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Abstract: Recently, Enhanced Gaussian Noise (EGN) model of few-mode fiber nonlin-
earity has been proposed improving GN model accuracy. However, EGN is considerably
complex. We propose a closed-form EGN model and provide substantial simulations indi-
cating its accuracy. © 2021 The Author(s)

1. Introduction

The Gaussian Noise (GN) model of Few-Mode Fiber (FMF) nonlinear effects has been provided in [1] as a
practical tool for estimating Nonlinear Interference Noise (NLIN) power in uncompensated FMF links. The GN
model shows some errors in predicting NLIN power mostly due to the signal Gaussianity assumption [2]. Recently,
GN model was extended in [3] and a complete Enhanced GN (EGN) model has been derived considering all NLIN
components that improves the NLIN power prediction accuracy. Note that in this EGN model formulation, the
carrier phase estimator is implicit in the model [3]. EGN model is computationally complex, which can make its
extensive practical use difficult [2]. This paper proposes a closed-form EGN model from the integral-form EGN
model presented in [3] and fully verifies it on a theoretical basis. Such approximation is effective in its present
form especially for real-time quality of transmission evaluation.

2. Closed-form EGN model

Considering a rectangular Nyquist Wavelength Division Multiplexing (WDM) comb, and flat NLIN Power Spec-
tral Density (PSD), the NLIN variance can be expressed as the multiplication of NLIN PSD and the bandwidth [4].
The PSD of pth mode and nth channel can be formulated by EGN model as in [2]

Gp
EGN( fn) = Gp

GN( fn)+Gp
FON( fn)+Gp

HON( fn), (1)

where GGN , GFON , and GHON are second, forth, and higher order noise contributions, respectively. Since Self
Channel Interference (SCI) and Cross Channel Interference (XCI) are the dominant NLIN terms in dense WDM
systems with large symbol rate, we only consider these terms. In other words, Multi Channel Interference (MCI)
is not assumed in NLIN formulation [5]. Therefore, and by considering [3], the PSD of pth mode and nth channel
can be expressed as
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where D is number of modes, Pn,p is the power of the nth channel of pth mode, κ
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sixth order moment of the constellation of nth channel of pth mode, respectively. Moreover, the E(n, p,n′,q) term
is equal to
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pq
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where αp shows the attenuation, Ls is span length, Ns is number of spans, βp( f ) is the propaga-
tion constant of pth mode, γ̃pp = 8

9 γ fpp, γ̃pq = 4
3 γ fpq with γ being the Kerr nonlinearity coefficient, and
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∫∫
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p F2
q dxdy representing the nonlinear coupling coefficient between the modes p and q where

Fp(x,y) is the spatial profile of pth mode, Ip =
∫∫

F2
p (x,y)dxdy, Ae f f shows the effective area of the funda-

mental mode [6]. f1 ∈ [ fn −Bch,n/2, fn +Bch,n/2] and f2 ∈ [ fn′ −Bch,n′/2, fn′ +Bch,n′/2] with Bch,n and Bch,n′ show-
ing the bandwidths of the nth and n′th channels, respectively. We use the incoherency approximation, i.e.,
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where β1 p is the inverse group velocity parameter of pth mode, and β2p = |Dp|c/(2πν2), Dp is the dispersion
coefficient of pth mode, ν is the center frequency of the WDM comb, c is the light speed, Le f f = (1− e−αpLs)/αp,
and Le f f ,a = 1/αp. By noting that
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By substituting the obtained E(n, p,n′,q) approximation in (2), the PSD of the nonlinear noise of the nth channel
of the pth mode can be obtained. However, we show in in simulation results that this formulation underestimates
the NLIN PSD. The FON terms have negative coefficient and removing them leads to NLIN PSD overestimation.
We depict in our experiments that neglecting the FON term, Pn′,qPn′,pPn,qE(n, p,n′,q), can properly compensate this
underestimation. Therefore, the PSD of pth mode and nth channel can be formulated by
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3. Simulation results

In this section, the accuracy of proposed closed-form EGN model versus integral-form full EGN model presented
in [3] is substantially investigated. The Generalized Signal to Noise Ratio (GSNR) is considered which contains the
effect of NLIN and amplified spontaneous emission. The following FMF link parameters are used; the modulation
format is PM-QPSK with the symbol rate 64 GBaud and the channel spacing 75 GHz. 10 spans are considered each
with 100 km length. 3 modes, each with 66 channels with the center frequency 1550 nm are used. The values for
nonlinear coupling coefficient, dispersion coefficient, inverse group velocity, and attenuation are taken from [6].
At each span, an erbium doped fiber amplifier with 5 dB noise figure compensates FMF attenuation. All Figs plot
GSNR of central channel of LP01 or LP11a/b mode. The link-state is full-load with the same modulation format
for different channels and modes.

Figs. 1a and 1b investigate the effect of considering Pn′,qPn′,pPn,qE(n, p,n′,q) term in (6) for LP01 and LP11a/b
modes, respectively. As seen, considering (6) with Pn′,qPn′,pPn,qE(n, p,n′,q) term underestimates the NLIN power,
and removing this term results in better accuracy. The accuracy of closed-form EGN model for different modula-
tion formats is indicated by GSNR plots in Figs. 1c and 1d where the optimum launched power is deployed for
different channels and modes. The GSNR difference of closed-form and integral-form EGN model is always be-
low 0.4 dB. Fig. 2 plots GSNR versus launched power per channel-mode for closed-form and integral-form EGN
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Fig. 1: GSNR versus launched power per channel-mode for closed-form and integral-form EGN model, considering (6) with/without
Pn′,qPn′,pPn,qE(n, p,n′,q) term for a) LP01 and b) LP11a/b modes; and GSNR of the optimum launched power per channel-mode ver-
sus modulation format for closed-form and integral-form EGN model, for c) LP01 and d) LP11a/b modes.
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Fig. 2: GSNR versus launched power per channel-mode for closed-form and integral-form EGN model, considering different baudrates-channel
spacing for a) LP01 and b) LP11a/b modes; and considering different channel spacing for c) LP01 and d) LP11a/b modes.
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Fig. 3: GSNR versus number of spans, for closed-form and integral-form EGN model, considering the optimum launched power per channel-
mode for a) LP01 and b) LP11a/b modes; and GSNR versus number of channels, for closed-form and integral-form EGN model, considering
the optimum launched power per channel-mode considering full-load link-state for c) LP01 and d) LP11a/b modes.

model, considering different baudrates-channel spacing (Figs. 2a and 2b) and different channel spacing (Figs.
2c and 2d). It is indicated that closed-form EGN model is quite effective while considering different baudrates
and channel spacing in both LP01 and LP11a/b modes. Figs. 3a and 3b show good convergence of closed-form
EGN model towards the integral-form EGN model curve considering different number of spans for both LP01 and
LP11a/b modes. Figs. 3c and 3d indicate that closed-form EGN model is accurate for sufficiently large number of
channels for both LP01 and LP11a/b modes.

4. Conclusion

In this paper, we presented a closed-form EGN model for FMF systems. Substantial simulations indicated the
proposed formulation to be accurate for sufficiently large number of channels. The GSNR difference compared
with integral-form EGN model is always below 0.4 dB.
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