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SEMI-DISCRETE MODELING OF SYSTEMS OF WEDGE DISCLINATIONS

AND EDGE DISLOCATIONS VIA THE AIRY STRESS FUNCTION METHOD

PIERLUIGI CESANA, LUCIA DE LUCA, AND MARCO MORANDOTTI

Abstract. We present a variational theory for lattice defects of rotational and translational

type. We focus on finite systems of planar wedge disclinations, disclination dipoles, and edge
dislocations, which we model as the solutions to minimum problems for isotropic elastic energies

under the constraint of kinematic incompatibility. Operating under the assumption of planar

linearized kinematics, we formulate the mechanical equilibrium problem in terms of the Airy
stress function, for which we introduce a rigorous analytical formulation in the context of incom-

patible elasticity. Our main result entails the analysis of the energetic equivalence of systems

of disclination dipoles and edge dislocations in the asymptotics of their singular limit regimes.
By adopting the regularization approach via core radius, we show that, as the core radius van-

ishes, the asymptotic energy expansion for disclination dipoles coincides with the energy of finite

systems of edge dislocations. This proves that Eshelby’s kinematic characterization of an edge
dislocation in terms of a disclination dipole is exact also from the energetic standpoint.
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Introduction

The modeling of translational and rotational defects in solids, typically referred to as disloca-
tions and disclinations, respectively, dates back to the pioneering work of Vito Volterra on the
investigation of the equilibrium configurations of multiply connected bodies [93]. Dislocations,
possibly the most common lattice defects, are regarded as the main microscopic mechanism of
ductility and plasticity of metals and elastic crystals [80, 82, 91]. Disclinations appear at the
lattice level in metal alloys [38, 92], graphene [13, 95], and virus shells [57, 77]. Despite both
being line defects, their behavior is different, both geometrically and energetically. Moreover, the
mathematical modeling is mostly available in the mechanical assumption of cylindrical geometry,
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2 P. CESANA, L. DE LUCA, AND M. MORANDOTTI

where the curves on which the defects are concentrated are indeed line segments parallel to the
cylinder axis.

Dislocations entail a violation of translational symmetry and are characterized by the so-called
Burgers vector. Here we consider only edge dislocations, namely those whose Burgers vector is
perpendicular to the dislocation line. Disclinations arise as a violation of rotational symmetry
and are characterized by the so-called Frank angle. Disclinations are defined (see [8, 76]) as the
“closure failure of rotation ... for a closed circuit round the disclination centre”. Conceptually, a
planar wedge disclination can be realized in the following way, see [93]. In an infinite cylinder,
remove a triangular wedge of material and restore continuity by glueing together the two surfaces
of the cut: this results in a positive wedge disclination; conversely, open a surface with a vertical
cut originating at the axis of the infinite cylinder through the surface, insert an additional wedge of
material into the cylinder through the opening, and restore continuity of the material: this results
in a negative wedge disclination [84]. Because of the cylindrical geometry, we will work in the
cross-section of the material, where both disclination and dislocation lines are identified by points
in the two-dimensional sections. In this setting, the energy of an edge dislocation scales, far away
from its center, as the logarithm of the size of the domain, while the energy of a single disclination
is non-singular and scales quadratically with the size of the domain [67, 85]. In many observations
disclinations appear in the form of dipoles [58, 66, 84], which are pairs of wedge disclinations of
opposite Frank angle placed at a close (but finite) distance. This configuration has the effect of
screening the mutual elastic strains resulting in significantly lower energy than the one of single,
isolated disclinations.

A continuum theory for disclinations in the framework of linearized elasticity has been de-
veloped and systematized, among a number of authors, by de Wit in [32] and subsequently in
[34, 35, 36]. A non-linear theory of disclinations and dislocations has been developed in [102], to
which we refer the interested reader for a historical excursus and a list of references to classical
linearized theories, as well as to other early contributions on the foundation of non-linear theo-
ries. For more recent modeling approaches, in [3] disclinations are comprised as a special case of
g.disclinations, a general concept designed to model phase transformations, grain boundaries, and
other plastification mechanisms. Qualitative and quantitative comparison between the classical
linearized elasticity approach and the g.disclination theory is discussed in details in [100]. The
contributions [40] and [90] propose a mesoscale theory for crystal plasticity designed for modeling
the dynamic interplay of disclinations and dislocations based on linearized kinematics and writ-
ten in terms of elastic and plastic curvature tensors. Variational analysis of a discrete model for
planar disclinations is performed in [22]. Finally, we point out the papers [2] and [96, 97], where
a differential geometry approach to large non-linear deformations is considered.

While the body of work on dislocations is vast both in the mathematics [9, 26, 27, 43, 44,
51, 81] as well as in the physics and chemistry literature [39, 50, 52, 59, 60, 70] due to their
relevance in metallurgy and crystal plasticity, the interest on disclinations has been much lower.
This disproportion owes to the fact that disclinations are thought to be less predominant in the
formation of plastic microstructure. However, a large body of experimental evidence, some of
which in recent years, has shown that disclinations, both in single isolated as well as multi-dipole
configuration, are in fact a very relevant plastification mechanism, so that understanding their
energetics and kinematics is crucial to understanding crystal micro-plasticity (see [1, 10, 11, 12,
20, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 71, 72, 94], [53, Section 12.3.3]). With this paper we
intend to lay the foundations of a general and comprehensive variational theory suitable to treat
systems of rotational and translational defects on a lattice. We focus on three different aspects:
we propose a variational model for finite systems of planar wedge disclinations; we study dipoles of
disclinations and we identify relevant energy scalings dictated by geometry and loading parameters;
finally, we prove the asymptotic energetic equivalence of a dipole of wedge disclinations with an
edge dislocation.

Main contributions and impact of this work. We operate under the assumption of plane
strain elastic displacements and under the approximation of linearized kinematics so that contri-
butions of individual defects can be added up via superposition. As we are mainly concerned with
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the modeling of experimental configurations of metals and hard crystals, we restrict our analysis
to the case of two-dimensional plane strain geometries, leaving to future work the analysis in the
configuration of buckled membranes. We model disclinations and dislocations as point sources of
kinematic incompatibility following an approach analogous to [89] and [18]. Alternative approaches
according to the stress-couple theory in linearized kinematics are pursued in [32, 40, 90]. Despite
their intrinsic limitations, linearized theories have proven useful to describe properties of systems
of dislocations both in continuous and discrete models [17, 18, 41, 31, 4, 28, 30, 5, 6, 15, 14, 48, 7]
(see also [87, 75, 49, 42] for related nonlinear models for (edge) dislocations). In [83, 21, 19] sys-
tems of disclinations have been investigated in linear and finite elasticity models, and qualitative
as well as quantitative comparisons have been discussed.

By working in plane strain linearized kinematics, it is convenient to formulate the mechanical
equilibrium problem in terms of a scalar potential, the Airy stress function of the system, see,
e.g., [73, 74]. This is a classical method in two-dimensional elasticity based on the introduction
of a potential scalar function whose second-order derivatives correspond to the components of the
stress tensor (see [24, Section 5.7] and [88]). From the formal point of view, by denoting with σij
the components of the 2× 2 mechanical stress tensor, we write

σ11 =
∂2v

∂x2
2

, σ12 = σ21 = − ∂2v

∂x2∂x1
, σ22 =

∂2v

∂x2
1

,

where v : R2 ⊃ Ω → R is the Airy stress function. Upon introduction of the Airy potential v,
the equation of mechanical equilibrium Div σ = 0 is identically satisfied while the information
on kinematic (in-)compatibility is translated into a loading source problem for the biharmonic
equation for the scalar field v . By indicating with ε the 2×2 symmetric strain tensor (related to σ
via the linear relation σ = Cε, with C being the fourth-order elasticity tensor), the mechanical
equilibrium problem formulated in terms of strains and stresses (which we refer to as the laboratory
variables) and in terms of the Airy potential formally read, respectively,

(0.1)


curl Curl ε = −θ in Ω

Div σ = 0 in Ω

σ n = 0 on ∂Ω

and


1− ν2

E
∆2v = −θ in Ω

∇2v t = 0 on ∂Ω.

Here, E and ν are the classical Young modulus and Poisson ratio, respectively; the unit vectors t
and n are the tangential and normal directions to the boundary of Ω, and θ denotes a source term
accounting for kinematic incompatibility. Existence of the Airy stress function and the variational
equivalence of the equilibrium problems formulated in terms of strains and stresses, with the
single-equation problem for the Airy potential are proved in [24] in simply connected domains for
perfectly compatible (that is, defect-free, θ ≡ 0) elasticity.

Our first results, Propositions 1.4 and 1.8 (and Corollaries 1.5 and 1.9), entail the investigation
of finite systems of isolated disclinations, modeled by a finite sum of Dirac deltas placed at the
disclination centers and modulated by their corresponding Frank angles (see [89]). Consequently,

we take θ =
∑K
k=1 s

kδyk , where {yk}Kk=1 ⊂ Ω are the fixed (hence the term isolated) centers of the
disclinations and we clarify the equivalence, in terms of suitable notions of weak solutions (see Def-
inition 1.3), of the two formulation for mechanical equilibrium appearing in (0.1), thus generalizing
the analysis of [24] for non-zero Frank angles sk. In doing so, we construct a rigorous variational
setting so that the equilibrium problem formulated in terms of the Airy potential is well posed in
terms of existence, uniqueness, and regularity of solutions. The Airy potentials corresponding to
the singular strains and stresses are the classical solutions for planar wedge disclinations computed
in [93] – and correctly recovered by our model – corresponding to the Green’s function for the bi-
laplacian operator. An immediate application of our analysis is in providing a rigorous framework
for numerical calculations of lattice defects with the Airy potential method (see, e.g., [89, 101]).
Additionally, we show that the solutions to the mechanical equilibrium problem formulated in
the Airy variable (the system on the right in (0.1)) can be characterized as the minimizers of the
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following functional for the Airy stress function

(0.2) Iθ(v; Ω) :=
1

2

1 + ν

E

∫
Ω

(
|∇2v|2 − ν(∆v)2

)
dx+ 〈θ, v〉 ,

defined over a suitable class of Sobolev functions (see (2.1) and (2.2)). Here, the bulk term of the
functional coincides with the elastic energy measured in terms of the laboratory variable, while
the linear part v 7→ 〈θ, v〉 represents the work performed by the point singularities (disclinations)
and does not enter the mechanical energy balance. In the remainder of the paper we exploit
extensively the variational characterization for the problem formulated in the Airy variable in the
analysis of singular regimes.

Secondly, we show the energetic equivalence between finite families of wedge disclinations dipoles
and systems of edge dislocations. From the point of view of the applications in Materials Science,
these systems are interesting because disclination dipoles are fundamental building blocks to model
kinks as well as grain boundaries [46, 69, 78], which are important configurations in crystals and
metals. To this end, we first consider a dipole of wedge disclinations placed at a distance h > 0
along the x-axis, that is, we set θh = sδ(h2 ;0) − sδ(−h2 ;0) in (0.2). Then, replacing the linear term

in (0.2) with an average of the variable v at a scale ε > h , we define the regularization of the
functional Iθh as

(0.3)

Iθhh,ε(v) :=
1

2

1 + ν

E

∫
Ωε

(
|∇2v|2 − ν(∆v)2

)
dx

+
s

2π(ε− h)

∫
∂Bε−h(0)

[
v
(
x+

h

2
e1

)
− v
(
x− h

2
e1

)]
dH1(x),

where Ωε := Ω \Bε(0) .
Observe that, when keeping ε > 0 fixed and letting h → 0 , we have that θh → 0 and the

functional Iθhh,ε converges to the sole bulk energy term integrated over Ωε . On the other hand,
since

(0.4) Iθh/hh,ε (v/h) =
1

h2
Iθhh,ε(v),

we obtain that linear rescalings by h of both the function v and the measure θh induce quadratic
rescalings by h2 of corresponding energies. Therefore, setting

Ĩθhh,ε(w) :=
1

h2
Iθhh,ε(hw),

we have that

Ĩθhh,ε(w) = Iθh/hh,ε (w),

that is, the left-hand side of (0.4) with w = v/h.
Notice that θh/h → −s∂x1δ0 in the sense of distributions; this leads to the formalization in

terms of incompatibility operators of Eshelby’s derivation [37] (see also [36]) of the edge dislocation
α := se2δ0 as the disclination dipole θh with vanishing length h and Frank angles ±s . The
relationship between the dipole of disclinations and the equivalent edge dislocation is clarified by
noting that −s∂x1

δ0 = curlα (see (1.16) and (1.17) for the full details details). Therefore, from

an energetic point of view, we expect that the functionals Iθh/hh,ε converge, in a suitable sense, to
the functional

(0.5) Iα0,ε(v) :=
1

2

1 + ν

E

∫
Ωε

(
|∇2v|2 − ν(∆v)2

)
dx+

s

2πε

∫
∂Bε(0)

∂x1
v(x) dH1(x) .

This is the content of Proposition 3.5, where we prove that the minima and minimizers of the
functional Iθhh,ε converge (as h→ 0) to those of Iα0,ε .

Since the loading term in (0.5) is an ε-regularization of the core energy associated with the edge
dislocation se2δ0 , the length scale ε can be interpreted as the core radius of this edge dislocation.
In other words, at scales larger than ε, the material responds to continuum theories of elasticity,
whereas discrete descriptions are better suited at scales smaller then ε , thus establishing the
semi-discrete nature of our model.
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In Remark 3.7, we show that the same convergence carries through for a system of isolated
dipoles of disclinations, i.e., when θh represents a finite system of disclination dipoles (with
length h) approximating a finite system of edge dislocations identified by the corresponding α.

Finally, keeping α fixed, we discuss the asymptotic expansion of the ε-regularized dislocation
energy Iα0,ε as ε → 0. By relying on an additive decomposition between plastic (i.e., determined
by the disclinations) and elastic parts of the Airy stress function, in an analogous fashion to [18],
we study the limit of the minimal Iα0,ε as ε → 0 (Theorem 4.3), we compute the renormalized
energy of the system (Theorem 4.6), and we finally obtain the energetic equivalence, which is the
sought-after counterpart of Eshelby’s kinematic equivalence. Our asymptotic expansion of the
minimal Iα0,ε , obtained via the Airy stress function formulation (see (4.43)) , is in agreement with
[18, Theorem 5.1 and formula (5.2)] at all orders; therefore, as in [18], the minimizers of Iα0,ε ,
as ε → 0 , converge to the sum of the Green’s functions associated with each of the dislocation
in α plus a smooth function matching the traction-free boundary condition. To conclude, in
Theorem 4.8, we combine in a cascade the convergence results obtained above (sending first h→ 0
and then ε → 0) , computing, via a diagonal argument, the asymptotic expansion of the energy

Iθhh,ε(h) for h � ε(h) as h → 0 . This extends the asymptotic analysis in [18] to finite systems of

dipoles of wedge disclinations.

Outline of the paper and methods. The outline of the paper is as follows. Section 1 is
devoted to the presentation of the mechanical equilibrium equations, in terms both of the labo-
ratory variables and of the Airy stress function of the system. Our results are based on a crucial
characterization of traction-free boundary displacements for the problem formulated in terms of
the Airy potential. Such a characterization involves a non-standard tangential boundary condition
for the Hessian of the Airy stress function which we are able to characterize in terms of classical
Dirichlet-type boundary conditions for the biharmonic equation (Proposition 1.10).

In Section 2, we study the mechanical problem for systems of isolated disclinations formulated
in terms of the Airy potential. With Section 3, we begin our investigation of systems of disclina-
tion dipoles which we then conclude in Section 4. Length scales and mutual distances between
disclinations are regarded as model parameters, of which we study the asymptotics. We oper-
ate by directly computing the limits of energy minima and minimizers; a more general approach
via Γ-convergence [16, 29] is not explored in this paper. We stress that the results in Section 4
are written for finite systems of disclination dipoles and dislocations. In particular, Theorem 4.6
fully characterizes the energy of a finite system of dislocations: the renormalized energy in (4.45)
contains information on the mutual interaction of the dislocations.

While our focus is on defects and kinematically incompatible systems, our systematization of
the Airy stress function method is useful also for the general case of compatible elasticity. We
investigate a number of analytical questions, such as the equivalence of boundary data in terms of
the laboratory variables and the Airy potential, fine Poincaré and trace inequalities in perforated
domains, and density of Airy potentials under non-standard constraints. We gather these original
results in a series of appendices.
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atica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM). PC holds an honorary appointment at La Trobe University and is supported by JSPS
Innovative Area Grant JP21H00102 and partially JP19H05131. MM gratefully acknowledges sup-
port from the Japan meets Italian Scientists scheme of the Embassy of Italy in Tokyo and from
the MIUR grant Dipartimenti di Eccellenza 2018-2022 (CUP: E11G18000350001). MM acknowl-
edges the Institute of Mathematics for Industry, an International Joint Usage and Research Center
located in Kyushu University, where part of the work contained in this paper was carried out.

Supplementary materials or data: There are no supplementary materials or data associ-
ated with this manuscript.

Conflict of interests: The authors declare no conflict of interests.



6 P. CESANA, L. DE LUCA, AND M. MORANDOTTI

Notation. For d ∈ {2, 3} , m ∈ N , and for every k ∈ Z , let Rk(A;Rm) denote the space of
k-regular Rm-valued functions defined on an open set A ⊂ Rd (we will consider Sobolev spaces like
Hk(A;Rm) or spaces of k-differentiable functions like Ck(A;Rm), for k ≥ 0) . Now we introduce
different curl operators and show relationships among them. For d = 3 and m = 3 we define
curl : Rk(A;R3)→ Rk−1(A;R3) as

curlV :=(∂x2
V 3 − ∂x3

V 2; ∂x3
V 1 − ∂x1

V 3; ∂x1
V 2 − ∂x2

V 1)

for any V = (V 1;V 2;V 3) ∈ Rk(A;R3) , or, equivalently, (curlV )i = εijk∂xjV
k , where εijk is the

Levi-Civita symbol. For d = 3 and m = 3 × 3 we define CURL: Rk(A;R3×3) → Rk−1(A;R3×3)
by (CURLM)ij := εipk∂xpMjk for every M ∈ Rk(A;R3×3) and we notice that (CURLM)ij =

(curlMj)
i , where Mj denotes the j-th row of M . Moreover, we denote by INC: Rk(A;R3×3)→

Rk−2(A;R3×3) the operator defined by INC := CURL CURL ≡ CURL ◦CURL .
For d = 2 and m ∈ {2, 2 × 2} , we define the following curl operators: curl : Rk(A;R2) →

Rk−1(A;R) as curl v := ∂x1
V 2− ∂x2

V 1 for any V = (V 1;V 2) ∈ Rk(A;R2), Curl : Rk(A;R2×2)→
Rk−1(A;R2) as CurlM := (curlM1; curlM2) for any M ∈ Rk(A;R2×2) .

Let now A ⊂ R2 be open. For every V = (V 1;V 2) ∈ Rk(A;R2) , we can define V ∈ Rk(A ×
R;R3) as V (x1;x2;x3) := (V 1(x1;x2);V 2(x1;x2); 0) and we have that

curlV = (0; 0; curlV ) .

Analogously, if M ∈ Rk(A;R2×2) , then, defining M : A × R → R3×3 by M ij(x1;x2;x3) =

Mij(x1;x2) if i, j ∈ {1, 2} and M ij = 0 otherwise, we have that M ∈ Rk(A× R;R3×3) ,

CURLM =

 0 0 curlM1

0 0 curlM2

0 0 0

 , CURL CURLM =

 0 0 0
0 0 0
0 0 curl CurlM

 .
In what follows, R2×2

sym is the set of the matrices M ∈ R2×2 with Mij = Mji for every i, j = 1, 2 .

Furthermore, for every M ∈ R2×2 we denote by M> the matrix with entries (M>)ij = Mji for
every i, j = 1, 2 .

Finally, in the whole paper, the symbol C indicates a constant that may change from line to
line. Whenever we want to stress the dependence of C from other constants c1, . . . , cK or sets
ω1, . . . , ωL we adopt the notation C(α1, . . . , αK , ω1, . . . , ωL) .

1. The mechanical model

1.1. Plane strain elasticity. Let Ω be an open bounded simply connected subset of R2 with C2

boundary. For any displacement u ∈ H1(Ω;R2) the associated elastic strain ε ∈ L2(Ω;R2×2
sym) is

given by ε := ∇symu := 1
2 (∇u+∇>u), whereas the corresponding stress σ ∈ L2(Ω;R2×2

sym) is defined
by

(1.1) σ := Cε := λtr(ε)I2×2 + 2µε ;

here C is the isotropic elasticity tensor with Lamé constants λ and µ . Notice that

(1.2a) C is positive definite

if and only if

(1.2b) µ > 0 and λ+ µ > 0 ,

or, equivalently,

(1.2c) E > 0 and − 1 < ν <
1

2
.

Here and below, E is the Young modulus and ν is the Poisson ratio, in terms of which the Lamé
constants λ and µ are expressed by

(1.3) µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
.

We will assume (1.2) throughout the paper.
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In plane strain elasticity the isotropic elastic energy associated with the displacement u in the
body Ω is defined by

(1.4) E(u; Ω) :=
1

2

∫
Ω

σ : εdx =
1

2

∫
Ω

(
λ(tr(ε))2 + 2µ|ε|2

)
dx ;

we notice that in formula (1.4) the energy E(·; Ω) depends only on ε so that in the following, with
a little abuse of notation, we will denote by E(·; Ω) : L2(Ω;R2×2

sym)→ [0,+∞) the energy functional
defined in (1.4), considered as a functional of ε (and not of u).

Notice that we can write the elastic energy also as a function of the stress σ as

(1.5) F(σ; Ω) :=
1

2

1 + ν

E

∫
Ω

(
|σ|2 − ν(tr(σ))2

)
dx = E(ε; Ω) ,

where we have used (1.1) and (1.3) to deduce that

(1.6) ε11 =
1 + ν

E

(
(1− ν)σ11 − νσ22

)
, ε12 =

1 + ν

E
σ12 , ε22 =

1 + ν

E

(
(1− ν)σ22 − νσ11

)
,

and

(1.7) λ
(
tr(ε)

)2
+ 2µ|ε|2 =

1 + ν

E

(
|σ|2 − ν(tr(σ))2

)
.

Finally, we reformulate the energy (1.5) using the Airy stress function method. This assumes the
existence of a function v ∈ H2(Ω) such that

(1.8) σ11 = ∂2
x2

2
v , σ12 = −∂2

x1x2
v , σ22 = ∂2

x2
1
v ;

more precisely, we consider the operator A : Rk(Ω) → Rk−2(Ω;R2×2
sym) such that σ = σ[v] = A(v)

is defined by (1.8) . It is immediate to see that the operator A is not injective, since A(v) =
A(w) whenever v and w differ up to an affine function; its invertibility under suitable boundary
conditions will be discussed in Subsection 1.3 (see Corollaries 1.5 and 1.9).

Assuming that there exists v such that σ = σ[v] = A(v) , from (1.8), we can rewrite (1.5) as

(1.9) F(σ[v]; Ω) =
1

2

1 + ν

E

∫
Ω

(
|∇2v|2 − ν|∆v|2

)
dx =: G(v; Ω) .

We notice that if the stress σ admits an Airy potential v , i.e., σ = σ[v] = A(v) , then

(1.10) Div σ[v] ≡ 0 ,

that is, the equilibrium equation Div σ = 0 is automatically satisfied. In fact, this is the main
advantage in using the Airy stress function method. Notice that the identity in (1.10) is, at this
stage, formal and in general holds in the distributional sense. As we will see in Subsection 1.3, in
our case equation (1.10) will hold in H−1(Ω;R2) .

1.2. Kinematic incompatibility: dislocations and disclinations. Let u ∈ C3(Ω;R2) and
set β := ∇u . Clearly,

(1.11a) Curlβ = 0 in Ω .

We can decompose β as β = ε + βskew , where ε := 1
2 (β + β>) and βskew := 1

2 (β − β>) . By
construction,

βskew =

(
0 f
−f 0

)
,

for some function f ∈ C2(Ω) , and hence Curlβskew = ∇f . Therefore, the compatibility condition
(1.11a) can be rewritten as

(1.11b) Curl ε = −∇f in Ω ,

which, applying again the curl operator, yields the Saint-Venant compatibility condition

(1.11c) curl Curl ε = 0 in Ω .

Viceversa, given ε ∈ C2(Ω;R2×2
sym), the Saint-Venant principle [86] states that if (1.11c) holds,

then there exists u ∈ C3(Ω;R2) such that ε = ∇symu .
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In order to apply the direct method of the Calculus of Variations for the minimization of the
elastic energy (1.4), the natural functional setting for the displacement u is the Sobolev space
H1(Ω;R2) . Therefore, a natural question that arises is whether identities (1.11) make sense also
when β is just in L2(Ω;R2×2). The answer to this question is affirmative as shown by the following
result proved in [25] (see also [47]).

Proposition 1.1. Let Ω ⊂ R2 be an open, bounded, and simply connected set and let ε ∈
L2(Ω;R2×2

sym) . Then,

(1.12) curl Curl ε = 0 in H−2(Ω)

if and only if there exists u ∈ H1(Ω;R2) such that ε = ∇symu . Moreover, u is unique up to rigid
motions.

Notice that, by the Closed Graph Theorem, we have that (1.12) holds true in H−2(Ω) if and
only if it holds in the sense of distributions. Therefore, the generalizations of identities (1.11)
when u ∈ H1(Ω;R2) are given by

Curlβ = 0 in D′(Ω;R2) ,(1.13a)

Curl ε = −∇f in D′(Ω;R2) ,(1.13b)

curl Curl ε = 0 in D′(Ω) ,(1.13c)

where f is a function in L2(Ω) and the operator ∇ should be understood in the sense of distri-
butions. (Here and below, D′(Ω;R2) and D′(Ω) denote the families of R2-valued and R-valued,
respectively, distributions on Ω .) Clearly, if β is not a gradient, then equations (1.13) are not
satisfied anymore. In particular, if the right-hand side of (1.13a) is equal to some α ∈ D′(Ω;R2),
then (1.13b) becomes

(1.14) Curl ε = α−∇f in D′(Ω;R2) .

Moreover, if the right-hand side of (1.13b) is equal to −κ where κ ∈ H−1(Ω;R2) is not a gradient,
then (1.13c) becomes

(1.15) curl Curl ε = −θ in D′(Ω) ,

where we have set θ := curlκ . Finally, when both incompatibilities are present, we have that

(1.16) curl Curl ε = curlα− θ in D′(Ω) .

We will focus on the case when α and θ are finite sums of Dirac deltas. More precisely, we will
consider α ∈ E D(Ω) and θ ∈ W D(Ω) , where

E D(Ω) :=

{
α =

J∑
j=1

bjδxj : J ∈ N , bj ∈ R2 \ {0} , xj ∈ Ω , xj1 6= xj2 for j1 6= j2

}
,

W D(Ω) :=

{
θ =

K∑
k=1

skδyk : K ∈ N , sk ∈ R \ {0} , yk ∈ Ω , yk1 6= yk2 for k1 6= k2

}
.

In this case (1.16) reads

(1.17) curl Curl ε = −
J∑
j=1

|bj |∂ (bj)⊥

|bj |

δxj −
K∑
k=1

skδyk in D′(Ω) ,

where we recall that b⊥ = (−b2; b1) for every b = (b1; b2) ∈ R2 . The measure α identifies a system
of J edge dislocations with Burgers vectors bj ; the measure θ identifies a system of K wedge
disclinations with Frank angles sk .

Remark 1.2. For the sake of simplicity we will assume that the weights bj ’s and sk’s of the
singularities of α and θ lie in R2 \ {0} and R \ {0} , respectively. Actually, in the theory of perfect
edge dislocations, we have that bj ∈ B ⊂ R2 , where B is the slip system, i.e., the (discrete) set
of the vectors of the crystallographic lattice. Analogously, in the theory of perfect disclinations,
sk ∈ S , where, in a regular Bravais lattice, S is given by the integer multiples of the minimal
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angle s between two adjacent nearest-neighbor bonds of a given point (namely, s = ±π2 in the

square lattice and s = ±π3 in the regular triangular lattice). Whenever bj are not vectors in B or

sk are not angles in S, the corresponding dislocations and disclinations are referred to as partial,
see [33, 76]. Since we will focus only on the regime of finite number of edge dislocations and wedge
disclinations, the classes B and S do not play any role in our analysis.

Let α ∈ E D(Ω) and θ ∈ W D(Ω) . Following [32, 34], for every open set A ⊂ Ω with ∂A ∩
(sptα∪spt θ) = ∅ we define the Frank angle ω A , the Burgers vector b A , and the total Burgers
vector B A restricted to A as

ω A := θ(A) , b A := α(A) , B A := b A−
∫
A

(−x2;x1) dθ .

We notice that in [32, 34] , the Frank angle is indeed a rotation vector Ω A, which in our plane
elasticity setting is the vector perpendicular to the cross section given by Ω A = (0; 0;ω A) .

For the purpose of illustration, we notice that if spt θ ⊂ Ω \ A , then ω A = 0 and B A =
b A = α(A) . Now, if sptα ⊂ Ω \ A and θ = sδy for some y ∈ A , then ω A = θ(A) = s ,
b A = 0 , and B A = −s(−y2; y1) . This illustrates the different contributions of dislocations
and disclinations to the quantities ω , b , and B just introduced: dislocations only contribute to
the Burgers vector but never to the Frank angle, whereas disclinations contribute both to the
Frank angle and to the total Burgers vector.

Finally, supposing for convenience that sptα ⊂ Ω\A , if θ = s
(
δy+h

2
−δy−h2

)
for some y, h ∈ R2

with y ± h
2 ∈ A , we have that

ω A = 0 and B A = −s(−h2;h1) ,

which shows that a dipole of opposite disclinations does not contribute to the Frank angle but
contributes to the total Burgers vector independently of its center y (see Section 3).

1.3. Disclinations in terms of the Airy stress function. In this subsection, we rewrite the
incompatibility condition in (1.16) in terms of the Airy stress function v introduced in (1.8). To
this purpose, assume that α ≡ 0 , so that (1.16) coincides with (1.15). Here and henceforth we
use the symbols n and t to denote the external unit normal and tangent vectors to the boundary
of Ω ⊂ R2 , respectively, such that t = n⊥ = (−n2;n1) ; in this way, the ordered pair {n, t} is a
right-handed orthonormal basis of R2 .

Consider v : Ω → R and let σ = σ[v] = A(v) (see (1.8)) and ε[v] = C−1σ[v] (see (1.6)). Then,
formally,

curl Curl ε[v] ≡ 1− ν2

E
∆2v ,(1.18a)

Cε[v]n ≡ σ[v]n ≡ (∂2
x2

2
vn1 − ∂2

x1x2
vn2;−∂2

x1x2
vn1 + ∂2

x2
1
vn2) ≡ ∇2v t .(1.18b)

As customary in mechanics, we refer to the zero-stress boundary condition Cε[v]n = 0 on ∂Ω
as traction-free. With some abuse of notation, we also name traction-free the same boundary
condition measured in terms of the tangential component of the Hessian of the Airy potential,
that is ∇2v t = 0 on ∂Ω.

If ε satisfies the equilibrium equations subject to the incompatibility constraint (1.15) for some
θ ∈ W D(Ω), namely

(1.19)


curl Curl ε = −θ in Ω

DivCε = 0 in Ω

Cε n = 0 on ∂Ω ,

then, by (1.10) and (1.18), the Airy stress function v satisfies the system

(1.20)


1− ν2

E
∆2v = −θ in Ω

∇2v t = 0 on ∂Ω .
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Recalling that (1.15) holds in the sense of distributions, the study of the regularity of the fields ε
and σ in the laboratory setting and of the Airy stress function v must be carried out carefully. The
reason is the following: the measure of the elastic incompatibility θ ∈ W D(Ω) is an element of the
space H−2(Ω), so that it is natural to expect that ε, σ ∈ L2(Ω;R2×2

sym) and that v ∈ H2(Ω). At this

level Cε n|∂Ω and ∇2v t|∂Ω make sense only as elements of H−
1
2 (∂Ω;R2), so that the definition of

the boundary conditions in (1.19) and (1.20) cannot be intended in a pointwise sense, even when
the tangent and normal vectors are defined pointwise.

In Corollaries 1.5 and 1.9 below, we establish the equivalence of problems (1.19) and (1.20) and
we show that, under suitable assumptions on the regularity of ∂Ω , the boundary conditions hold
in the sense of H

1
2 (∂Ω;R2) . To this purpose, we introduce the function v̄ ∈ H2

loc(R2) defined by

(1.21) v̄(x) :=


E

1− ν2

|x|2

16π
log |x|2 if x 6= 0

0 if x = 0

as the fundamental solution to the equation

(1.22)
1− ν2

E
∆2v = δ0 in R2 .

Given θ =
∑K
k=1 s

kδyk ∈ W D(Ω), for every k = 1, . . . ,K, we let vk(·) := −skv̄(· − yk) Ω and
define

(1.23) vp :=

K∑
k=1

vk , σp := σp[vp] = A(vp) =

K∑
k=1

A(vk), εp := εp[vp] = C−1σp[vp] = C−1σp ,

which we are going to refer to as the plastic contributions. Notice that, by construction, vp is
smooth in R2 \ spt θ and hence on ∂Ω and so are σp and εp .

Recalling (1.21) and (1.22), we see that

(1.24)
1− ν2

E
∆2vp = −θ in Ω ,

so that, if v solves the equation in (1.20) and we define the function ve through the additive
decomposition

(1.25) v := vp + ve ,

then, ve satisfies

(1.26)


1− ν2

E
∆2ve = 0 in Ω

∇2ve t = −∇2vp t on ∂Ω .

Therefore, by (1.24), we can find a solution v to problem (1.20) if and only if we find a solution
to problem (1.26). Similarly, by (1.18a),

(1.27) curl Curl εp = −θ in Ω ,

so that if ε solves the equation in (1.19) and we define the field εe through the additive decompo-
sition

(1.28) ε := εp + εe ,

then we have curl Curl εe = 0 in Ω and Cεe n = −Cεp n on ∂Ω. Therefore, by (1.27), we find a
solution ε to problem (1.19) if and only if we find a solution to problem

(1.29)


curl Curl εe = 0 in Ω

DivCεe = 0 in Ω

Cεe n = −Cεp n on ∂Ω ,

where we notice that the second equation above is automatically satisfied by (1.10), in view of the
fact that Div σp = 0 .
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We refer to ve and εe as to the elastic contributions and we notice that they are compatible fields.
Upon noticing that the function v̄ is smooth in R2 \{0} and by requiring that the boundary ∂Ω be
smooth enough, we will see that problems (1.26) and (1.29) are “equivalent” and that they admit

solutions which are regular enough for the boundary conditions to make sense in H
1
2 (∂Ω;R2) .

Definition 1.3. Let Ω ⊂ R2 be a bounded, simply connected, open set. We say that a function
ε ∈ L2(Ω;R2×2

sym) (resp., εe ∈ L2(Ω;R2×2
sym)) is a weak solution to (1.19) (resp., (1.29)) if the first

equation is satisfied when tested with H2
0 (Ω) functions and the second one is satisfied when tested

with H1(Ω;R2) functions. Analogously, we say that a function v ∈ H2(Ω;R2) is a weak solution
to (1.20) (resp., (1.26)) if the first equation holds when tested with H2(Ω) functions satisfying the
boundary condition.

We start by proving the following result, which is one implication in the equivalence of problems
(1.29) and (1.26).

Proposition 1.4. Let Ω ⊂ R2 be a bounded, simply connected, open set with boundary of class
C4 and let θ ∈ W D(Ω). Then there exists a unique weak solution (in the sense of Definition 1.3)
εe ∈ L2(Ω;R2×2

sym) to (1.29). Furthermore, εe ∈ H2(Ω;R2×2
sym) . Moreover, there exists a function

ve ∈ H4(Ω) such that εe = C−1A(ve). Finally, any function ve ∈ H4(Ω), with εe = C−1A(ve), is
a weak solution to (1.26).

Proof. Let
E(Ω) := {ε ∈ L2(Ω;R2×2

sym) : curl Curl ε = 0 in H−2(Ω;R2×2)}
and let G : E(Ω)→ R be the functional defined by

G(ε) :=
1

2

∫
Ω

Cε : ε dx+

∫
Ω

σp : εdx ,

where σp is defined in (1.23). By construction, G is bounded from below in L2(Ω;R2×2
sym) and

E(Ω) is a closed subspace of L2(Ω;R2×2
sym) . Therefore, by applying the direct method of Calculus

of Variations, G admits a unique minimizer εe in E(Ω) . Now we show that (1.29) is the Euler-
Lagrange equation for G . Indeed, for any η ∈ E(Ω) we have that

(1.30)

∫
Ω

(Cεe + σp) : η dx = 0;

invoking Proposition 1.1 we have that η = ∇symu for some u ∈ H1(Ω;R2) ; therefore, since
Cεe + σp ∈ R2×2

sym , integrating by parts (1.30), we get

0 =

∫
Ω

(Cεe + σp) : ∇udx = −
∫

Ω

u ·Div(Cεe + σp) dx+

∫
∂Ω

(Cεe + σp)n · udH1 ,

which, recalling that Div σp = 0 , by the fundamental lemma of Calculus of Variations, implies
that εe satisfies (1.29). Moreover, by standard regularity results, we have that εe ∈ H2(Ω;R2×2

sym) .
Now we can apply [24, Theorem 5.6-1(a)], and in particular the argument in [24, page 397], which
guarantees that a strain field εe ∈ Hm(Ω;R2×2

sym) admits an Airy stress function ve = A−1(εe) ∈
Hm+2(Ω), for every m ≥ 0. By applying this result with m = 2, we obtain that ve ∈ H4(Ω) .
Finally, by (1.18), we have that any function ve ∈ H4(Ω) with εe = C−1A(ve) is a weak solution
to (1.26). �

Since εp and vp are smooth in a neighborhood of the boundary of Ω , by (1.23) and by Propo-
sition 1.4, we immediately deduce the following result.

Corollary 1.5. Let Ω ⊂ R2 be a bounded, simply connected, open set with boundary of class C4

and let θ ∈ W D(Ω). Then there exists a unique weak solution (in the sense of Definition 1.3)

ε ∈ L2(Ω;R2×2
sym) to (1.19). Furthermore, Cεe n ∈ H 3

2 (∂Ω;R2) . Moreover, there exists a function

v ∈ H2(Ω) such that ε = C−1A(v). Finally, v is a weak solution to (1.26) and ∇2v t ∈ H 3
2 (∂Ω;R2) .

In order to prove the converse implication of Proposition 1.4, we state the following result,
which is an immediate consequence of [45, Theorem 2.20] (applied with k = 4, m = n = p = 2,
and with f ≡ 0 and hj ∈ C∞) .
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Lemma 1.6. Let A ⊂ R2 be a bounded open set with boundary of class C4 and let g be a C∞

function in a neighborhood of ∂A . Then there exists a unique weak solution w ∈ H2(A) to

(1.31)


1− ν2

E
∆2w = 0 in A ,

w = g on ∂A ,

∂nw = ∂ng on ∂A .

Moreover, w ∈ H4(A) .

By Lemma 1.6 and Proposition A.2 below, we have the following result.

Corollary 1.7. Let A ⊂ R2 be a bounded open set with boundary of class C4 and let f be a C∞

function in a neighborhood of ∂A . Let Γ0,Γ1, . . . ,ΓL be the connected components of ∂A . Given
a0, a1, . . . , aL affine functions, there exists a unique weak solution w ∈ H2(A) to the problem

(1.32)


1− ν2

E
∆2w = 0 in A ,

w = f + al on Γl ,

∂nw = ∂n(f + al) on Γl ;

moreover, w ∈ H4(A) and satisfies

(1.33)


1− ν2

E
∆2w = 0 in A ,

∇2w t = ∇2f t on ∂A .

Viceversa, if w ∈ H4(A) is a solution to (1.33), then there exist a0, a1, . . . , aL affine functions
such that w satisfies (1.32).

Proof. By Lemma 1.6, applied with g := f + al on Γl , we have that there exists a unique weak
solution w ∈ H2(A) to (1.32) and that w ∈ H4(A) . By the Rellich–Kondrakov Theorem, we have
that w ∈ C2(A) ; therefore w − f is of class C2 in a neighborhood of ∂A . We can now apply
Proposition A.2 to deduce that ∇2w t = ∇2f t on ∂A , thus obtaining that w ∈ H4(A) is a solution
to (1.33).

Viceversa, if w ∈ H4(A) is a solution to (1.33), then, by using Proposition A.2 again, we obtain
that there exist a0, a1, . . . , aL affine functions such that w solves (1.32). �

Proposition 1.8. Let Ω ⊂ R2 be a bounded, simply connected, open set with boundary of class
C4 and let θ ∈ W D(Ω) . Then there exists a weak solution ve ∈ H4(Ω) to (1.26). Furthermore,
any weak solution ve to (1.26) belongs to H4(Ω) and the function εe = C−1A(ve) is the unique
weak solution to (1.29).

Proof. By applying Corollary 1.7 with f = −vp (with vp defined in (1.23)) and A = Ω , we
immediately have that there exists a weak solution w ∈ H4(Ω) to (1.26). Moreover, by (1.18), we
have that for any weak solution ve ∈ H2(Ω) to (1.26), the function εe = C−1A(ve) ∈ L2(Ω;R2×2

sym)
is a weak solution to (1.29). Owing to Proposition 1.4, the solution εe to (1.29) is unique and
belongs to H4(Ω) . It follows that any weak solution ve to (1.26) is actually in H4(Ω) . �

Corollary 1.9. Let Ω ⊂ R2 be a bounded, simply connected, open set with boundary of class C4

and let θ ∈ W D(Ω) . Then there exists a weak solution v ∈ H2(Ω) to (1.20) and the condition

∇2v t = 0 on ∂Ω holds in H
3
2 (∂Ω;R2) . Furthermore, for any weak solution v to (1.19), the

function ε = C−1A(v) is the unique weak solution to (1.19).

Finally, by arguing as in the proof of Proposition 1.8 and using the additive decomposition in
(1.25), one can easily prove the following result.
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Proposition 1.10. Let A ⊂ R2 be a bounded open set with boundary of class C4 . Let θ ∈ W D(A)
and let v ∈ H2(A) be such that

(1.34)
1− ν2

E
∆2v = −θ in A.

Then denoting by Γ0,Γ1, . . . ,ΓL the connected components of ∂A , we have that

(1.35) ∇2v t = 0 on ∂A ⇔ v = al , ∂nv = ∂na
l on Γl , for every l = 0, 1, . . . , L ,

where a0, a1, . . . , aL are affine functions.

Remark 1.11. We highlight that, since Ω is simply connected, the solution to (1.26) is unique
up to an affine function. Indeed, given two solutions ve and ṽe of (1.26) , the function w := ve− ṽe
satisfies 

1− ν2

E
∆2w = 0 in Ω

∇2w t = 0 on ∂Ω .

Moreover, by Proposition 1.10, such w is affine. Therefore, the function ve satisfying (1.26)
is uniquely determined up to affine functions. Analogously, the function v satisfying (1.20) is
uniquely determined up to affine functions.

2. Finite systems of isolated disclinations

We now study the equilibrium problem for a finite family of isolated disclinations in a body
Ω. The natural idea would be to consider the minimum problem for the elastic energy G defined
in (1.9) under the incompatibility constraint (1.20) , associated with a measure θ ∈ W D(Ω) ;
however, this is inconsistent, since one can easily verify that the Euler–Lagrange equation for G is
∆2v = 0 .

To overcome this inconsistency, we define a suitable functional which embeds the presence of the
disclinations and whose Euler–Lagrange equation is given by (1.20). To this purpose, let Ω ⊂ R2

be a bounded, open, and simply connected set with boundary of class C4 ; for every θ ∈ W D(Ω)
let Iθ : H2(Ω)→ R be the functional defined by

(2.1) Iθ(v; Ω) := G(v; Ω) + 〈θ, v〉 ,
and consider the minimum problem

(2.2) min
{
Iθ(v; Ω) : v ∈ H2(Ω) , ∇2v t = 0 on ∂Ω

}
.

A simple calculation shows that the Euler–Lagrange equation for the functional (2.1), with respect
to variations in H2

0 (Ω) , is given by (1.20). By Proposition 1.10, we deduce that the minimum
problem in (2.2) is equivalent, up to an affine function, to the minimum problem

(2.3) min{Iθ(v; Ω) : v ∈ H2
0 (Ω)} .

Lemma 2.1. For every θ ∈ W D(Ω), the functional Iθ(·; Ω) is strictly convex in H2(Ω) and it
is bounded below and coercive in H2

0 (Ω) . As a consequence, the minimum problem (2.3) has a
unique solution.

Proof. We start by proving that Iθ(·; Ω) is bounded below and coercive in H2
0 (Ω) . To this purpose,

we first notice that there exists a constant C1 = C1(ν,E,Ω) > 0 such that for every v ∈ H2
0 (Ω)

(2.4) G(v; Ω) ≥ 1

2

1− ν2

E
min{1− 2ν, 1}‖∇2v‖2L2(Ω;R2×2) ≥ C1‖v‖2H2(Ω) ,

where in the last passage we have used Friedrichs’s inequality in H2
0 (Ω) . Notice that the positivity

of C1 is a consequence of (1.2c).
Now, using that H2

0 (Ω) embeds into C0(Ω) , we have that there exists a constant C2 =
C2(θ,Ω) > 0 such that for every v ∈ H2

0 (Ω)

(2.5) 〈θ, v〉 =

K∑
k=1

skv(xk) ≥ −C2‖v‖H2(Ω) .
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By (2.4) and (2.5), we get that for every v ∈ H2
0 (Ω)

(2.6) Iθ(v; Ω) ≥ C1‖v‖2H2(Ω) − C2‖v‖H2(Ω) ≥ −
C2

2

4C1
,

which implies boundedness below and coercivity of Iθ(·; Ω) in H2
0 (Ω) .

Now we show that G(·; Ω) is strictly convex in H2(Ω) , which, together with the linearity of
the map v 7→ 〈θ, v〉 , implies the strict convexity of Iθ(·; Ω) in H2(Ω) . To this purpose, let
v, w ∈ H2(Ω) with v 6= w and let λ ∈ (0, 1) ; then a simple computation shows that

G(λv + (1− λ)w; Ω) =λG(v; Ω) + (1− λ)G(w; Ω)− λ(1− λ)G(v − w; Ω)

<λG(v; Ω) + (1− λ)G(w; Ω) ,
(2.7)

which is the strict convexity condition.
By the direct method of the Calculus of Variations, problem (2.3) has a unique solution. �

Remark 2.2. We highlight that inequality (2.6) shows that Iθ(·; Ω) could be negative. In par-
ticular, being G non-negative, the sign of Iθ is determined by the value of the linear contribution
〈θ, v〉 . It follows that the minimum problem (2.2) and hence (2.3) are non trivial and, as we will
see later (see, e.g., (2.11)), the minimum of Iθ(·; Ω) is indeed negative.

Remark 2.3. Notice that the functional G 1
2 (·; Ω) defines a seminorm on H2(Ω) and a norm in

H2
0 (Ω) , since G(v; Ω) ≡ 〈v, v〉GΩ

where the product 〈·, ·〉GΩ
, defined by

(2.8) 〈v, w〉GΩ
:=

1

2

1 + ν

E

∫
Ω

(
∇2v : ∇2w − ν∆v∆w

)
dx ,

is a bilinear, symmetric, and positive semidefinite form in H2(Ω) and positive definite in H2
0 (Ω) .

We remark that in H2
0 (Ω) the norm G 1

2 (·; Ω) is equivalent to the standard norm ‖ · ‖H2(Ω) .

In the following lemma, for any given ξ ∈ R2 and R > 0, we compute the minimal value of
Iθ(·;BR(ξ)) associated with a single disclination located at ξ, corresponding to θ = sδξ for some
s ∈ R \ {0} . The explicit computation is straightforward and is omitted.

Lemma 2.4. Let s ∈ R \ {0} , ξ ∈ R2 , and R > 0. The function vR : BR(ξ)→ R defined by

vR(x) :=− sv̄(x− ξ)− s E

1− ν2

R2 − |x− ξ|2(1 + logR2)

16π

=− sR2

(
v̄
(x− ξ

R

)
+

E

1− ν2

1

16π

(
1−

∣∣∣x− ξ
R

∣∣∣2)) ,
with v̄ as in (1.21), belongs to H2(BR(ξ)) ∩ C∞(BR(ξ) \ {ξ}) and solves

(2.9)


1− ν2

E
∆2v = −sδξ in BR(ξ)

v = ∂nv = 0 on ∂BR(ξ) .

Hence vR is the only minimizer of problem (2.3) for Ω = BR(ξ) and θ = sδξ . Moreover,

(2.10) G(vR;BR(ξ)) =
E

1− ν2

s2R2

32π
and 〈sδξ, vR〉 = − E

1− ν2

s2R2

16π
,

so that

(2.11) min
v∈H2

0 (BR(ξ))
Isδξ(v;BR(ξ)) = Isδξ(vR;BR(ξ)) = − E

1− ν2

s2R2

32π
.

In view of (1.5) and (1.9), the first equality in (2.10) is the stored elastic energy of a single
disclination located at the center of the ball BR(ξ). Observe that, according to the formulation of
the mechanical equilibrium problem in the Airy variable (2.9), the contribution of the linear term
in the second equality in (2.10) adds to the total energy functional of the system, but does not
correspond to an energy of elastic nature.
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3. Dipole of disclinations

In (2.10) we have seen that an isolated disclination in the center of a ball of radius R carries
an elastic energy of the order R2 . Here we show that the situation dramatically changes when
considering a dipole of disclinations with opposite signs; indeed, when the distance between the
disclinations vanishes, a dipole of disclinations behaves like an edge dislocation and its elastic
energy is actually of the order logR .

3.1. Dipole of disclinations in a ball. For every h > 0 let

(3.1) yh,± := ±h
2

(1; 0)

and let v̄h : R2 → R be the function defined by

(3.2) v̄h(x) := −s(v̄(x− yh,+)− v̄(x− yh,−)) ,

where v̄ is given in (1.21). By construction, v̄h BR(0) ∈ H2(BR(0)) and

(3.3) ∆2v̄h = −θh in R2 ,

where we have set

(3.4) θh := s
(
δyh,+ − δyh,−

)
.

We start by proving that the H2 norm of v̄h in an annulus Ar,R(0) := BR(0) \ Br(0) with fixed
radii 0 < r < R vanishes as h→ 0.

Lemma 3.1. For every 0 < r < R there exists a constant C(r,R) such that

(3.5) lim
h→0

1

h2
‖v̄h‖2H2(Ar,R(0)) = C(r,R)s2 .

Proof. By straightforward computations, for every x ∈ Ah,R(0) we have that

v̄h(x) = − E

1− ν2

s

16π

((
|x|2 +

h2

4

)
log

(
x1 − h

2

)2
+ x2

2(
x1 + h

2

)2
+ x2

2

− hx1 log

(((
x1 −

h

2

)2

+ x2
2

)((
x1 +

h

2

)2

+ x2
2

)))
;

∂x1 v̄h(x) = − E

1− ν2

s

16π

(
2
(
x1 −

h

2

)
log
((
x1 −

h

2

)2

+ x2
2

)
− 2
(
x1 +

h

2

)
log
((
x1 +

h

2

)2

+ x2
2

)
− 2h

)
;

∂x2 v̄h(x) = − E

1− ν2

s

16π
2x2 log

(
x1 − h

2

)2

+ x2
2(

x1 + h
2

)2

+ x2
2

;

∂2
x2

1
v̄h(x) = − E

1− ν2

s

16π

(
2 log

(
x1 − h

2

)2
+ x2

2(
x1 + h

2

)2
+ x2

2

+ 4

( (
x1 − h

2

)2(
x1 − h

2

)2
+ x2

2

−
(
x1 + h

2

)2(
x1 + h

2

)2
+ x2

2

))
;

∂2
x2

2
v̄h(x) = − E

1− ν2

s

16π

(
2 log

(
x1 − h

2

)2
+ x2

2(
x1 + h

2

)2
+ x2

2

+ 4x2
2

(
1(

x1 − h
2 )2 + x2

2

− 1(
x1 + h

2 )2 + x2
2

))
;

∂2
x1 x2

v̄h(x) = − E

1− ν2

s

16π

(
4x2

(
x1 − h

2(
x1 − h

2

)2
+ x2

2

−
x1 + h

2(
x1 + h

2

)2
+ x2

2

))
.

(3.6)
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Moreover,

(3.7)

log

(
x1 − h

2

)2
+ x2

2(
x1 + h

2

)2
+ x2

2

= log

(
1− 2x1h(

x1 + h
2

)2
+ x2

2

)
,

(
x1 − h

2 )2(
x1 − h

2

)2
+ x2

2

−
(
x1 + h

2

)2(
x1 + h

2

)2
+ x2

2

=
−2x2

2x1h((
x1 − h

2

)2
+ x2

2

)((
x1 + h

2

)2
+ x2

2

) ,
x2

2

(
1(

x1 − h
2

)2
+ x2

2

− 1(
x1 + h

2

)2
+ x2

2

)
=

2x2
2x1h((

x1 − h
2

)2
+ x2

2

)((
x1 + h

2

)2
+ x2

2

) ,
x1 − h

2(
x1 − h

2

)2
+ x2

2

−
x1 + h

2(
x1 + h

2

)2
+ x2

2

=

(
|x|2 + h2

4

)
h((

x1 − h
2

)2
+ x2

2

)((
x1 + h

2

)2
+ x2

2

) .
Finally, we set

v̄′(x) :=
E

1− ν2

s

8π
(x1 log |x|2 + x1) , for every x ∈ R2 \ {0} ,

and we observe that v̄′ ∈ C∞(R2 \ {0}) . By (3.6) and (3.7), it is easy to check that h−1v̄h (resp.,
h−1∂xj v̄h , for j = 1, 2 , and h−1∂2

xjxk
v̄h , for j, k = 1, 2) converges to v̄′ (resp., ∂xj v̄

′ , for j = 1, 2 ,

and ∂2
xjxk

v̄′ , for j, k = 1, 2) uniformly in Ar,R(0) as h → 0 . In particular, h−2‖v̄h‖2H2(Ar,R(0)) →
‖v̄′‖2H2(Ar,R(0)) =: C(r,R)s2 , i.e., (3.5). �

The next lemma is devoted to the asymptotic behavior of the elastic energy of v̄h as h → 0 .
Its proof is contained in Appendix B.

Lemma 3.2. For every R > 0

(3.8) lim
h→0

1

h2 log R
h

G(v̄h;BR(0)) =
E

1− ν2

s2

8π
.

The next proposition shows that the same behavior in (3.8) persists when replacing v̄h with the
minimizer vh of Iθh(·;BR(0)) in H2

0 (BR(0)) , for θh given by (3.4).

Proposition 3.3. For every 0 < h < R , let vh be the minimizer of Iθh(·;BR(0)) in H2
0 (BR(0)) .

Then,

(3.9) lim
h→0

1

h2| log h|
G(vh;BR(0)) =

E

1− ν2

s2

8π

and

(3.10) lim
h→0

1

h2| log h|
Iθh(vh;BR(0)) = − E

1− ν2

s2

8π
.

Proof. We start by noticing that, for every 0 < h < R , the minimizer vh of Iθh(·;BR(0)) in
H2

0 (BR(0)) is unique by Lemma 2.1. Let wh ∈ H2(BR(0)) be defined by the formula wh :=
vh − v̄h BR(0) , where v̄h is defined in (3.2). Then, by (3.3), we have that wh is the unique
solution to

(3.11)


∆2w = 0 in BR(0)

w = −v̄h on ∂BR(0)

∂nw = −∂nv̄h on ∂BR(0) .

By [45, Theorem 2.16], we have that there exists a constant C = C(R) > 0 such that

(3.12) ‖wh‖H2(BR(0)) ≤ C‖v̄h‖H 3
2 (∂BR(0))

≤ C‖v̄h‖H2(Ar,R(0)) ,

where 0 < r < R is fixed.
By (3.12) and Lemma 3.1 for h small enough we get

(3.13) ‖wh‖2H2(BR(0)) ≤ C‖v̄h‖
2
H2(Ar,R(0)) ≤ C(r,R)s2h2 ,
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which, together with Lemma 3.2, recalling the definition of 〈·; ·〉GBR(0)
in (2.8), yields

lim
h→0

1

h2 log R
h

G(vh;BR(0)) = lim
h→0

1

h2 log R
h

G(v̄h;BR(0)) + lim
h→0

1

h2 log R
h

G(wh;BR(0))

+2s lim
h→0

1

h2 log R
h

〈v̄h;wh〉GBR(0)
=

E

1− ν2

s2

8π
,

i.e., (3.9). Finally, since

〈θh, vh〉 = 〈θh, v̄h〉+ 〈θh, wh〉 = − E

1− ν2

s2

4π
h2| log h|+ wh(yh,+)− wh(yh,−) ,

and using Morrey inequality and (3.13) to deduce that

|wh(yh,±)| ≤ C(R)‖wh‖H2(BR(0)) ≤ C(r,R)sh ,

we get

lim
h→0

1

h2 log R
h

〈θh, vh〉 = − E

1− ν2

s2

4π
+ lim
h→0

sC(r,R)

| log h|
= − E

1− ν2

s2

4π
,

which, added to (3.9), yields (3.10). �

3.2. Core-radius approach for a dipole of disclinations. We discuss the convergence of a
wedge disclination dipole to a planar edge dislocation. We remind that the kinematic equivalence
of a dipole of wedge disclinations with an edge dislocation has been first pointed out in [37] with
a geometric construction in a continuum (see [98] for a construction on the hexagonal lattice).

Let s > 0 , R > 0 , h ∈ (0, R), and let θh := sδ(h2 ;0) − sδ(−h2 ;0) . Moreover, let vh ∈ H2(BR(0))

satisfy

(3.14)

{
∆2vh = −θh in BR(0)

vh = ∂nvh = 0 on ∂BR(0) .

Then, since θh
h → −s∂x1δ0 as h→ 0 , we expect that, formally, vhh → v, where v satisfies

(3.15)

{
∆2v = s∂x1

δ0 in BR(0)

v = ∂nv = 0 on ∂BR(0) ,

namely, v is the Airy function associated with the elastic stress field of an edge dislocation centered
at the origin and with Burgers vector b = se2 , see (1.17). Notice that the resulting Burgers vector
is orthogonal to the direction of the disclination dipole d (directed from the negative to the positive

angle), more precisely we can write b
|b| = d⊥

|d| (see [37] and also [36, formula (7.17)] and [99, formula

(7)]).
The convergence of the right-hand side of (3.14) to the right-hand side of (3.15) represents the

kinematic equivalence between an edge dislocation and a wedge disclination dipole, obtained in the
limit as the dipole distance h tends to zero. We now focus our attention on the investigation of the
energetic equivalence of these defects, which we pursue by analyzing rigorously the convergence of
the solutions of (3.14) to those of (3.15).

As this analysis entails singular energies, we introduce regularized functionals parameterized
by 0 < ε < R, representing the core radius. To this purpose, we define

(3.16) Bε,R :=
{
w ∈ H2

0 (BR(0)) : w = a in Bε(0) for some affine function a
}

and, recalling (2.1), we introduce, for h < ε , the functional Iθhh,ε : Bε,R → R defined by

(3.17) Iθhh,ε(v) := G(v;BR(0)) +
s

2π(ε− h)

∫
∂Bε−h(0)

[
v
(
x+

h

2
e1

)
− v
(
x− h

2
e1

)]
dH1(x) ,

associated with the pair θh of disclinations of opposite angles ±s placed at ±(h2 , 0), respectively.
We identify the relevant rescaling for the Airy stress function v , parametrized by the dipole
distance h , and corresponding to the energy regime of interest. We stress that the energy scalings
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are dictated by the scaling of v and not from a priori assumptions. Consequently, we assume
v = hw (with w = O(1)) and write

(3.18) Iθhh,ε(hw) = G(hw;BR(0)) +
s

2π(ε− h)

∫
∂Bε−h(0)

[
hw
(
x+

h

2
e1

)
− hw

(
x− h

2
e1

)]
dH1(x) .

It follows that the regularized energy of a disclination dipole of angles ±s is of order O(h2) . In
order to isolate the first non-zero contribution in the limit as h→ 0, we divide (3.18) by h2 and,
in view of the homogeneity of degree 2 of the elastic term, we get

(3.19)

Iθh/hh,ε (w) ≡ 1

h2
Iθh/hh,ε (hw)

=G(w;BR(0)) +
s

2π(ε− h)

∫
∂Bε−h(0)

w(x+ h
2 e1)− w(x− h

2 e1)

h
dH1(x) .

Setting α := se2δ0 , we show that the minimizers of Iθh/hh,ε in Bε,R converge, as h → 0 , to the
minimizers in Bε,R of the functional Iα0,ε : Bε,R → R defined by

(3.20) Iα0,ε(w) := G(w;BR(0)) +
s

2πε

∫
∂Bε(0)

∂x1
w dH1 .

Notice that, by the very definition of Bε,R in (3.16),

(3.21) Iα0,ε(w) = G(w;Aε,R(0)) +
s

2πε

∫
∂Bε(0)

∂x1
w dH1 .

We start by showing existence and uniqueness of the minimizers of Iθh/hh,ε and Iα0,ε in Bε,R .

Lemma 3.4. Let s ∈ R\{0} , θh := sδ(h2 ;0)−sδ(−h2 ;0) , and α := se2δ0 . For every 0 < h < ε < R

there exists a unique minimizer of Iθh/hh,ε in Bε,R . Moreover, there exists a unique minimizer of
Iα0,ε in Bε,R .

Proof. The proof relies on the direct method in the Calculus of Variations. We preliminarily

notice that the uniqueness of the minimizers follows by the strict convexity (see (2.7)) of Iθh/hh,ε ,

for h > 0 , and of Iα0,ε , for h = 0 . For every h > 0 let {Wh,ε,j}j∈N be a minimizing sequence for

Iθh/hh,ε in Bε,R and let {W0,ε,j}j∈N be a minimizing sequence for Iα0,ε in Bε,R . We first discuss

the case h > 0 . Since Wh,ε,j is affine in Bε(0) for any j ∈ N , for any x ∈ ∂Bε−h(0) we have that

(3.22)

∣∣∣∣Wh,ε,j

(
x+ h

2 e1

)
−Wh,ε,j

(
x− h

2 e1

)
h

∣∣∣∣ = |∂x1
Wh,ε,j(x)| ≤ ‖∂x1

Wh,ε,j‖L∞(Bε(0))

≤ 1√
πε
‖Wh,ε,j‖H2(BR(0)) .

Hence, since the zero function w = 0 belongs to Bε,R , by using Friedrich’s inequality inH2
0 (BR(0)) ,

we get, for j large enough,

(3.23)

0 = Iθh/hh,ε (0) ≥Iθh/hh,ε (Wh,ε,j)

≥ 1

2

1− ν2

E
min{1− 2ν, 1}‖∇2Wh,ε,j‖2L2(BR(0);R2×2) −

s√
πε
‖Wh,ε,j‖H2(BR(0))

≥C‖Wh,ε,j‖2H2(BR(0)) −
s√
πε
‖Wh,ε,j‖H2(BR(0)) ,

for some constant C > 0 depending only on R (other than on E and ν) . By (3.23), we deduce that
‖Wh,ε,j‖2H2(BR(0)) is uniformly bounded. It follows that, up to a subsequence, Wh,ε,j ⇀ Wh,ε (as

j →∞) in H2(BR(0)) for some function Wh,ε ∈ H2
0 (BR(0)) that is affine in Bε(0) . By the lower

semicontinuity of Iθh/hh,ε with respect to the weak H2-convergence, we get that Wh,ε is a minimizer

of Iθh/hh,ε in Bε,R . Analogously, since the last inequality in (3.22) holds true also for h = 0 , by

arguing as above we have that, up to a subsequence, W0,ε,j ⇀ W0,ε (as j → ∞) in H2(BR(0)) ,
where W0,ε is the unique minimizer of Iα0,ε in Bε,R . �
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We are now in a position to prove the convergence of the minimizers and of the minimal values

of Iθh/hh,ε to Iα0,ε as h→ 0 .

Proposition 3.5. Let s ∈ R \ {0} . Let 0 < ε < R and, for every 0 < h < ε , let W
θh/h
h,ε be the

minimizer of Iθh/hh,ε in Bε,R . Then, as h→ 0 , W
θh/h
h,ε →Wα

0,ε strongly in H2(BR(0)) , where Wα
0,ε

is the minimizer of Iα0,ε in Bε,R . Moreover, Iθh/hh,ε (W
θh/h
h,ε )→ Iα0,ε(Wα

0,ε) as h→ 0 .

Proof. For every 0 < h < ε let ah,ε(x) := ch,ε,0 + ch,ε,1x1 + ch,ε,2x2 with ch,ε,0, ch,ε,1, ch,ε,2 ∈ R be

such that W
θh/h
h,ε = ah,ε in Bε(0) . Then, arguing as in (3.23), we get

0 ≥ Iθh/hh,ε (W
θh/h
h,ε ) ≥ C‖W θh/h

h,ε ‖
2
H2(BR(0)) −

s√
πε
‖W θh/h

h,ε ‖H2(BR(0)) .

Therefore, up to a (not relabeled) subsequence, W
θh/h
h,ε ⇀ W̄α

0,ε in H2(BR(0)) for some W̄α
0,ε ∈

H2
0 (BR(0)) . Moreover, since the functions W

θh/h
h,ε are affine in Bε(0) , also W̄α

0,ε is, and hence there

exist c0,ε,0, c0,ε,1, c0,ε,2 ∈ R such that W̄α
0,ε(x) = c0,ε,0 + c0,ε,1x1 + c0,ε,2x2 for every x ∈ Bε(0) . It

follows that W̄α
0,ε ∈ Bε,R .

Now, since W
θh/h
h,ε → W̄α

0,ε in H1(BR(0)) , we get that ch,ε,j → c0,ε,j as h → 0 , for every
j = 1, 2, 3 , which implies, in particular, that
(3.24)

lim
h→0

1

2π(ε− h)

∫
∂Bε−h(0)

W
θh/h
h,ε (x+ h

2 e1)−W θh/h
h,ε (x− h

2 e1)

h
dH1(x) = lim

h→0
ch,ε,1 = c0,ε,1

=
1

2πε

∫
∂Bε(0)

∂x1W̄
s
0,ε dH1

= lim
h→0

1

2π(ε− h)

∫
∂Bε−h(0)

W̄α
0,ε(x+ h

2 e1)− W̄α
0,ε(x− h

2 e1)

h
dH1(x) .

Analogously,
(3.25)

lim
h→0

1

2π(ε− h)

∫
∂Bε−h(0)

Wα
0,ε(x+ h

2 e1)−Wα
0,ε(x− h

2 e1)

h
dH1(x) =

1

2πε

∫
∂Bε(0)

∂x1
Wα

0,ε dH1 .

By (3.24) and (3.25), using the lower semicontinuity of G , and taking [Wα
0,ε] as a competitor for

Iθh/hh,ε in Bε,R , we get

Iα0,ε(Wα
0,ε) ≤ Iα0,ε(W̄α

0,ε) ≤ lim inf
h→0

Iθh/hh,ε (W
θh/h
h,ε ) ≤ lim

h→0
Iθh/hh,ε (Wα

0,ε) = Iα0,ε(Wα
0,ε) ,

so that all the inequalities above are in fact equalities. In particular,

(3.26) Iα0,ε(Wα
0,ε) = lim

h→0
Iθh/hh,ε (W

θh/h
h,ε )

and consequently W̄α
0,ε is a minimizer of Iα0,ε in Bε,R . In view of Lemma 3.4, we deduce that W̄α

0,ε =

Wα
0,ε , which, together with (3.24) and (3.26), implies that G(W

θh/h
h,ε ;BR(0))→ G(Wα

0,ε;BR(0)) as

h→ 0 . In view of Remark 2.3, this implies that W
θh/h
h,ε →Wα

0,ε strongly in H2(BR(0)) as h→ 0.

Finally, by the Urysohn property, we get that the whole family {W θh/h
h,ε }h converges to Wα

0,ε as
h→ 0 . �

We conclude this section by determining the minimizer Wα
0,ε of Iα0,ε in Bε,R, for α = se2δ0 .

Lemma 3.6. Let s ∈ R \ {0} . For every 0 < ε < R the function W se2δ0
0,ε : BR(0)→ R defined by

(3.27) W se2δ0
0,ε (x) :=


s

16π

E

1− ν2

(
αε + βε

1

|x|2
+ γε|x|2 + 2 log |x|2

)
x1 if x ∈ Aε,R(0)

s

16π

E

1− ν2

(
αε +

βε
ε2

+ ε2γε + 4 log ε
)
x1 if x ∈ Bε(0) ,
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with

(3.28) αε := 2
R2 − ε2

R2 + ε2
− 2 logR2 , βε := 2ε2 R2

R2 + ε2
, γε := − 2

R2 + ε2
,

is the unique minimizer in Bε,R of the functional Ise2δ0
0,ε defined in (3.20). Moreover,

(3.29) Ise2δ0
0,ε (W se2δ0

0,ε ) = − s
2

8π

E

1− ν2

(
log

R

ε
− R2 − ε2

R2 + ε2

)
.

The proof of Lemma 3.6 is postponed to Appendix C, where we also state Corollary C.1, which
will be used in Section 4.

Remark 3.7. Let b ∈ R2 \ {0} and let Π(b) denote the π
2 clockwise rotation of the vector b , i.e.,

(3.30) Π(b) = −b⊥ .
For any 0 < h < ε < R , for θh := |b|δh

2
Π(b)
|b|
− |b|δ−h2 Π(b)

|b|
, in analogy with (3.17) and (3.19), we

can define the functional Iθh/hh,ε : Bε,R → R (for this choice of θh) as

Iθh/hh,ε (w) := G(w;BR(0)) +
|b|

2π(ε− h)

∫
∂Bε−h(0)

w
(
x+ h

2
Π(b)
|b|
)
− w

(
x− h

2
Π(b)
|b|
)

h
dH1(x) .

Notice that for b directed along the positive x-axis, the previous formula (3.19) agree. By arguing

verbatim as in the proof of Proposition 3.5, we have that, as h→ 0 , the unique minimizer of Iθh/hh,ε

in Bε,R converges strongly in H2(BR(0)) to the unique minimizer in Bε,R of the functional Ibδ0
0,ε

defined by

(3.31) Ibδ0
0,ε (w) := G(w;BR(0)) +

1

2πε

∫
∂Bε(0)

〈∇w,Π(b)〉dH1 .

Notice that the minimizer of Ibδ0
0,ε is given by

(3.32) W bδ0
0,ε (x) := W

|b|e2δ0

0,ε

(〈Π(b)

|b|
, x
〉
,
〈 b
|b|
, x
〉)

,

where the function W se2δ0
0,ε is defined in Lemma 3.6.

Furthermore, one can easily check that the same proof of Proposition 3.5 applies also to general
domains Ω as well as to a general distribution of dipoles of wedge disclinations

(3.33) θh :=

J∑
j=1

|bj |
(
δ
xj+h

2
Π(bj)

|bj |
− δ

xj−h2
Π(bj)

|bj |

)
∈ W D(Ω) ,

(with bj ∈ R2 \{0} and min j1,j2=1,...,J
j1 6=j2

|xj1−xj2 |,minj=1,...,J dist(xj , ∂Ω) > 2ε) approximating the

family of edge dislocations α :=
∑J
i=1 b

jδxj ∈ E D(Ω) . In such a case, by arguing as in the proof

of Proposition 3.5, one can show that, as h→ 0 , the unique minimizer w
θh/h
h,ε of the functional

(3.34) Iθh/hh,ε (w) := G(w; Ω) +

J∑
j=1

|bj |
2π(ε− h)

∫
∂Bε−h(xj)

w(x+ h
2

Π(bj)
|bj | )− w(x− h

2
Π(bj)
|bj | )

h
dH1(x)

in the set

(3.35) Bα
ε,Ω := {w ∈ H2

0 (Ω) : w = aj in Bε(x
j) for some affine functions aj , j = 1, . . . , J} ,

converges strongly in H2(Ω) to the unique minimizer wα0,ε in Bα
ε,Ω of the functional

(3.36)

Iα0,ε(w) :=G(w; Ω) +

J∑
j=1

1

2πε

∫
∂Bε(xj)

〈∇w,Π(bj)〉dH1

=G(w; Ωε(α)) +

J∑
j=1

1

2πε

∫
∂Bε(xj)

〈∇w,Π(bj)〉dH1 ,
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where Ωε(α) := Ω \
⋃J
j=1Bε(x

j) .

4. Limits for dislocations

In this section, we obtain the full asymptotic expansion in ε of the singular limit functional
Iα0,ε introduced in (3.36). We first prove the convergence of the minimizers of Iα0,ε in a suitable
functional setting (see Theorem 4.3) and then, by showing that all terms of the expansion co-
incide with the corresponding terms of the renormalized energy of edge dislocations of [18], we
finally deduce the asymptotic energetic equivalence of systems of disclination dipoles with the
corresponding systems of edge dislocations.

Let α =
∑J
j=1 b

jδxj ∈ E D(Ω) . We consider the following minimum problem

(4.1) min
w∈Bα

ε,Ω

Iαε (w) ,

where Iαε (w) := Iα0,ε(w) is the functional defined in (3.36) and Bα
ε,Ω is defined in (3.35). In order

to study the asymptotic behavior of the minimizers and minima of Iαε as ε→ 0 , we first introduce
some notation.

Fix R > 0 such that Ω ⊂ BR(xj) for every j = 1, . . . , J , and let ε > 0 be such that the (closed)
balls Bε(x

j) are pairwise disjoint and contained in Ω , i.e.,

(4.2) ε < D := min
j=1,...,J

{
1

2
disti 6=j(x

i, xj) ,dist(xj , ∂Ω)

}
.

We define the function Wα
ε : Ωε(α)→ R by

(4.3) Wα
ε (x) :=

J∑
j=1

W j
ε (x) , with W j

ε (·) := W bjδ0
0,ε (· − xj)

(see (3.32)) . We highlight that the function Wα
ε depends also on R through the constants defined

in (3.28). Notice that any function w ∈ Bα
ε,Ω can be decomposed as

(4.4) w = Wα
ε + w̃

where w̃ ∈ B̃α
ε,Ω , with

(4.5)

B̃α
ε,Ω := {w̃ ∈ H2

0 (Ω)−Wα
ε : w̃ +Wα

ε = aj in Bε(x
j)

for some affine functions aj , j = 1, . . . , J}
≡Bα

ε,Ω −Wα
ε .

Therefore, in view of the decomposition (4.4), for every w ∈ Bα
ε,Ω we have

(4.6) Iαε (w) = G(Wα
ε ; Ωε(α)) +

J∑
j=1

1

2πε

∫
∂Bε(xj)

〈∇Wα
ε ,Π(bj)〉dH1 + Ĩαε (w̃) ,

where

Ĩαε (w̃) := G(w̃; Ωε(α))+
1 + ν

E

J∑
j=1

∫
Ωε(α)

(
∇2W j

ε : ∇2w̃ − ν∆W j
ε∆w̃

)
dx

+

J∑
j=1

1

2πε

∫
∂Bε(xj)

〈∇w̃,Π(bj)〉dH1 .

(4.7)

Notice that the integration for the bulk term G above is performed on Ωε(α) and not on Ω , as the

function w̃ is not, in general, affine in
⋃J
j=1Bε(x

j) .

In view of (4.6), as in [18, Theorem 4.1], the minimum problem (4.1) (for w) is equivalent to
the following minimum problem (for w̃)

(4.8) min
w̃∈B̃α

ε,Ω

Ĩαε (w̃) .
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Lemma 4.1. For every w̃ ∈ B̃α
ε,Ω we have

(4.9)

Ĩαε (w̃) =G(w̃; Ωε(α)) +
1 + ν

E

J∑
j=1

(
− (1− ν)

∫
∂Ω

(∂n∆W j
ε )w̃ dH1

+

∫
∂Ω

〈∇2W j
ε n,∇w̃〉dH1 − ν

∫
∂Ω

∆W j
ε ∂nw̃ dH1

)
+

J∑
j=1

(
1 + ν

E

J∑
i=1

(
(1− ν)

∫
∂Bε(xi)

(∂n∆W j
ε )w̃ dH1 −

∫
∂Bε(xi)

〈∇2W j
ε n,∇w̃〉dH1

+ ν

∫
∂Bε(xi)

∆W j
ε ∂nw̃ dH1

)
+

1

2πε

∫
∂Bε(xj)

〈∇w̃,Π(bj)〉dH1

)
.

Proof. Let w̃ ∈ B̃α
ε,Ω be fixed. By the Gauss–Green Theorem, for every j = 1, . . . , J and for every

0 < ε < D , we have

(4.10)

∫
Ωε(α)

∇2W j
ε : ∇2w̃ dx = −

∫
∂Ω

(∂n∆W j
ε )w̃ dH1 +

J∑
i=1

∫
∂Bε(xi)

(∂n∆W j
ε )w̃ dH1

+

∫
∂Ω

〈∇2W j
ε n,∇w̃〉dH1 −

J∑
i=1

∫
∂Bε(xi)

〈∇2W j
ε n,∇w̃〉dH1 ,

and

(4.11)

∫
Ωε(α)

∆W j
ε∆w̃ dx = −

∫
∂Ω

(∂n∆W j
ε )w̃ dH1 +

J∑
i=1

∫
∂Bε(xi)

(∂n∆W j
ε )w̃ dH1

+

∫
∂Ω

∆W j
ε ∂nw̃ dH1 −

J∑
i=1

∫
∂Bε(xi)

∆W j
ε ∂nw̃ dH1 ,

where we have used that ∆2W j
ε ≡ 0 in Ωε(α) for every j = 1, . . . , J . By (4.10) and (4.11) it

follows that∫
Ωε(α)

(
∇2W j

ε : ∇2w̃ − ν∆W j
ε∆w̃

)
dx

= − (1− ν)

∫
∂Ω

(∂n∆W j
ε )w̃ dH1 +

∫
∂Ω

〈∇2W j
ε n,∇w̃〉dH1 − ν

∫
∂Ω

∆W j
ε ∂nw̃ dH1

+ (1− ν)

J∑
i=1

∫
∂Bε(xi)

(∂n∆W j
ε )w̃ dH1

−
J∑
i=1

∫
∂Bε(xi)

〈∇2W j
ε n,∇w̃〉dH1 + ν

J∑
i=1

∫
∂Bε(xi)

∆W j
ε ∂nw̃ dH1 ,

which, in view of the very definition of Ĩαε in (4.7), implies (4.9). �

Remark 4.2. Let α =
∑J
j=1 b

jδxj ∈ E D(Ω) . For every 0 < r < R and for every j = 1, . . . , J

we have that the plastic functions W j
ε converge in C∞(Ar,R(xj)), as ε → 0 , to the function W j

0

defined by

(4.12) W j
0 (x) :=

|bj |
8π

E

1− ν2

(
(1− logR2)− |x|

2

R2
+ log |x|2

)〈Π(bj)

|bj |
, x− xj

〉
.

It follows thatWα
ε →

∑J
j=1W

j
0 =: Wα

0 in C∞(Ωr(α)) and hence inH2
loc

(
Ω\
⋃J
j=1{xj}

)
. Therefore,

in the spirit of (4.5) we set

(4.13) B̃α
0,Ω := {w ∈ H2(Ω) : w = −Wα

0 , ∂nw = −∂nWα
0 on ∂Ω} .
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Now we prove the following theorem, which is the equivalent of [18, Theorem 4.1] in terms of
the Airy stress function.

Theorem 4.3. Let α =
∑J
j=1 b

jδxj ∈ E D(Ω) and let Iαε be the functional in (4.6) for every ε > 0 .

For ε > 0 small enough, the minimum problem (4.1) admits a unique solution wαε . Moreover,

wαε → wα0 , as ε → 0 , strongly in H2
loc(Ω \

⋃J
j=1{xj}) , where wα0 ∈ H2

loc(Ω \
⋃J
j=1{xj}) is the

unique distributional solution to

(4.14)


1− ν2

E
∆2w = −

J∑
j=1

|bj |∂ (bj)⊥

|bj |

δxj in Ω

w = ∂nw = 0 on ∂Ω .

Theorem 4.3 is a consequence of Propositions 4.4 and 4.5 below, which are the analogue of [18,
Lemma 4.2] and [18, Lemma 4.3], respectively.

Proposition 4.4. Let α ∈ E D(Ω) and let ε > 0 be small enough. For every w̃ ∈ B̃α
ε,Ω we have

(4.15) C1

(
‖w̃‖2H2(Ωε(α)) − ‖w̃‖H2(Ωε(α)) − 1

)
≤ Ĩαε (w̃) ≤ C2

(
‖w̃‖2H2(Ωε(α)) + ‖w̃‖H2(Ωε(α)) + 1

)
,

for some constants 0 < C1 < C2 independent of ε . Moreover, problem (4.8) admits a unique

solution w̃αε ∈ B̃α
ε,Ω and ‖w̃αε ‖H2(Ωε(α)) is uniformly bounded with respect to ε . Furthermore, there

exists w̃α0 ∈ B̃α
0,Ω such that as ε→ 0 and up to a (not relabeled) subsequence,

(4.16) w̃αε ⇀ w̃α0 weakly in H2(Ω).

Proposition 4.5. Let α =
∑J
j=1 b

jδxj ∈ E D(Ω) and let ε > 0 be small enough. Let w̃αε and w̃α0
be as in Proposition 4.4 . Then, as ε → 0 , the whole sequence w̃αε converges to w̃α0 , strongly in

H2
loc

(
Ω \

⋃J
j=1{xj}

)
and w̃α0 is the unique minimizer in B̃α

0,Ω of the functional Ĩα0 defined by

Ĩα0 (w̃) :=G(w̃; Ω) +
1 + ν

E

J∑
j=1

(
− (1− ν)

∫
∂Ω

(∂n∆W j
0 )w̃ dH1

+

∫
∂Ω

〈∇2W j
0n,∇w̃〉dH1 − ν

∫
∂Ω

∆W j
0 ∂nw̃ dH1

)
.

Moreover,

(4.17) ∆2w̃α0 = 0 in Ω

and

(4.18) Ĩαε (w̃αε )→ Ĩα0 (w̃α0 ) as ε→ 0 .

Proof of Theorem 4.3. By the additive decomposition in (4.4) and by Propositions 4.4, we have
that, for ε > 0 small enough, wαε = Wα

ε + w̃εα , where Wα
ε is defined in (4.3) and w̃αε is the unique

solution to the minimum problem in (4.8). Therefore, by Remark 4.2 and by Proposition 4.5, we

have that wαε →Wα
0 + w̃α0 =: wα0 in H2

loc

(
Ω \

⋃J
j=1{xj}

)
as ε→ 0 . Notice that, by (4.17) and by

the very definition of wα0 (see (4.12)),

(4.19)
1− ν2

E
∆2wα0 =

1− ν2

E
∆2Wα

0 = −
J∑
j=1

|bj |∂ (bj)⊥

|bj |

δxj in Ω ,

i.e., the first equation in (4.14). Finally, the boundary conditions are satisfied since w̃α0 ∈ B̃α
0,Ω

(see (4.13)). �

Now we prove Proposition 4.4.
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Proof of Proposition 4.4. Let α =
∑J
j=1 b

jδxj ∈ E D(Ω) and let w̃ ∈ B̃α
ε,Ω . We first prove that

for every j = 1, . . . , J

(4.20)

1 + ν

E

J∑
i=1

(
(1− ν)

∫
∂Bε(xi)

(∂n∆W j
ε )w̃ dH1 −

∫
∂Bε(xi)

〈∇2W j
ε n,∇w̃〉dH1

+ν

∫
∂Bε(xi)

∆W j
ε ∂nw̃ dH1

)
+

1

2πε

∫
∂Bε(xj)

〈∇w̃,Π(bj)〉dH1 = O(ε) .

To this purpose, we recall that, for every i = 1, . . . , J , there exists an affine function aiε such that

(4.21) w̃ = aiε −W i
ε −

∑
k 6=i

W k
ε on ∂Bε(x

i) .

Notice that W j
ε minimizes the energy Ibδxj0,ε referred to the ball BR(xj) : this follows by a simple

translation argument keeping (3.16), (3.31) , and (4.3) into account. By the characterization of
the minimality provided in (C.9), for every function a which is affine in Bε(x

j) we have

(4.22)

1− ν2

E

∫
∂Bε(xj)

(∂n∆W j
ε )adH1 +

1 + ν

E
ν

∫
∂Bε(xj)

∆W j
ε ∂nadH1

− 1 + ν

E

∫
∂Bε(xj)

〈∇2W j
ε n,∇a〉dH1

=− |b
j |

2πε

∫
∂Bε(xj)

∂ (bj)⊥

|bj |

adH1 = − 1

2πε

∫
∂Bε(xj)

〈∇a,Π(bj)〉dH1 .

Let j = 1, . . . , J be fixed. We first focus on the case i = j in (4.20) . Recalling that W j
ε is affine

in Bε(x
j) , by choosing a = ajε −W j

ε in (4.22), we get

(4.23)

1− ν2

E

∫
∂Bε(xj)

(∂n∆W j
ε )(ajε −W j

ε ) dH1 +
1 + ν

E
ν

∫
∂Bε(xj)

∆W j
ε ∂n(ajε −W j

ε ) dH1

−1 + ν

E

∫
∂Bε(xj)

〈∇2W j
ε n,∇(ajε −W j

ε )〉dH1 +
1

2πε

∫
∂Bε(xj)

〈∇(ajε −W j
ε ),Π(bj)〉dH1 = 0 .

Furthermore, recalling that W k
ε is smooth in Bε(x

j) for every k 6= j, by Taylor expansion we have
that for every x ∈ Bε(xj)

W k
ε (x) = W k

ε (xj) + 〈∇W k
ε (xj), x− xj〉+ O(ε2) and ∇W k

ε (x) = ∇W k
ε (xj) + O(ε) ,

whence, using (4.22) with a(·) := W k
ε (xj)+〈∇W k

ε (xj), ·−xj〉 , recalling that |∂n∇W j
ε | ∼ |x−xj |−1

and |∇2W j
ε (x)| ∼ |x− xj |−1 , summing over k 6= j , we deduce that

(4.24)

1− ν2

E

∫
∂Bε(xj)

(∂n∆W j
ε )
(
−
∑
k 6=j

W k
ε

)
dH1 +

1 + ν

E
ν

∫
∂Bε(xj)

∆W j
ε ∂n

(
−
∑
k 6=j

W k
ε

)
dH1

− 1 + ν

E

∫
∂Bε(xj)

〈
∇2W j

ε n,∇
(
−
∑
k 6=j

W k
ε

)〉
dH1

+
1

2πε

∫
∂Bε(xj)

〈
∇
(
−
∑
k 6=j

W k
ε

)
,Π(bj)

〉
dH1 = O(ε) .

By adding (4.23) and (4.24), in view of (4.21), we get

(4.25)

1− ν2

E

∫
∂Bε(xj)

(∂n∆W j
ε )w̃ dH1 +

1 + ν

E
ν

∫
∂Bε(xj)

∆W j
ε ∂nw̃ dH1

−1 + ν

E

∫
∂Bε(xj)

〈∇2W j
ε n,∇w̃〉dH1 +

1

2πε

∫
∂Bε(xj)

〈
∇w̃,Π(bj)

〉
dH1 = O(ε) .
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Now we focus on the case i 6= j in (4.20) . We first notice that, by the Gauss–Green Theorem,
for any affine function a there holds

(4.26)

0 =

∫
Bε(xi)

∆W j
ε∆(−W i

ε + a) dx =

∫
Bε(xi)

∆2W j
ε (−W i

ε + a) dx

−
∫
∂Bε(xi)

(∂(−n)∆W
j
ε )(−W i

ε + a) dH1 +

∫
∂Bε(xi)

∆W j
ε ∂(−n)(−W i

ε + a) dH1

=

∫
∂Bε(xi)

(∂n∆W j
ε )(−W i

ε + a) dH1 −
∫
∂Bε(xi)

∆W j
ε ∂n(−W i

ε + a) dH1 ,

where the first equality follows from the fact that W i
ε is affine in Bε(x

i) whereas the last one is a
consequence of ∆2W j

ε = 0 in Aε,R(xj) . Similarly, we have

(4.27)

0 =

∫
Bε(xi)

∇2W j
ε : ∇2(−W i

ε + a) dx =

∫
Bε(xi)

∆2W j
ε (−W i

ε + a) dx

−
∫
∂Bε(xi)

(∂(−n)∆W
j
ε )(−W i

ε + a) dH1 +

∫
∂Bε(xi)

〈∇2W j
ε (−n),∇(−W i

ε + a)〉dH1

=

∫
∂Bε(xi)

(∂n∆W j
ε )(−W i

ε + a) dH1 −
∫
∂Bε(xi)

〈∇2W j
ε n,∇(−W i

ε + a)〉dH1 .

Furthermore, we have

(4.28)

∫
∂Bε(xi)

(∂n∆W j
ε )
(
−
∑
k 6=i

W k
ε

)
dH1= O(ε)∫

∂Bε(xi)

∆W j
ε ∂n

(
−
∑
k 6=i

W k
ε

)
dH1= O(ε)∫

∂Bε(xi)

〈
∇2W j

ε n,∇
(
−
∑
k 6=i

W k
ε

)〉
dH1= O(ε) ,

since all the integrands are uniformly bounded in ε and the domain of integration is vanishing.

Therefore, in view of (4.21), by (4.26), (4.27), (4.28), for any function w̃ ∈ B̃α
ε,Ω we have that

−ν
∑
i 6=j

∫
∂Bε(xi)

(∂n∆W j
ε )w̃ dH1 + ν

∑
i 6=j

∫
∂Bε(xi)

∆W j
ε ∂nw̃ dH1

+
∑
i 6=j

∫
∂Bε(xi)

(∂n∆W j
ε )w̃ dH1 −

∑
i 6=j

∫
∂Bε(xi)

〈∇2W j
ε n,∇w̃〉dH1 = O(ε) ,

which, together with (4.25), implies (4.20).
Since the functions W j

ε (for every j = 1, . . . , J) are uniformly bounded with respect to ε on ∂Ω,
by the standard trace theorem we get

(4.29)

∣∣∣∣∣− (1− ν)

∫
∂Ω

(∂n∆W j
ε )w̃ dH1 +

∫
∂Ω

〈∇2W j
ε ,∇w̃〉dH1 − ν

∫
∂Ω

∆W j
ε ∂nw̃ dH1

∣∣∣∣
≤C‖w̃‖H1(∂Ω) ≤ C‖w̃‖H2(Ωε(α)) ,

where C > 0 is a constant that does not depend on ε .
In view of Lemma 4.1, by (4.20) and (4.29) (summing over j = 1, . . . , J), for ε small enough,

we get

(4.30)

∣∣∣∣1 + ν

E

J∑
j=1

∫
Ωε(α)

(
∇2W j

ε : ∇2w̃ − ν∆W j
ε∆w̃

)
dx+

J∑
j=1

1

2πε

∫
∂Bε(xj)

〈∇w̃,Π(bj)〉dH1

∣∣∣∣
≤C

(
‖w̃‖H2(Ωε(α)) + 1

)
,

for some constant C > 0 that does not depend on ε .
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Now, by applying Proposition D.2 with f = Wα
ε and by the very definition of G in (1.9), we

deduce the existence of two constants 0 < C1 < C2 independent of ε (but depending on α and Ω)
such that

(4.31) C1

(
‖w̃‖2H2(Ωε(α)) − ‖W

α
ε ‖2L∞(∂Ω) − ‖∇W

α
ε ‖2L∞(∂Ω)

)
≤ G(w̃; Ωε(α)) ≤ C2‖w̃‖2H2(Ωε(α)) ,

for every w̃ ∈ B̃α
ε,Ω . Therefore, by (4.30) and (4.31), we deduce (4.15). By (4.15), existence and

uniqueness of the solution w̃αε to the minimization problem (4.8) for ε > 0 small enough follows
by the direct method in the Calculus of Variations. Furthermore, by (4.15) and by Proposition
D.4 applied with f = Wα

ε and f j =
∑
i 6=jW

i
ε , we have that

(4.32) C ′‖w̃αε ‖2H2(Ω) ≤ Ĩ
α
ε (w̃αε ) + C ′′ ,

for some constants C ′, C ′′ > 0 independent of ε (but depending on α and Ω). Hence, in order to

conclude the proof it is enough to construct (for ε small enough) a competitor function ŵαε ∈ B̃α
ε,Ω

such that

(4.33) Ĩαε (ŵαε ) ≤ C

for some constant C > 0 independent of ε .
We construct ŵαε as follows. Recalling the definition of D in (4.2), for every j = 1, . . . , J , we

consider ϕj ∈ C∞(Ω) be such that ϕj ≡ 0 on B D
4

(xj) , ϕj ≡ 1 on ΩD
2

(α) , and |∇ϕ(x)| ≤ C
|x−xj |

for every x ∈ AD
4 ,

D
2

(xj) ; for every ε small enough , we define ŵαε : Ω→ R as

ŵαε := −
J∑
i=1

ϕjW j
ε .

By construction,

ŵαε +Wα
ε =

J∑
j=1

(1− ϕj)W j
ε ∈ B̃α

ε,Ω

and

(4.34) ‖ŵαε ‖H2(Ωε(α)) ≤ ‖ŵαε ‖H2(Ω) ≤
J∑
j=1

‖ϕjW j
ε ‖H2

(
AD

4
,R

(xj)
) ≤ C ,

for some constant C > 0 independent of ε (but possibly depending on α and on R). By (4.15)
and (4.34) we obtain (4.33) and this concludes the proof. �

Proof of Proposition 4.5. We preliminarily notice that, since G is lower semicontinuous with re-
spect to the weak H2 convergence, (4.16) yields

(4.35) G(w̃α0 ; Ω) ≤ lim inf
ε→0

G(w̃αε ; Ωε(α)) ,

and hence

(4.36) Ĩα0 (w̃α0 ) ≤ lim inf
ε→0

Ĩαε (w̃αε ) .

Here we have used that the boundary integrals on ∂Bε(x
j) vanish as ε→ 0 in view of (4.20), and

that, by compactness of the trace operator [79, Theorem 6.2, page 103] (see also Remark 4.2), as
ε→ 0 ,

(4.37)

∫
∂Ω

(∂n∆W j
ε )w̃αε dH1 →

∫
∂Ω

(∂n∆W j
0 )w̃α0 dH1∫

∂Ω

〈∇2W j
ε n,∇w̃αε 〉dH1 →

∫
∂Ω

〈∇2W j
0n,∇w̃α0 〉dH1∫

∂Ω

∆W j
ε ∂nw̃

α
ε dH1 →

∫
∂Ω

∆W j
0 ∂nw̃

α
0 dH1 .
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Moreover, by Proposition E.1 for every ŵ0 ∈ B̃α
0,Ω there exists a sequence {ŵε}ε ⊂ H2(Ω) with

ŵε ∈ B̃α
ε,Ω (for every ε > 0) such that ŵε → ŵ0 strongly in H2(Ω) . It follows that

(4.38) Ĩα0 (ŵ0) = lim
ε→0
Ĩαε (ŵε) ,

which, by the minimality of w̃αε and in view of (4.36), gives

(4.39) Ĩα0 (ŵ0) = lim
ε→0
Ĩαε (ŵε) ≥ lim sup

ε→0
Ĩαε (w̃αε ) ≥ Ĩα0 (w̃α0 ) .

It follows that w̃α0 is a minimizer of Ĩα0 in B̃α
0,Ω . By convexity (see (2.7)), such a minimizer

is unique and, by computing the first variation of Ĩα0 in w̃α0 , we have that it satisfies (4.17).
Furthermore, by applying (4.39) with ŵ0 = w̃α0 we get (4.18).

Finally, we discuss the strong convergence of w̃αε in the compact subsets of of Ω \
⋃J
j=1{xj} .

To this purpose, we preliminarily notice that, from (4.18), (4.20), and (4.37), we have that

lim
ε→0
G(w̃αε ; Ωε(α)) = G(w̃α0 ; Ω) .

We now want to show that for every (fixed) r > 0

(4.40)

∫
Ωr(α)

|∇2w̃αε −∇2w̃α0 |2 dx→ 0 as ε→ 0 .

To this purpose, we will use the weak convergence (4.16) and Remark 2.3; we start by observing
that∫

Ωr(α)

|∇2w̃αε −∇2w̃α0 |2 dx− ν
∫

Ωr(α)

|∆w̃αε −∆w̃α0 |2 dx

=

∫
Ωr(α)

(
|∇2w̃αε |2 + |∇2w̃α0 |2 − 2∇2w̃α0 : ∇2w̃αε

)
dx− ν

∫
Ωr(α)

(
|∆w̃αε |2 + |∆w̃α0 |2 − 2∆w̃α0 ∆w̃αε

)
dx ,

whence, thanks to the convergence (4.16), we deduce

(4.41)

∫
Ωr(α)

|∇2w̃αε −∇2w̃α0 |2 dx− ν
∫

Ωr(α)

|∆w̃αε −∆w̃α0 |2 dx→ 0 .

Since (see the first inequality in (2.4))

c(ν)

∫
Ωr(α)

|∇2w̃αε −∇2w̃α0 |2 dx ≤
∫

Ωr(α)

|∇2w̃αε −∇2w̃α0 |2 dx− ν
∫

Ωr(α)

|∆w̃αε −∆w̃α0 |2 dx

for some constant c(ν) > 0 depending only on ν , by (4.41), we get (4.40). Finally, by (4.16), we
get that w̃αε converges strongly in H1(Ω), as ε → 0, to w̃α0 , which together with (4.40), implies
that

(4.42) w̃αε → w̃α0 strongly in H2(Ωr(α)) .

In conclusion, for any compact set K ⊂ Ω \
⋃J
j=1{xj} , there exists r > 0 such that K ⊂ Ωr(α) ,

which, in view of (4.42), implies the claim and concludes the proof of the proposition. �

We are in a position to discuss the asymptotic expansion of energies and to classify each term
of the expansion.

Theorem 4.6. For every ε > 0 small enough, let wαε be the minimizer of Iαε in Bα
ε,Ω . Then we

have

(4.43) Iαε (wαε ) = − E

1− ν2

J∑
j=1

|bj |2

8π
| log ε|+ F (α) + f(D,R;α) + ωε ,
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where ωε → 0 as ε→ 0 ,

(4.44)

f(D,R;α) =

J∑
j=1

|bj |2

8π

E

1− ν2

(
2 +

D2

R2

(D2

R2
− 2
)
− 2 logR

+
1

4(1− ν)

D2

R2

(R2

D2
− 1
)(D2

R2

(R2

D2
+ 1
)
− 2
))

,

(recall (4.2) for the definition of D) and

(4.45) F (α) = F self(α) + F int(α) + F elastic(α)

is the renormalized energy defined by

(4.46) F self(α) :=

J∑
j=1

G(W j
0 ; ΩD(α)) +

E

1− ν2

J∑
j=1

|bj |2

8π
logD ,

(4.47)

F int(α) :=
1 + ν

E

J∑
j=1

∑
k 6=j

(
− (1− ν)

∫
∂Ω

(∂n∆W j
0 )W k

0 dH1

+

∫
∂Ω

〈∇2W j
0n,∇W k

0 〉dH1 − ν
∫
∂Ω

∆W j
0 ∂nW

k
0 dH1

)
,

(4.48) F elastic(α) := Ĩα0 (w̃α0 ) .

Remark 4.7. Notice that F self(α) is independent of D as it can be verified by a simple compu-
tation.

Proof. By (4.4) and (4.6), we have that wαε = Wα
ε + w̃αε , where Wα

ε is defined in (4.3) and w̃αε is

the unique minimizer of Ĩαε in B̃α
ε,Ω provided by Proposition 4.5. Notice that

(4.49)

G(Wα
ε ; Ωε(α)) +

J∑
j=1

1

2πε

∫
∂Bε(xj)

〈∇Wα
ε ,Π(bj)〉dH1

=

J∑
j=1

(
G(W j

ε ; Ωε(α)) +
1

2πε

∫
∂Bε(xj)

〈∇W j
ε ,Π(bj)〉dH1

)

+

J∑
j=1

∑
k 6=j

(
1 + ν

E

∫
Ωε(α)

(
∇2W j

ε : ∇2W k
ε − ν∆W j

ε∆W k
ε

)
dx

+
1

2πε

∫
∂Bε(xj)

〈∇W k
ε ,Π(bj)〉dH1

)
=:F self

ε (α) + F int
ε (α) .

We notice that, for every j = 1, . . . , J and for every 0 < ε < r ≤ D with ε < 1

(4.50)

G(W j
ε ; Ωε(α)) +

1

2πε

∫
∂Bε(xj)

〈∇W j
ε ,Π(bj)〉dH1

=G(W j
ε ; Ωr(α)) + G(W j

ε ;Aε,r(x
j)) +

1

2πε

∫
∂Bε(xj)

〈∇W j
ε ,Π(bj)〉dH1 .

Furthermore, by Corollary C.1, we have that

(4.51) G(W j
ε ;Aε,r(x

j)) +
1

2πε

∫
∂Bε(xj)

〈∇W j
ε ,Π(bj)〉dH1 = −|b

j |2

8π

E

1− ν2
log

1

ε

+
|bj |2

8π

E

1− ν2
log r + fε(r,R; |bj |) ,

where fε(r,R; |bj |) is defined in (C.16).
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Notice moreover that fε(r,R; |bj |)→ f(r,R; |bj |) (as ε→ 0) with f(r,R; |bj |) defined by

(4.52)

f(r,R; |bj |) :=
|bj |2

8π

E

1− ν2

(
2 +

r2

R2

( r2

R2
− 2
)
− 2 logR

)
+
|bj |2

32π

E

(1− ν)2(1 + ν)

r2

R2

(R2

r2
− 1
)( r2

R2

(R2

r2
+ 1
)
− 2
)
.

By Remark 4.2, summing over j = 1, . . . , J formulas (4.50), (4.51) and (4.52), for r = D we obtain

(4.53) F self
ε (α) = −

J∑
j=1

|bj |2

4π

E

1− ν2
| log ε|+ F self(α) + f(D,R;α) + ωε ,

where ωε → 0 as ε→ 0 and f(D,R;α) :=
∑J
j=1 f(D,R; |bj |) .

We now focus on F int
ε (α) . By arguing as in the proof of Lemma 4.1, for every j, k = 1, . . . , J

with k 6= j , we have that∫
Ωε(α)

(
∇2W j

ε : ∇2W k
ε − ν∆W j

ε∆W k
ε

)
dx

=− (1− ν)

∫
∂Ω

(∂n∆W j
ε )W k

ε dH1 +

∫
∂Ω

〈∇2W j
ε n,∇W k

ε 〉dH1 − ν
∫
∂Ω

∆W j
ε ∂nW

k
ε dH1

+ (1− ν)

J∑
i=1

∫
∂Bε(xi)

(∂n∆W j
ε )W k

ε dH1

−
J∑
i=1

∫
∂Bε(xi)

〈∇2W j
ε n,∇W k

ε 〉dH1 + ν

J∑
i=1

∫
∂Bε(xi)

∆W j
ε ∂nW

k
ε dH1 ,

which, in view of (4.22), (4.26), and (4.28), and using Remark 4.2, implies

(4.54) F int
ε (α) = F int(α) + ωε ,

where ωε → 0 as ε→ 0 .
Finally, by (4.49), (4.50), (4.53), and (4.54), we get

G(Wα
ε ; Ωε(α)) +

J∑
j=1

1

2πε

∫
∂Bε(xj)

〈∇Wα
ε ,Π(bj)〉dH1

=−
J∑
j=1

|bj |2

4π

E

1− ν2
| log ε|+ F self(α) + f(D,R;α) + F int(α) + ωε ,

which, by (4.6) together with Propositions 4.4 and 4.5, allows us to conclude the proof. �

We conclude by showing, via a diagonal argument, that the asymptotic behavior in Theorem 4.6
remains valid also for systems of disclination dipoles, that is, when the finite system α ∈ E D(Ω)
of edge dislocations is replaced with the approximating system of disclination dipoles.

Theorem 4.8. Let J ∈ N, let b1, . . . , bJ ∈ R2 \ {0}, and let x1, . . . , xJ be distinct points in Ω .
For every h > 0 , let θh ∈ W D(Ω) be the measure defined in (3.33). Then,

(4.55) θh
∗
⇀ α :=

J∑
j=1

bjδxj ∈ E D(Ω) as h→ 0 .

Let D > 0 be as in (4.2); for every 0 < h < ε < D let wθhh,ε be the unique minimizer in Bα
ε,Ω of

the functional Iθhh,ε defined in (3.34). Then there exists a function ε : R+ → R+ with ε(h) > h and

ε(h) → 0 as h → 0 such that wθhh,ε(h) → wα0 in H2
loc

(
Ω \

⋃J
j=1{xj}

)
as h → 0 , where wα0 is the

function provided by Theorem 4.3. Moreover,

(4.56) Iθhh,ε(h)

(
wθhh,ε(h)

)
= − E

1− ν2

J∑
j=1

|bj |2

8π
| log ε(h)|+ F (α) + f(D,R;α) + ωh ,
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where F (α) and f(D,R;α) are defined in (4.45) and (4.44), respectively, and ωh → 0 as h→ 0 .

Proof. Convergence (4.55) is obvious. Let now 0 < ε < D be fixed. By Remark 3.7, there exists
h̄ < ε such that, for every h < h̄,

(4.57) ‖wθhh,ε − w
α
0,ε‖H2(Ω) < ε ,

where wα0,ε is the unique minimizer of (3.36) in Bα
ε,Ω . Choose such an h, call it h(ε), and notice

that this choice can be made in a strictly monotone fashion . Let now 0 < r < D ; by (4.57) and
Theorem 4.3 , we get∥∥wθh(ε)

h(ε),ε − w
α
0

∥∥
H2(Ωr(α))

≤
∥∥wθh(ε)

h(ε),ε − w
α
0,ε

∥∥
H2(Ωr(α))

+ ‖wα0,ε − wα0 ‖H2(Ωr(α)) < ε+ oε ,

where oε → 0 as ε→ 0 . By the arbitrariness of r we get that w
θh(ε)

h(ε),ε → wα0 in H2
loc(Ω\

⋃J
j=1{xj}) ,

and hence, by the strict monotonicity of the map ε 7→ h(ε) the first part of the claim follows.
Finally, (4.56) is an immediate consequence of Theorem 4.6. �

Appendix A. Equivalence of boundary conditions

Here we show that if A is a domain of class C2 and v ∈ C2(A) , then the boundary condition
∇2v t = 0 on ∂A is equivalent to requiring that v|Γ is the trace of an affine function on every
connected component Γ of ∂A . To this end, we first state and prove the following geometric
lemma.

Lemma A.1. Let A ⊂ R2 be a bounded, open, simply connected set with C2 boundary and set
` := |∂A|. Let γ ∈ C2([0, `];R2) be the arc-length parametrization of ∂A and let ϑ ∈ C1([0, `]) such
that γ′(ξ) = (− sinϑ(ξ); cosϑ(ξ)) . Set κ(ξ) := ϑ′(ξ) for every ξ ∈ [0, `] . Let v ∈ C2(A) and let
gD, gN : [0, `]→ R be the functions defined by gD := v ◦ γ and gN := ∂nv ◦ γ . Then

(A.1)

{
g′′D(ξ) = 〈∇2v(γ(ξ)) γ′(ξ), γ′(ξ)〉 − κ(ξ)gN (ξ)

g′N (ξ) = 〈∇2v(γ(ξ)) γ′(ξ),−(γ′(ξ))⊥〉+ κ(ξ)g′D(ξ)
for every ξ ∈ [0, `] .

Proof. By definition, the unit tangent vector is t(γ(ξ)) = γ′(ξ) = (− sinϑ(ξ); cosϑ(ξ)) and the
outer unit normal vector is n(γ(ξ)) = (−γ′(ξ))⊥ = (cosϑ(ξ); sinϑ(ξ)) , so that

d

dξ
t(γ(ξ)) =γ′′(ξ) = −κ(ξ)n(γ(ξ)) = −κ(ξ)(−γ′(ξ))⊥

d

dξ
n(γ(ξ)) =(−γ′′(ξ))⊥ = κ(ξ)t(γ(ξ)) = κ(ξ)γ′(ξ) ,

and hence

g′D(ξ) =
d

dξ
v(γ(ξ)) = 〈∇v(γ(ξ)), γ′(ξ)〉 ,

g′N (ξ) =
d

dξ
〈∇v(γ(ξ)), n(γ(ξ))〉 = 〈∇2v(γ(ξ))γ′(ξ), (−γ′(ξ))⊥)〉+ 〈∇v(γ(ξ)), (−γ′′(ξ))⊥〉

= 〈∇2v(γ(ξ))γ′(ξ), (−γ′(ξ))⊥)〉+ κ(ξ)〈∇v(γ(ξ)), γ′(ξ)〉
= 〈∇2v(γ(ξ))γ′(ξ), (−γ′(ξ))⊥)〉+ κ(ξ)g′D(ξ)

g′′D(ξ) =
d

dξ
〈∇v(γ(ξ)), γ′(ξ)〉 = 〈∇2v(γ(ξ))γ′(ξ), γ′(ξ)〉+ 〈∇v(γ(ξ)), γ′′(ξ)〉

= 〈∇2v(γ(ξ))γ′(ξ), γ′(ξ)〉 − κ(ξ)〈∇v(γ(ξ)), n(γ(ξ))〉
= 〈∇2v(γ(ξ))γ′(ξ), γ′(ξ)〉 − κ(ξ)gN (ξ) ,

that is (A.1). �

We are now in a position to prove the main result of this section on the equivalence of the
boundary conditions.
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Proposition A.2. Let A ⊂ R2 be an open and bounded set with boundary of class C2 . Let
v ∈ C2(A) . Then, for every connected component Γ of ∂A we have that

(A.2) ∇2v t = 0 on Γ ⇔ v = a , ∂nv = ∂na on Γ ,

for some affine function a .

Proof. Let Γ be a connected component of ∂A , set ` := |Γ| and let γ : [0, `]→ R2 be the arc-length
parametrization of Γ , so that the unit tangent vector is t(γ(ξ)) = γ′(ξ) and the outer unit normal

vector is n(γ(ξ)) =
(
− γ′(ξ)

)⊥
. Moreover, let ϑ ∈ C1([0, `]) be such that

(A.3) γ′(ξ) = (− sinϑ(ξ); cosϑ(ξ))

and set κ(ξ) := ϑ′(ξ) for every ξ ∈ [0, `] . Recalling that {n(γ(ξ)), t(γ(ξ))} is an orthonormal basis
of R2 for every ξ ∈ [0, `] , we have ∇2v t = 0 on Γ if and only if

(A.4) 〈∇2v(γ(ξ)) γ′(ξ), γ′(ξ)〉 = 〈∇2v(γ(ξ)) γ′(ξ),−(γ′(ξ))⊥〉 = 0 for every ξ ∈ [0, `] .

Furthermore, letting gD, gN : [0, `]→ R be the functions defined by gD := v ◦ γ and gN := ∂nv ◦ γ ,
Lemma A.1 and (A.4), imply that (A.2) is equivalent to

(A.5)

{
g′′D(ξ) = −κ(ξ)gN (ξ)

g′N (ξ) = κ(ξ)g′D(ξ)
for every ξ ∈ [0, `] if and only if

{
v = a on Γ

∂nv = ∂na on Γ ,

for some affine function a : R2 → R2 , namely, for a function a of the form

(A.6) a(x) = c0 + c1x1 + c2x2 ,

with c0, c1, c2 ∈ R . If v = a and ∂nv = ∂na on Γ , by straightforward computations for every
ξ ∈ [0, `] we get

gN (ξ) =c1 cosϑ(ξ) + c2 sinϑ(ξ) ,

g′D(ξ) =− c1 sinϑ(ξ) + c2 cosϑ(ξ) ,

g′N (ξ) =ϑ′(ξ)
(
− c1 sinϑ(ξ) + c2 cosϑ(ξ)

)
= κ(ξ)g′D(ξ) ,

g′′D(ξ) =− ϑ′(ξ)
(
c1 cosϑ(ξ) + c2 sinϑ(ξ)

)
= −κ(ξ)gN (ξ) ,

which proves one implication in (A.5). To prove the opposite implication, we study the ODE
system on the left-hand side of (A.5), that, setting z1 := g′D and z2 := gN , can be conveniently
rewritten in the form

(A.7)

{
(z1)′ = −κz2

(z2)′ = κz1 .

By the classical theory of ordinary differential equations, since κ is a continuous function, for
any given initial datum z0 = (z1

0 ; z2
0) ∈ R2 , the Cauchy problem associated with the system

(A.7) with initial condition (z1(0); z2(0)) = z(0) = z0 admits a unique solution z ∈ C1([0, `];R2) .
Furthermore, letting ϑ̄ denote a primitive of κ , we observe that the functions ξ 7→ z̄(ξ) :=
(− sin ϑ̄(ξ); cos ϑ̄(ξ)) and ξ 7→ ẑ(ξ) := (cos ϑ̄(ξ); sin ϑ̄(ξ)) provide a basis of solutions to (A.7).
Therefore, since ϑ̄ and ϑ differ by a constant, any solution to (A.7) is of the form

(z1; z2) = (−c1 sinϑ+ c2 cosϑ; c1 cosϑ+ c2 sinϑ) ,

so that, recalling the definitions of z1 and z2 and using (A.3), we get

(A.8)

gN (ξ) =c1 cosϑ(ξ) + c2 sinϑ(ξ)= 〈(c1; c2), n(γ(ξ))〉

gD(ξ) =gD(0) +

∫ ξ

0

(
− c1 sinϑ(ζ) + c2 cosϑ(ζ)

)
dζ =: c0 + 〈(c1; c2), γ(ξ)〉 ,

where we have set c0 := gD(0) − c1γ1(0) − c2γ2(0) . By (A.8) and the definitions of gD and gN ,
we get that v = a and ∂nv = ∂na on Γ , for a certain function a as in (A.6). This concludes the
proof of the converse inequality and hence of the whole proposition. �
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Appendix B. Proof of Lemma 3.2

This section in devoted to the proof of Lemma 3.2.

Proof. By (3.6) and (3.7), straightforward computations show that

(B.1)

|∇2v̄h(x)|2 =
E2

(1− ν2)2

s2

256π2

(
8 log2

(
x1 − h

2

)2
+ x2

2(
x1 + h

2

)2
+ x2

2

+ 128
h2 x4

2 x
2
1(((

x1 − h
2

)2
+ x2

2

)((
x1 + h

2

)2
+ x2

2

))2

+ 32x2
2

(
x1 − h

2(
x1 − h

2 )2 + x2
2

−
x1 + h

2(
x1 + h

2

)2
+ x2

2

)2
)
,

and

(B.2) |∆v̄h(x)|2 =
E2

(1− ν2)2

s2

16π2
log2

(
x1 − h

2

)2
+ x2

2(
x1 + h

2

)2
+ x2

2

.

For every open set A ⊂ R2 we set:

F1
h(A) :=

∫
A

log2

(
x1 − h

2

)2
+ x2

2(
x1 + h

2

)2
+ x2

2

dx ,(B.3)

F2
h(A) := h2

∫
A

x4
2 x

2
1(((

x1 − h
2

)2
+ x2

2

)((
x1 + h

2

)2
+ x2

2

))2 dx ,(B.4)

F3
h(A) :=

∫
A

x2
2

(
x1 − h

2

(x1 − h
2 )2 + x2

2

−
x1 + h

2(
x1 + h

2

)2
+ x2

2

)2

dx(B.5)

= h2

∫
A

x2
2

(
h2

4 + x2
2 − x2

1

)2(((
x1 − h

2

)2
+ x2

2

)((
x1 + h

2

)2
+ x2

2

))2 dx ,

so that, in view of (B.1) and (B.2), it holds

(B.6)

∫
A

|∇2v̄h|2 dx =
E2

(1− ν2)2

s2

32π2

(
F1
h(A) + 16F2

h(A) + 4F3
h(A)

)
,∫

A

|∆v̄h|2 dx =
E2

(1− ν2)2

s2

16π2
F1
h(A) .

We start by proving that

(B.7) lim
h→0

1

h2 log R
h

G(v̄h;Ah,R(0)) =
E

1− ν2

s2

8π
.

To this end, by the very definition of G in (1.9) and in view of (B.6), it is enough to show that

lim
h→0

1

h2 log R
h

F1
h(Ah,R(0)) = 4π ,(B.8)

lim
h→0

1

h2 log R
h

F2
h(Ah,R(0)) =

π

8
,(B.9)

lim
h→0

1

h2 log R
h

F3
h(Ah,R(0)) =

π

2
.(B.10)

To this purpose, for every 0 < h < R , we set Nh :=
⌈ log R

h

log 2

⌉
, so that 2Nh−1h ≤ R ≤ 2Nhh . We

start by proving (B.8). By using the change of variable x = 2n−1hy for every n = 1, . . . , Nh , we
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have

(B.11)

h2
Nh−1∑
n=1

22n

4

∫
A1,2(0)

log2 (y1 − 2−n)2 + y2
2

(y1 + 2−n)2 + y2
2

dy ≤ F1
h(Ah,R(0))

≤ h2
Nh∑
n=1

22n

4

∫
A1,2(0)

log2 (y1 − 2−n)2 + y2
2

(y1 + 2−n)2 + y2
2

dy .

We start by discussing the limit of the left-hand side integral in (B.11). Let K < Nh and let h be
sufficiently small; then, for every n = bNhK c, . . . , Nh − 1 , and for every y ∈ A1,2(0) , by the Taylor

expansion of the functions log(1 + t) and ((y1 + t)2 + y2
2)−1 around the pole t = 0 , we have that

(B.12) log2 (y1 − 2−n)2 + y2
2

(y1 + 2−n)2 + y2
2

= log2
(

1− 22−n y1

(y1 + 2−n)2 + y2
2

)
≥ 24−2n y

2
1

|y|4
− C2−3n ,

for some universal constant C > 0 . Therefore, by (B.12), we deduce that

Nh−1∑
n=1

22n

4

∫
A1,2(0)

log2 (y1 − 2−n)2 + y2
2

(y1 + 2−n)2 + y2
2
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n=bNhK c

22n

4

∫
A1,2(0)

log2 (y1 − 2−n)2 + y2
2

(y1 + 2−n)2 + y2
2

dy

≥
Nh−1∑
n=bNhK c

∫
A1,2(0)

4y2
1

|y|4
dy − C

Nh−1∑
n=bNhK c

2−n ≥ Nh
(

1− 1

K

)
4π log 2− C .

By the very definition of Nh and by (B.11), we thus have that

(B.13)
1

h2 log R
h

F1
h(Ah,R(0)) ≥

(
1− 1

K

)
4π + ω(h) ,

where ω(h) → 0 as h → 0 . By sending first h → 0 and then K → +∞ in (B.13) we get the
inequality “≥” in (B.8). As for the inequality “≤” in (B.8), we preliminarily observe that, by
arguing as in (B.12) for h sufficiently small, for every K < Nh , for every n = bNhK c, . . . , Nh − 1 ,
and for every y ∈ A1,2(0) , it holds

log2 (y1 − 2−n)2 + y2
2

(y1 + 2−n)2 + y2
2

= log2
(

1− 22−n y1

(y1 + 2−n)2 + y2
2

)
≤ 24−2n y

2
1

|y|4
+ C2−3n ,

for some universal constant C > 0 ; therefore, for h sufficiently small and for every K < Nh , we
get

Nh∑
n=1

22n

4

∫
A1,2(0)

log2 (y1 − 2−n)2 + y2
2

(y1 + 2−n)2 + y2
2

dy

≤C0 + C1

⌈Nh
K

⌉
+

Nh∑
n=dNhK e

22n

4

∫
A1,2(0)

log2 (y1 − 2−n)2 + y2
2

(y1 + 2−n)2 + y2
2

dy

≤C0 + C1

⌈Nh
K

⌉
+

Nh∑
n=dNhK e

∫
A1,2(0)

4y2
1

|y|4
dy + C2 ≤ C0 + C1

⌈Nh
K

⌉
+Nh

(
1− 1

K

)
4π log 2 + C2 ,

for some universal constants C0, C1, C2 > 0 . Therefore, by the very definition of Nh and by (B.11),
we get

1

h2 log R
h

F1
h(Ah,R(0)) ≤ C1

K
+
(

1− 1

K

)
4π + ω(h) ,
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where ω(h) → 0 as h → 0 . Now, sending first h → 0 and then K → +∞ , this implies also the
inequality “≤” in (B.8). In order to prove (B.9), we notice that

F2
h(Ah,R(0)) =h2

∫ 2π

0

dϑ sin4 ϑ cos2 ϑ

∫ R

h

ρ7((
ρ2 − hρ cosϑ+ h2

4

)(
ρ2 + hρ cosϑ+ h2

4

))2 dρ

=h2

∫ 2π

0

dϑ sin4 ϑ cos2 ϑ

∫ R

h

ρ7(
ρ4 − ρ2 h2

2 cos(2ϑ) + h4

16
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so that

1

log R
h

∫ 2π

0

dϑ sin4 ϑ cos2 ϑ

∫ R

h

ρ7(
ρ2 + h2

4

)4 dρ ≤ 1

h2 log R
h

F2
h(Ah,R(0))

≤ 1

log R
h

∫ 2π
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dϑ sin4 ϑ cos2 ϑ

∫ R

h

ρ7(
ρ2 − h2

4

)4 dρ .

(B.14)

By the change of variable t = ρ
h , we have that∫ R

h

ρ7(
ρ2 ∓ h2

4

)4 dρ =

∫ R
h

1

t7(
t2 ∓ 1

4

)4 dt ,

and, by de l’Hôpital’s rule, we get

(B.15) lim
h→0

1

log R
h

∫ R
h

1

t7(
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4

)4 dt = lim
N→+∞

N8(
N2 ∓ 1

4

)4 = 1 .

Now, since

(B.16)

∫ 2π

0

sin4 ϑ cos2 ϑ dϑ =
π

8
,

in view of (B.14) and (B.15), we obtain

(B.17) lim
h→0

1

h2 log R
h

F2
h(Ah,R(0)) =

π

8
,

i.e., (B.9).
Finally, we prove that also (B.10) holds true. To this purpose, by using the change of variable

x = 2n−1hy for every n = 1, . . . , Nh , we have

h2
Nh−1∑
n=1

∫
A1,2(0)

y2
2

(
y2

2 − y2
1 + 2−2n

)2(((
y1 − 2−n
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2

)((
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)2
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2

))2 dy .

Therefore, by arguing as in the proof of (B.8) we have that there exist two functions ω1, ω2 with
ωj(h)→ 0 as h→ 0 and a constant C > 0 such that

1

log R
h

(
1− 1

K

)
Nh

π

2
log 2 + ω1(h) ≤ 1

h2 log R
h

F3
h(Ah,R(0))

≤ C

log R
h

Nh
K

+
1

log R
h

(
1− 1

K

)
Nh

π

2
log 2 + ω2(h) ,

whence (B.10) follows by sending first h→ 0 and then K → +∞.
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Now we show that

(B.18) lim
h→0

1

h2 log R
h

G(v̄h;Bh(0)) = 0 .

By the very definition of G in (1.9) and in view of (B.6), it is enough to prove that

(B.19) lim
h→0

1

h2 log R
h

Fkh (Bh(0)) = 0 for every k = 1, 2, 3 .

Notice that

0 ≤ F1
h(Bh(0)) ≤ 2π

∫ h

0

ρ log2

(
ρ+ h

2

)2(
ρ− h

2

)2 dρ ,

so that using the change of variable t = ρ
h , we get

0 ≤ 1

h2 log R
h

F1
h(Bh(0)) ≤ 2π

1

log R
h

∫ 1

0

t log2

(
t+ 1

2

)2(
t− 1

2

)2 dt ,

whence the claim (B.19) for k = 1 follows since∫ 1

0

t log2

(
t+ 1

2

)2(
t− 1

2

)2 dt < +∞ .

Now we show that

(B.20) lim
h→0

1

h2
F2
h(Bh(0)) = 0 .

To this purpose, we notice that, by the very definition of F2
h in (B.4), by passing to polar coordi-

nates (ρ, ϑ) and by using the change of variable t = ρ
h , we can write

1

h2
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h(Bh(0)) =
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0

dt
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t7 sin4 ϑ((
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4

)2
+ t2 sin2 ϑ

)2 dϑ ;

since the integrand above is π-periodic and bounded when ϑ is far away from 0 , π , and 2π, in
order to obtain (B.20) it is enough to show that for ε > 0 small enough we have

(B.21)

∫ 1

0

dt

∫ ε

0

t7 sin4 ϑ((
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4

)2
+ t2 sin2 ϑ
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By a first-order Taylor approximation, the integral above is equivalent to∫ 1

0
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dt < +∞ ,

which proves (B.21) and hence (B.20). Analogously, by the very definition of F3
h in (B.5), by

passing to polar coordinates (ρ, ϑ) and by using the change of variable t = ρ
h , we have that

1

h2
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t3 sin2 ϑ
(

1
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2 cos 2ϑ
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+ t2 sin2 ϑ
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where the boundedness can be proved by arguing as in the proof of (B.21). Indeed, by a first-order
Taylor approximation, the integral above close to ϑ = 0, π, 2π is equivalent to∫ 1

0

dt

∫ ε

0

t3ϑ2
(

1
4 − t

2 + 2t2ϑ2
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4
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which can be proved to be finite by a straightforward computation. This proves (B.19) also for
k = 3 , so that, by (B.7) and (B.18), the proof is concluded. �

Appendix C. Proof of Lemma 3.6

This section is devoted to the proof of Lemma 3.6.

Proof of Lemma 3.6. With some abuse of notation we set W s
0,ε := W se2δ0

0,ε , where W se2δ0
0,ε is defined

in (3.27). We preliminarily show that W s
0,ε ∈ Bε,R . To this purpose, we first notice that

αε +
βε
R2

+ γεR
2 + 2 logR2 = 2

R2 − ε2

R2 + ε2
− 2 logR2 + 2

ε2

R2 + ε2
− 2

R2

R2 + ε2
+ 2 logR2 = 0 ,

and hence

(C.1) W s
0,ε = 0 on ∂BR(0) .

We define the function Ŵ0,ε : Aε,R(0)→ R as

(C.2) Ŵ0,ε(x) :=
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1

|x|2
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and we notice that
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For every x ∈ Aε,R(0)
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whence, for x ∈ ∂BR(0), we deduce that
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and, consequently,

(C.4) ∂nW
s
0,ε = 0 on ∂BR(0);

Moreover, it is immediate to see that W s
0,ε ∈ C0(BR(0)) . Furthermore, the inner and outer traces

of ∂tW
s
0,ε at ∂Bε(0) are continuous so that W s

0,ε ∈ H1(BR(0)). Therefore, in order to check that

W s
0,ε ∈ H2(BR(0)) it is enough to show that
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where t is the tangent vector to ∂Bε(0). To this end, we observe
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x2
2 − x2

1

|x|4

2βε
x2(3x2

1 − x2
2)
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so that, for x ∈ ∂Bε(0) , we have

(C.6)

∂x1
∇Ŵ0,ε · t = − x2

ε
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2
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)
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)

=
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=
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and, analogously,

(C.7) ∂x2
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Finally, by (C.1), (C.4), (C.6), (C.7), and using that W s
0,ε ∈ C4(Aε,R(0)) , we deduce that W s

0,ε ∈
Bε,R .

Now we prove that W s
0,ε is the minimizer of Ise2δ0

0,ε in Bε,R . In view of (3.21), for every
φ ∈ Bε,R , W s

0,ε must satisfy
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∣∣∣
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where we have used that φ = ∂nφ = 0 on ∂BR(0) and integration by parts to get∫
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Therefore, proving the minimality of W s
0,ε is equivalent to showing that

∆2W s
0,ε = 0 in Aε,R(0) ,(C.8)
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+

∫
∂Bε(0)

s

2πε
∂x1φdH1 = 0 for every φ ∈ Bε,R .
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By (C.3) and the very definition of Ŵ0,ε in (C.2), the biharmonicity in (C.8) follows by a direct
computation, so that we are left with proving (C.9). To this purpose, we notice that
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,

whence we deduce, recalling (3.28),

∆W s
0,ε

∣∣∣
∂Bε(0)

=
s

2π

E

1− ν2
x1

(
γε +

1

ε2

)
=

s

2π

E

1− ν2

R2 − ε2

ε2(R2 + ε2)
x1 ,(C.10)

∂n∆W s
0,ε

∣∣∣
∂Bε(0)

=
s

2π

E

1− ν2

x1

ε

(
γε −

1

ε2

)
= − s

2π

E

1− ν2

R2 + 3ε2

ε2(R2 + ε2)

x1

ε
,(C.11)

(∇2W s
0,ε)nn

∣∣∣
∂Bε(0)

=
s

8π

E

1− ν2
x1

(βε
ε4

+ 3γε +
2

ε2

)
=

s

2π

E

1− ν2

R2 − ε2

ε2(R2 + ε2)
x1 .(C.12)

Furthermore, every φ ∈ Bε,R satisfies φ(x) = aφ + bφx1 + cφx2 for every x ∈ ∂Bε(0), for some
aφ, bφ, cφ ∈ R , so that the equation in (C.9) can be rewritten as

(C.13)



1− ν2

E

∫
∂Bε(0)

∂n∆W s
0,ε dH1 = 0∫

∂Bε(0)

x1

(
1− ν2

E
∂n∆W s

0,ε +
1 + ν

E

1

ε

(
ν∆W s

0,ε −
(
∇2W s

0,ε

)
nn

))
dH1 = −s∫

∂Bε(0)

x2

(
1− ν2

E
∂n∆W s

0,ε +
1 + ν

E

1

ε

(
ν∆W s

0,ε −
(
∇2W s

0,ε

)
nn

))
dH1 = 0 ,

which follow by straightforward computations from (C.10), (C.11), and (C.12).
Now we compute Iα0,ε(W s

0,ε) . As for the second summand in the right-hand side of (3.20), we
have

(C.14)
s

2πε

∫
∂Bε(0)

∂x1W
s
0,ε dH1 = − s

2

4π

E

1− ν2

(
log

R

ε
− R2 − ε2

R2 + ε2

)
.

Moreover,∫
Aε,R(0)

|∆W s
0,ε|2 dx =

s2

4π2

E2

(1− ν2)2

∫
Aε,R(0)

x2
1

(
γε +

1

|x|2
)2

dx =
s2

4π

E2

(1− ν2)2

∫ R

ε

ρ3

(
γε +

1

ρ2

)2

dρ

=
s2

4π

E2

(1− ν2)2

(
γ2
ε

R4 − ε4

4
+ γε(R

2 − ε2) + log
R

ε

)
=
s2

4π

E2

(1− ν2)2

(
log

R

ε
− R2 − ε2

R2 + ε2

)
and

|∇2Ŵ0,ε|2 = |∆Ŵ0,ε|2 − 2∂2
x2

1
Ŵ0,ε∂

2
x2

2
Ŵ0,ε + 2|∂2

x1x2
Ŵ0,ε|2

= 64x2
1

(
γε +

1

|x|2
)2

+
8

|x|6
β2
ε − 16γ2

εx
2
1 −

32

|x|6
βεx

2
2 −

32

|x|2
γεx

2
1

+ 8(x2
1 − x2

2)

(
− γ2

ε + 2
βεγε
|x|4

− 4

|x|4
− 4

|x|2
γε

)
,

so that, recalling (3.28),∫
Aε,R(0)

|∇2W s
0,ε|2 dx =

s2

4π

E2

(1− ν2)2

(
log

R

ε
− R2 − ε2

R2 + ε2

)
.
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It follows that

(C.15) G(W s
0,ε;Aε,R(0)) =

s2

8π

E

1− ν2

(
log

R

ε
− R2 − ε2

R2 + ε2

)
,

and hence, in view of (C.14),

Ise2δ0
0,ε (W s

0,ε) = − s
2

8π

E

1− ν2

(
log

R

ε
− R2 − ε2

R2 + ε2

)
i.e., (3.29). �

The next result follows from the proof of Lemma 3.6 by straightforward computations.

Corollary C.1. Let s ∈ R \ {0} , 0 < ε < R and let W se2δ0
0,ε be the function defined in (3.27).

Then, for every ε < r ≤ R ,

G(W se2δ0
0,ε ;Aε,r(0)) =

s2

8π

E

1− ν2
log

r

ε
+
s2

8π

E

1− ν2

r2 − ε2

R2 + ε2

( r2 + ε2

R2 + ε2
− 2
)

+
s2

32π

E

(1− ν)2(1 + ν)

r2 − ε2

R2 + ε2

(R2

r2
− 1
)( r2 + ε2

R2 + ε2

(R2

r2
+ 1
)
− 2
)
,

and hence

G(W se2δ0
0,ε ;Aε,r(0))+

s

2πε

∫
∂Bε(0)

∂x1W
se2δ0
0,ε dH1 = − s

2

8π

E

1− ν2
log

1

ε
+
s2

8π

E

1− ν2
log r+fε(r,R; s) ,

where

(C.16)

fε(r,R; s) :=
s2

8π

E

1− ν2

(
2
R2 − ε2

R2 + ε2
+
r2 − ε2

R2 + ε2

( r2 + ε2

R2 + ε2
− 2
)
− 2 logR

)
+

s2

32π

E

(1− ν)2(1 + ν)

r2 − ε2

R2 + ε2

(R2

r2
− 1
)( r2 + ε2

R2 + ε2

(R2

r2
+ 1
)
− 2
)
.

Appendix D. ε-independent integral inequalities for H2 functions

Let α =
∑J
j=1 b

jδxj ∈ E D(Ω) . Here we prove a Poincaré-type inequality for functions in

H2(Ωε(α)) where the Poincaré constant is shown to be independent of ε . The proof is obtained
by combining the “ε-independent Poincaré inequality” contained in [18, Proposition A.1] and the
generalized Poincaré inequality contained in [23, Theorem 6.1-8(b)], which we recall here.

Proposition D.1 ([23, Theorem 6.1-8(b)]). Let Ω′ ⊂ Ω be a connected and open set and let
Γ0 ⊆ ∂Ω′ be a portion of the boundary with H1(Γ0) > 0. Then there exists a constant C(Ω′) > 0
depending only on Ω′ such that for every function u ∈ H1(Ω) it holds

(D.1)

∫
Ω′
|u(x)|2 dx ≤ C(Ω′)

(∫
Ω′
|∇u(x)|2 dx+

∣∣∣∣ ∫
Γ0

u(x) dH1(x)

∣∣∣∣2).
Take now Ω′ ⊂ Ω such that ∂Ω′ ⊃ ∂Ω and Γ0 = ∂Ω in Proposition D.1. Moreover, let f be a

function which is smooth in a neighborhood of ∂Ω. Then for every u ∈ H2(Ω) with u = f and
∂nu = ∂nf on ∂Ω , thanks to Jensen’s inequality, formula (D.1) reads

(D.2)

∫
Ω′
|u(x)|2 dx ≤ C(Ω′)

∫
Ω′
|∇u(x)|2 dx+ C(Ω′, ∂Ω)

∫
∂Ω

|f(x)|2 dH1(x) ;

analogously, noticing that ∇(u− f) = 0 on ∂Ω , by applying (D.1) to ∂x1
u and ∂x2

u , we obtain

(D.3)

∫
Ω′
|∇u(x)|2 dx ≤ 2C(Ω′)

∫
Ω′
|∇2u(x)|2 dx+ C(Ω′, ∂Ω)

∫
∂Ω

|∇f(x)|2 dH1(x) .

Proposition D.2 (ε-independent Poincaré inequality). Let α ∈ E D(Ω) and let 0 < ε < D
2 with

D defined in (4.2) . Then there exists a constant C1(Ω, α) > 0 depending only on Ω and on sptα ,
and independent of ε , such that the following holds true. For every function f which is smooth in
a neighborhood of ∂Ω and for every u ∈ H2(Ω) with u = f and ∂nu = ∂nf on ∂Ω
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(D.4)

∫
Ωε(α)

|u(x)|2 dx+

∫
Ωε(α)

|∇u(x)|2 dx ≤ C1(Ω, α)

(∫
Ωε(α)

|∇2u(x)|2 dx

+‖f‖2L∞(∂Ω) + ‖∇f‖2L∞(∂Ω)

)
.

Proof. The proof follows [18, Proposition A.1]. We recall here the main lines of the proof for the
reader’s convenience.

Let j = 1, . . . , J be fixed and let the pair (r;ϑ) denote the polar coordinates centered at xj .
Let ε ≤ s≤ D/2 ≤ ρ < D (with D defined in (4.2)) and let ϑ ∈ [0, 2π]. By the Fundamental
Theorem of Calculus, we can write

u(s, ϑ) = u(ρ, ϑ)−
∫ ρ

s

∂u

∂r
(r, ϑ) dr ,

so that (by recalling that (a− b)2 ≤ 2a2 + 2b2)

|u(s, ϑ)|2 ≤ 2|u(ρ, ϑ)|2 + 2

∣∣∣∣ ∫ ρ

s

∂u

∂r
(r, ϑ) dr

∣∣∣∣2
and in turn, by Jensen’s inequality,

|u(s, ϑ)|2 ≤ 2|u(ρ, ϑ)|2 + 2(ρ− s)
∫ ρ

s

∣∣∣∣∂u∂r (r, ϑ)

∣∣∣∣2 dr ≤ 2|u(ρ, ϑ)|2 + 2D

∫ D

s

∣∣∣∣∂u∂r (r, ϑ)

∣∣∣∣2 dr .

We now multiply by s and integrate with respect to ϑ to obtain∫ 2π

0

s|u(s, ϑ)|2 dϑ ≤ 2s

∫ 2π

0

|u(ρ, ϑ)|2 dϑ+ 2D

∫ 2π

0

∫ D

s

∣∣∣∣∂u∂r (r, ϑ)

∣∣∣∣2 sdr dϑ

≤ 2

∫ 2π

0

|u(ρ, ϑ)|2 ρ dϑ+ 2D

∫ 2π

0

∫ D

ε

|∇u(r, ϑ)|2 r dr dϑ

= 2

∫ 2π

0

|u(ρ, ϑ)|2 ρ dϑ+ 2D

∫
Aε,D(xj)

|∇u(x)|2 dx .

(D.5)

We now integrate with respect to s in
[
ε, D2

]
(notice that the right-hand side does not depend

on s) to get∫ D
2

ε

∫ 2π

0

|u(s, ϑ)|2 sdsdϑ ≤ 2
(D

2
− ε
)(∫ 2π

0

|u(ρ, ϑ)|2 ρdϑ+D

∫
Aε,D(xj)

|∇u(x)|2 dx

)
,

whence ∫
A
ε,D

2
(xj)

|u(x)|2 dx ≤ D
∫ 2π

0

|u(ρ, ϑ)|2 ρdϑ+D2

∫
Aε,D(xj)

|∇u(x)|2 dx ;

an integration with respect to ρ in
[
D
2 , D

]
now yields∫

A
ε,D

2
(xj)

|u(x)|2 dx ≤ 2

∫
AD

2
,D

(xj)

|u(x)|2 dx+D2

∫
Aε,D(xj)

|∇u(x)|2 dx

≤ 2

∫
ΩD

2
(α)

|u(x)|2 dx+D2

∫
Aε,D(xj)

|∇u(x)|2 dx

≤ 2C
(
ΩD

2
(α)
) ∫

ΩD
2

(α)

|∇u(x)|2 dx+ 2C
(
ΩD

2
(α)
)∣∣∣∣ ∫

∂Ω

f(x) dH1(x)

∣∣∣∣2
+D2

∫
Aε,D(xj)

|∇u(x)|2 dx ,
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where we have used (D.2) in the last inequality. Therefore, by using (D.2) again, we have∫
Ωε(α)

|u(x)|2 dx =

J∑
j=1

∫
A
ε,D

2
(xj)

|u(x)|2 dx+

∫
ΩD

2
(α)

|u(x)|2 dx

≤ (2J + 1)C
(
ΩD

2
(α)
) ∫

ΩD
2

(α)

|∇u(x)|2 dx+D2
J∑
j=1

∫
Aε,D(xj)

|∇u(x)|2 dx

+ 2(J + 1)C
(
ΩD

2
(α), ∂Ω

) ∫
∂Ω

|f(x)|2 dH1(x)

≤ (2J + 1)CΩD
2

(α)

∫
Ωε(α)

|∇u(x)|2 dx+ JD2

∫
Ωε(α)

|∇u(x)|2 dx

+ 2(J + 1)C
(
ΩD

2
(α), ∂Ω

) ∫
∂Ω

|f(x)|2 dH1(x)

≤ max
{

(2J + 1)C
(
ΩD

2
(α)
)
, JD2

}∫
Ωε(α)

|∇u(x)|2dx

+ 2(J + 1)C
(
ΩD

2
(α), ∂Ω

) ∫
∂Ω

|f(x)|2 dH1(x)

≤ C̃1(Ω, α)

(∫
Ωε(α)

|∇u(x)|2 dx+ ‖f‖2L∞(∂Ω)

)
,

(D.6)

where we have set C̃1(Ω, α) := max
{

(2J+1)C
(
ΩD

2
(α)
)
, JD2

}
+2(J+1)C

(
ΩD

2
(α)
)

. By repeating

the same reasoning for ∂x1
u and ∂x2

u and by using (D.3) in place of (D.2), we obtain∫
Ωε(α)

|∇u(x)|2 dx ≤2C̃2
1 (Ω, α)

(∫
Ωε(α)

|∇2u(x)|2 dx+ ‖∇f‖2L∞(∂Ω)

)
,

and the proposition is proved with C1(Ω, α) := 3C̃2
1 (Ω, α) . �

Proposition D.3 (ε-independent trace inequality). Let α ∈ E D(Ω) and let ε > 0 satisfy (4.2) .
Then, there exists a constant C2(Ω, α) > 0 depending only on Ω and on sptα , and independent
of ε , such that, for every function f which is smooth in a neighborhood of ∂Ω and for every
u ∈ H2(Ω) with u = f and ∂nu = ∂nf on ∂Ω , the following fact holds true:∫
∂Ωε(α)

|u(x)|2 dH1(x) +

∫
∂Ωε(α)

|∇u(x)|2 dH1(x) ≤ C2(Ω, α)
(∫

Ωε(α)

|∇2u(x)|2 dx+ ‖f‖2C∞(∂Ω)

)
.

Proof. By [18, Proposition A.6], there exists a constant C(Ω, α) depending only on Ω and on sptα
such that, for any function v ∈ H1(Ω) , there holds

(D.7)

∫
∂Ωε(α)

|v|2 dx ≤ C(Ω, α)
(∫

Ωε(α)

|v|2 dx+

∫
Ωε(α)

|∇v|2 dx
)
.

We conclude by applying (D.7) with v = u, v = ∂x1u, and v = ∂x2u and using (D.4). �

Proposition D.4. Let α =
∑J
j=1 b

jδxj ∈ E D(Ω) and let ε > 0 satisfy (4.2). For every j =

1, . . . , J let f j and ajε be two functions with f j ∈ C∞(BD
2

(xj)) and ajε affine. Moreover, let f be

a function which is smooth in a neighborhood of ∂Ω and u ∈ H2(Ωε(α)) be such that u = f and
∂nu = ∂nf on ∂Ω and u = ajε + f j and ∂nu = ∂na

j
ε + ∂nf

j on ∂Bε(x
j) for every j = 1, . . . , J .

Then the function û : Ω→ R defined by

û(x) :=

{
u(x) if x ∈ Ωε(α)

ajε(x) + f j if x ∈ Bε(xj)

is in H2(Ω) and satisfies

‖û‖H2(Ω) ≤ C
(
‖∇2u‖L2(Ωε(α);R2×2) + ‖f‖C∞(∂Ω) +

J∑
j=1

‖f j‖C∞(BD
2

(xj))

)
,
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for some constant C independent of u and of ε .

Proof. By assumption and by Proposition D.3, we have

J∑
j=1

‖ajε + f j‖2H1(∂Bε(xj))
≤ JC2(Ω, α)

(
‖∇2u‖2L2(Ωε(α);R2×2) + ‖f‖2C∞(∂Ω)

)
,

which implies, in particular,

J∑
j=1

‖ajε‖2H1(∂Bε(xj))
≤ JC2(Ω, α)

(
‖∇2u‖2L2(Ωε(α);R2×2) + ‖f‖2C∞(∂Ω) +

J∑
j=1

‖f j‖2H1(∂Bε(xj))

)
.

Since ajε is affine, this implies that, for every j = 1, . . . , J ,

‖ajε‖2H1(Bε(xj))
≤ JC2(Ω, α)ε

(
‖∇2u‖2L2(Ωε(α);R2×2) + ‖f‖2C∞(∂Ω) +

J∑
j=1

‖f j‖2H1(∂Bε(xj))

)
,

which immediately provides the claim. �

Appendix E. A density result for traction-free H2 functions

In this appendix we prove that, given α =
∑J
j=1 b

jδxj ∈ E D(Ω) , any function w ∈ B̃α
0,Ω (see

(4.13)) can be approximated in the strong H2 norm by a sequence of functions wε ∈ B̃α
ε,Ω (see

(4.5)). The rough idea is (up to modifying the boundary datum) to replace w+Wα
0 (see Remark

4.2) , with its first-order Taylor expansion in Bε(x
j) (j = 1, . . . , J) . We highlight that Wα

0 is not

even in H2(Ω) but, in view of Remark 4.2, it is the strong H2
loc limit of Wα

ε :=
∑J
j=1W

j
ε , where

W j
ε is affine in Bε(x

j) and smooth in Bε(x
i) with i 6= j . This allows us to approximate Wα

0 in the
desired manner. Then we approximate w by a sequence {vk}k of smooth functions and we apply
Taylor’s formula with Lagrange remainder to further approximate each vk by a sequence {vk,ε}ε
that is affine in

⋃J
j=1Bε(x

j) . Finally, the claim is obtained by summing vk,ε to the contribution
approximating Wα

0 , and by using a diagonal argument.

Proposition E.1. Let α ∈ E D(Ω) . For every w ∈ B̃α
0,Ω there exists a sequence {wε}ε ⊂ H2(Ω)

with wε ∈ B̃α
ε,Ω for ε > 0 small enough, such that wε → w strongly in H2(Ω) as ε→ 0 .

Proof. By standard density arguments, there exists a sequence {vk}k∈N ⊂ C∞(Ω) such that vk →
w strongly in H2(Ω) as k →∞ . Furthermore, we can assume that there exists a sequence {δk}k∈N
with δk → 0 as k →∞ , such that vk ≡ −Wα

0 in a δk-neighborhood of ∂Ω .
Let sptα = {x1, . . . , xJ} . For every j = 1, . . . , J and for every k ∈ N , we set

v̂jk(x) := vk(xj) + 〈∇vk(xj), x− xj〉 for every x ∈ R2 ;

moreover, we consider a C2 function γ : [1, 2] → [0, 1] with γ(1) = 0 , γ(2) = 1 , γ′ ≥ 0 in (1, 2) ,
γ′+(1) = 0 = γ′−(2) and γ′′+(1) = 0 = γ′′−(2) . For every 0 < ε < 1

2 min{D, δk} (with D defined in
(4.2)) we define the function vk,ε : Ω→ R as

vk,ε(x) :=


v̂jk(x) if x ∈ Bε(xj)(

1− γ
( |x− xj |

ε

))
v̂jk(x) + γ

( |x− xj |
ε

)
vk(x) in Aε,2ε(x

j)

vk(x) if x ∈ Ω2ε(α) .

Notice that, since ε < δk
2 , we have that vk,ε coincide with −Wα

0 in a δk
2 -neighborhood of ∂Ω . We

claim that, for every k ∈ N,

(E.1) ‖vk,ε − vk‖H2(Ω) =

J∑
j=1

‖vk,ε − vk‖H2(B2ε(xj)) → 0 as ε→ 0 .

To this end, we prove that for every j = 1, . . . , J

(E.2) ‖vk,ε − vk‖H2(B2ε(xj)) ≤ Cε‖∇
2vk‖L∞(Ω;R2×2) ,
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for some universal constant C independent of k and ε . Indeed, fix j = 1, . . . , J . By the Taylor
expansion formula with Lagrange remainder, we have that

‖v̂jk − vk‖
2
L2(B2ε(xj))

=
1

4

∫
B2ε(xj)

|〈∇2vk(ξjx)(x− xj), x− xj〉|2 dx(E.3)

≤ Cε6‖∇2vk‖2L∞(Ω;R2×2) ,

‖∇v̂jk −∇vk‖
2
L2(B2ε(xj);R2) =

∫
B2ε(xj)

|∇vk(xj)−∇vk(x)|2 dx(E.4)

≤ Cε4‖∇2vk‖2L∞(Ω;R2×2) ,

‖∇2v̂jk −∇
2vk‖2L2(B2ε(xj);R2×2) = ‖∇2vk‖2L2(B2ε(xj);R2×2)(E.5)

≤ Cε2‖∇2vk‖2L∞(Ω;R2×2) ,

where in (E.3) ξjx is a point in the segment joining xj and x . Furthermore, since∥∥∥∇γ( | · |
ε

)∥∥∥
L∞(Aε,2ε(0);R2)

≤ C

ε
,

∥∥∥∇2γ
( | · |
ε

)∥∥∥
L∞(Aε,2ε(0);R2×2)

≤ C

ε2
,

by (E.3), (E.4), and (E.5), we deduce that

‖vk,ε − vk‖2L2(Aε,2ε(xj))
≤‖v̂jk − vk‖

2
L2(Aε,2ε(xj))

≤Cε6‖∇2vk‖2L∞(Ω;R2×2) ,

‖∇vk,ε −∇vk‖2L2(Aε,2ε(xj);R2) ≤
C

ε2
‖v̂jk − vk‖

2
L2(B2ε(xj))

+ C‖∇v̂jk −∇vk‖
2
L2(B2ε(xj);R2)

≤Cε4‖∇2vk‖L∞(Ω;R2×2) ,

‖∇2vk,ε −∇2vk‖2L2(Aε,2ε(xj);R2×2) ≤
C

ε4
‖v̂jk − vk‖

2
L2(B2ε(xj))

+
C

ε2
‖∇v̂jk −∇vk‖

2
L2(B2ε(xj);R2)

+ C‖∇2v̂jk −∇
2vk‖2L2(B2ε(xj);R2×2)

≤Cε2‖∇2vk‖2L∞(Ω;R2×2) ,

whence we get that
‖vk,ε − vk‖H2(Aε,2ε(xj)) ≤ Cε‖∇

2vk‖L∞(Ω;R2×2) ;

this fact, together with (E.3), (E.4) and (E.5), implies (E.2) and hence (E.1). Moreover, up to using
a cut-off function, in view of Remark 4.2, we can assume that vk,ε ≡ −Wα

ε in an ε-neighborhood

of ∂Ω , so that the boundary condition in the definition of B̃α
ε,Ω in (4.5) is satisfied.

To recover the traction-free condition on each ∂Bε(x
j), we notice that each function W j

ε (defined
in (4.3)) is affine in Bε(x

j), whereas it is smooth in
⋃
i 6=j Bε(x

i) . Therefore, for every j = 1, . . . , J

we define the function Ŵ 6=jε : BD(xj)→ R as the affine contribution of all of the W i
ε for i 6= j, i.e.,

Ŵ 6=jε (x) :=
∑
i 6=j

(
W i
ε(x

j) + 〈∇W i
ε(x

j), x− xj〉
)
.

Now, we define the function W
α

ε : Ω→ R as

W
α

ε (x) :=


Ŵ 6=jε (x) +W j

ε (x)−Wα
ε (x) if x ∈ Bε(xj)(

1− γ
( |x− xj |

ε

))(
Ŵ 6=jε (x) +W j

ε (x)−Wα
ε (x)

)
if x ∈ Aε,2ε(xj)

0 if x ∈ Ω2ε(α) .

By the very definition of Wα
ε (see (4.3) again) it is easy to check that

‖Wα

ε ‖H2(Ω) → 0 as ε→ 0 .
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For every k and ε as above, we define wk,ε : Ω → R as wk,ε := vk,ε + W
α

ε , and we notice that

it belongs to B̃α
ε,Ω by construction. Therefore, by a standard diagonal argument, there exists a

sequence {wε}ε with wε = wk(ε),ε satisfying the desired properties. �
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