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Deep Neural Network-Based QoT Estimation for
SMF and FMF Links

M. A. Amirabadi, M. H. Kahaei, S. A. Nezamalhosseini, F. Arpanaei, and A. Carena

Abstract—Quality of transmission (QoT) estimation tools for
fiber links are the enabler for the deployment of reconfigurable
optical networks. To dynamically set up lightpaths based on
traffic request, a centralized controller must base decisions on
reliable performance predictions. QoT estimation methods can
be categorised in three classes: exact analytical models which
provide accurate results with heavy computations, approximate
formulas that require less computations but deliver a reduced
accuracy, and machine learning (ML)-based methods which
potentially have high accuracy with low complexity. To operate an
optical network in real-time, beside accurate QoT estimation, the
speed in delivering results is a strict requirement. Based on this,
only the last two categories are candidates for this application.

In this paper, we present a deep neural network (DNN)
structure for QoT estimation considering both regular single-
mode fiber (SMF) and future few-mode fiber (FMF) proposed
to increase the overall network capacity. We comprehensively
explore ML-based regression methods for estimating generalized
signal-to-noise ratio (GSNR) in partial-load SMF and FMF
links. Synthetic datasets have been generated using the enhanced
Gaussian noise (EGN) model. Results indicate that the proposed
DNN-based regressor can provide better accuracy along with
less computation complexity, compared with other state-of-the-
art ML methods as well as closed-form-EGN and closed-form-GN
models.

Index Terms—Deep neural network, single-mode fiber, few-
mode fiber, quality of transmission estimation, regression.

I. INTRODUCTION

Ingle-mode fiber (SMF) communication systems are

achieving their theoretical capacity limits due to nonlinear
effects [1]. Few-mode fiber (FMF) can significantly increase
the capacity of optical networks by combining mode division
multiplexing (MDM) with wavelength division multiplexing
(WDM) techniques [2], [3]. The quality of transmission (QoT)
estimation in SMF and FMF links has crucial importance for
optimizing optical network design. Reconfigurable networks
need a fast and accurate prediction of lightpaths performance
to allow the centralized control and to act in an optimized
way. Beside the accumulation of the optical amplified spon-
taneous emission (ASE) noise introduced by Erbium doped
fiber amplifiers, nonlinear effects must be considered as they
are dominant in fiber propagation. For this reason, nonlinear
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interference (NLI) noise estimation in SMF and FMF links is
an important aspect in QoT prediction. The NLI noise can be
estimated by exact analytical models, e.g. enhanced Gaussian
noise (EGN) model [4], [5], or by approximate analytical
models, e.g. closed-form (CF)-EGN model [6], [7] and CF-
GN model [8]. The first option provides accurate results with
high computational complexity, and the second choice is faster
but less accurate.

Machine learning (ML) has recently been proposed as an
alternative approach for QoT estimation in SMF links and can
overcome the above-mentioned disadvantages [9]-[18]. In [9]
the performance of a data-driven QoT model is investigated
in a dynamic metro optical network that supports both unicast
and multicast connections. The authors of [10] used ML for
the evaluation of optical performance or more generally, to
achieve a cognitive network awareness. In [11], ML is used
for improving the accuracy of modeling nonlinear impairments
on a per-link basis. The authors of [12] deployed different
ML methods as regressors to estimate the penalties due to
Erbium doped fiber amplifiers gain ripple and filter spectral
shape uncertainties at the re-configurable add/drop nodes. In
[13], two ML-based regression methods are presented for QoT
estimation by taking into account fiber attenuation, dispersion
and nonlinear coefficients together with amplifier noise figure
per span. ML is used in [14]-[16] as classifier to predict if
lightpaths satisfy bit error rate requirements. In [17], [18],
different ML methods are used as regressors for predicting
generalized signal to noise ratio (GSNR) considering full-load
links. In [19], authors propose an ML-based QoT estimator
which uses precomputed self channel interference values of
each WDM channel as feature and total NLI for all channels as
labels. An artificial neural network (ANN) is used as regressor
for QoT estimation in [20] in the presence of uncertainty on
span lengths, and in [21] considering unestablished lightpaths
in a live network with production channels. Authors of [22]
reported the performance of different ML-based QoT predic-
tors including deep neural network (DNN) for unestablished
lightpaths in agnostic optical networks.

In this paper, we propose a DNN-based regressor to estimate
the GSNR. The GSNR accounts for the ASE noise introduced
by the presence of optical amplifiers and the NLI noise gen-
erated by nonlinear effect. In particular, this is the first study
on QoT estimation for FMF systems based on joint MDM-
WDM. Furthermore, we present a comprehensive investigation
and compare the complexity-performance of proposed DNN-
based regressor with other well-known ML-based approaches
as well as the CF-GN and CF-EGN model in terms of various
performance metrics. We generate a random-load link state
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Fig. 1. The considered link setup for: a) SMF, and b) FMF.

over the whole C-band, and provide features based on the sub-
band level to analyze the effect of feature space dimension on
the performance. Additionally, we perform dataset engineering
analysis based on techniques that were not considered before
for this application e. g. label preprocessing, feature reduction,
feature importance identification, and feature discretization,
and we present model selection based on ML-models that
were not previously investigated in literature like e. g. linear
regression (LR), ridge regression (RR), and Bayesian ridge
regression (BR).

The rest of this paper is organized as follows: Section II
presents the considered SMF and FMF propagation models for
the analyzed links, Section III describes the ML-based QoT
estimation models, and Section IV describes the generation of
the synthetic dataset. Section V discusses the dataset engineer-
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ing by adjusting the size and selecting only relevant features.
Section VI provides the model selection and performance
comparison between proposed DNN-based regressor and other
ML-based methods. Section VII is the conclusion of this paper.

II. PROPAGATION MODELS AND LINK DESCRIPTION

The considered SMF and FMF setups are respectively
depicted in Figs. 1(a) and 1(b). The transmitted signal on
SMF links is a combination of N, polarization multiplexed
(PM)-WDM channels. In FMF links we have a further level
of multiplexing based on D spatial modes. On each mode (a
single one for SMF) we consider the propagation of a WDM
comb where each channel has a rectangular spectrum (ideal
Nyquist shaping with roll-off set to zero). The analyzed link
has N, spans, an amplifier at the end of each span compensates
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Fig. 2. Diagram describing the process of comparison between approximated (CF-EGN and ML-based) models with reference EGN model.

for the fiber attenuation. The signal propagation suffers from
both linear and nonlinear effects including chromatic (modal)
dispersion, nonlinear Kerr-effect, as well as modal linear and
nonlinear coupling. The received signal is ideally demulti-
plexed and it enters a digital signal processing section for
compensating all linear effects. The nonlinear phase rotation
is also assumed to be recovered by a carrier phase estimator
(CPE) [5].

The received signal of nth channel and pth mode, after the
CPE, can be modeled as the sum of the original transmitted
signal plus two interfering terms: ASE and NLI noise [4],
[5], both modeled as additive Gaussian noise sources with
zero mean and variances 0,245E,n,p and a%EGN’mp, respec-
tively. Here, 0555, , = N:Fp(Gp — 1)hvAf, where N,
is number of spans, F), is the amplifier noise figure of pth
mode, G, is amplifier gain of pth mode equal to the span
fiber loss of pth mode, h is the Planck's constant, v is
central frequency, and A f,, is the bandwidth of nth channel
[4], [5]. The NLI variance of nth channel and pth mode,
J%G Non,p» Can be evaluated through Eq. (1) [4], [5] where

R e (i (. 2’uén7p)2, and &7 =

2

u‘(?n’p) = 4" 1260 with P, ), and
uﬁn’p ) denoting the second, fourth, and sixth order moments
of the constellation of nth channel and pth mode, respectively.
Here, P, , is the launched power and ¢("?)(.) is the spectral
shape of transmitted signal in nth channel and pth mode which

is here assumed to be rectangular Nyquist shaping, 7,, is
nonlinear (coupling) coefficient between pth and gth mode, o,
is attenuation of pth mode, and 31, and 35, are respectively
the modal and chromatic dispersion coefficients of pth mode
[4], [5]. Ls is the span length. To have a second reference we
consider also the CF-EGN model through the formulation for
the NLI noise variance of nth channel and pth mode defined
by Eq. (2) [6], [7] where L.sy = (1 — e*aPLS)/ap, and
Lepra=1 /ap, and By, , and f,, are respectively bandwidth
and center frequency of nth channel. We also consider CF-GN
model described by [8] as reference for comparison.

III. ML-BASED QOT ESTIMATION MODELS

Fig. 2 describes the process we followed to statistically
compare QoT predictions of approximated (ML-based, CF-
EGN, and CF-GN) models with the reference EGN model.
QoT estimation is performed in terms of GSNR, defined as:

P,

n,p

GSNR,, =

2 2 ‘ 3)
O4SEmnp T OBGNn,p

To determine the performance of ML-based, CF-EGN,
and CF-GN models we compare predicted GSNR values
(GSN Rpyeq) with the accurate EGN model, defined as refer-
ence (GSNR,.y). Besides quantifying the level of accuracy of
CF-EGN and CF-GN the main goal of this paper is to propose
and analyze ML-based models. We train and optimize ML-
based regression models such that GSN R,..q becomes close
to GSNR,cf.



TABLE I
GENERATED DATASET DESCRIPTION

Dataset Description
D1 SMF 3 level sub-band
D2 SMEF 7 level sub-band
D3 FMF 3 level sub-band
D4 FMF 7 level sub-band

The DNN-based regressor model is composed of an input
layer with Ny input neurons corresponding to the number of
features, Ny;q hidden layers each with N, hidden neurons,
and a single output neuron. The aim of the training phase is
to adjust the weight matrix W, and bias vector b, such that
the output converges to the reference GSNR. Therefore, we
define the following loss function:

1
L(6) = — > (GSNRpreqi(0) — GSNRycpi)®,  (4)
No =
where 8 = {W, b} is the set of trainable parameters, and N,
is number of batch samples. € can be obtained by minimizing
the loss function using the stochastic gradient descent (SGD)
method.

IV. DATASET GENERATION

To obtain a good QoT estimation and avoid biases, the
dataset should be large enough and properly generated cover-
ing the entire space of the features. We synthetically generate
the dataset based on the EGN models [4]-[5]. Common
and fixed parameters are the wavelength multiplexing in a
fixed-grid allocated in the C-band, (5 T'H z) centered around
1550 nm, with a channel spacing of 75 GH z and transceivers
set to work with a symbol-rate of 64 Gbaud. Therefore, both
SMF and FMF links consist of a maximum of 66 WDM
channels multiplexed either over 1 or 3 modes, respectively.

The overall set of possible links analyzed is considered by
randomizing:

o the link state, intended as the selection of channels in ON

state;

o the modulation format on each channel;

« the number of spans;

« the equal span length.

The modulation format of each channel is randomly chosen
with same probability between PM binary phase-shift keying
(BPSK), PM quaternary phase-shift keying (QPSK), and PM
M-QAM, with M € {8,16,32,64}. The number of span
composing the link is randomly selected in the range from
1 to 8 spans. All spans in a link have the same length that is
randomly selected with a uniform distribution between 80 to
120 km.

In all cases, fiber parameters (nonlinear coefficients, cou-
pling coefficients in case of FMF, chromatic dispersion, modal
dispersion for FMF, and attenuation) are taken from [31].
After each span, an ideal amplifier with 5 dB noise figure
compensates for fiber attenuation.

Between randomized link parameters, the most critical is the
link state, because it has the larger dimension. We consider

TABLE II
DEPLOYED TRAIN:TEST (TRAIN:VALIDATION) DATASET COMBINATIONS
Combination | Train:Test (Train:Validation)
Cl DI1:D2
C2 D2:D2
C3 D3:D4
C4 D4:D4

the condition where we have an average of 50% randomly
ON channels. The uniform launch power per channel and
mode is optimized case by case depending on the link state.
Considering 66 channels with TWO possible states, ON and
OFF, we have a total of 266 =2 7.37.10% cases for SMF (and
2663 =~ 401 - 10% cases for FMF). Consider that link state
is only one of the randomized input parameters: it must be
combined with all other to generate the input space.

To reduce at least the dimension of the link state, we
approach the dataset generation on a sub-band basis instead
of on a channel basis [32]. We group channels into 11 sub-
bands each with 6 channels. Each sub-band has 7 possible
levels of filling, depending on the number of channels in the
ON state: from 0 to a maximum of all 6. Now the number
of total cases is reduced to 7' =2 1.98 - 10° for SMF (and
733 = 7.73 - 1027 for FMF): a huge reduction but still a very
large space to be explored. To further reduce this number we
also considered a simplified approach where the whole sub-
band can assume only three states: empty, 50% ON and fully
ON. Now the total number of case is only 3'* = 1.77 - 10°
for SMF (and 333 = 5.55 - 10'® for FMF). Accordingly, we
generate two datasets for each fiber type, SMF and FMF, both
based on the sub-band approach: a first one with 7-levels and
a second one with 3-levels. Note that to prevent incorporated
bias towards performance on the test data, we have applied
train, validation, and test division. The train-validation sets
are used for feature engineering and hyperparameter tuning
while train-test sets are used for final performance analysis.
Therefore, each generated dataset is composed of 60000 train,
6000 validation, and 6000 test samples. Generated datasets
are described in Table I, the 3 and 7-level sub-band datasets
are respectively named D1 and D2 for SMF link, and D3
and D4 for FMF link. Thereby, we consider the train:test
(train:validation) combinations described by Table II.

In order to move to the dataset engineering, we must first
define and determine features, intended as a selected list of
input parameters or derived quantities describing the link and
having an impact on QoT. In sum, we selected the following
list of features:

o the modulation format of channel and mode under test
(CUT) (1st feature)

o CUT position in the WDM comb, i.e. channel and mode
under test indices (2nd and 3rd features)

« number of spans (4th feature)

« span length (5th feature)

o the left and right traffic volumes (6th and 7th features)

« the left and right guard bands, i.e. the number of empty
channels on left and right side of CUT (8th and 9th
features)
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« the modulation format of the closest ON channel on left
and right side of CUT (10th and 11th features for SMF,
and 10th to 15th features for FMF)

o the link state, i.e. the number of occupied channels per
sub-band as 12th to 22th features for SMF, and 16th
to 48th features for FMF. An important aspect of the
generated dataset is the consideration of partial-load of
link state for D modes and N, channels with N,,; sub-
bands per mode.

SMF and FMF have 22 and 48 features, respectively. Then
the GSNR is calculated as the single label and associated.

V. DATASET ENGINEERING

Dataset engineering is the procedure of adjusting the size
of the dataset, preprocessing the features and the labels,
selecting the relevant feature set, and reducing the feature
dimension. Therefore, for dataset engineering we need to
compare the result of applying different dataset adjustments
on an employed ML model. Here, due to space limitation, we
only report the results for the DNN-based regressor structure
provided by "MLPRegression” package from Python/Scikit-
learn library [33]. To have a fair comparison in between DNN
and all other ML methods, the same dataset engineering steps
are repeated for all methods.

A. Dataset size adjustment

To evaluate the impact of the dataset size on the perfor-
mance, in Fig. 3 we show the root mean square error (RMSE)
values for training dataset sizes 60,600,6000, and 60000,
leveraging combinations C1, C2, C3, and C4. The test dataset
size is set to 6000 over all the paper. As seen, the DNN-
based regressor provides the same performance in C1 and C2
while the performance in C4 is better than C3. Actually, in
SMEF, the regressor only learns the information about inter/intra
channel nonlinear interactions while in FMF case, it should

also learn the inter/intra modal nonlinear interactions as well as
coupling. Therefore, the FMF case is a more complex scenario
and the DNN requires more dataset points to properly train.
The obtained results show that increasing the number of data
points reduces the RMSE in all combinations. With a dataset
of 60000 samples, the RMSE for Cl1 and C2 is 0.14 dB
while the RMSE for C3 and C4 is 0.89 and 0.63, respectively.
The main issue towards training a DNN-based regressor for
QoT estimation is dataset generation. We rely on synthetic
dataset generation by an accurate model such as EGN. We
generate the 60000 point D1, D2, D3, and D4 datasets in 3
months by utilizing 200 paralle] CPUs. For SMF, steep descent
shown in Fig. 3 is such that further dataset size increase does
not improve RMSE so much. However, in FMF, the obtained
values for RMSE per dataset size indicate the RMSE can be
improved more by increasing the dataset size. We use this
dataset size in the remainder of this paper.

B. Features and Labels preprocessing

Feature preprocessing, a common requirement for regres-
sion, is the method of changing the raw dataset into a
more proper representation through scaling, transformation,
normalization, and discretization. Scaling is the method of
individual standardization of the features which presents them
in a fixed range in order to handle highly varying features.
The common scalers are Standard, Min-Max, and Max-Abs
scalers. Standard scaler is a quick and easy way for scaling
the features into a zero mean and unit variance version. The
Min-Max scaler scales the features between a given minimum-
maximum value, often between zero and one is preferred.
The Max-Abs scaler scales the maximum absolute value of
each feature to the unit value. In scaling, we change the
range of features while in transformation, we change the
shape of features distribution. The general transformation
methods include quantile and power transformers. These non-
linear transformers are based on monotonic transformations
of the features. Quantile transformation is a non-parametric
transformer and maps the feature distribution to uniform
between [0, 1]. This method deploys a rank transformation and
smooths out unusual distributions. Quantile transformation is
less affected by outliers compared with scaling. Power trans-
formation is a parametric transformer and maps the feature
distribution close to Gaussian to stabilize the variance and
minimize the skewness. Normalization scales each feature to
have a unit norm. Discretization separates a continuous feature
into a discrete one by creating a set of contiguous intervals that
spans the feature range. It is similar to constructing discrete
histograms for the continuous features. Histograms counts
features that fall into bins, however, discretization assigns
feature values to bins. Numerical input variables may have
a highly skewed or non-standard distribution which could
be caused by outliers in the data. Discretization can prevent
overfitting which happens when a model performs well with
training data but poorly with other data.

Fig. 4 shows the RMSE values for different preprocessing
methods including scaling, transformation, normalization, and
discretization, considering combinations C1, C2, C3, and C4.
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Min-Max scaler has better performance than the others, and
normalization obtains higher RMSE values than the others.
In SMF, Standard, Min-Max, Max-Abs scaling, and quantile
transformation provide the same RMSE values. However, in
FMEF, the choice of feature preprocessing affects the perfor-
mance. In conclusion, we choose the Min-Max scalar for
feature preprocessing.

Feature processing mainly depends on ML model which
in turn sometimes is sensitive to the type and distribution
of input features. For instance, Gaussian Naive Bayes is
an algorithm which supports continuous data with Gaussian
normal distribution. However, as explained in Section III,
the generated features have the same type and distribution,
they are all synthetically generated numerical values with
uniform distribution varying at different ranges, a proper and
standard type and distribution. Besides, the considered ML
models accept numerical data type and have no constraint on
the dataset distribution, except LR which assumes Gaussian
distribution for the measurement noise not the data which is
not an issue here as we generate data synthetically and do
not consider the measurement noise. In other words, there is
no reason we need to change the type or distribution of data
while feature preprocessing.

Feature dimension reduction decreases the processing time
and required memory. One of the most popular techniques
regarding this is the principal component analysis (PCA)
which finds the directions of maximum variance in high-
dimensional features and depending on the principal compo-
nents projects them into a new subspace with equal or lower
dimensions than the original one. In a nutshell, PCA removes
the feature dimensions affected by sources of noise, artifact,
or interference. Here, we generated the dataset synthetically
based on EGN model without considering any of these sources,
therefore, the generated feature set has proper dimensions and
needs no reduction.

Besides feature preprocessing, label preprocessing is also
important in regression especially when the labels have large
spread values. The common label preprocessing approaches
include scaling by In(.) and log2(.). Here, we calculated labels
(the GSNRs) in dB, in other words, we already scaled the

labels. Note that in our case, the labels vary between ~ [10, 30]
(in dB) which is not a large variation, and applying the second
scaling stage does not improve the performance, therefore, we
do not re-scale the calculated labels.

C. Feature selection

Feature selection is the procedure of isolating the most
relevant, non-redundant, important, and consistent features to
be used in regression. We have so far considered different
features in the regressor models. An important question is
which features are more important to achieve good regres-
sion performance, as removing worthless features leads to
a regressor with less cost and complexity while removing
the worthwhile features degrades the performance. Hence, we
now evaluate the usefulness of each feature by comparing
the regression performance after training the regressor, con-
sidering the feature sets listed in Table III. Feature set F1
is a combination of all considered features listed in Section
IV. To evaluate the importance of each individual feature, we
organize feature sets F2 to F9 where each of them does not
contain one of the features. To further investigate the relevant
feature impact, we form F10 to F12 by respectively removing
the modulation format related features (modulation format of
CUT, modulation format of closest ON channel on left and
right side of CUT), the link length related features (number
of spans and span length), and the link state related features
(left and right traffic volume, left and right guard bands, link
state).

The obtained RMSE values for these new feature sets are
reported in Fig. 5, considering combinations C1, C2, C3,
and C4. Results show that, in both topologies, training the
regressor with the feature set F5 leads to the lowest and
comparable to F1 RMSE values. Note that F1 includes all
features, whereas F5 excludes the features and span length,
respectively. Results obtained in scenario F1 are slightly lower,
which leads us to conclude that information on these does
provide some insight into regression, and we properly designed
features. Feature set F5, where we remove span length, does
not suffer much a loss of accuracy because we considered
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Fig. 5. RMSE values for feature sets F1 to F12, considering combination C1, C2, C3, and C4.

span length longer then 80 km: this length is much larger than
nonlinear effective length and this means that NLI generation
in each span is always reaching its completion. In fact, the
most relevant feature is the number of spans: removing it
(feature set F4) completely disrupts the accuracy of GSNR
prediction. In general, all other feature sets show an increase of
RMSE, demonstrating that we already selected properly a sort
of best set including all important parameters affecting optical
signal propagation. The top to bottom ranking of relevance for
each individual feature is as follow: the number of spans, link
state, left and right traffic volume, left and right guard bands,
CUT position in the WDM comb, modulation format of CUT,
modulation format of closest ON channel on left and right
side of CUT, and span length. Results show that attributes
characterizing the link state (left and right traffic volumes,
left and right guard bands, and Link state) are needed to get
accurate predictions. The top to bottom ranking of the grouped
features includes the link length related features (number of
spans and span length), the link state related features (left and
right traffic volume, left and right guard bands, link state),
and the modulation format related features (modulation format
of CUT, modulation format of closest ON channel on left

and right side of CUT). Performance degradation becomes
extremely severe when eliminating the link structure related
feature (number of spans and span length): as discussed before,
this is mainly due to the removal of the number of spans.

VI. MODEL SELECTION

Model selection is the task of tuning hyperparameters for
each of available ML models and selecting one of them.
Regarding this, we first tune hyperparameters of a selected
set of regressors described by section III, and compare the
complexity and performance of different ML-based regressors.

A. Hyperparameter tuning

Reporting the hyperparameter tuning results for selected
set of regressors requires a large space. Thereby, here we
demonstrate hyperparameter tuning for DNN-based regressor,
and just report the tuned hyperparameter values for other
regressors. Hyperparameter tuning for DNN-based regressor
studies its convergence through adjusting iteration number,
learning rate, number of hidden layers, number of hidden
neurons, and optimizer. Figs. 6(a), 6(b), 6(c), 6(d), and 6(e),
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present RMSE values respectively for different iteration num-
bers, learning rates, number of hidden layers, number of
hidden neurons, and optimizers, for combinations C1, C2,
C3, and C4. The DNN-based regressor is iteratively trained
considering the SGD optimizer with learning rate 0.001, batch
size of 100, and the ReLLU and linear activation functions in
the hidden and last layers as baselines. We early terminate the
training if the RMSE value does not improve for 30 iterations
to avoid overfitting.

Considering loss function in Eq. (4), @ can be adjusted
iteratively by SGD through 8™ +1) = 9™ _ nv,L(0™),
where 1 > 0 is the learning rate, m is the iteration number,
and Vo L(0™)) is the estimated gradient of the loss function.
Note that 8 is selected randomly, therefore, even with the
same dataset and DNN, the optimization trajectories would be
different at each realization. However, SGD always converge
to the global optimum as the loss function 4 is convex [34],
thus the train and test RMSE values are consistent and similar.

Fig. 6(a) shows convergence for C1 and C2 happens after
100 iterations while in C3 and C4 it occurs after 50 iterations.
Fig. 6(b) shows the learning rate 0.001 is a proper choice for
Cl1, C2, C3, and C4. Figs. 6(c) and 6(d) depict that 2 hidden
layers with 1000 hidden neurons provide a convergence for C1,
C2, C3, and C4. As seen in Fig. 6(c) the ANN (the DNN with 1
hidden layer) cannot explore the huge feature space explained
in Section IV, thus more hidden layers are required to model
such complex-nonlinear input-output relationship. Fig. 6(d)
shows increasing number of neurons until 1000 improves the
performance and reaches a saturation point after which there is
no improvement for both SMF and FMF cases. Note that the
RMSE values are different for each case and remind that Fig. 3
shows FMF case can obtain better results by increasing dataset

size. Fig. 6(e) plots RMSE values for Adam, SGD, RMSprop,
Adadelta, Adagrad, Adamax, Nadam, and Ftrl optimizers. As
seen, in SMF, Adam, SGD, RMSprop, Adamard, and Nadam,
and in FMF, Adam, SGD, Adamard perform close. However,
Adam achieves lower RMSE values than the others and is a
good choice for both SMF and FMF. Note that in all cases,
the training and validation performance are the same which
shows that the hyperparameters are tuned properly and there
is not sign of underfitting or overfitting.

For SVM, we use radial basis function (RBF) kernel with
the « equal to the inverse of multiplication of number of fea-
tures and variance of features without limitation on maximum
iteration number. The KNN is employed by five neighbors
and all points in each neighborhood are weighted equally.
Ball tree algorithm with 30 leaves was used to compute the
nearest neighbors based on euclidean distance metric. In DT
(and also in DTs inside RF and XGB), we deploy the mean
squared error as the function to measure the quality of a split,
and the variance reduction as feature selection criterion which
minimizes the Lo loss based on the mean of each terminal
node. At each node, we choose the best split by considering all
features, and expand the trees until all leaves contain less than
2 samples. The minimum number of samples at each leaf node
is 1. In RF and XGB use squared error loss with 0.1 learning
rate and 100 DTs. In RR, we consider o« = 1 as the constant
multiplied by Lo term, controlling regularization strength. For
optimizing the weights, we use stochastic average gradient
descent with 1000 iterations. In BR, we use a3 = 1076
as shape parameter of Gamma distribution prior over «,
as = 1075 as rate parameter of Gamma distribution prior
over a, A\; = 107% as shape parameter of Gamma distribution
prior over the \, and Ao = 107° as rate parameter of Gamma
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distribution prior over A\. The maximum number of iterations
is 300.

B. Comparison between different ML-based regressors

Fig. 7 shows the RMSE versus normalized runtime for
regression methods DNN, SVM, KNN, DT, RF, XGB, LR,
RR, BR, CF-EGN, and CF-GN for combinations a) C1, b)
C2, c¢) C3, and d) C4. DNN-based regressor always performs
better than other ML-based regressors, CF-EGN and CF-GN in
terms of RMSE. DNN-based regressor is 100 times faster than
CF-EGN. DNN-based regressor has a more complex structure
compared with other ML regressors and that is why it is
slower than the others (except SVM and KNN). However, this
difference is not so much and DNN-based regressor is fast
enough for real time QoT estimation applications. Note that
the normalized runtime is ~ 1 x 1075 for RR, LR, and BR,
~ 4 x 10~* for XGB, RF, and DT, ~ 6 x 10~3 for DNN,
~ 3 x 10~! for KNN, SVM, and CF-GN, and 1 for CF-
EGN where CF-EGN calculates one point at 0.2 second. As
seen, each regressor performs the same in C1 and C2 while
performance in C4 is better than C3. Since the dataset D3 does
not contain all required information about feature space of D4
and it needs to be increased. CF-GN performs worse than the
other methods as it is organized to estimate the NLI variance
for Gaussian distributed signal while here we consider non-
Gaussian modulation formats. CF-EGN considers modulation
format correction terms and outperforms CF-GN with twice
complexity. Note that CF-GN and CF-EGN does not have
training stage, therefore, they show equal test results in CI,
C2 and C3, C4 combinations.

Figs. 8(a), 8(b), 8(c), and 8(d) respectively demonstrate R?,
mean absolute error (MAE), mean absolute percentage error

(MAPE), maximum error (ME) values, as defined in [33],
for regression methods DNN, XGB, CF-EGN, and CF-GN
for combinations C1, C2, C3, and C4. The R? indicates the
percentage variation in y explained by z variables, where x
and y signify a set of data. It finds the likelihood of the
occurrence of a future event in the predicted outcome. As
seen in Fig. 8(a), DNN and XGB have the same R? values
while in CF-EGN R? reduces in FMF case. The CF-GN has
lower R? in both SMF and FMF. The MAE measures the
mean of the absolute differences between the predicted and
reference outputs while the MAPE measures the mean of
the absolute differences between the predicted and reference
outputs divided by the reference output. Better MAE and
MAPE values are respectively shown in Figs. 8(b) and 8(c)
for DNN than the other methods for combinations C1 to C4.
Regarding ME values reported in Fig. 8(d), DNN shows better
performance in SMF than XGB and vice versa in FMF.

Fig. 9 introduces the CDF of |AGSN R| where AGSNR =
GSNRyrcq — GSNR,c¢, for DNN, XGB, CF-EGN and CF-
GN, considering combinations a) C1, b) C2, ¢) C3, and d)
C4. Here, to avoid congestion of lines in the figures, we
only compare our proposed DNN-based regressor with XGB
which has the best performance among ML-based regressors,
as well as CF-GN and CF-EGN which are the well-known
conventional methods that could be considered as alternative
approaches. At 99 % of cases, the absolute value of GSNR
estimation error by DNN-based regressor is lower than 0.3
dB, 0.3 dB, 1.2 dB, and 1 dB for Cl1, C2, C3, and C4,
respectively. In C1 and C2 (the simplest scenarios) DNN takes
the advantages of its complex structure and provides slightly
better results at 99 % of cases than XGB while in C3 and
C4 (the complex cases) DNN and XGB perform the same.
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Although XGB has less normalized runtime than DNN, DNN
is fast enough for real time applications and we could trade a
small loss of speed for higher accuracy in C1 and C2. At 99
% of cases, the GSNR estimation error by CF-EGN is lower
than 0.8 dB, 0.8 dB, 2.5 dB, and 2.5 dB for C1, C2, C3,
and C4, respectively, these values are respectively 2.2 dB, 2.2
dB, 5 dB, and 5 dB for CF-GN. In C1 and C2, the CF-EGN
provides closer GSNR estimations to DNN at 99 % of cases
than C3 and C4.

The pdf and CDF of AGSN R, for proposed DNN, XGB,
and CF-EGN, considering combinations C1 to C4 are shown
in Figs. 10(a) to 10(d), respectively. In all cases, DNN and
XGB pdfs have almost the same mean and variance values.
In SMF (both C1 and C2), the DNN and XGB pdfs have the
mean value equal to 0.015 dB and the variance value equal to
0.55 dB. In FMF, the mean values for DNN and XGB pdfs are
equal to 0.6 dB in C3 and 0.08 dB in C4 while the variance
values for DNN and XGB pdfs are equal to 0.55 dB in both
C3 and C4. In other words, DNN and XGB provide a biased
estimation at C3 which is because C3 is a simplified approach
and does not represent all possible groups or outcomes. This
issue can be solved by increasing the dataset size. However,
C1 is diverse and represents the adequate area of feature space.

As seen, pdf of CF-GN has a large bias and variance in all
cases and in 99 % of cases underestimates the GSNR. This is a
well-known behavior as GN-models are based on the Gaussian
distributed signal assumption that overestimate NLI resulting
in an underestimation of GSNR. DNN and XGB have almost
the same underestimation probabilities of 0.5, 0.5, 0.2, and 0.5
in C1, C2, C3, and C4, respectively.

Fig. 11 describes scatterplots of reference GSNR and pre-
dicted GSNR for proposed DNN (first row), XGB (second
row), CF-EGN (third row), and CF-GN (forth row), consid-
ering combinations C1 (first column, a,e,i,m), C2 (second
column, b,f,j,n), C3 (third column, c,gk,0), and C4 (fourth
column, d,h,I,p). The DNN and XGB have almost the same
scatterplots, very close to the y = x line which means that they
achieve a very good performance. In C1 and C2 we experience
denser plots compared with C3 and C4, as FMF scenario is a
more complex problem. In C3, the GSNR estimation has more
bias than C4, as the training is based on D3 and test on D4,
this results in higher RMSE values for C3 compared with C4.
CF-GN has more bias and variance compared with all other
methods.
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Fig. 11. Scatterplots of reference GSNR and predicted GSNR for: proposed DNN (first row), XGB (second row), CF-EGN (third row), and CF-GN (forth
row), considering combinations C1 (first column, a,e,i,m), C2 (second column, b,f,j,n), C3 (third column, ¢,g,k,0), and C4 (forth column d,h,1,p).

VII. CONCLUSION

In this paper, we have proposed a DNN structure for QoT
estimation of optical communication links. We have presented
a comprehensive investigation considering different ML-based
regression methods for estimating GSNR in partial-load SMF
and FMF links. Synthetic datasets have been generated based
on EGN model. Results have shown that the DNN-based
regressor can provide higher accuracy in terms of RMSE
compared with other state-of-the-art ML-based regressors and
analytical approaches such as the CF-EGN, and CF-GN. In
99% of cases, the GSNR estimation error obtained by DNN-
based regressor is lower than 0.3 dB for SMF and 1 dB
for FMF. Moreover, the DNN-based regressor requires much
less computational complexity compared with CF-EGN and is
candidate solution for real time QoT estimation applications

needed in control plane of dynamically reconfigurable optical
networks.
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