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Flexible Raman Amplifier Optimization Based on
Machine Learning-aided Physical Stimulated Raman

Scattering Model
Metodi Plamenov Yankov, Member, IEEE, Francesco Da Ros, Senior Member, OSA, Senior Member, IEEE, Uiara
Celine de Moura, Member, OSA, Andrea Carena, Senior Member, OSA, Senior Member, IEEE, and Darko Zibar

Abstract—The problem of Raman amplifier optimization is
studied. A differentiable interpolation function is obtained for
the Raman gain coefficient using machine learning (ML),
which allows for the gradient descent optimization of forward-
propagating Raman pumps. Both the frequency and power of an
arbitrary number of pumps in a forward pumping configuration
are then optimized for an arbitrary data channel load and
span length. The forward propagation model is combined with
an experimentally-trained ML model of a backward-pumping
Raman amplifier to jointly optimize the frequency and power of
the forward amplifier’s pumps and the powers of the backward
amplifier’s pumps. The joint forward and backward amplifier
optimization is demonstrated for an unrepeatered transmission
of 250 km. A gain flatness of < 1 dB over 4 THz is achieved. The
optimized amplifiers are validated using a numerical simulator.

Index Terms—Stimulated Raman scattering, Raman amplifier,
frequency and power optimization, machine learning.

I. INTRODUCTION

Raman amplifiers (RAs) present a significant advantage over
erbium doped fiber amplifiers (EDFAs) in terms of noise figure
and the potential for providing arbitrary gain profiles in a
controlled way [1]. They are also a viable option for increasing
the transmission bandwidth beyond the conventional C+L band
and support S-band amplification [2], [3]. Gain shaping over
frequency is important for achieving uniformity of the quality
of transmission for all channels in a wavelength division
multiplexing (WDM) system. Gain nonuniformity is even
more pronounced in ultra wide band systems due to different
responses and losses of the optical components in different
bands. Furthermore, in unrepeatered link scenarios, RAs are
critical for providing amplification from the receiver end, as
well as remote pumping [4], [5], [6]. Broadband amplification
using RAs can be achieved by employing multiple Raman
pumps at different frequencies. However, such configurations
pose a challenge for the optimization of the pumps frequency
and power due to the increased dimensionality of the problem
[7]. This problem is exacerbated when higher order pumping
is employed, as is often the case for unrepeatered systems.
Genetic algorithms were proposed in [7], [8], which fall in
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the heuristic optimization methods category, and are prone to
finding local optimums. State of the art approaches for opti-
mization are also based on heuristics [4], [9], [10]. Machine
learning (ML) methods for the optimization are also gaining
traction [11], [12], [13], [14], especially methods which train
combinations of forward and inverse system models to predict
the required pump power and frequency for a given target
gain profile [11], [15], [16], [17], [18]. ML methods provide
excellent performance, however, they require a lot of training
data to be generated in order to populate the 2Np dimensional
space, where Np is the number of pumps. Furthermore, each
training dataset is specific to Np and the number of wavelength
division multiplexed (WDM) channels to be amplified and
does not allow re-optimization when pumps are to be added
or when the data load changes, unless an expanded training
dataset including all the configurations is considered [19].

This paper is an extension of our previous paper [20], where
a completely flexible optimization method was proposed for
forward-only pumping. In this paper, the forward propagation
model from [20] is combined with an ML-based model for
the gain of a backward-pumping RA with a fixed number
and frequency of the pumps in order to build a complete
and differentiable model for a link with joint backward and
forward pumping. The optimization is then completely flexible
in terms of 1) number of pumps, their frequency and power
for the forward RA; 2) power for the backward RA; and 3)
fiber length (to a reasonable extent discussed later).

The paper is summarized as follows. In Section II, the
physical stimulated Raman scattering (SRS) model and its for-
ward propagation differentiable approximation are presented,
including the ML-based model for the Raman gain coeffi-
cient. We also introduce the ML-based model for the gain
of backward-pumping RA. In Section III, the unrepeatered
systems under consideration are explained. In Section IV,
the optimization strategies are discussed. In Section V, the
optimized gain profiles are presented and analyzed. Section VI
concludes the work and provides an outlook.

II. SRS MODELING

The SRS effect in optical fibers results in transfer of power
from carriers at high frequencies to carriers at low frequencies.
The efficiency of this transfer depends on their respective
carriers’ frequency offset and their powers. It also depends
on the type of fiber through its effective area. This effect
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allows for SRS-based amplification of communication signals.
However, it also results in inter-carrier power transfer. At high
powers, it results in undesired non-uniformity of the received
power levels that will consequently define unbalanced level of
optical signal to noise ratio (OSNR) for the different channels
in the WDM system. The effect is exacerbated when wideband
systems beyond the standard C-band are deployed for data
transmission, e.g. C+L [21], or even S+C+L, as proposed in
recent studies [2].

The SRS with powers expressed in the linear domain can
be described with a set of ordinary differential equations [21]

∂Pn(z)

∂z
= −2αnPn(z)

+

N∑
m=1

gR(ωm − ωn)

Aeff
Pn(z)Pm(z) (1)

where m,n ∈ [1;N ] are the indexes of the carriers co-
propagating through the fiber, Pn(z) is the power at frequency
index n and distance z, gR is the Raman gain coefficient for a
given offset between the angular frequencies ωm and ωn, αn
is the fiber loss at the n−th frequency and Aeff is the fiber
effective area. In (1), no distinction is made between a ’pump’
and a data-carrying ’channel’. Commonly, the efficiency of the
power transfer, i.e. gR(ω), is characterized and tabulated for
the more popular types of fiber, e.g. standard, single mode
fiber (SSMF) [22].

Since there is no closed form analytical solution for Eq. (1),
finite difference numerical solutions are typically applied.
Choosing a reference direction of propagation allows for the
following expression to be formulated for the power evolution
in the log domain after a small propagation distance ∆z [21]

Pn(z) = Pn(z −∆z)− αn∆z

+

N∑
m=1

gR(ωm − ωn)

Aeff
Leff (∆z)e

Pm(z−∆z), (2)

where, Leff (L) = 1−exp(−2·αn·L)
2·αn

is the effective power
interaction length. When all carriers propagate in the chosen
reference direction, the solution (2) converges to the true
solution for (1) for vanishing discretization step. However, the
joint operation of forward and backward propagating carriers
give rise to a non-trivial boundary value problem. In that case,
iterative solvers must be employed for propagation in both
directions of the fiber in order to arrive at an accurate solution,
e.g. through a shooting algorithm [23]. The forward-only
solution is relevant for cases of inter-carrier SRS combined
with a forward-only Raman pumping amplification. However,
in the presence of backward pumping, the iterative solution
needs to be applied.

Optimization of any system requires that a cost function
is formulated and minimized. In general, non-heuristic (e.g.
gradient-based or analytical) optimization requires that the cost
function is differentiable w.r.t. the optimization parameters.
In the case of RAs, that means an SRS model is needed
in a form that is differentiable in the Raman pumps’ power
and frequency. First, the iterative nature of the solver for
the general case of forward+backward propagating carriers
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Fig. 1. Neural network modeling of the normalized Raman gain coefficient
gR(ω1 − ω2). a): NN topology for modeling the coefficient: 3 layers, 100
nodes per layer, ReLU activation function; b): Modeling accuracy of the NN
output gDNN

R compared to the true coefficient gR, the linear fit gLIN
R applied

in [26] and the Lorentzian fit gLOR
R from [25].

results in non-differentiability in itself. Then, in (2), each step
in z is differentiable in power, but not in frequency due its
dependence on gR which is typically described using a look-
up table, piece-wise interpolation or numerical integration
[24][25]. These challenges are addressed in the following.

A. Differentiable forward model

In [26], gR is approximated using a linear interpolation
gLINR , which is differentiable until the discontinuity point,
chosen for example to coincide with the frequency offset with
maximum Raman efficiency. This is sufficient for estimating
the SRS between WDM channels, but fails to provide the
required accuracy when high-power pumps are added near
and beyond the maximum efficiency. Alternatively, a popular
method to approximate the Raman gain coefficient is to fit a
Lorentzian distribution gLORR [25]. Similarly, this fit results in
a poor accuracy outside of the peak of the gain coefficient (as
will be demonstrated later in the paper). To that end, we train a
deep neural network (DNN) to learn a nonlinear interpolation
function gDNNR . The DNN is depicted in Fig. 1a), it has 3
layers with 100 nodes per layer and a ReLU activation function
and it is trained using gradient descent (GD) with the Adam
optimizer and the mean squared error (MSE) cost function. In
Fig. 1b), the normalized gDNNR , gLINR , gLORR and the true gR
are given as a function of the frequency offset for standard,
single mode fiber (SSMF). An MSE between gR and gDNNR

of 4.1 · 10−5 was achieved. The DNN is differentiable in
the frequency offset and allows optimization w.r.t. the pump
frequency by substituting it for gR in (2), while at the same
time significantly improves on the accuracy w.r.t. gLORR .

B. Differentiable backward model

The method for creating a differentiable model which
includes backward pumping is detailed in [11]. For a
given fiber length Lspan, number of backward pumps
NBCKW , frequencies of the backward pumps FBCKW =
{fBi , i = 1 . . . NBCKW }, powers of the backward pumps
PBCKW = {PBi , i = 1 . . . NBCKW } and channel load
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{P1(0), P2(0), . . . , PN (0)}, ML can be applied to learn the
on-off gain of the amplifier defined as

G(ωn) = Pn(Lspan,PBCKW ,FBCKW )

− (Pn(0)− αnLspan), (3)

where Pn(Lspan,PBCKW ,FBCKW ) is the output power of
the fiber (z = Lspan) at the desired frequency index n. The
dependence on the backward pumps’ frequencies and powers
is also explicitly stressed. In order to train a model that predicts
this mapping, a training data set is built based on either an
iterative solver for the SRS, e.g. implementing a shooting
algorithm, or experimentally. In either case, the training dataset
is built by first sweeping the required free parameters, which
can be any subset of {PBCKW ∪ FBCKW }. Then, recording
Pn(Lspan,PBCKW ,FBCKW ) for all n. This method is very
powerful, but suffers several important drawbacks. The main
one is the dimensionality of the problem. Every time a pump
is added to the dataset, due to the curse of dimensional-
ity, the number of gain profiles that is needed for accurate
representation of the parameter space grows exponentially.
Furthermore, the model so constructed cannot generalize to
predicting the gain profile for an arbitrary channel load when
the amplifier is operated in saturation (high-input signal power
leading to pump depletion) [19]. Nevertheless, it allows for
an accurate representation of the gain profile of a backward
pumping RA to be built, and provides sufficient accuracy in
the un-saturated (pump undepleted) regime (see Section III-B).
As in typical ML problems, the approximate gain profile
{G(ωn), n = 1 . . . N} is predicted by an NN. The NN is
fully differentiable, and so it allows gradient descent through
it in order to optimize the pump configuration w.r.t. a desired
gain profile.

In this paper, we follow the process presented in [11]
where the NN model is trained using experimentally generated
dataset. A 100 km of SSMF is used for transmission. The
channel load is assumed fixed to 40 channels with 100 GHz
spacing for a total input power of approx. 3 dBm. The pumps’
frequencies are also fixed to [206.1, 207.5, 209.0, 210.6] THz,
respectively, and the pumps’ powers are swept on a regular
grid in the range (including boundary points) [0; 21] dBm in
order to record the on-off gain profile. Under these conditions,
the amplifier is operated outside the saturation regime and
pump depletion is negligible. The NN then predicts the gain in
dB for an arbitrary pump power configuration by essentially
nonlinearly interpolating between the training gain profiles.
The NN topology was coarsly optimized to 2 hidden layers
of size 256 and 128, respectively with a ReLU activation
function. The NN is trained to minimize the MSE

MSE = En,i
[
|Gmeas(ωn, i)−Gmodel(ωn, i)|2

]
, (4)

where Gmeas(ωn, i) and Gmodel(ωn, i) are the measured and
modeled gains at frequency index n for pump profile i. The
maximum absolute error (MAE), defined as

MAE = max
n,i

[|Gmeas(ωn, i)−Gmodel(ωn, i)|] , (5)

is also measured. The model achieved an MSE of 0.0329 dB2

and a MAE of 1.0814 dB, similarly to [11]. For comparison, a

Fig. 2. Power profile launched into the fiber at the transmitter side.

NN with the same topology was applied to a synthetic dataset
generated using the GNPy software [27]. The achieved MSE
and MAE for that dataset were 0.0033 dB2 and 0.8892 dB,
respectively. The slightly worse modeling performance of the
experimental dataset is mainly attributed to the measurement
uncertaintity in the experimental data.

III. SYSTEMS UNDER CONSIDERATION

The RA optimization is tested on an unrepeatered link. Due
to the long distance, such links require a very high transmit
power. Here, forward RA can be applied to aid the transmitter
erbium doped fiber amplifier (EDFA) and push some of the
gain further into the fiber. This allows to keep a high signal
power for longer compared to an EDFA-only setup. The RA
then has a dual function: 1) to boost the power; 2) to shape the
combined gain profile of the EDFA and the RA. Flattening the
gain profile of the EDFA using standard methods, e.g. filtering
is undesirable in such links due to the waste of power. In this
work, without loss of generality, we assume an EDFA with a
non-flat gain profile [28], resulting in a power profile launched
into the fiber given in Fig. 2 at a total power of 15 dBm.
The total link distance we consider is 250 km. Similar to the
backward model training stage, we consider a channel load of
N = 40 channels on a 100 GHz ITU grid.

A. Forward RA only with remote Raman pumping stage

The forward-only RA optimization is exemplified in Fig. 3.
In order to demonstrate the versatility of the model, we
consider a Raman-based remote optically pumped amplifier
(ROPA), where Raman pumps are guided from the receiver
to the ROPA using an independent fiber, coupled into the
transmission fiber and provide extra amplification for the last
section of the span. In this case, both fibers L1 and L2,
including the fiber leading the remote pumps to the pumping
location are modeled using (2), which is differentiable in the
RAs frequency and power if gLORR or gDNNR are applied. This
system is motivated by [29], where similar configuration is
applied with forward RA and ROPA using a high-order Raman
amplification.

B. Forward & backward pumping

The joint forward and backward RA optimization is exem-
plified in Fig. 4. The receiver directly pumps in the backward
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Fig. 3. The unrepeatered transmission setup with a remote pumping stage.
Both the transmitter and the remote RA are pumping in the forward direction.
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Fig. 4. The unrepeatered transmission setup with both forward and backward
pumping RA.

direction. In this case, the distance is generally long enough
and thus the signal power entering the backward-pumping
section is weak enough to ensure that the pumps of the
backward RA do not suffer from depletion. The un-saturated
on-off gain then provides an accurate gain profile of the
backward RA, and the ML model discussed in Section II-B can
be applied. In order to confirm this assumption, the difference
in gain profiles for the backward RA is examined in Fig. 5.
The pump powers of all four backward pumps are fixed
at their maximum of 21 dBm. Different input load profiles
at different total load powers (indicated with circles in the
figure) are studied: a flat load profile, a randomly generated
positively tilted load profile with an excursion of 5 dB and
a randomly generated negatively tilted load profile with an
excursion of 5 dB at total power input to a 100 km fiber
of [−5; 20] dBm. Below total powers of 10 dBm, the gain
profile is constant and independent of both the input load
profile and the total load power. This allows for the on-off
gain model to be applied in unrepeatered systems. For such
systems, after 100+ km of transmission, the total power will
typically be well below the threshold of 10 dBm even if we
apply a forward RA pumping in the first section of the span.
The unrepeatered fiber span of length L1+L2 is modeled using
two connected models of length L1 and L2. The first section
is modeled using (2), and the second section is modeled using
the ML model from Section II-B. The concatenation of these
models is completely differentiable in the forward RA’s pump
frequencies and powers, as well as in the backward RA’s pump
powers (pump frequencies are assumed fixed to the values
presented in Section II-B).

IV. OPTIMIZATION METHODS

For the system with ROPA, the following cost function is
adopted for the optimization of the RAs

192 192.5 193 193.5 194 194.5 195 195.5

frequency, THz

5

6

7

8

9

10

11

G
, 
b
a
c
k
w

a
rd

 R
A

, 
d
B

flat input profile

random negative tilt

random positive tilt

20dBm

15dBm

10dBm {5,0,-5}dBm

Fig. 5. Depletion study for the backward RA. Slight dependence on the input
channel load is seen for high total power (20 dBm). Below a total power of
the load channels of 10 dBm, the gain of the RA is independent of both
the input power profile and the total power. Total power of the load profiles
indicated with annotations.

L(PRMT ,PFRW ,FRMT ,FFRW ) = (6)

En
[
|Pmodeled,n(Lspan)− Ptarget,n(Lspan)|2

]
+

ReLU (Fmin −min (FRMT ∪ FFRW )) +

ReLU (max (FRMT ∪ FFRW )− Fmax) +

ReLU (max (PRMT ∪ PFRW )− Pmax) +

ReLU

∑
j

PRj − Ptot

+ReLU

(∑
i

PFi − Ptot

)
,

where PRMT = {PRi , i = 1 . . . NRMT }, PFRW = {PFi , i =
1 . . . NFRW }, FRMT = {fRi , i = 1 . . . NRMT } and FFRW =
{fFi , i = 1 . . . NFRW } are the powers of the remote RA,
powers of the forward RA, frequencies of the remote RA and
frequencies of the forward RA, respectively. The first term in
(6) is the MSE over frequency between the modeled power
Pmodeled,n(Lspan) and the target power Ptarget,n(Lspan) ,
respectively. Then, Pmax is the power constraint per laser.
The ReLU function is defined as ReLU(x) = max [0, x] and
ensures the penalization of solutions outside of the power and
frequency constraints of the pump lasers. Here, Fmax = 220
THz and Fmin = 198 THz are the frequency constraints with
a range chosen to support 1st and 2nd order pumping for C-
band operation. The total power constraint per amplifier is
Ptot = 2.5 W.

For the system with backward pumping, the following
version of the cost function is applied for optimization

L(PBCKW ,PFRW ,FFRW ) = (7)

En
[
|Pmodeled,n(Lspan)− Ptarget,n(Lspan)|2

]
+

ReLU (Fmin −minFFRW ) +

ReLU (maxFFRW − Fmax) +

ReLU (max (PBCKW ∪ PFRW )− Pmax) +

ReLU

∑
j

PBj − Ptot

+ReLU

(∑
i

PFi − Ptot

)
,
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After initial convergence, pump lasers with a frequency
separation ≤ 200 GHz are merged together in a single pump
with a power equal the sum of powers and frequency equal the
average of the frequencies. The iterative optimization process
is then resumed. This ensures a practical and efficient use of
lasers limiting the number of pumps needed. Different variants
can be devised of merging strategy, e.g. always selecting the
N pumps with highest powers and pruning the rest, or pruning
based on minimum resulting deterioration of the MSE. In
either case, the designer is free to impose a constraint on the
number of pumps available for the RA and/or their frequency.
We note that there may be numerous solutions which provide
similar result in terms of optimization, which can be obtained
with different initializations and merging strategies.

V. RESULTS

The optimization processes outlined in Section IV are run
for the systems under consideration. Without loss of generality,
a flat received power profile is targeted. The cases of gDNNR

and gLORR are considered for optimization. The results of
both are benchmarked against a full implementation in GNPy
including a Raman solver for the set of ordinary differential
equations describing the SRS (given in Eq.(1)) and using a
piece-wise interpolation for the tabulated gR values [27]. The
EDFA output power for both systems is assumed 15 dBm,
and results in the power profile in Fig. 2 when its input is
a flat profile. The target total received power is chosen to be
−10 dBm, or ≈ −26 dBm per channel, which is reasonable
for such systems [29].

A. System with remote RA pumping stage

For the system given in Fig. 3, the optimization algorithm
was initialized with 8 pumps in each of the forward and the
remote amplifier, and Pmax = 2 W. In Fig. 6, the optimized
forward and remote pumps are given for the case of gDNNR .
The model converged to NFRW = 5 and NRMT = 4, an
MSE of 0.08dB2 and an MAE of 0.87 dB. The high-frequency
pumps arrive at the coupling stage at very low power, clearly
indicating their role as second-order pumping for the low-
frequency pumps. The latter then provide gain to the C-band.

The benchmarks are then given in Fig. 7 for gDNNR . We see
excellent correspondence between the model and the GNPy
benchmark. The MAE between the target profile and GNPy
validation is 1.06dB, and the MAE between the GNPy and the
differentiable model prediction is 0.19 dB, which also justifies
the chosen step size (see Section V-C). In this case, the forward
RA provides ≈ 18.4 dB of total gain, while the ROPA provides
≈ 6.6 dB of total gain with total powers

∑
i P

F
i = 2.29 W and∑

i P
R
i = 2.5 W, respectively. In Fig. 8, the GNPy benchmark

is given when optimization is performed with the Lorentzian
approximation gLORR . During training, this model results in
MSE and MAE which are slightly higher than the DNN case.
Even more importantly, we see significant discrepancies of
≈ 2.45 dB of MAE w.r.t. the GNPy benchmark, indicating that
this simple model is not sufficiently accurate for optimization.

Fig. 6. Optimized Raman configuration using gDNN
R when initialized to 8

remote and 8 forward pumps, converged to 4 remote and 5 forward pumps.

Fig. 7. Resulting power profiles at the receiver when the RAs are optimized
using gDNN

R , together with the GNPy benchmarks, for the system with
remote pumping.

B. System with backward pumping

For this system, the optimization algorithm was initialized
with 8 pumps in the forward amplifier with Pmax = 1 W. For
the backward amplifier, Pmax = 0.14 W, which is chosen to
be within the operating region of the lasers used to generate
the data for the ML model.

In Fig. 9, the optimized forward and backward pumps are
given for gDNNR . The model converged to NFRW = 4, an
MSE of 0.14dB2 and an MAE of 0.63 dB. Due to the power
constraint per pump, the two pumps at ≈ 215 THz could
not be merged. The benchmarks are then given in Fig. 10.
A maximum error of 0.65dB between the target profile and
GNPy validation of the proposed optimized profile is seen in
this case. The total power at the end of the first fiber section
is ≈ 0.8 dBm, well below the threshold shown in Fig. 5 for
depletion to occur. This assumption is further validated by the
good correspondence to the GNPy benchmark at the receiver,
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Fig. 8. Resulting power profiles at the receiver when the RAs are optimized
using gLOR

R , together with the GNPy benchmarks, for the system with remote
pumping.

Fig. 9. Optimized Raman pumps’ configuration using gDNN
R for the system

with backward pumping when initialized to 8 forward pumps, converged to
4 forward pumps

which does not employ the two virtual sections but considers
the fiber as a single span. In this case, the forward RA provides
≈ 15.8 dB of gain, while the backward RA provides ≈ 9.2 dB
with total powers

∑
i P

F
i = 2.21 W and

∑
i P

B
i = 0.45 W,

respectively. In Fig. 11, the GNPy benchmark is given when
optimization is performed with the Lorentzian approximation
gLORR . Once again, significant discrepancies of ≈ 3.6 dB
of MAE w.r.t. the GNPy benchmark can be observed, even
though flatness was achieved during the training stage.

C. Final remarks

The remaining discrepancies between the model from (2)
and the GNPy benchmark can potentially be further reduced
by decreasing the step size at the expense of slower simulation
time. At the chosen step size of ∆z = 100m, the optimization
requires ≈ 500 iteration to converge which takes ≈ 5 minutes
on a standard CPU. The discrepancies between the backward
model and GNPy are most likely due to remaining mis-
calibration between the fiber parameters and non-modeled
coupling losses, non-flat fiber loss over the C-band, the un-
certainties in the measurements used to obtain the ML model,
and similar.

Fig. 10. Resulting power profiles at the receiver when the RAs are optimized
using gDNN

R , together with the GNPy benchmarks, for the system with
backward pumping.

Fig. 11. Resulting power profiles at the receiver when the RAs are optimized
using gLOR

R , together with the GNPy benchmarks, for the system with
backward pumping.

It should be noted that the forward-only pumping model
is completely differentiable in distance z. This means that it
supports shaping the RA gain over distance, which may be
beneficial for systems, where power symmetry across the span
is desired. Examples here include optical phase conjugation
systems for nonlinearity compensation [30].

Optimization of remote erbium doped fiber-based amplifiers
is also of interest for future work, and potentially can be
approached with the proposed methods. However, an EDFA
model which is differentiable w.r.t. the pump frequency and
power would be required, which to our knowledge is currently
unavailable.

VI. CONCLUSION

Gradient-based optimization was proposed for the frequency
and power of the pumps in Raman amplifiers. In the forward
pumping case, a fully differentiable amplification model was
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proposed relying on machine learning (ML)-based nonlinear
interpolation of the Raman gain coefficient. In the backward
pumping case, a differentiable model is obtained using ML to
train a NN representing the on-off gain of the amplifier.

For the forward pumping case, this method is completely
flexible in the main system and amplifier parameters and it
allows for quick optimization of various system configurations,
as exemplified with two different unrepeatered systems. The
optimization follows the physical model of the SRS and does
not require training data to be generated. An obvious extension
is to include the RA and EDFA noise figure in the model in
order to optimize the received SNR profile instead of power
similar to [31].
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