering h(t) = ro(t) − ri(t) and rc(t) = [ro(t) + ri(t)]/2, and substituting Equation (4)
into Equation (3), gives

dh
dt

=

{
(−ao − ai) + (−mo −mi)[ f (x)∆p− pi − po

2
]

}
e−bt, (5a)

and
drc

dt
=

{
(−ao + ai)

2
+

(−mo + mi)

2
[ f (x)∆p− (pi + po)]

}
e−bt. (5b)

By dividing Equation (5a) by Equation (5b) and considering the time-variant relation-
ship between the geometric parameters rc, h, and x, we obtain the phase trajectory of the
system for the first time:

2( h
x − rc0) + (h0 − h)

2( h
x − rc0)− (h− h0)

= −
ai + mi

[
f (x)∆p− pi+3po

4

]
ao + mo

[
f (x)∆p− 3pi+po

4

] . (6)

Note that the phase trajectory expresses an important relationship between two de-
pendent variables, h and rc, which is founded on the new intermediate variable, x (x = h/rc),
introduced in this paper.

In this study, the t–h relationship is re-obtained based on a combination of Equations (3a) and (6).
Whether or not numerical or analytical solutions can be obtained simultaneously depends
on the assumptions made.

Previous studies have always assumed that rc = rc0 [36,37] (that is, rc is no longer a
time-varying physical quantity) to achieve the decoupling of rc from time, t, simply, and
accordingly, rc is decoupled from h and σ simultaneously. However, in this paper we would
like to remain in the time-varying field to solve this moving boundary problem in a much
more general way, aiming to obtain its analytical solution. Considering that x is small
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(always less than 1.0), we can ignore the higher-power terms x and ax2 and then smoothly
establish a new expression of phase trajectory (Equation (6)):

x =
−e

b + c/rco + d/h
. (7)

Employing Equation (7), we can solve Equation (5a) and Equation (5b) to obtain the
expressions for h and rc.

2.1.2. For Solving σ(t)

We follow the basic formulation of Lamé as

σθ(ri) =
r3

i
r3

o − r3
i

(
1 +

r3
o

2ri
3

)
Pi −

r3
o

r3
o − r3

i

(
1 +

r3
i

2ri
3

)
P,o (8a)

σθ(ro) =
r3

i
r3

o − r3
i

(
1 +

r3
o

2ro3

)
Pi −

r3
o

r3
o − r3

i

(
1 +

r3
i

2ro3

)
Po. (8b)

And from Equation (8), we can obtain the differential naturally [37], which is widely
regarded as the most accurate solution and often used as the reference method:

dσ

dt
=

{
2

∆prc
(σ + δ)2(

∼
a + mσ) +

σ + δ

2rc
(
=
a +

=
mσ)

}
e−bt. (9)

We can rewrite Equation (9),

dσ

dt
= (∆1 + ∆2 + ∆3)e−bt, (10)

where
∆1 =

2
∆prc

(σ + δ)2
(∼

a + mσ
)

(11a)

∆2 =

=
mm

∆prc2 (σ + δ)2 (11b)

∆3 =
σ + δ

2rc
(
=
a +

=
mσ)−

=
mm

∆prc2 (σ + δ)2 (11c)

Here,
∼
a = ai + ao − mo∆P/2, m = mi + mo,

=
a = ai − ao + mo∆P/2,

=
m = mi − mo,

δ = (pi + 3po)/4, and ∆p = pi − po.
For solving σ, an assumption, ∆2,∆3 = 0, has already been employed in the method of [37].
In this paper, we would like to retain one more assumption and put forward

a new one:
∆3 = 0. (12)

From a formula truncation view, this assumption abandons fewer items and therefore
in theory must be more accurate. Thus, we confidently hold that it will help to acquire a
more accurate solution than before, hopefully promising an analytical one.

Based on Equations (10)–(12), we then obtain a new differential form as

dσ

dt
= (∆1 + ∆2)e−bt. (13)

In addition, based on Equation (13), σ(ri) can be solved.
For the sake of brevity, we will present our results for (h, rc) and σ(ri) in a straightfor-

ward manner below.
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3. A New Analytical Method
3.1. Promotion of the Boundary Stress, σ

This paper obtains the analytical expressions for the stress, σ(t), and the spatial
position (h, rc,) of point M (see Figure 1). Its stress expression is:

b = 0

t =
∆prc

2
(∼

a −mδσ

)
 m
∼
a −mδσ

ln

(∼
a + mσ

)
(∼

a + mσ0

) (σ0 + δσ)

(σ + δσ)
+

σ− σ0

(σ + δσ)(σ0 + δδ)

, (14a)

b 6= 0

t = 1− 1
b

ln

 ∆prc

2
(∼

a −mδσ

)
 m
∼
a −mδσ

ln

(∼
a + mσ

)
(∼

a + mσ0

) (σ0 + δσ)

(σ + δσ)
+

σ− σ0
(σ + δσ)(σ0 + δδ)

, (14b)

where
∼
a = ai + ao −mo∆p/2 + (mi −mo)(mi + mo)/2/rc.

Note that Equation (14) is practically identical to those in [37], while in its Equation
(14) only parameter

∼
a is different (

∼
a = ai + ao −mR∆p/2).

3.2. Improvement of the Vessel Thickness, h

At the same time, the analytical formula for the thickness, h, at point M is also obtained
as follows:

b = 0

t =
(h0 − h)

A
+

B
A2 ln

Ah + B
Ah0 + B

, (15a)

b 6= 0

t = −1
b

ln
{

1− b[
(h0 − h)

A
+

B
A2 ln

Ah + B
Ah0 + B

]

}
, (15b)

where A = −ao − ai + mo
3pi+po

4 + mi
pi+3po

4 + 1
2 (pi − po)(mo + mi)

b1+c/rc0
e , B = − 1

2 (pi −
po)(−mo −mi)

d
e .

Here, a = −2
(

ai − ao −mi
pi+3po

4 + mo
3pi+po

4

)
, b1 = 4(pimo + pomi − ai − ao),

c = 2h0

(
ai − ao −mi

pi+3po
4 + mo

3pi+po
4

)
+ 4rco

(
ai + ao −mi

pi+3po
4 −mo

3pi+po
4

)
,

d = [h0(pi − po)(mi −mo) + 2rco(pi − po)(mi + mo)], and e = −2(pi − po)(mi + mo).
Note that Equation (15) is identical in form to those in [37], while in its Equations

(12) and (13) only parameters A and B are different: A = −ao − ai + mo
3pi+po

4 + mi
pi+3po

4 ,
B = rc0

2 (pi − po)(−mo −mi).

3.3. Presentation of the Vessel Mid-Surface Radius, rc, in Time

Finally, we obtain the analytical formula of the mid-plane radius, rc, in time at point
M for the first time, as follows:

b = 0

t = − (rc0 − rc)

A
+

B
A2 ln

Arc + B
Arc0 + B

, (16a)

b 6= 0

t = −1
b

ln
(

1 + b
(
(rc0 − rc)

A
+

B
A2 ln

Arc + B
Arc0 + B

))
, (16b)

where A =
(
−ao + ai −mo

3pi+po
4 −mi

pi+3po
4

)
/2 + 1

4 (pi − po)(mo −mi)
b1+c/rc0

e , and

B = 1
4 (pi − po)(mo −mi)

d
e .

Equation (16) shows a non-monotonic relationship between the function, rc, and time,
t. In other words, rc is a nonlinear time variable. It is easy to foresee that this solution
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will theoretically maintain accuracy over the long-term domain. Conversely, if rc is simply
assumed to be a non-time variable, rc0, as in [37], it will not.

3.4. Additional Interesting Finding

Additionally, there is an interesting finding that our analytical solutions for h (see
Equation (15)) and rc (see Equation (16)) are quite similar in form, but two term signs
(positive and negative) and coefficient expressions (A and B) are different.

4. Case Studies

In this Section, the ability to calculate stress, σ, and to track the spatial position (h, rc)
at the point M in a particular case, and also in general cases, are verified one by one.

The method in [44] is chosen as the reference method for the reasons mentioned in
Section 2.1. The corresponding predicting errors by our method are delivered together with
ones from existing methods [32,37].

These error formulations are defined here in advance. ej
i represents the error for i

quantity by the method j compared with reference value. Here, i could be σ, h, rc, h*, or
t*, while j will take the values W, P, or G. W represents the results from this method, R
represents the reference value from [44], P represents the results from [37], and G represents
the results from [32]. d(W,P)

i represents the difference between h value predicted by method
W and that by method P.

For example,

eW
h =

h(W) − h(R)

h(R)
, d(W,P)

h =
h(P) − h(W)

h(P)
(17)

4.1. Tracking Vessel σ and (h, rc) in Special Case

A thin-shell vessel model with an identical internal and external corrosion intensity, no
corrosion inhibition, and with smaller internal or external pressures, such as wearable device
components [11,12], is chosen as a special case, as employed in [37] (see Case 1). Case 1: [pc],
[lc], and [tc] below denote international measure system units for pressure, length, and time,
respectively, and the expressions are also adopted by other studies [31]. For |∆p|, pi, p, po,
p, |σ*|,ri0, ro0, λ, ao, ai, mo, mi, and b, refer to the notation list in this paper.

|∆p| = 3[pc], pi= 15[pc], po= 12[pc], p = min{pi, po} , |σ∗|= 300[pc] , ri0 = 78[lc],

ro0 = 82[lc], λ= 0.05, ao = ai = 0.1[lc/tc ], mo = mi = 0.0005[lc/tc pc], b = 0.

The results by the proposed method are shown in the figures below.
As can be seen from Figure 2, the σ errors predicted by methods W and P are very

close. The former has only a slight advantage over the latter. Thus, the new method, W,
tracks stress more accurately, even in such special case. This law also holds true when
predicting thickness, and the error of method G is the largest, as shown in Figure 3.



Metals 2023, 13, 1918 9 of 17

Metals 2023, 13, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 2. Stress error (difference) between methods 𝑒σ
W, 𝑒σ

P , and  𝑑σ
(P,W)

. Note: In the figure, 𝑒ℎ
W, 

𝑒ℎ
P, 𝑒ℎ

G, and  𝑑ℎ
(P,W)

meaning see Equation (17). 

 

Figure 3. Thickness error (difference) between methods 𝑒ℎ
W, 𝑒ℎ

P, 𝑒ℎ
G, and  𝑑ℎ

(P,W)
. 

As can be seen from Figure 4, for the value of the predicted mid-surface radius, in 

this time domain, the orders of magnitude of the prediction error by the three methods 

are all very small. Among them, this method is consistent with the reference solution, and 

its accuracy is the highest. 

Figure 2. Stress error (difference) between methods eW
σ , eP

σ, and d(P,W)
σ . Note: In the figure, eW

h , eP
h , eG

h ,

and d(P,W)
h meaning see Equation (17).

Metals 2023, 13, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 2. Stress error (difference) between methods 𝑒σ
W, 𝑒σ

P , and  𝑑σ
(P,W)

. Note: In the figure, 𝑒ℎ
W, 

𝑒ℎ
P, 𝑒ℎ

G, and  𝑑ℎ
(P,W)

meaning see Equation (17). 

 

Figure 3. Thickness error (difference) between methods 𝑒ℎ
W, 𝑒ℎ

P, 𝑒ℎ
G, and  𝑑ℎ

(P,W)
. 

As can be seen from Figure 4, for the value of the predicted mid-surface radius, in 

this time domain, the orders of magnitude of the prediction error by the three methods 

are all very small. Among them, this method is consistent with the reference solution, and 

its accuracy is the highest. 

Figure 3. Thickness error (difference) between methods eW
h , eP

h , eG
h , and d(P,W)
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As can be seen from Figure 4, for the value of the predicted mid-surface radius, in
this time domain, the orders of magnitude of the prediction error by the three methods are
all very small. Among them, this method is consistent with the reference solution, and its
accuracy is the highest.
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In general, the errors of σ and (h, rc) predicted by this method and the existing two
methods are all very small. Among them, the error of this method is the smallest, though
its superiority is weak.

4.2. Tracking the h at Point M under the General Case

Unlike Case 1, in engineering applications such as chemical building components [8]
and marine platform components [9], etc., the most common physics phenomena are that
the internal and external corrosion intensity is rarely equal, the corrosion inhibition is
functioning, and the vessel itself is not very thin. In order to research a more general model,
we propose a new case with different internal and external corrosion strengths, non-zero
corrosion inhibition, and thicker geometric dimensions; see Case 2. Its results are shown
in Figure 5.
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Note that the solution expression and its calculations for thickness and radius resemble
Case 1; only the results for the former are delivered here for simplicity.
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Case 2:
For |∆p|, pi, po, p, |σ*|, ri0, ro0, λ, ao, ai, mo, mi, b, and v, refer to the notation list in this

paper. po = 210[pc], pi = 10[pc], λ = 0.3, h0 = 10[lc], ao = 0.001[lc/tc ], ai = 0.004[lc/tc ],
mo = 0.004

[
lc

tc pc

]
, mi = 0.0016[lc/tc pc ], b = 0.001, E = 206, 000[pc], v = 0.3.

As shown in Figure 5, the h–t curve predicted by our method almost coincides with
the reference curve. Its accuracy is the highest, followed by [37], and the method in [32] is
the lowest.

4.3. Tracking Vessel Boundary, Bi, and Shape, S, under the General Case

For other common engineering applications, such as oil (gas) pipelines [7] or high-
temperature furnace devices [6], we seek to understand the difference between the vessel’s
boundary position and shape as predicted by the proposed method and other methods.
With the intention of describing this situation well, we set another general example; see
Case 3. Unlike Case 2, its internal corrosion intensity is higher than the external one.
Corresponding results are shown in Figures 6 and 7.
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Case 3:
For po, pi, λ, h0, ao, ai, mo, mi, b, E, and v, refer to the notation list in this paper.
po = 15[pc], pi = 180[pc], λ = 0.25, h0 = 10[lc], ao = 0.001[lc/tc ], ai = 0.02[lc/tc ],

mo = 0.0004
[

lc
tc pc

]
, mi = 0.008[lc/tc pc], b = 0.01, E = 206, 000[pc], v = 0.3.

From Figure 6, we can see that the accuracy of tracking thickness by this method is the
highest. Consequently, we can quickly obtain the thickness predicted by each method at
any time, tk (0 < tk < t*); in the same way, we could also obtain rc. We can then qualitatively
draw the position of the boundary, B, and the shape of the shell, S, at time tk, as shown
in Figure 7.

Figure 7 shows the significant differences between the three methods in tracking M
positions (h, rc). MG is tracked by the method in [32]. However, tk is not a real boundary
point, but an interior one. MP and MW are tracked by the method in [37] and this method,
respectively. However, the two positions have already dissolved and disappeared at tk.
Nevertheless, the MW by this method is the closest to the reference value.

4.4. Predicting the Shell Critical State (t*, h*)

In some engineering applications, for example, aerial vehicles [4] or liquid hydrogen
transportation pipelines [5], vessel pressure load is often relatively large, perhaps with a
high corrosion inhibition, unlike Cases 2 and 3. It is particularly important and necessary
for practitioners or operators to accurately forecast the service life of vessels in such working
conditions. With this in mind, we introduce a further example as Case 4. The related results
are demonstrated in Figure 8 and Table 1.
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Case 4
For po, pi, λ, h0, ao, ai, mo, mi, b, E, and v, refer to the notation list in this paper.
po = 15[pc], pi = 950[pc], λ = 0.3, h0 = 10[lc], ao = 0.004[lc/tc ], ai = 0.001[lc/tc ],

mo = 0.0016
[

lc
tc pc

]
, mi = 0.0004[lc/tc pc ], b = 0.455, E = 206, 000[pc], v = 0.3.

Figure 8 shows the four h–t curves predicted by the different methods. The curve of
this method is almost consistent with the reference method, indicating that this method has
the highest accuracy, and the higher one results from the method in [37]. The lowest level
of agreement is seen from the method in [32].

Note that in the curve of [37], t tends to positive infinity when h approaches 1.14
[lc]. This phenomenon shows that the shell will never completely dissolve (it has a re-
maining thickness of at least 1.14 [lc], no matter how much time has passed), assuming
that the shell has not failed before then. This suggestion is somewhat inconsistent with
physical phenomena.

Table 1 shows that the error of t* by [37] reaches 13%, which exceeds the general
engineering accuracy (5%). Therefore, the lifetime it predicts does not guarantee reliability.
In contrast, the error of this method is less than 1%, which is lower than the general
engineering accuracy, and its predicted lifetime is much more reliable and thus more useful.
The error of h* is similar.

5. Conclusions

Having described the existing research methods relating to corrosion problems in
pressured vessels and discussing their evolution, advantages, and disadvantages, we have
justified that there is a strong need for uniform corrosion analysis methods for both current
and new applications. Existing methods struggle to meet this need. Accordingly, this
paper proposes an improved approach with a view to addressing current needs. This novel
approach was successfully implemented. The contribution of this new method is mainly
reflected in the following: popularizing existing methods for engineering applications,
research technology for physical science, nonlinear differential equation solving methods,
and techniques for mathematics, etc.

5.1. Contributions to Engineering Applications

The proposed method generalizes a popular method [37] in engineering applications;
the promotion and improvement are as follows:

(a) Our method achieves a global, simultaneous tracking of shell shape (thickness and
midplane radius) and stress. Therefore, we generalize those existing methods, which
usually provide solutions only for thickness or only for stress.

(b) Relative to the existing methods, our respective analytical solutions provide the follow-
ing: easy to program, no more time-consuming, operator-friendly, and more accurate.

(c) Most importantly, we can obtain higher accuracy of lifetime, t*, and critical thickness,
h*, in the long-term domain.

5.2. Contributions to Research Techniques in Physical Sciences

Taking the moving boundary problem (shell boundary/stress tracking and life predic-
tion) as an example, this paper explores a physical science research technique that promises
to be universal. That is, how to improve the solution itself by physically improving the
parameters of the solution (method) successfully without complicating the form of the
solution or the implementation of the application.

5.3. Contributions to Methods and Techniques for Solving Systems of Nonlinear Differential
Equations in Mathematics

Nonlinearity is everywhere [45] (on all time and spatial scales). The phenomena of this
nonlinear excitation naturally include failure from general corrosion of pressure vessels [46].
The problem is to solve its first-order nonlinear differential equation system.
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Analytical solutions for such a system of equations are generally not available in
mathematics [47]. In general, one can only obtain its numerical solution, or perform some
qualitative analysis of it [47]. If one wants to obtain its analytical solution, one must achieve
the separation of dependent and independent variables within the system of equations (or
equation decoupling).

To circumvent this difficulty, the P (or G) method simply separates the independent
variable (t) and the dependent variable (rc) by assuming rc = rc0, thus reducing the system
of equations to just one equation. An analytic solution for h can then be readily found.

Our approach is different. We first analyze the phase trajectory of the two dependent
variables of this equation and obtain their explicit relationship. We then introduce rea-
sonable assumptions (e.g., ignore higher-order terms of small terms) in order to simplify
the relationship between the two dependent variables. This simplification in turn reduces
the original system of equations to one equation, which allows us to obtain its analytical
solution more elegantly.

During the solving process, this paper also proposes another mathematical technique,
which is to properly introduce the intermediate variable x (x = h/rc). This distinctive
introduction plays a key role in the successful separation of the original two intermediate
variables (σi and σo).

From the above, it is clear that by successfully solving the extremely difficult non-
linear differential equation system, we have contributed a general mathematical method
(analyzing the equivalence line and obtaining the nonlinear relationship of the dependent
variable) and a mathematical technique (introducing an appropriate intermediate variable,
x). The successful use of both in this paper demonstrates their utility in the study of
nonlinear problems.

5.4. The Proposed Method Needs Further Discussion

As is the case with any new method, the proposed one needs further study, in particular
if one wishes to extend it to different geometries (ellipsoidal spherical shell, cylindrical
shell, etc.) or introduce further features, such as temperature. The authors would suggest
that one employs numerical solutions, analytical solutions, and qualitative analysis (studies
of stability and equilibrium) for such a study.
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Abbreviations

A thermal expansion coefficient of the material
ai corrosion constant for internal corrosion
ao corrosion constant for external corrosion
b corrosion inhibition effect
dr radius of two concentric spheres
Dθ the angle between the plane and the positive z-axis
dϕ angle between the x-axis counterclockwise and the plane
f (x) coefficient of the time-variant thickness-to-radius ratio
h, h(t) thickness
h* corresponding thickness of the shell under the critical failure state
ha given minimal allowable thickness
mi corrosion constant
mo corrosion constant
pi inner pressure
po outer pressure
∆p pi − po
r,
r(t)

distance between a point in the shell material and
the origin of the coordinate system

ro
distance between the internal surface in the shell material and
the origin of the coordinate system

rc, rc(t), ri, ri(t), ro, ro(t) middle (inner, outer) surface radius of the shell
t time
r,
t*

time required for a corroded pressure shell to fail for the first time
due to buckling or yielding

td time for the shell to completely dissolve
vi (vo) inner (outer) mechano-chemical corrosion rate

x
thickness to mid-surface radius ratio, x = h/rc, or 2(ro − ri)/(ro + ri)
for spherical shell

σ
stress under longitudinal or transverse forces, cylindrical shells,
spherical shells, or other shells

σ(rj) principal stress; j = i, o
σ(rj)max maximum principal stress
σe(r) effective stress/ the equivalent stress
σr(r) radial stress
σθ(r) hoop stress maximum hoop or simply hoop
σϕ(r) meridian stress
eM

h (eM
rc

, error of h (rc, t*, h*) predicted by method M in comparison with
eM

t∗ , eM
h∗ ) reference method R

d(P,W)
h , (d(P,W)

rc , difference between h (rc, t*, h*) value predicted by method P and

d(P,W)
t∗ , d(P,W)

h∗ ) that by method W
S(t) shell S state
Bi(t) (Bo(t)) inner (outer) boundary of shell one line
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