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A B S T R A C T

Understanding thermal dynamics and obtaining the computational model of residential buildings enable its
scaled application in energy retrofits, control optimization and decarbonization. In this paper, we present
a deep learning approach to model building thermal dynamics with smart thermostat data collected from
residential buildings, with the goal to investigate model generalizability. In the first stage, we developed
and compared different Deep Learning architectures including Convolutional Neural Networks (CNN), Long
Short-Term Memory (LSTM) models and CNN-LSTM to predict indoor air temperature in a multi-step time
horizon. In the second stage, we implemented a Transfer Learning (TL) process, which aims to improve the
prediction performance on a new set of buildings (targets), exploiting the knowledge of related or similar
buildings (sources). Different TL strategies and source model identification methods were investigated. The
study showed that the CNN-LSTM performed the best among the architectures compared, with an average Mean
Absolute Error (MAE) of 0.26 ◦C for one-hour-ahead (twelve 5-min future steps) predictions. Furthermore,
the results showed that freezing the LSTM layer and fine-tuning the other layers of the CNN-LSTM achieved
the best performance among four TL strategies, which further improved the performance with respect to
a machine learning approach by 10%, and proving the effectiveness and generalizability of the proposed
approach. A comparison of three different source model identification methods showed that randomly selecting
source models constrained by similar building characteristics can provide good TL performance while retaining
simplicity comparing with other quantitative source identification methods.
1. Introduction

According to Eckman et al. (2021), buildings contribute to 40%
of total energy consumption and 80% of the peak electric demand.
The HVAC systems, responsible for Heating, Ventilation, and Air Con-
ditioning, consume up to 50% of the energy used in buildings (Doe,
2015). The increasing concern about greenhouse gas (GHG) emissions
resulting from higher building energy consumption has led to a focus
on optimizing the operation of existing buildings. This research interest
includes ongoing commissioning, predictive controls, and energy man-
agement (Garimella et al., 2022). To achieve this optimization, accurate
building thermal dynamics models are crucial. These models predict the
indoor air temperature trend based on control actions. Thermal dynam-
ics models can be categorized as white-box, grey-box, and black-box
models, each characterized by varying levels of complexity, reliance
on data, and associated engineering effort.

White-box models are developed based on the first principles gov-
erning energy and mass transfer in buildings. They employ a forward
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approach, utilizing known information about building characteristics,
energy systems, occupant behaviors, and weather conditions. However,
calibrating white-box models for existing buildings often requires ex-
tensive expertise (Fabrizio and Monetti, 2015). On the other hand,
grey-box and black-box models adopt an inverse approach, using mea-
sured data to identify a model that describes a building’s thermal
processes. Grey-box models serve as simplified alternatives to the com-
plex white-box models, using simplified parameters to represent the
thermal properties of buildings. For example, thermal resistance (R)
and thermal capacity (C) are two types of parameters used in reduced-
order models, analogous to electric circuits, to describe heat transfer in
buildings (Wang and Chen, 2019). When the values of these parameters
are determined through regression with measured data, the models are
referred to as grey-box or hybrid models. However, grey-box models of-
ten rely on simplified assumptions about external and internal loads, as
well as HVAC systems. Furthermore, parameter identification in grey-
box models requires well-processed temperature, solar radiation, and
heat transfer data, making it challenging to incorporate information
from features such as HVAC system runtime and occupant motion.
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Black-box models, which do not require prior knowledge about the
building, are solely driven by data. Deep Learning (DL) techniques have
gained significant popularity in recent years as they offer a powerful
means to approximate the nonlinear dynamics of building thermal
systems. In a study by Wang et al. (2020), nine machine learning (ML)
algorithms were compared for building thermal load prediction. The
results revealed that LSTM achieved a mean absolute error (MAE) of
less than 0.4 ◦C for one-hour ahead predictions. Pinto et al. developed
LSTM-based thermal dynamics models to enhance energy management
in a cluster of buildings using reinforcement learning control (Pinto
et al., 2021). In their respective studies, Mtibaa et al. (2020) and Elmaz
et al. (2021) explored different model architectures based on LSTM
and CNN-LSTM for predicting indoor air temperature. However, it is
worth noting that most of the existing research in this domain has
focused on developing models tailored to specific buildings, without
adequately addressing the generalizability and transferability of these
models to buildings with varying characteristics in different climate
regions. Additionally, the utilization of real measurements for training
and testing these models at scale has been limited in the literature
due to the inherent challenges associated with acquiring a substantial
amount of data, which is often scarce within building environments.
Therefore, there is a need for further exploration and investigation
to assess the effectiveness and adaptability of these models across
diverse building types and climates, while also considering the practical
constraints related to data availability.

Recent studies have investigated the potential of transfer learning to
address challenges related to data availability. Transfer Learning (TL)
aims to enhance the performance of prediction tasks on new sets of
buildings (targets) by leveraging knowledge from related or similar
buildings (sources) (Pan and Yang, 2010). TL has gained significant
interest in the energy domain. Peirelinck et al. (2022) examined its
role in demand response and building control. They found that TL
techniques can help leverage existing domain knowledge and human
expertise in addition to sparse observational data, achieving improve-
ments that can exceed 30% in a variety of tasks including supervised
machine learning and reinforcement learning. Himeur et al. (2022)
reviewed the role of TL in energy systems for sustainable smart cities.
They highlighted that TL can provide promising solutions to alleviate
data shortage and model generalization problems for a variety of
problems including load forecasting (Jung et al., 2020), fault detection
and diagnosis (Zhu et al., 2021; Chen et al., 2023), thermal comfort
prediction (Somu et al., 2021), non-intrusive load monitoring (Li et al.,
2023), renewable energy generation, and smart grid energy trading.
Pinto et al. (2022b) specifically discussed its applications in smart
buildings including: (i) building load prediction (Fan et al., 2022), (ii)
occupancy detection and activity recognition (Mosaico et al., 2019),
(iii) building dynamics modeling (Pinto et al., 2022a), and (iv) energy
systems control (Coraci et al., 2023). They found that despite TL in the
smart building domain has gained increasing research since 2015, the
interest on this topic is still at the very early stage. And some of the key
common challenges include selecting right source building, quantifying
the similarity between buildings, thus avoiding negative transfer.

In the context of building thermal dynamic models, Chen et al.
(2020) investigated the use of transfer learning on the hidden layers of
a multi-layer perceptron to predict building internal temperature and
relative humidity. Similarly, Jiang and Lee (2019) transferred a seq-to-
seq LSTM model from one building to simulate temperature evolution
in a target building with limited data, fine-tuning the model accord-
ingly. Grubinger et al. (2017) proposed an online transfer learning
approach that combined a building dynamic model transferred from
another building with a model predictive controller (MPC), overcom-
ing data unavailability challenges and achieving better performance
compared to a machine learning (ML) approach that did not leverage
knowledge from other buildings. Furthermore, Pinto et al. (2022a)
attempted to isolate the contribution of each feature in parameter-
based transfer learning, emphasizing the importance of selecting the
2

appropriate source building for this process.
Despite these applications, the selection of the source building is
highly influenced by the task at hand, the monitoring infrastructure,
and the availability of data. Some approaches for selecting the best
source building for energy load prediction tasks have been introduced.
Fang et al. (2021) proposed using Maximum Mean Discrepancy (MMD)
as a similarity index to weigh the importance of a specific source in
an ensemble transfer learning methodology. Similarly, Li et al. (2022)
employed MMD to quantify the similarity between the source and
target buildings of their domain invariant features. Lu et al. (2021)
tested various ML models developed on different sources in the target
domain, quantifying the similarity between the two domains based on
the performance achieved during testing. They evaluated a similarity
measurement index (SMI) and selected the building with the lowest
SMI as the source for fine-tuning TL. However, these metrics have
primarily been used in energy load prediction applications and have
been applied to features extracted from neural networks, limiting their
interpretability.

1.1. Research gaps and novelty

Despite the opportunity provided by the use of TL to overcome data
scarcity and ease the deployment of machine learning in buildings, the
reviewed literature presents the following research gaps:

1. Further studies, that leverage real data, are necessary to charac-
terize the effectiveness of transfer learning for building thermal
dynamic models.

2. It is still not clear how to handle building similarity when
multiple source buildings are available.

3. There is no application of TL using hybrid model architecture for
building thermal dynamics in existing literature.

4. Existing literature did not thoroughly compare the performance
of different TL strategies for building thermal dynamic models.

In this paper, we used a CNN-LSTM model architecture that is able
to perform a multi-step prediction of indoor air temperature on a large
residential dataset that spans over different buildings in three U.S.
states, three space types and two heating system configurations. The
paper also studies the potentials of applying transfer learning even
not in the case of data scarcity, identifying how different transfer
learning approaches and source buildings impact the performances
of the proposed models, comparing them with a traditional machine
learning approach. This study was aimed at closing the literature gap
and addressed such gaps as follows:

1. A comparison of different neural network architectures for the
development of building thermal dynamic models is carried out.

2. Different transfer learning approaches on dozens of real build-
ings with abundant monitored data are applied, quantifying
improvements with respect to traditional ML-based approaches.

3. Different source building selection processes that leverage meta-
data and similarity metrics are implemented and compared.

The content of the article is organized as follows. Section 2 provides
an overview on the use of deep learning algorithms to model building
thermal dynamics, transfer learning approaches and metrics to assess
their effectiveness. Section 3 describes the employed methodological
framework. Section 4 describes the obtained results while Section 5
provides a critical discussion and the concluding remarks of the work.

2. Background

2.1. Deep learning for building thermal dynamics

It is well known that building thermal dynamics are characterized
by non-linearity and time-variance (Aliberti et al., 2019). This is due

to the combination of heat transfer processes, solar and internal heat
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gains and HVAC system operations. Despite the modeling of building
thermal dynamics still remains a complex task, the higher availabil-
ity of measured data in the post-occupancy phase of the building is
allowing the data-driven approach to be more and more employed.
Data-driven models are able to better reflect the actual building thermal
dynamics and provide more accurate predictions of building responses
considering that they are more simple, easy to formulate and require
less parameterization and computation time than detailed forward
models (Wang and Chen, 2019). According to Wang and Chen (2019),
the literature categorizes data-driven models for building thermal dy-
namics into three main categories: thermal resistor-capacitor networks
(RC models), discrete-time transfer functions (TF models), and artificial
intelligence techniques (AI models). Due to their ease of implementa-
tion and physical interpretability, RC models are popular in existing
literature (Wang et al., 2019). However, RC models are limited in
capturing the non-linear behavior of building thermal dynamics. The
parameter identification process can be sensitive to model assumptions
and data inputs (Cibin et al., 2023). With the advancement and increas-
ing maturity of deep learning algorithms and computing resources, AI
models have gained popularity in modeling building thermal dynamics
due to their ability to capture nonlinear relationships. These models
have been successfully applied to predict heating or cooling supplies
in buildings and the evolution of indoor air temperature over time.
Among the existing studies, a few used multilayer perceptron (MLP)
models (Jin et al., 2019) or time-delay neural networks (Li et al., 2021),
while the majority used RNN-based models. Mtibaa et al. proposed
an LSTM-based model that could predict the indoor temperature of
multiple zones at the same time, which reduced the prediction error
by 50% than MLP models (Mtibaa et al., 2020). Xu et al. used LSTM-
based model to predict indoor air temperature in a public building (Xu
et al., 2019). They introduced an error correction mechanism after the
LSTM layers to improve prediction accuracy. Elmaz et al. developed
a CNN-LSTM model to predict indoor air temperature, which showed
better performance than MLP and standard LSTM models (Elmaz et al.,
2021). In general, the prediction of indoor air temperature evolution
in a building through an AI model is a task involving different aspects:
the need of extracting features from multiple inputs, the need of a
sequential modeling, and a multi-step output in the prediction horizon.
A brief background on the three aspects are:

• Feature extraction: The process of feature extraction involves
transforming the initial set of variables into a new set of processed
variables that facilitate the learning process of the model. Feature
extraction can be divided into two categories: feature reduction
and feature enrichment. While CNN is commonly used for feature
extraction in computer vision and image processing, it is also
widely employed with multivariate time series data using 1D
CNN (Lu et al., 2022).

• Sequential modeling: Sequential modeling is particularly suit-
able for making predictions on sequential data, such as audio
signals, text streams, or time series data. Recurrent Neural Net-
works (RNNs) are a popular category of deep learning algorithms
that support sequential modeling. LSTM, a type of RNN, uti-
lizes gating mechanisms to control non-linearity and maintain
short-term and long-term memory (Hochreiter and Schmidhuber,
1997). LSTM incorporates three gates – input gate, output gate,
and forget gate – to capture and handle long-term dependen-
cies, allowing the model to retain or discard information as
necessary (Sherstinsky, 2020).

• Multi-step prediction: In the case of multi-step prediction, a
data-driven model forecasts the target variable for multiple future
steps simultaneously. Multi-step predictions of indoor air temper-
ature are particularly useful for optimizing HVAC operations in
buildings, enabling the definition of optimal control policies using
model-based approaches like Model Predictive Control or model-
3

free techniques like Reinforcement Learning. Depending on the t
model architecture, multi-step prediction can be classified into
two categories: (i) Iterative methods, where the model generates
a single-step prediction and uses it as input for the next step pre-
diction iteratively until the desired horizon is reached. (ii) Direct
methods, where the model outputs a complete sequence, often
referred to as sequence-to-sequence (seq2seq) methods. Com-
mon seq2seq techniques include fully-connected methods using
linear layers and attention-based methods, which selectively fo-
cus on different parts of the input sequence during decoding
at each prediction step. Recent studies have shown that fully-
connected methods perform well for short-term building thermal
predictions (Pinto et al., 2021).

All these aspects are taken into account in the formulation of the
prediction problem of the building indoor air temperature evolution
referred to the case study after presented. The next section provides
instead a brief overview on transfer learning approaches that can be
used to share knowledge between different data sources improving
model accuracy and at the same time reducing the amount of training
data needed for model development.

2.2. Transfer learning

The transfer learning framework is formally defined using the defi-
nitions of domain and task (Pan and Yang, 2010; Pinto et al., 2022a). A
domain 𝐷 = {𝑋,𝑃 (𝑋)} is made up of a feature space and its marginal
robability distribution. Similarly, a task 𝑇 = {𝑌 , 𝑓 (.)} consists of two
omponents, a target variable and an objective predictive function,
sually used to approximate the conditional probability 𝑃 = (𝑦 ∥ 𝑥)
redict the corresponding target variable of a new instance 𝑥. Transfer
earning aims to improve the performances of the target task 𝑇𝑡 in the
arget domain 𝐷𝑇 , exploiting knowledge from the source task 𝑇𝑆 in the
ource domain 𝐷𝑆 , where at least one among domains and task differs.
he recent advent of deep neural networks has given rise to a new
ategory of transfer learning, specifically called network-based transfer
earning. This technique aims to overcome the challenges of traditional
eep learning model development, reducing the amount of data needed
o train them and increasing their generalizability. It falls under the
ategory of parameter-based transfer learning, where it is assumed
hat the source and target tasks can share certain parameters or prior
istributions of the model’s hyperparameters (e.g., neural networks).
n this approach, the knowledge acquired from the source task is
ransferred to another task through the utilization of shared model
eights. Network-based transfer learning can be further classified into

he following categories:

• Weight-initialization: This approach in network-based transfer
learning involves utilizing a pre-trained model on source data
to initialize the model’s weights when training on target data.
Subsequently, the model undergoes further fine-tuning on the
target data.

• Feature extraction: In this network-based transfer learning ap-
proach, certain layers of the model are frozen and used as feature
extractors. This approach offers advantages such as reduced data
requirements for training the model and the ability to lever-
age data from different domains, which can be adapted to the
input/output dimensions and fine-tuned accordingly.
To evaluate the effectiveness of a transfer learning framework for
a regression task (specifically, the prediction problem addressed
in this study) and guide the selection of the best combinations
of source and target data, various metrics are described in the
following section.

.3. Performance metrics

Various performance metrics have been proposed in the literature

o evaluate the impact of transfer learning on regression tasks. These
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Fig. 1. Overall workflow.
metrics include mean absolute error (MAE), mean absolute percentage
error (MAPE), coefficient of determination (𝑅2), root mean squared
error (RMSE), and coefficient of variation of the root mean squared
error (CVRMSE). In this study, MAE and 𝑅2 are chosen as the evaluation
metrics due to their easy interpretability. Moreover, MAE considers
both positive and negative prediction errors, and increase as the error
magnitude grows, while 𝑅2 captures the variation in the predictions.
Once the performance metric is defined, the performance improvement
ratio (PIR) can be computed to measure the relative enhancement
in performance (in terms of MAE) achieved by employing a transfer
learning framework compared to not using it.

Furthermore, performance metrics such as MAE can be employed
to assess whether a regression model developed on a source dataset
performs similarly on a target dataset without applying any transfer
learning techniques. If the model exhibits similar performance on both
datasets, it can be considered as the baseline for evaluating the effec-
tiveness of a transfer learning framework in enhancing performance on
the target dataset. In this study, a Similarity Measurement Index (SMI)
is utilized for this purpose. The formulas for the metrics employed in
the analysis, including MAE, SMI, and PIR, are presented below.

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (1)

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 − �̄�)2
(2)

𝑆𝑀𝐼 =
𝑀𝐴𝐸(𝑇 𝑎𝑟𝑔𝑒𝑡𝑚𝑜𝑑𝑒𝑙)
𝑀𝐴𝐸(𝑆𝑜𝑢𝑟𝑐𝑒𝑚𝑜𝑑𝑒𝑙)

(3)

𝑃𝐼𝑅 =
𝑀𝐴𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −𝑀𝐴𝐸𝑛𝑒𝑤 × 100% (4)
4

𝑀𝐴𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
3. Methodology

3.1. Overview

The proposed methodological framework unfolds over four steps
which are represented in Fig. 1. Firstly, we sampled and processed the
ecobee smart thermostat data from three U.S. states with the aim to
retain the distributions of the residential building stock in terms of
building and HVAC system types. The sampled dataset was splitted
into source and target subsets. Secondly, we developed and compared
different deep learning model architectures and evaluated their perfor-
mances using the source dataset. As a third step, we implemented four
different TL strategies based on the best model architecture evaluated
within step 2 using the target dataset. Eventually, we compared and
analyzed the TL and DL model performance. Details about the four steps
are presented in this and following sections.

3.2. Data processing

The smart thermostat data obtained from ecobee’s Donate Your Data
(DYD) program was utilized. As of 2022, this dataset consisted of over
190,000 households in the United States and Canada that voluntarily
shared their data anonymously for research purposes. Each thermostat
provided user-reported metadata about the building, including details
such as location (at the city level), space type, gross floor area, num-
ber of floors, and the time of initial thermostat connection. Several
previous studies have explored the dataset and tried to explore the
building operation patterns, such as heating and cooling habits (Meier
et al., 2019), thermal preferences (Huchuk et al., 2018), and occupancy
schedule (Jung et al., 2023). Fig. 2 visually depicts the three steps
involved in the data processing. To evaluate the deep learning model’s
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Fig. 2. Data processing.
applicability across buildings with diverse characteristics and in differ-
ent climate regions, a subset of buildings was randomly selected based
on the building metadata. This subset encompassed buildings of three
space types (apartment, townhouse, and detached single-family houses)
and two HVAC system configurations (with and without electric aux-
iliary heating) from three distinct climate regions in the United States
(California, Texas, and New York). The selected buildings were then
divided into a source subset and a target subset, which were used for
developing the deep learning (DL) model and the transfer learning (TL)
model, respectively.

During the second step, the time-series data for each building was
processed. Considering the impact of the COVID-19 pandemic, partic-
ularly on occupancy patterns in residential buildings, only data from
the entire year of 2019 (from January 1, 2019, to December 31, 2019)
was used for testing the proposed methodology. The original time-
series data included indoor air temperature and humidity, cooling and
heating indoor air temperature setpoint, supply fan runtime, cooling
and heating system runtime, and occupant motion detections, with a
temporal resolution of five minutes. Temporal features, such as the time
of day and the day of the week, have a significant correlation with
residential building thermal loads, which typically vary between week-
days and weekends. To incorporate these features into the time-series
data, they were encoded as cosine and sine values with corresponding
periods. Additionally, holidays were encoded as a binary feature. Out-
door weather conditions are another crucial factor influencing building
thermal loads. Since the ecobee thermostat dataset did not include
outdoor weather data, outdoor air temperature data was added to each
thermostat’s information. The latitude and longitude of each thermo-
stat were used to determine the closest weather station listed by the
National Oceanic and Atmospheric Administration (NOAA). Sub-hourly
outdoor temperature data from that weather station was then retrieved
using the NOAA’s API and synchronized with the other time-series data.
After incorporating the outdoor temperature and temporal features, the
dataset consisted of 23 features, which were standardized by scaling to
unit variance using the scikit-learn package (Pedregosa et al., 2011).
Table 1 provides the names, units, and types of the variables included
in the available dataset.

As shown in Fig. 2, the input data has the shape of (B × L × W),
where B is the batch size whose value is determined in hyperparameter
tuning described in Section 4.1. L is the length of the sequences, which
is 288 (24-hour lookback with 5-minute timesteps). W is the width of
the sequences or the number of input features shown in Table 1. Two
subsequent input sequences are shifted by one timestep (i.e., the feature
values at t-287 in the former sequence become the values at t-288 in
the current sequence). The dataset is implemented in a custom PyTorch
dataset class to handle the sanity check and iterative data sampling for
model training.
5

3.3. Deep learning model development

Based on the literature review discussed in Section 1, it is evident
that LSTM models have exhibited strong performance in modeling
building thermal dynamics. In this study, we employed a simple LSTM
model as the baseline approach, where the data is directly fed into
the LSTM cell, followed by a linear layer for multi-horizon indoor
temperature predictions. As an alternative architecture, we introduced
a 1D CNN module before the LSTM cell to facilitate feature mixing.
Specifically, the 1D CNN module operates solely on a feature-wise
basis while preserving the time dimension. Fig. 3 illustrates the CNN +
LSTM architecture. Both model architectures were implemented using
PyTorch (Paszke et al., 2019). We conducted a comparison of model
performance using different sets of hyperparameters, optimizers, and
learning rate schedulers, which will be presented in the subsequent
section, Section 4.

3.4. Transfer learning strategies

After the creation and comparison of different deep learning ar-
chitectures (see 4.2), the best architecture (CNN-LSTM) was selected
as a starting point to implement different transfer learning strategies,
which was further tested on a subset of unseen buildings. As introduced
in Section 2.2, depending on which model parameters are frozen dur-
ing the fine-tuning, there are different transfer learning strategies. To
investigate their impact on the prediction performance, four transfer
learning strategies are compared:

1. Freeze the CNN: the weights of the CNN are frozen and used as
feature-extractor, while the weights of the LSTM and the fully
connected layer are initialized and fine-tuned on target data.

2. Freeze the LSTM: the weights of the LSTM are frozen, while the
weights of the CNN and the fully connected layer are initialized
and fine-tuned on target data.

3. Freeze the CNN-LSTM: both the weights of the CNN and the
LSTM are frozen and used as feature-extractor, while the fully
connected layer is fine-tuned on target data.

4. Weight initialization: the model is used for initialization purpose
only and fine-tuned on target data.

3.5. Source model identification

As reported in Section 2.2 the selection of the source dataset and
related source prediction model is an essential task to achieve good
results in transfer learning (Afridi et al., 2018). The domain shift
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Table 1
Time-series data variables in the ecobee DYD thermostat dataset.

Variable name Description Type Unit

TemperatureExpectedCool thermostat cooling setpoint numerical ◦C
TemperatureExpectedHeat thermostat heating setpoint numerical ◦C
Humidity relative humidity numerical %
auxHeat1 auxiliary heating system 1 runtime numerical s/5 min
auxHeat2 auxiliary heating system 2 runtime numerical s/5 min
auxHeat3 auxiliary heating system 3 runtime numerical s/5 min
compCool1 cooling compressor 1 runtime numerical s/5 min
compCool2 cooling compressor 1 runtime numerical s/5 min
compHeat1 heating compressor 1 runtime numerical s/5 min
compHeat2 heating compressor 1 runtime numerical s/5 min
fan supply air fan runtime numerical s/5 min
Thermostat_Temperature aggregated thermostat temperature numerical s/5 min
Thermostat_Motion occupant presence binary N.A.
T_out outdoor air temperature from NOAA numerical ◦C
sin_hour sine of an hour in a 24-h day numerical N.A.
cos_hour cosine of an hour in a 24-h day numerical N.A.
sin_day_of_week sine of a day in a 7-day week numerical N.A.
cos_day_of_week cosine of a day in a 7-day week numerical N.A.
sin_month sine of a day in a month numerical N.A.
cos_month cosine of a day in a month numerical N.A.
sin_week_of_year sine of a week in a 52-week year numerical N.A.
cos_week_of_year cosine of a week in a 52-week year numerical N.A.
is_holiday whether a day is a holiday binary N.A.
Fig. 3. CNN + LSTM model architecture.
between the source and target domains is a fundamental challenge in
transfer learning. The discrepancies between source and target data
distributions due to different building characteristics, weather and
occupancy patterns can severely decrease the model’s performance. A
properly selected source model can reduce the amount of data required
to effectively fine-tune its parameters on the target dataset and achieve
higher values of accuracy for the transferred model respect to a predic-
tion model directly fitted on the target dataset (i.e., positive transfer).
On the opposite, an improperly selected source model can even lead to
negative transfer, then making the transfer learning process performing
worse than a prediction model directly fitted on the target dataset.
Depending on the problem, different source identification methods and
metrics have been proposed and tested. In general, source models could
be selected manually with domain expertise, or automatically with the
help of similarity metrics.

• Manual Selection: Manual selection of source models involves
leveraging domain expertise to identify models that are particu-
larly well-suited for the target tasks. This approach is valuable
when there is deep domain knowledge available, enabling the
selection of models that capture relevant features and nuances
specific to the tasks under consideration. Manual selection en-
sures that the source models are aligned with the intricacies of
the target domain, potentially leading to superior performance in
6

transfer learning scenarios. For example, in a recently published
TL study on building thermal dynamics prediction, the authors se-
lected the source models according to the climate zone and energy
efficiency level of the source and target buildings on which they
were developed and then fine-tuned through TL strategies (Pinto
et al., 2022a).

• Automatic selection: On the other hand, automatic selection
methods, guided by similarity metrics, are instrumental in sce-
narios where the dataset is vast and diverse. Similarity metrics
allow us to quantify the similarity of the underlying distributions
between different building datasets (Larsson et al., 2021). By
employing these metrics, we can systematically assess which
source buildings’ thermal behaviors are more similar to the target
building, thereby facilitating the TL. This data-driven approach
helps improve objectivity and efficiency, particularly in situa-
tions where manual assessment might be challenging due to the
complexity or size of the data.

Despite the existing studies, there is no previous research that
investigated how, and to what degree, the source model selection
impact the TL performance for DL models trained with large-scale smart
thermostat data. Therefore, we investigated different source selection
approaches and compared their corresponding target model perfor-
mance. Specifically, we compared three source selection approaches
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Fig. 4. CNN + LSTM model architecture.
shown Fig. 4: (1) random selection based on similar building charac-
teristics, (2) automatic selection using MMD, and (3) exhaustive search
between all possible pairs of source model and target data.

For the random selection, we first manually divide the source
buildings into groups based on the available metadata from the smart
thermostat dataset, which include locations (i.e., California, Texas, New
York), building types (i.e., detached houses, apartments, townhouses),
HVAC systems (i.e., whether there is electric auxiliary heating). Then,
for each target building, a source model is randomly selected from the
corresponding group with the same metadata. For the MMD-guided
selection, in addition to the metadata constraint, a source model is iden-
tified where the source–target pair has the lowest value of Maximum
Mean Discrepancy (MMD) calculated with the thermostat data. Eq. (5)
denotes the calculation of MMD.
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(5)

Here,  and  are data distributions with source building and
target building samples 𝑥1,… , 𝑥𝑛 and 𝑦1,… , 𝑦𝑚. 𝜙 is a feature mapping
function that maps the input space to a reproducing kernel Hilbert
space . In this study, a Gaussian kernel is used. The norm in the
equation is the norm in .

Lastly, for the exhaustive search approach, we first test each source
model on each target building dataset, always imposing that the source
and target buildings should have the same metadata. Then, the source
model that achieves the lowest MAE value when directly applied on the
thermostat data of a target building is selected as a best starting point
for testing TL strategies.

4. Experiment and results

4.1. Model training

As outlined in Section 3, the initial phase of the analysis involves
dividing the EcoBee dataset into two distinct groups: source and target
buildings. The source dataset consists of a total of 164 buildings,
comprising 48 apartments, 56 townhouses, and 60 single-family houses
located in California, Texas, and New York. On the other hand, the
target dataset encompasses 77 buildings, also situated in the afore-
mentioned three U.S. states. The subsequent step focuses on training
thermal dynamics models using each source building, thereby creating
a collection of source models for testing various transfer learning (TL)
strategies on the group of target buildings.

To ensure optimal training performance and results, the settings
and hyperparameters employed play a crucial role. To identify the
most suitable hyperparameters, we utilized the Optuna hyperparameter
optimization framework (Akiba et al., 2019). The objective was to
discover the hyperparameters that minimize the average mean absolute
error (MAE) on a randomly selected subset of 10 homes from the source
building dataset. The specific hyperparameters available for tuning
and their corresponding search space were specified. The optimiza-
tion process started by randomly sampling from the search space and
progressively improving using an evolutionary optimization approach.
For both machine learning (ML) and TL model training, we employed
7

the Adam optimizer and a cosine annealing scheduler to gradually
reduce the learning rate. The loss function used was the mean squared
error (MSE), measuring the disparity between predictions and ground
truths. The hyperparameter search space and training configurations
for ML are presented in Table 2. Our investigation revealed that the
learning rate, CNN kernel size, and LSTM hidden size significantly influ-
enced model performance, while the impact of other hyperparameters
was marginal. Consequently, we selected a single-layer LSTM model
without dropout for the sequential model.

The models were trained using an NVIDIA Titan RTX graphics
card with 24 GB graphics RAM. To optimize training efficiency, we
implemented mixed precision training with half precision floating point
numbers, enabled by PyTorch’s automatic mixed precision (AMP) pack-
age. This approach resulted in a notable 30% speedup compared to full-
precision training. Each model required approximately 7 min to com-
plete the training process. Since the CNN feature extraction step was
relatively straightforward, we did not observe significant differences in
training time between the vanilla LSTM and CNN-LSTM models.

For the transfer learning phase, a smaller learning rate was selected
to update the weights of the neural network layers compared to the
learning rate used during the initial training of the source models. We
employed a cosine annealing approach, gradually reducing the learning
rate between lr_transfer values of 2e-4 and 2e-5. Furthermore, the
source model was selected based on metadata, specifically aiming to
identify the most similar building in terms of state, building type, and
the similarity measurement index mentioned earlier. By comparing the
performance of the transfer learning models with a machine learning
model trained solely on target data from scratch, we aimed to assess
whether leveraging knowledge from similar buildings could enhance
model performance.

4.2. Machine learning results

The evaluation of the machine learning models developed using the
source dataset was conducted using the 10% test data discussed in Sec-
tion 3.2. The source dataset comprised 48 apartments, 56 townhouses,
and 60 single-family houses located in California, Texas, and New
York. The performance of the machine learning models was assessed
from two perspectives: (1) a comparison of the overall performance be-
tween the vanilla LSTM and CNN-LSTM models, and (2) the prediction
accuracy of the CNN-LSTM models across different seasons, building
locations, types, and HVAC system configurations.

Fig. 5 presents a comparison of the Mean Absolute Error (MAE)
distribution for different prediction horizons between the vanilla LSTM
and CNN-LSTM models. It is observed that, except for the first three
prediction steps (t+1 to t+3), the CNN-LSTM models achieved a lower
average MAE compared to the vanilla LSTM models. Overall, there was
a 6.6% improvement in performance for all prediction steps with the
CNN-LSTM models. Additionally, the standard deviation of MAE for
the CNN-LSTM models was generally lower than that of the vanilla
LSTM models, except for the first prediction step (t+1). This indicates
that the CNN-LSTM models exhibited more consistent performance
across most prediction steps. A further comparison of the 𝑅2 values
between prediction and ground truth of each future step of the two
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Table 2
Hyperparameter search space and selected values.

Hyperparameter Distribution Range Selected

learning rate log uniform [2e−4, 2e−2] 2e−3
Adam optimizer weight decay log uniform [1e−6, 1e−4] 1e−5
Conv1D kernel size (CNN-LSTM only) discrete with step=32 [32, 256] 50
LSTM number of layers discrete with step=1 [1, 4] 1
LSTM hidden size discrete with step=128 [128, 1024] 512
LSTM dropout probability discrete with step=0.1 [0, 0.8] 0
batch size discrete with step=128 [128, 1024] 512
number of epochs N.A. N.A. 60
Fig. 5. Vanilla LSTM vs CNN-LSTM MAE comparison by prediction horizon.
architectures has shown a similar trend in Fig. A.1 in Appendix. In sum-
mary, the CNN-LSTM models outperformed the vanilla LSTM models,
particularly for longer-term predictions. The better performance can be
attributed to the feature extraction capability of the CNN layer. Com-
pared with vanilla LSTM, the CNN-LSTM architecture can automatically
learn relevant features when the data contains spatial pattern or local
dependencies. Moreover, CNNs are known for their robustness to local
distortions in the input data. The robustness can ensure that the learned
features are more stable across different inputs, making the model more
generalizable. Therefore, we selected the CNN-LSTM architecture for
the transfer learning task.

In addition, we examine the consistency of CNN-LSTM models.
Fig. 6 provides a breakdown of the performance of the CNN-LSTM
model (average MAE for the entire prediction horizon) on the source
buildings across different seasons, locations, building types, and the
presence of electric auxiliary heating in the building. The figure reveals
that most of the models achieved an average MAE of less than 0.5
◦C, excluding for one apartment in Texas during the spring season,
equipped with auxiliary electric heating, which exhibited an average
MAE of 0.8 ◦C. The results indicate that the proposed CNN-LSTM
model architecture generalizes well, because there were no significant
variations observed between seasons and building characteristics for
most models. The performance of the model can be considered satis-
factory for applications such as thermal load prediction and optimal
control (Elmaz et al., 2021).

4.3. Transfer learning results and comparison with machine learning

The first step to assess transfer learning performance was to evaluate
the MAE for each of the 77 target buildings, averaged over the predic-
tion horizon. Fig. 7 shows the distribution for each of the proposed
neural networks, with a dashed red line that represents the mean
value, ordered from the lowest to the highest mean value. As can be
8

seen, freezing the LSTM layer while fine-tuning the other layers leads
to a performance improvement with respect to ML, while the other
TL techniques achieve no improvement over standard ML when the
amount of data is sufficiently large (e.g., 1 year). The details of the
performance metrics of the different TL strategies compared with ML
can be found in Table A.1 in Appendix.

After having identified that freezing LSTM layer as the best TL ap-
proach, the analysis continued to assess the impacts of different source
building selection approaches on the TL performance, following the
method described in Section 3.5. Fig. 8 shows the test set MAE distri-
butions of the ML models and TL models with different source selection
approaches for 77 target buildings in three U.S. states, with the freezing
LSTM layer option. The ML models are trained from scratch with target
building data. We conducted t-tests on the three performance metrics
to investigate whether the different source model selection methods are
significantly better than each other. Not surprisingly, TL with exhaus-
tive source search and MMD both achieved a lower MAE than random
selection. However, as shown in Table 3, the improvements are not
statistically significant enough to justify the additional computational
needs involved in the source building selection process. Therefore,
we proceeded with random source building selection. Further t-tests
between the TL with random source building selection and ML showed
statistically significant performance improvements.

With the TL models fine-tuned with randomly selected source build-
ings, the analysis continued to quantify the improvement beyond ML
for each target model, measured by the MAE improvement. MAE
improvement is evaluated as the difference between TL performance
and ML ones, therefore, if it is greater than 0, TL performs better, if
smaller than 0, ML outperforms TL. Fig. 9 shows the MAE improvement
at different aggregation levels: by state, by building type and by system
configuration. In each subplot, the scatters above the dashed lines are
buildings where TL outperformed ML and vice versa. The higher the
scatters, the more improvements. The figure shows the worst perfor-
mances in New York, followed by Texas and California. Furthermore,
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Fig. 6. CNN-LSTM model performance breakdown.
Table 3
P-values for R2, MAE, and MSE comparisons between different TL strategies.

Group A Group B p-score (R2) p-score (MAE) p-score (MSE)

TL - Random TL - Exhaustive 1.000 0.123 0.662
TL - Random TL - MMD 0.931 0.820 0.624
TL - Exhaustive TL - MMD 0.933 0.079 0.359
TL - Random ML 1.5e−17 1.6e−17 8.3e−17
Fig. 7. MAE distribution of different Tl strategies.

Fig. 8. MAE distribution of different source model selection methods.

looking at building type, the detached houses have lower performances,
which could be attributed to their more complex building structures
and thermal dynamics, since the higher variability of construction
materials might increase the heterogeneity. On the other hand, there
is no clear relationship with the system configuration and the TL
performance.

Furthermore, to classify the effectiveness of TL and characterize the
drivers behind the performance, the following work highlights three
particular areas: negative transfer learning, neutral transfer and pos-
itive transfer. Neutral transfer occurs when MAE improvement ranges
between −0.005 and 0.005 ◦C, selected as a threshold and representing
2% of the average MAE of machine learning models. Negative transfer
occurs when MAE improvement is smaller than −0.005 ◦C, while
positive transfer improves the MAE by at least 0.005 ◦C.

These classifications were then inserted in a classification tree (see
Fig. 10) that used one-hot-encoded variables of state, building type and
9

system configuration, trying to explain in which cases negative and
neutral transfer happens. In particular, as previously stated, neutral
and negative transfer mainly happens in NY state with detached houses
and without auxiliary heating, while other negative transfer happens
in Texas detached houses, due to the more complex dynamics (see
Fig. 10).

Table 4 shows the aggregated performance of each technique, dis-
playing the mean, median and standard deviation of MAE over the
77 buildings. The models with frozen LSTM achieves the best perfor-
mances, with not only a lower mean value, but also a smaller standard
deviation, with an average improvement of around 10% over classical
machine learning approaches.

5. Discussion & conclusion

In this research, we introduced a deep learning methodology to
forecast indoor air temperature at multiple time horizons using a com-
prehensive dataset derived from smart thermostat data collected from
residential buildings. The dataset employed in this study encompassed
237 buildings situated in three distinct U.S. states, representing a wide
range of building types and HVAC system setups. To facilitate efficient
time-series forecasting and analysis, we devised a data processing
pipeline specifically tailored for the ecobee dataset, offering promising
prospects for future applications. Our proposed approach, employing
CNN-LSTM models, exhibited remarkable performance in predicting
indoor air temperature. With 1-hour-ahead (12-step-ahead) predic-
tions, the models achieved an average mean absolute error (MAE) of
0.25 ◦C, surpassing the performance of vanilla LSTM models by 6.6%.
Furthermore, we conducted a thorough examination of the model’s per-
formance across various seasons, building types, locations, and HVAC
system configurations. The results highlighted the versatility and adapt-
ability of our proposed models in accurately predicting indoor air
temperature across a wide range of residential buildings with diverse
characteristics.

Furthermore, we investigated the effectiveness of transfer learning
(TL) in the presence of a large volume of real data, leveraging the
CNN-LSTM architecture introduced earlier in four different TL settings.
The domain shift between the source and target domains is a fun-
damental challenge in transfer learning. The discrepancies between
source and target data distributions can severely decrease the model’s
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Fig. 9. Performance improvement grouped by different variables: (a) State (b) Building Type (c) System configuration.
Table 4
Aggregated performance of the different techniques.

Strategy Average MAE [◦C] Median MAE [◦C] Standard deviation [◦C2]

Freeze LSTM 0.237 0.229 0.073
ML 0.263 0.257 0.085
Freeze CNN-LSTM 0.265 0.253 0.083
Weight initialization 0.268 0.259 0.084
Freeze CNN 0.269 0.257 0.085
Fig. 10. Classification tree of transfer learning effectiveness according to state, building
type and system configuration.

performance. In this study, the potential domain shift was addressed
by different measures. Firstly, during the data processing phase, we
ensured that the source and target buildings have the same feature
space listed in Table 1. When the feature spaces are aligned, the models
can learn consistent representations across both domains while keeping
the same architecture, making it more likely to generalize well to the
10
target domain. Secondly, our proposed CNN-LSTM model architecture
is inherently robust to varying inputs. The convolution layers are
capable of extracting key features from the inputs, and the LSTM layers
are designed to handle sequential data and capture temporal patterns
in diverse domains. Thirdly, during source model training, we applied
regularization techniques including dropout and weight decay, which
likely prevented the models from being too specialized to the source do-
main. A crucial aspect of TL effectiveness is the selection of the source
building, which can be determined using easily obtainable metadata
such as climatic zone, building type, and system configuration. We
explored four different techniques that combined feature extraction and
weight initialization for the CNN-LSTM model. The results showed that
freezing the weights of the LSTM and fine-tuning the CNN and fully
connected layers on the target data led to an average improvement
of 10%. Moreover, we examined the conditions under which transfer
learning performed less effectively, focusing on the influence of climatic
conditions and building type on the thermal dynamics of buildings.

We acknowledge that the interpretation of why freezing the LSTM
layers achieved the best overall performance requires further investiga-
tions. Although the exact reason behind its superior performance needs
further investigation, our initial explanations are as follows.

• Sequential Dependencies: building thermal dynamics modeling
requires capturing intricate temporal patterns and dependencies.
LSTMs are specifically designed to model sequences and are ex-
cellent at capturing long-term dependencies in sequential data.
Therefore, freezing the LSTM layer ensures that the network
retains its ability to capture these dependencies, which is crucial
for accurate predictions.

• Feature Extraction: freezing the LSTM layer preserves the learned
sequential patterns, allowing the model to focus on learning the
spatial features of the target data set while retaining the learned
temporal dynamics from the source task. This focused adaptation
likely leads to a more optimal transfer of knowledge.

• Preventing Catastrophic Forgetting: freezing the LSTM layer
prevents catastrophic forgetting, a phenomenon in which the
model forgets important information from the source task when
adapting to a new task. Since LSTMs are capable of captur-
ing long-term dependencies, freezing this layer ensures that the
knowledge acquired during the source task training is preserved.

The application for TL is often used in data-scarcity contexts. This
application demonstrated its effectiveness even in the presence of a
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Fig. A.1. Vanilla LSTM vs CNN-LSTM 𝑅2 comparison by prediction horizon.
large amount of residential data, where the stochasticity associated
with the occupants is higher relative to commercial buildings. Further-
more, the proposed methodology achieved a performance improvement
of 10% with respect to classical machine learning applications. The
analysis also suggested that metadata information is effective in se-
lecting the right source buildings, with greater advantages for long
prediction horizons. Elaborating on this, future works will investigate
the use of an aggregated model, able to incorporate metadata in the
inputs to create a single neural network trained on multiple homes
used as a source model. The influence of the prediction horizon will
be further investigated for a period longer than an hour, exploring
embedding and attention schemes in the DNN architecture. Lastly,
these models will be coupled in control applications to support the
deployment of advanced controllers based on MPC and DRL.
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Appendix. ML & TL performance comparison

Table A.1 shows the performance metrics of the different TL strate-
gies compared with ML.

It can be seen from A.1 that except for the first two future steps,
the scatters from the vanilla LSTM models are more sparse than the
CNN-LSTM models, corresponding to the lower 𝑅2 values.
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Table A.1
Performance metrics for different TL scenarios.

Mean Standard deviation

MAE (◦C) MSE (◦C2) R2 MAE (◦C) MSE (◦C2) R2

ML 0.27 0.18 0.79 0.14 0.20 0.42
Freeze CNN 0.28 0.19 0.80 0.13 0.19 0.25
Freeze CNN+LSTM 0.27 0.18 0.80 0.13 0.18 0.25
Freeze LSTM 0.25 0.15 0.83 0.13 0.16 0.22
Weight Initialization 0.28 0.18 0.80 0.13 0.19 0.26
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