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Abstract. Bismuth-doped fiber amplifiers offer an attractive solution for meeting continuously growing
enormous demand on the bandwidth of modern communication systems. However, practical deployment of
such amplifiers require massive development and optimization efforts with the numerical modeling being the
core design tool. The numerical optimization of bismuth-doped fiber amplifiers is challenging due to a large
number of unknown parameters in the conventional rate equations models. We propose here a new approach
to develop a bismuth-doped fiber amplifier model based on a neural network purely trained with experimental
data sets in E- and S-bands. This method allows a robust prediction of the amplifier operation that incorporates
variations of fiber properties due to manufacturing process and any fluctuations of the amplifier characteristics.
Using the proposed approach the spectral dependencies of gain and noise figure for given bi-directional pump
currents and input signal powers have been obtained. The low mean (less than 0.19 dB) and standard deviation
(less than 0.09 dB) of the maximum error are achieved for gain and noise figure predictions in the 1410–1490 nm
spectral band.

Keywords: Bismuth, Doped fiber, Amplifier, Neural network, Multi-band, Ultra-wideband, Optical networks,
Optical communications.

1 Introduction

Fiber-optic networks are the backbone of the global com-
munications infrastructure that made possible modern
Internet, providing multitude of the online services and
digital economy. The development of novel approaches for
further increasing capacity of optical communication
systems is in the focus of the research around the world
due to the constantly growing data traffic and the corre-
sponding bandwidth demand [1]. Despite a large accessible
bandwidth of optical fiber, the conventional optical net-
works exploit only about 10 THz that is covered by the
commercially available Er-doped fiber amplifiers in C- and
L- optical bands (1530–1620 nm). There are three main cur-
rent approaches to increase the capacity of fiber-optical
transmission systems by the development of: the higher-
order modulation formats, the spatial division multiplex-
ing (SDM), and the multi-band transmission (MBT) [2].
Arguably, the most practical technique is the MBT capable
to utilize the huge and still available spectral bandwidth of

the existing fiber base. Unlike the SDM, it does not require
a new fiber deployment. Moreover, capacity of the MBT
scales linearly with spectral bandwidth compared to that
of the higher-order modulation formats, which scales loga-
rithmically with signal-to-noise-ratio (SNR) [3]. The limit-
ing factor of MBT can potentially be stimulated Raman
scattering (SRS) that leads to the undesired energy transfer
from the higher frequency channels to the lower frequency
ones. Despite the impact of SRS, the MBT maximizes the
return-on-investments in the existing infrastructures [2]
by the transmission in the so-called O, E, S, and U optical
bands. However, it involves a significant upgrade of current
networks with novel amplifiers in the aforementioned opti-
cal bands that are yet being developed and optimized.

The number of doped fiber media operating beyond C-
and L- bands have been reported: neodymium (Nd) [4], pra-
seodymium (Pr) [4], thulium (Tm) [5], and bismuth (Bi)
[6, 7]. Unlike many other active dopants, Bi active centers
allow the broadband amplification in the whole spectral
range from 1150 to 1500 nm [6–9]. Such spectral flexibil-
ity of Bi-doped fibers can be achieved by using different
host materials like aluminosilicate, phosphosilicate, and* Corresponding author: a.donodin@aston.ac.uk

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

J. Eur. Opt. Society-Rapid Publ. 2023, 19, 4
� The Author(s), published by EDP Sciences, 2023
https://doi.org/10.1051/jeos/2022016
Available online at: https://jeos.edpsciences.org

RESEARCH ARTICLE

Journal of the European Optical
Society-Rapid Publications

RESEARCH ARTICLE

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1051/jeos/2022016
https://jeos.edpsciences.org


germanosilicate glass. This unique feature of Bi-doped fibers
makes them one of the most promising amplification tools
for the MBT. The bismuth-doped fiber systems showed a
great potential for telecommunications after successful
information transmissions in O- [10] and E-bands [11–13],
and the simultaneous signal amplification in different
amplification bands [8, 14].

However, a significant issue in understanding of
bismuth-doped fiber as an active media for amplifiers is
inability to determine all fiber parameters required for the
modeling using well-known conventional rate equations.
This inability is mostly explained by very low concentration
of Bi-doped active centers, which cannot be precisely deter-
mined. Still the ability to freely model the bismuth-doped
fiber amplifiers (BDFAs) is a crucial task for applications
like telecommunication due to their gain and noise figure
(NF) nonlinear behavior with the pumping scheme configu-
ration, signal or pump powers and wavelengths, and fiber
temperature [7, 8, 15]. Thus, it is important to develop an
accurate, fast, and simple tool for the modeling of the signal
amplification in the BDFA with only known initial pump
and signal conditions. As a possible solution, neural
network (NN)-based techniques have been already applied
for Er-doped fiber amplifiers [16, 17] and Raman fiber
amplifiers [18, 19], but not yet for BDFAs. Moreover, such
differentiable amplifier models used in conjunction with also
differentiable optical channel models allow a power profile
optimization using the gradient descent in reconfigurable
optical networks, as also demonstrated in [17].

In this work, we report the NN-based BDFA gain and
NF model trained purely on experimental measurements
of the five channel amplification in the spectral band of
1410–1490 nm using the BDFA with the bi-directional
pumping scheme. Two different data sets are used for both
training and testing: with just seven values, and uniformly
distributed values of the total input signal power. The pro-
posed model is then used to predict spectral dependencies of
gain and NF for the specific total input signal powers and
pump diode currents. In addition, the dependency of the
maximum absolute error with the training data set size is
analyzed. The achieved prediction performance demon-
strates the viability of NN approach as a tool for fast and
simple BDFA modeling.

The remainder of the paper is organized as follows.
Section 2 describes the experimental setup of gain and NF
measurements for the data sets acquisition. Section 3
describes the NN-based architecture and the data sets
description. Section 4 demonstrates results of numerical
simulations for the model trained and tested using different
data sets. Section 5 provides a discussion on the importance
of the NN approach for modeling of BDFAs. Section 6
concludes the paper.

2 Experimental setup

The experimental setup for gain and NF measurements is
shown in Figure 1. The radiation of the tunable laser tuned
to 1410 nm is coupled with the radiation of four signal
diodes at 1430 nm, 1450 nm, 1470 nm, and 1490 nm

combined in multiplexer (MUX). After 50 : 50 coupler the
signal radiation passes variable optical attenuator (VOA)
that allowed total input power adjustment in the range
from �25 dBm to 5 dBm. The radiation after VOA was
characterized in terms of spectrum by the first channel of
the optical spectrum analyzer (OSA) and total input signal
power by power meter (PM). After that the signal radiation
entered BDFA with 320 m long Bi-doped germanosilicate
fiber with 9 m core of fiber consisting of 95 mol% SiO2,
5 mol% GeO2 and <0.01 mol% of bismuth. The same
BDFA setup was characterized in terms of different pump-
ing schemes performance in [7]. Here we use two 1320 nm
pump diodes controlled by laser diode (LD) and thermo-
electric cooler (TEC) controller for bi-directional pumping.
The 1320 nm isolators are used for additional protection of
pump diodes from contra propagating radiation. The thin
film filter wavelength division multiplexers (TFF-WDMs)
with very steep reflection and transmission bands allow effi-
cient coupling of the broadband signal and pump radiation.
The spectrum of the signal on the output of the amplifier is
recorded using the second channel of OSA. The recorded
spectra for different total input signal powers were then
used for determination of gain and NF in 1410–1490 nm
wavelength range using the source subtraction technique

Figure 1. a) Experimental setup for BDFA characterization
and data sets acquisition; b) Amplifier gain and noise figure as a
function of wavelength achieved with 1000 mA pumps currents
and �25 dBm signal power; c) Amplifier gain at 1430 nm as a
function of total input signal power. TL: tunable laser; MUX:
multiplexer; VOA: variable optical attenuator; LD: laser diode;
TEC: thermoelectric cooler; Bi: Bi-doped fiber; TFF-WDM: thin
film filter wavelength division multiplexer; OSA: optical spec-
trum analyzer; PM: power meter.
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described in [20]. The gain and NF characteristics for
1000 mA pumps currents and �25 dBm total input signal
power are shown in Figure 1b featuring the maximum
achieved gain of 32.9 dB and minimal NF of 5 dB at
1430 nm and 1450 nm, respectively. Figure 1c shows the
dependency of the gain at 1430 nm on the total input signal
power for different pump diodes currents. The gain depen-
dency has linear and saturation dynamics with the change
of total input power, thus it is highly important that NN
model has good performance in these both regimes. In addi-
tion, the increase of the pump currents shows nonlinear
increment of the gain.

3 Machine learning BDFA model

The single layer NN architecture used to model the BDFA
is shown in Figure 2. The inputs of the model are the back-
ward pump diode current Ib, the forward pump diode
current If, and the total input signal power of the five chan-
nels Pin. The outputs of the model are corresponding gains
(G1410,. . .,G1490), and NFs (NF1410,. . ., NF1490) for all five
signal wavelengths. The model is trained using the random
projection (RP) [21] to learn the mapping between pump
currents and the total input signal power to the gain and
NF. A k-fold cross validation with k = 10 is applied for
the model selection and the hyper-parameter optimization.
This process provides the optimized number of hidden
nodes NHN, the activation function fact, the regularization
parameter k, and the variance r of the normal distribution.
The regularization parameter k, and the variance r are then
used to calculate the output weights (Wout) and to assign
the hidden layer weights (W1), respectively. The value of
these parameters for the different training data sets will
be shown in the results section. To improve the prediction
capabilities of the NN, a model averaging 20 independently
trained NNs is employed [18]. Therefore, gain and NF pre-
dictions are the average of the 20 NNs outputs.

The experimental data acquisition for the NN training
consists of N different current values for the backward (Ib)
and forward (If) pumps in the range of [200 : 1000] mA
and different values of the total input signal power (Pin)
in the range of [�25 : 5] dBm. Each case described by (Ib,
If, Pin) is applied to the experimental setup (Fig. 1a) and
the corresponding output spectra are measured and
processed to obtain gain and NF information of the five
signal channels. The final data set is in the form of
D ¼ fðI ib; I if ;Pi

in;G
i
1410; :::;G

i
1490;NF

i
1410; :::;NF

i
1490Þj i ¼ 1; :::;Ng

and is split into three parts: 63% for NN training, 7% for NN
validation, and the remaining 30% for final tests. Data set
size N varies for the different cases and is presented in the
next section.

4 Results

Firstly, a NN model is trained and tested using a data set
with discrete total input signal power levels. The parameter
values for the different combinations of testing and train-
ing data sets are presented in Table 1. For the first case

(Case 1 in Tab. 1), the data set is generated for each dis-
crete Pin in the set {�25, �20, �15, �10, �5, 0, 5} dBm.
The data set for each discrete Pin consists of 3000 different
Ib and If values drawn from uniform distributions in a log
scale to provide a uniform distribution also for gain and
NF in dB. The currents are converted back to the linear
scale before applying them to the experimental setup. This
process gives a total of 21 000 points for all Pin cases. The
k-fold cross validation performed over the training and
validation portion of the data set results in NHN = 1000,
fact = sin(x), k = 10�10, and r = 10�2. This NN model is
trained considering the training portion (63%) of the data
set. The prediction performance is evaluated in terms of
the maximum absolute error EMAX between predicted and
target profiles (for gain and NF) for the applied channels.
The probability density functions (PDFs) for EMAX are
shown in Figure 3a. They are obtained over 6300 test points
(900 each for all 7 input powers). The obtained mean EMAX
for gain and NF are 0.16 and 0.15 dB, respectively. The
standard deviation of EMAX for gain is ±0.09 dB, and that
for NF is ±0.07 dB. These values indicate a high accuracy
of predictions using just a single NN model, particularly
considering the large input power dynamic range of the
BDFA and its gain and NF nonlinear behavior for both
pump and input signal powers variations. Figure 3b pre-
sents the target and predicted profiles for the worst and
the best gain and NF predictions. The overall prediction
and target profiles have an excellent match, demonstrating
that even the worst cases show a good correspondence with
the actual performance.

To verify its generalization ability, the NN model
trained with the discrete data set is also tested using the
data set with uniformly distributed input total signal power
values (Case 2 in Tab. 1). The testing data set consists of
2700 points with Pin, Ib and If values being uniformly
distributed in the range of [�25 : 5] dBm for Pin and
[200 : 1000] mA for pump currents (in a log scale). The
probability density functions for gain and NF are shown
in Figure 3c. The obtained EMAX for gain and NF is equal
0.76 dB and 0.69 dB and error deviations are ±0.39 dB and
±0.32 dB, respectively. The worst and the best predictions
of gain and NF are presented in Figure 3d. Even though,
the achieved results have a worse performance than the
model predicting the behavior of signals with power levels

Figure 2. Neural network architecture for learning the map-
ping between inputs (signal powers and pump currents) and
outputs (gain and NF profiles).
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presented in the training data set, it shows an acceptable
performance for the numerical determination of gain and
NF profiles. As next step, a new NN model is trained and
tested using a data set with uniformly distributed total
input signal power values in the range of [�25 : 5] dBm
(Case 3 in Tab. 1). The pump currents Ib and If are
uniformly distributed in a log scale in the range

[200 : 1000] mA. This model considers a total of 9000 data
points. The k-fold cross validation procedure, executed over
the training and validation portion of the data set, results in
a NN model with NHN = 600, fact = sin(x), k = 10�10, and
r= 10�2.5, which is trained using the training portion of the
data set. The PDFs for EMAX are shown in Figure 3e.
The obtained mean EMAX demonstrates a high prediction

Figure 3. Probability density functions (PDFs) for gain and NF predictions for a) Case 1; c) Case 2; e) Case 3; the worst and the best
gain and NF predictions for b) Case 1; d) Case 2; f) Case 3.

Table 1. Parameter values for each modeling case.

Parameter Case 1 Case 2 Case 3

Training data set
Pin [dBm] {�25, �20, �15, �10, �5, 0, 5} {�25, �20, �15, �10, �5, 0, 5} [�25 : 5]
N (63% D) 13 230 13 230 5670
Testing data set
Pin [dBm] {�25, �20, �15, �10, �5, 0, 5} [�25 : 5] [�25 : 5]
N (30% D) 6300 2700 2700

J. Eur. Opt. Society-Rapid Publ. 19, 4 (2023)4



accuracy with 0.19 dB for gain and 0.16 dB for NF. The
standard deviations are 0.09 dB and 0.07 dB for gain and
NF predictions, respectively. Figure 3e presents the target
and predicted profiles for the worst and the best predictions
for gain and NF. A very good correspondence between the
predicted and real profiles can be seen even for the worst
case scenario for gain and NF.

Finally, the performance of the proposed framework in
all three different cases is tested with different training data
set sizes. The dependency of EMAX for gain and NF on the
training data set size is presented in Figure 4. The discrete
model for both testing data sets (the curves 1 and 2 in
Fig. 4) has the similar behavior with almost minimally
possible performance around 6500 data set points. On the
other hand, the smallest data set (around 2000 points) is
required to completely train the model with randomly dis-
tributed total input signal power values (curve 3 in
Fig. 4). The worst performance of Case 3 achieved with
450 cases is comparable to that achieved in Case 2 with
maximum number of data points. The achieved results
show that a data set size increase for all cases will not
improve the performance of the proposed framework gain
and NF predictions. Using a data set with randomly
distributed total input signal power values for the training
significantly increases the accuracy of amplification predic-
tions for any input signal powers in the range of the training
data set. It also allows to decrease the size of the data set
size required for the training. The relatively small data set
size of Case 3 required for training can decrease the time
of the data set acquisition and also allow using such a model
in cases when an automatic data acquisition is challenging
or impossible.

5 Discussion

Now we discuss the obtained results in the context of a
global problem of the modeling of unknown active media
using NN, considering BDFAs as a particular example. It
is important to start with the reminder that the conven-
tional rate equations cannot be applied for BDFA model-
ing due to a very low concentration of Bi-related centers
and, thus, inability to measure it using conventional
methods. That is the key reason why this problem requires

development of novel approaches to modeling to predict the
performance for the specific black-box amplifier. The pro-
posed simple NN has shown a remarkable performance in
terms of the gain and NF predictions in all the proposed
cases: with discrete and random data sets. The comparison
between different data set sizes suggested that the most
convenient way to use the proposed network is by use small
randomly distributed dataset.

We intentionally exploit here a simple NN to demon-
strate and stress that such a nonlinear and complex system
like BDFA can be modeled using elementary machine
learning approach. However, it is evident that further
improvements in the model can be easily achieved to allow
even more efficient parameter extrapolation, for example
fiber length and pump wavelengths/power optimization.
This is beyond the scope of the current proof-of-principle
work. We anticipate that our results pave the way for fur-
ther interesting studies of the application of NN approach
for modeling of BDFAs, making possible practical deploy-
ment of this type of optical amplifiers.

6 Conclusion

The demonstrated NN-based framework trained purely
with the experimental measurements showed the high
accuracy for the prediction of both BDFA gain and NF
for five signal channels in the 1410–1490 nm wavelength
range. The proposed model was trained and tested using
two different experimentally acquired data sets based on
the grid and randomly distributed signal power values.
The results indicate that using the data set with randomly
distributed signal power values is preferable for the predic-
tion of the signal amplification with any initial power values
in the range of the training data set. Another advantage of
such data set is the relatively small number of data points
required for the framework training. The predicted BDFA
performance shows a good agreement with experimental
results of the signal amplification in both linear and satura-
tion regimes confirming that the proposed NN-based frame-
work can be used for the BDFA optimization. The proposed
model is the first step towards a reliable and simple model-
ing tool that can be applied for optimization of BDFA
setups in the future.

Acknowledgments. The authors are grateful to their colleagues
from FORC, Moscow, Russia, namely, Dr. V.M. Mashinsky
and Dr. M. Melkumov for the provision of the Bi-doped fiber.

Funding

This work was funded from the UK EPSRC grants EP/
R035342/1 and EP/V000969/1, the European Union's
Horizon 2020 research and innovation programs under the
Marie Skłodowska-Curie grant agreement 814276, 813144
and 754462, the Villum Foundations (VYI OPTIC-AI grant
no. 29344), the European Research Council through the
ERC-CoG FRECOM project (grant agreement no.

Figure 4. Maximum absolute error EMAX of gain and NF
predictions as a function of training data set size for three
different modeling cases indicated in brackets.

J. Eur. Opt. Society-Rapid Publ. 19, 4 (2023) 5



771878), and the Italian Ministry for University and
Research (PRIN 2017, project FIRST).

Availability of data and materials

Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from
the authors upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

A.D., E.M., and V.D. conceived the experiments, A.D. con-
ducted the experiments, A.D., U.C.M., A.M.R.B. analyzed
the results, U.C.M. and. A.M.R.B. developed the numerical
model, V.D., W.F., and S.T. supervised the experiment,
F.D.R., A.C., and D.Z. supervised the modeling, All
authors reviewed the manuscript.

References

1 Winzer P.J., Neilson D.T., Chraplyvy A.R. (2018) Fiber-
optic transmission and networking: the previous 20 and the
next 20 years, Opt. Exp. 26, 18, 24190–24239.

2 Ferrari A., Napoli A., Fischer J.K., Costa N., D’Amico A.,
Pedro J., Forysiak W., Pincemin E., Lord A., Stavdas A.,
Gimenez J.P.F.-P., Roelkens G., Calabretta N., Abrate S.,
Sommerkorn-Krombholz B., Curri V. (2020) Assessment on
the achievable throughput of multi-band ITU-T G. 652.D
fiber transmission systems, J. Lightwave Technol. 38, 16,
4279–4291.

3 Ellis A.D., Zhao J., Cotter D. (2009) Approaching the non-
linear shannon limit, J. Lightwave Technol. 28, 4, 423–433.

4 Boley C.D., Dawson J.W., Kiani L.S., Pax P.H. (2019)
E-band neodymium-doped fiber amplifier: model and appli-
cation, Appl. Opt. 58, 9, 2320–2327.

5 Chen S., Jung Y., Alam S.-U., Richardson D.J., Sidharthan
R., Ho D., Yoo S., Daniel J.M. (2019) Ultra-short wavelength
operation of thulium-doped fiber amplifiers and lasers, Opt.
Express 27, 25, 36699–36707.

6 Mikhailov V., Luo J., Inniss D., Yan M., Sun Y., Puc G.S.,
Windeler R.S., Westbrook P.S., Dulashko Y., DiGiovanni
D.J. (2020) Amplified transmission beyond C-and L-bands:
doped fibre amplifiers for 1250–1450 nm range, in 2020
European Conference on Optical Communications (ECOC),
IEEE, pp. 1–3.

7 Donodin A., Dvoyrin V., Manuylovich E., Krzczanowicz L.,
Forysiak W., Melkumov M., Mashinsky V., Turitsyn S.
(2021) Bismuth doped fibre amplifier operating in E-and
S-optical bands, Opt. Mater. Express 11, 1, 127–135.

8 Wang Y., Thipparapu N.K., Richardson D.J., Sahu J.K.
(2021) Ultra-broadband bismuth-doped fiber amplifier

covering a 115-nm bandwidth in the O and E bands, J.
Lightwave Technol. 39, 3, 795–800.

9 Bufetov I.A., Melkumov M.A., Firstov S.V., Riumkin K.E.,
Shubin A.V., Khopin V.F., Guryanov A.N., Dianov E.M.
(2014) Bi-doped optical fibers and fiber lasers, IEEE J. Sel.
Top. Quantum Electron. 20, 5, 111–125.

10 Melkumov M.A., Mikhailov V., Khegai A.M., Riumkin K.E.,
Firstov S.V., Afanasiev F., Guryanov A.N., Yan M., Sun Y.,
Luo J., et al. (2018) 25 Gb s�1 data transmission using a
bismuth-doped fibre amplifier with a gain peak shifted to
1300 nm, Quantum Electron. 48, 11, 989.

11 Melkumov M., Mikhailov V., Hegai A., Riumkin K., Westbrook
P., DiGiovanni D., Dianov E. (2017) E-band data transmission
over 80 km of non-zero dispersion fibre link using bismuth-
doped fibre amplifier, Electron. Lett. 53, 25, 1661–1663.

12 Donodin A., Tan M., Hazarika P., Dvoyrin V., Phillips I.,
Harper P., Turitsyn S.K., Forysiak W. (2022) 30-GBaud dp
16-QAM transmission in the E-band enabled by bismuth-
doped fiber amplifiers, Opt. Lett. 47, 19, 5152–5155.

13 Donodin A., Hazarika P., Tan M., Dvoyrin V., Patel M.,
Phillips I., Harper P., Turitsyn S., Forysiak W. (2022)
195-nm multi-band amplifier enabled by bismuth-doped fiber
and discrete Raman amplification, in 2022 European
Conference on Optical Communication (ECOC), 18–22
September 2022, Basel Switzerland, IEEE, p. 1–2.

14 Ososkov Y., Khegai A., Firstov S., Riumkin K., Alyshev S.,
Kharakhordin A., Lobanov A., Guryanov A., Melkumov M.
(2021) Pump-efficient flattop O+E-bands bismuth-doped
fiber amplifier with 116 nm�3 dB gain bandwidth, Opt. Exp.
29, 26, 44138–44145.

15 Donodin A., Dvoyrin V., Manuylovich E., Phillips I.,
Forysiak W., Melkumov M., Mashinsky V., Turitsyn S.
(2021) 4-channel E-band data transmission over 160 km of
SMF-28 using a bismuth-doped fibre amplifier, in 2021
Optical Fiber Communications Conference and Exhibition
(OFC), 06–10 June 2021, San Francisco, CA, USA, IEEE,
pp. 1–3.

16 Ionescu M., Ghazisaeidi A., Renaudier J., Pecci P., Courtois
O. (2020) Design optimisation of power-efficient submarine
line through machine learning, in 2020 Conference on Lasers
and Electro-Optics (CLEO), Washington, DC United States,
Washington, DC United States, 10–15 May, pp. 1–2.

17 Yankov M.P., De Moura U.C., Da Ros F. (2021) Power
evolution modeling and optimization of fiber optic commu-
nication systems with edfa repeaters, J. Lightwave Technol.
39, 3154–3161. https://doi.org/10.1109/JLT.2021.3061632.

18 Zibar D., Brusin A.M.R., de Moura U.C., Da Ros F., Curri
V., Carena A. (2019) Inverse system design using machine
learning: the Raman amplifier case, J. Lightwave Technol.
38, 4, 736–753.

19 De Moura U.C., Iqbal M.A., Kamalian M., Krzczanowicz L.,
Da Ros F., Brusin A.M.R., Carena A., Forysiak W., Turitsyn
S., Zibar D. (2020) Multi-band programmable gain Raman
amplifier, J. Lightwave Technol. 39, 2, 429–438.

20 Baney D.M., Gallion P., Tucker R.S. (2000) Theory and
measurement techniques for the noise figure of optical
amplifiers, Opt. Fiber Technol. 6, 2, 122–154.

21 Huang G.-B., Wang D.H., Lan Y. (2011) Extreme learning
machines: a survey, Int. J. Mach. Learn. Cyb. 2, 2, 107–122.
https://doi.org/10.1007/s13042-011-0019-y.

J. Eur. Opt. Society-Rapid Publ. 19, 4 (2023)6

https://doi.org/10.1109/JLT.2021.3061632
https://doi.org/10.1007/s13042-011-0019-y

	Introduction
	Experimental setup
	Machine learning BDFA model
	Results
	Discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	References

