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Abstract We propose a novel approach to perform QoT estimation relying on joint exploitation of 
machine learning and analytical formula that offers accurate estimation when applied to scenarios with 
heterogeneous span profiles and sparsely occupied links.  Our approach significantly outperforms the 
widely used lightpath-level QoT estimation. ©2022 The Author(s) 

Introduction 
Accurate and real-time estimation of quality of 
transmission (QoT) can significantly contribute to 
the realization of low-margin optical networks 
[1,2]. The time-consuming estimators, i.e., split-
step Fourier method (SSFM) [3], integral-based 
enhanced Gaussian noise (EGN) [4], and 
integral-based GN models applied to the link-
level analysis [5], are not suitable for real-time 
QoT-aware network planning.  However, closed-
form models (CFMs) have been proposed that 
low offer complexity at the expense of reduced 
accuracy [6]. The inaccuracy may come from 
uncertainties of the input parameters or 
assumptions such as transparency and 
homogeneity of the spans [7-10]. 

The homogeneous characteristics of the span 
could be regarding their length, attenuation, 
dispersions, or non-linearities coefficients [8, 9]. 
On the other hand, the assumption of fully loaded 
links in the distance adaptive network planning 
reduces the CFMs' run time. However, this 
results in overestimating non-linear interferences 
(NLIs), which could increase the SNR design 
margin [11].  Machine learning (ML) based 
approaches have received significant attention 
targeting accuracy improvement while reducing 
the complexity [2, 12]. Most of the works in the 
literature focus on the estimation of end-to-end 
QoT of the lightpath (LP) under test, and a small 
number of them focus on refining the input 
parameters of the GN-based models to improve 
the accuracy while keeping the complexity level 
low [13-21]. 
In this paper, we propose a joint analytical and 
ML-assisted (JAM) model in which the exact 
values of the input parameters can be applied to 
the modified CFMs to perform QoT estimation. 
We perform a comprehensive numerical analysis 
and compare our proposal with the state-of-the-
art approaches that justify our proposal's 
advantages for accurate yet fast QoT estimation.   

System Model and Analytical Formula 
We considered a flexible optical  network (FON), 
where the data plane mainly comprises two 
terminal nodes equipped with open 
reconfigurable add/drop multiplexers (ROADMs), 
pre-amplifiers, and boosters and intermediate 
nodes equipped with In-line amplifiers. We 
assume the modulation format level (MFL) of 
sliceable bandwidth variable transponders (S-
BVTs) is selected based on the desired LP 
distance reach. A super-channel is formed by 
Nyquist shaped sub-channels (SbChs) having 
same symbol-rate and MFL. Thus, the occupied 
frequency slots by the SbChs are equal. In 
contrary to previous works [13-21], we apply a  
generalized SNR (GSNR) analytic model with 
MFL and long-haul LPs correction terms. The 
GSNR  of SbCh � on ��� LP and the noise power 

of NLIs (����
�,�,�) are obtained from Eq.(1)-Eq.(3).  
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where �, �, �, �, and  � are the indices of  ���  and 
��� SbCh, ���  LP, ��� link, and  ��� span, 
respectively. �� and ��,� are the number of links 
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correction term [22]. Moreover, �����,�,�,�  ≈
���

�,�,�
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�����
�,�,�, and the noise power of erbium-doped 

fibre amplifiers is ����
�,�,� = ℎ����

�,�������
�,� − 1�, 

where �����
�,�  is the amplifier gain of span � on link 

�.  Since the focus of this work is on comparing 
the ML-assisted GSNR estimators in span, link, 
and LP levels, we assume that the loss of each 
span is precisely compensated for by the span 

amplifier (�����
�,� =  ����,������

�,�

). Indeed, the span 

length may be different. The CFM in Eq.(1) is a 
modified version of the incoherent CFM of 
equation 7.32 in [23]. The proposed GN with MFL 
correction term (GNWM) CFM is applicable for an 
LP with sparsely occupied links and 
heterogonous spans in a FON. In Eq.(1)-(3), the 
input parameters are the SbCh launch power 

(���
�,�,�), the number of channels in link � (���

� ), the 

fibre field loss (��,�), the dispersion  (��
�,�), and the 

fiber non-linearity (��,�) coefficients, SbCh power 

density distribution (���
�(�),�,�), bandwidth (���

�(�)
),  

and frequency center (��(�)) on channel �(�), 
MFL correction factor (Φ�,�,�), symbol rate of 

SbChs (��,�,�), and amplifier's noise figure ( ��
�,�). 

Finally, �����
�,�  and , ����

�,� =
���
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����,�  are the 

span and effective span length, respectively.  

Problem Formulation 
We developed two approaches to predict the 

GSNR of an LP. A first ML-based approach. A 
second JAM proposal: the link-level and span-
level GSNRs are predicted according to an ML 
model, then we apply an accurate analytical 
model to concatenate the predicted link-level or 
span-level GSNRs to estimate the corresponding 
LPs' GSNRs of that links or spans [24].   

For the ML approach, we randomly generated 
10,000 LP samples (see Fig.1) as described 
below. Each sample consists of 12 attributes of 
an LP considered in (Eq.(1)-(3)). To generate the 
datasets (DSs), we randomly assigned values to 
those 12 attributes (in a list structure), assuring 
that they remain in the practical range of the 
relevant parameters. We specifically focus on 
span length heterogeneity and sparsely occupied 
links. Consequently, we defined the channel 
loading factor, which indicates the proportion of 
busy channels on each link. We consider the 
channel loading factor in the range of 10%-100%. 
Then, in the Ground Truth (GT) step, we apply 
the analytic model to estimate the launch power 
and GSNR of each LP end-to-end and extract 
their link-level and span-level GSNR according to 

a bit error rate (BER) threshold considering the 
MFL of the  LPs.  In this regard, the power of each 
channel is calculated according to the LOGON 
approach [5].  Next, the numbers of links and 
spans (in the last link) are calculated. Thus, the 
list of the channel's launch power, number of 
spans, and number of links are updated for each 
LP. Now, the LP-level GT (LP-GT) is constructed. 
Moreover, according to the calculated GSNR of 
each link and span related to the LPs, the Link-
level GT (LL-GT) and Span-level  GT (SL-GT) are 
formed. The final GT datasets of LP, link, and 
Span levels have 9526, 41590, and 196495 
samples and are publicly available at [25]. We 
have some missing data in LPs because of the 
BER condition.  We split LP-level GT into two 
sections, including Train/Cross-Validation and 
Test, with 80% and 20% of LP-GT samples. 
Then, LP-level, Link-level, and Span-level 
regressors are obtained by applying the ML 
models on Train/Cross-Validation LP-, LL-, and 
SL-GT, respectively. The predicted GSNRs of 
Test GT's LPs are obtained in the pure ML 
approach by applying an LP regressor. 

On the other hand, in the proposed JAM 
algorithm, we exploit Eq.(1) without considering 
Eq.(2) and Eq.(3). Indeed, GSNRs of Test GT's 
LPs are estimated by applying the predicted 
GSNRs of corresponding spans and links 
obtained by the SL and LL regressors. To do so, 
we substitute the related estimated GSNRs 
obtained from SL and LL regressors in Eq.(1).  

Results 
In this study, to generate initial LP samples, we 
assume the LPs' symbol rates and their 
bandwidths equal 64 GBaud and 75 GHz (6x12.5 

GHz), respectively. Thus,  ���
�,� = 60 in C-band, 

i.e., f m(n) ∈ {191.61, …, 195.95} THz. 

 ��,�,  ��
�,�,  ��,�, ��

�,� are 0.21 dB/km, -21.45x10-27 
s2/m, 1.31x10-3 (W.m)-1, 6 dB, respectively.  

Additionally, ���
�,�,� ∈ [-5,5] dBm with 0.01 dBm 

resolution and Φ�,�,�= {1,1,0.66,0.68,0.69, 0.62} is 
related to the PM- BPSK, -QPSK, -8QAM, -
16QAM, -32QAM, and -64QAM that show with 1, 

2, 3, 4, 5, and 6, respectively. Moreover, �����
�,�,� ,

�����
�,� ,  are in [50,120] km, and [1,10], 

respectively, and �����
�   equals 20.  BERthreshold = 

3.8x10-3 suitable for a 28% forward error 
correction overhead [26]. Thus, according to 
equations in [26], the GSNR thresholds for MFLs 
: 1-6 are 5.52, 8.53, 12.51, 15.19, 18.19, and 
21.12 dB, respectively. Note the number of spans 

(�����
�,� ) and links (�����

� ) are large enough in the 

initial raw data, and we refine them in the GT 
generation. 



 We applied Gradient Boosting (GB) and Deep 
Neural Network (DNN) models to predict the 
GSNRs in three levels. In addition, to find the 
optimum hyperparameters, we apply the k-fold 
cross-validation technique with k = 5 and the grid 
search method. To validate the proposed analytic 
model (GNWM), we compared the GSNRs of the 
SbChs in randomly selected links obtained by 
applying the GNWM, GN, and the integral-based 
EGN model based on [4]. Since the running time 
of GSNR calculation using the EGN model for 
LPs with large number of spans is time-
consuming, we considered 500 link-level 
samples with MFL: 3-6 and 5 samples for each 
MFL: 1 and 2. Fig.1(a) shows that the GN model 
for MFL: 1 and 2 is more accurate than GNWM. 
On the contrary, the GNWM is more accurate 
than GN for LPs with a shorter distance, i.e.,  
MFL: 3-6. Thus, to generate the DSs, we applied 
GN for LPs with MFL:1 and 2 and GNWM for 
ones with MFL: 3-6. Additionally, the cumulative 
distribution functions (CDFs) curves in Fig1.(b) 
present the GSNR errors using GB ML and the 
DNN model in LP-, link-, and span-level.  As 
shown in Fig1.(b), about 99%  of the prediction 
errors (GT GSNRs - Estimated GSNRs) of SL, 
LL, and LP levels are lower than 0.1, 0.4, and 0.8 
dB for GB and 0.3, 1.1, and 1.95 dB for DNN, 
respectively. Moreover, in Fig2. (c), CDFs' curves 
of estimated GSNR errors of LPs in Test GT 
obtained by applying the corresponding 
estimated GSNRs of spans, and links, to Eq.(1) 
shows with JAM: Span-level ---> LP and JAM: 
Link-level ---> LP, respectively. Also, curve JAM: 
Span-level ---> link shows the estimated LLs' 
Test GSNRs by applying corresponding 
estimated span GSNRs, to Eq.(1). The results 
show that about 99% of the prediction errors of 
LPs' GSNRs reduce from 0.8 dB with applying 
GB to 0.3 and 0.58 dB for JAM: Span-level---> LP 
and JAM: Link-level--->LP, respectively. This 
value for link-level GSNRs improves from 0.4 dB 
using GB to 0.09 dB using the JAM: Span-level -
--> link.  A chart of the GB's results, highlighting 

the promising results of the JAM model, is shown 
in Fig 1. (b) and (c).  RMSE and MAE are reported 
in Tab.1 and  2 for GB, DNN, and JAM. The 
results confirm CDFs' behavior and emphasize 
that the GB is more accurate than DNN regarding 
the synthesized DSs. However, the GSNR 
calculation for an LP averagely took longs in 
order 130 and 200 μsec, respectively, from the 
link and span levels GSNRs (JAM approach). 
The run time of an LP’s GSNR calculation is 
about in order 14 msec for the proposed CFM.  

Conclusion 
The results show that for LPs with heterogeneous 
span profiles and sparsely occupied links our joint 
analytical and ML (JAM) proposal outperforms 
pure ML models and the proposed GN with MFL 
correction term in terms of accuracy and speed, 
respectively. Indeed, the LPs' GSNRs estimation 
accuracy improves by 0.4 dB using JAM in 
comparison to pure ML.  Additionally, the speed 
of LPs' GSNRs calculation using  JAM is in 
microseconds, whereas using analytical model it 
is in milliseconds. 

Acknowledgements 
Farhad Arpanaei acknowledges support from 
the CONEX-Plus programme funded by 
Universidad Carlos III de Madrid and the European 
Union's Horizon 2020 research and innovation 
programme under the Marie Sklodowska-Curie 
grant agreement No. 801538. The authors would 
like to acknowledge the support of the EU-funded 
B5G-OPEN project (grant no. 101016663) and the 
Spanish projects ACHILLES (PID2019-104207RB-
I00) and Go2Edge (RED2018-102585-T). This work 
was supported by the Italian Ministry for University 
and Research (PRIN 2017, project FIRST). 

 
Fig. 1: (a) GSNR errors comparison of GN and GNWM (GN with modulation format level correction term) with EGN, (b) 

CDF of GB and DNN of span, link, and LP levels, (c)  CDF of GB and JAM of span, link, and LP levels, 

Tab. 1: Accuracy results for span (a),link (b), and LP (c) levels (a, b, c). Gradient Boosting (GB), Deep Neural Network (DNN).  

Model Train/Cross-validation (80%, k=5) Test (20%) 

Merit RMSE MAE R2 (%) RMSE MAE R2(%) 

GB (1, 22, 87)x 10-3 (23, 112, 221)x10-3 (99,99,99) (34, 147, 307)x 10-3 (24, 114, 224)x 10-3 (99,99,99) 

DNN (9, 252, 747)x 10-3 (71, 375, 980)x10-3 (99,98,98) (31, 390, 636)x 10-3 (997, 984, 979)x 10-3 (99,98,97) 

Tab. 2: Accuracy results for joint analytical and ML (JAM) 

Model Link-level 
--> LP  

Span-level 
--> LP  

Span-level 
-->Link 

RMSE 11 x10-3 24 x10-3 49 x10-3 

MAE 31 x10-3 15 x10-3 15 x10-3 
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