
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Assessment of Recovery Journal-Based Packet Loss Concealment Techniques for Low-Latency MIDI Streaming /
Severi, Leonardo; Cuccarese, Antonio; Bianco, Andrea; Rottondi, Cristina. - In: AES. - ISSN 1549-4950. -
ELETTRONICO. - 71:12(2023), pp. 873-886. [10.17743/jaes.2022.0115]

Original

Assessment of Recovery Journal-Based Packet Loss Concealment Techniques for Low-Latency MIDI
Streaming

GENERICO preprint/submitted version accettata

Publisher:

Published
DOI:10.17743/jaes.2022.0115

Terms of use:

Publisher copyright

This article has been accepted for publication in AES, published by Audio Engineering Society.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984745 since: 2023-12-27T16:03:54Z

Audio Engineering Society

PAPERS

Assessment of Recovery Journal-based Packet
Loss Concealment Techniques for Low Latency

MIDI Streaming

Leonardo Severi, Antonio Cuccarese, Andrea Bianco and Cristina Rottondi*
(leonardo.severi@polito.it) (antonio.cuccarese@studenti.polito.it) (andrea.bianco@polito.it) (cristina.rottondi@polito.it)

Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy

In networked music performances, real-time Packet Loss Concealment (PLC) is a task of
pivotal importance to compensate the detrimental impact of loss or late delivery of audio por-
tions that often occur in low-latency audio-streaming scenarios.
This paper proposes an open-loop PLC method tailored for MIDI data and compares it to a
closed-loop state-of-the-art benchmark in terms of effectiveness of audio recovery and com-
munication overhead. Moreover, implementations aimed at reducing the computational over-
head are proposed and compared for both approaches. Results show that the proposed open-
loop policy achieves performances similar to those of the closed-loop one, while reducing the
number of operations executed at the transmitter side.

0 Introduction

A Networked Music Performance (NMP) is a real-time
musical interaction where musicians displaced in different
geographical locations convey locally-generated sounds to
their remote counterparts by means of low-latency au-
dio streaming over a telecommunication network (typi-
cally the Internet) [1]. These interactive music sessions fea-
ture packet transmissions from a sender to one or multi-
ple receivers. Packets may include digitalized audio (either
raw or encoded) or, less frequently, MIDI data [2]. MIDI
data do not carry sampled audio but rather digitally en-
code in a MIDI message an action performed by the player
(e.g., a note activation/deactivation or a piano pedal pres-
sure/release).

To provide a satisfactory Quality of Experience (QoE)
during the performance and to ensure that musicians main-
tain the required synchronism for ensemble playing, data
transmission must be both reliable and timely. Concern-
ing latency constraints, several empirical studies (e.g. [3,
4]) show that, to ensure maintenance of a stable tempo,
the mouth-to-ear latency experienced by NMP performers
should not exceed a few tens of ms, depending on the mu-
sical genre, timbral characteristics of the instrument and
leading/following role within the ensemble. For what con-
cerns instead timeliness of delivery of audio data, high

*To whom correspondence should be addressed e-mail:
cristina.rottondi@polito.it

packet delay/latency, jitter, and losses are unfortunately un-
avoidable in the vast majority of real deployment scenar-
ios. If such events occur, well-known packet retransmis-
sion techniques (e.g. those implemented by the TCP trans-
port protocol [5, 6]) are typically avoided in NMP appli-
cations, as they would significantly increase the mouth-to-
ear delay. As a consequence, most NMP systems rely on
UDP [7], which does not implement retransmission mech-
anisms, thus not providing any guarantee of reliable data
transfer. If the receiving application does not receive data
in due time for sequential playback, due to losses, or ex-
cessive delays, or both, Packet Loss Concealment (PLC)
mechanisms must be implemented to mitigate the impact
of missing data during the playout of the received audio
signal.

In this paper, we consider the RTP-MIDI protocol [8]
over UDP. We propose an open-loop PLC method (i.e.
a concealment mechanism not relying on feedback infor-
mation exchanged among a receiver-sender pair) tailored
for NMP applications and aimed at limiting the perceived
impact of lost/delayed packets carrying MIDI messages.
The basic principle of the proposed approach is to peri-
odically integrate the differential information contained in
MIDI messages with a representation of the current MIDI
state at the sender side. The sender MIDI state can be con-
structed straightforwardly, without the need of any form
of feedback from the remote counterpart. To validate the
proposed approach, we simulate the streaming of MIDI
data along a telecommunication network in presence of

J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October 1

SEVERI et al. PAPERS

packet losses and evaluate the similarity between the orig-
inal MIDI stream and the one reproduced at the remote
side after execution of the PLC mechanism. Moreover, we
evaluate the network overhead introduced by our solution
and compare it to the state-of-the-art default PLC method
integrated into the RTP-MIDI protocol [8]. Results show
that the proposed open-loop policy achieves similar per-
formance to that of the RTP-MIDI benchmark , while re-
ducing the number of operations executed at the transmitter
side.

The rest of this paper is organized as follows: Sec. 1
provides basic background notions on the MIDI standard,
whereas Sec. 2 briefly reviews the related literature. Sec. 3
describes the considered NMP scenario and Sec. 4 presents
the proposed PLC method, the performance of which is as-
sessed in Sec. 5. Some final remarks are summarized in
Sec. 6.

1 Background on MIDI

According to [2], “The Musical Instrument Digital Inter-
face (MIDI) protocol provides a standardized and efficient
means of conveying musical performance information as
electronic data.” Fig.1 depicts the classical use of the MIDI
protocol , whereby MIDI messages are transmitted over a
MIDI cable to connect a MIDI instrument to a synthesizer
that translates MIDI commands to audio.

A MIDI data stream is composed of MIDI Messages
which are typically 2 or 3 bytes long.

Each MIDI Message affects and modifies the current
state of the synthesizer: for example, a Note On message
instructs the synthesizer to start playing the given note (see
Fig. 2 for an example). The MIDI Standard also defines a
way to store MIDI information in files. Messages are stored
in tracks: each track contains the messages representing the
events in the same order in which they are produced by
the instrument. In each track, up to 16 independent chan-
nels (channels could be associated, for example, with dif-
ferent instruments) can be defined. In the track, messages
are interleaved with time information: time is encoded as
variable-length big-endian integers (1 to 4 bytes, for each
byte 1 bit is used as prefix and 7 bits are used for value en-
coding) representing the difference in terms of ticks (frac-
tion of quarter notes) between two subsequent events (0
for simultaneity). The first byte, also called ”Status Byte”,
brings information about the type of musical event (e.g.,
note or command) and indicates which channel it belongs

Fig. 1: Basic MIDI setup with a MIDI instrument sending
commands to a hardware synthesizer.

to. For each status byte, the count and the meaning of the
successive bytes is documented in [2].

MIDI instruments can be modelled as Finite State Ma-
chines (FSM), where the set of possible states includes all
the possible combinations of values of their controllable
parameters. In other words, every combination of param-
eter values corresponds to a distinct state. RFC4696 [9]
provides examples of implementations of the MIDI state
concept in the context of the RTP-MIDI protocol. In this
paper, we define a MIDI system state S(t), as the set of val-
ues assumed by MIDI parameters at a given time t, mainly
focusing on Note and Control Change as classes of param-
eters that constitute a MIDI state. The MIDI state permits
to identify a set of MIDI events that can lead the MIDI sys-
tem to such state starting from any other state, including the
default idle one, with no active events: in FSM jargon, this
set of events represents a transition. Such events are those
producing an active effect on the audio playback (e.g., an
active note is a note which has been triggered by a Note On
event generated at a time instant t ′ < t and has not yet been
stopped by a correspondent Note Off event). The system
state can therefore be considered as a sort of “snapshot” of
active/inactive MIDI events in the system, which, however,
does not provide any information about the starting time or
duration of any specific event.

Note that the MIDI standard can also be used in a net-
worked environment, where the instrument and the synthe-
sizer are connected via the Internet, as described in Sec.3.

2 Related Work

PLC in audio streaming is a mature topic, that has been
widely addressed by the scientific community [10], espe-
cially for speech signals in VoIP applications [11, 12, 13].
Focusing on NMP systems, several efforts have already
been dedicated to devising low-latency PLC techniques
for audio streams: for example, robust audio codecs with
integrated PLC have been proposed (such as OPUS [14]
and [15]), as well as multiple-description audio coders,
whereby audio frames are encoded into several redundant
packets, so that a single correctly received packet provides
a minimum acceptable quality, whereas the information
contained in multiple packets can be combined to further
improve the perceived quality level [16, 17, 18]. Moreover,
predictive PLC methods specifically tailored for NMP pur-
poses have been recently proposed, such as those based on
Autoregressive Models [19] or on Machine Learning al-
gorithms [20]. However, only a limited number of studies
have focused on PLC techniques for MIDI-based NMP.

In [8], Lazzaro et al. proposed a protocol based on RTP
[21] to encapsulate MIDI events, as well as the usage of a
so-called “Recovery Journal” (RJ) to implement PLC. The
RJ encodes the difference between two states of the sys-
tem. Let us denote as sender the application that produces
MIDI events and sends them over the network, and as re-
ceiver the application that receives, synthesizes, and repro-
duces them. Considering states S1 and S2, where S1 is the
state of the sender at t1 and S2 the one at t2, with t1 < t2,
the RJ for states S1 and S2 represents the set of differences

2 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October

PAPERS Assessment of Recovery Journal-based Packet Loss Concealment Techniques for Low Latency MIDI Streaming

Status Byte Data Byte 1 Data Byte 2

Msg Type MIDI Channel

1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0

Note ON Channel 1 Note pitch (C3) Note velocity (100)

Decimal value: 144 Decimal Value: 60 Decimal Value: 100

Fig. 2: Example of a MIDI message (Note On message referring to the C3 note onset with velocity 100 on MIDI channel
1).

between S2 and S1. In the remainder of this paper, such set
of differences will be referred to as ∆S. Upon construction
of an RTP packet, the RJ is calculated by considering S2 to
be the sender state just before the occurrence of the events
carried in the packet under construction (which RJ is ap-
pended to), whereas S1 is chosen according to a policy ne-
gotiated at the beginning of the session: the default policy
is closed-loop, which implies that the sender expects the
receiver to send an acknowledgment whenever it receives
a packet. Upon reception of an acknowledgment related to
a packet generated at time ti, S1 := Si applies. This method
constitutes the core of the RTP-MIDI protocol described
in RFC-4695. Several software solutions already handle
MIDI, for instance SonoBus [22] or HPSJam [23], which
use a custom protocol to deliver MIDI data over the net-
work. Instead, other Digital Audio Workstations (DAWs)
can route MIDI messages through the network thanks to
the implementations of the RTP-MIDI protocol offered by
some operating systems, according to RFC-4695 (e.g. the
Ableton Live DAW can stream MIDI thanks to the Apple
driver for MacOs which implements the RTP-MIDI proto-
col [24, 25]).

A different PLC method specifically tailored for NMP
over wireless telecommunication networks is presented by
Virolainen at al. in [26]. It consists in categorizing MIDI
messages to be sent as critical or non-critical. Messages
belonging to the critical category are transmitted using a
reliable transmission protocol, whereas non-critical MIDI
messages are transmitted using a non-reliable transmission
protocol. Therefore, this approach suggests a classification
of MIDI messages, based on their priority level: for ex-
ample, a Note On message belongs to a non-critical cate-
gory, while the corresponding Note Off message belongs
to a critical category. Thereby, delays/losses of messages
transmitted through the unreliable channel could lead to
the non-reproduction of MIDI events (e.g., a note is not
played), while errors on messages transmitted through the
reliable channel could lead to a delayed action (e.g., the
duration of a note could be altered).

A variation of the above-mentioned method is proposed
in [27], which implements a severity assessment phase car-
ried out by the receiver, upon detection of a packet loss.
If the error is considered severe enough, a recovery phase

Fig. 3: Example setup for a MIDI-based NMP session in
which MIDI commands are produced by the MIDI piano,
received by a local computer through a MIDI audio card
and sent over the Internet, then received by the remote mu-
sician’s computer, synthesized as analog audio by a Digital
Audio Workstation (DAW) and reproduced through a local
audio card.

is activated, which involves replacing missing MIDI data
with recovery data transmitted along an auxiliary channel.
Recovery data is assumed to be generated by a dedicated
server in real-time or pre-calculated.

Another approach for PLC of MIDI data specifically tai-
lored for transmission over wireless networks is described
in [28]. It leverages a packet acknowledgment mechanism
that ensures retransmission of audio data that did not reach
the receiver.

Differently, our proposed method operates in open-loop,
i.e., it does not require the implementation of any acknowl-
edgment mechanism, so that it can also be deployed on
simplex channels. Moreover, it does not require two com-
munication channels characterized by different transmis-
sion reliability guarantees nor the discrimination between
critical and non-critical messages. In addition, the wireless
communication channels considered in [26] adopt radio
frequency or optical (e.g., infrared) transmission, whereas
our proposed solution is agnostic to the transmission tech-
nology adopted at the physical layer.

3 NMP System Architecture

Access to an NMP session is typically negotiated be-
tween the software used by the musician and a server ded-
icated to NMP session management, which provides the

J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October 3

SEVERI et al. PAPERS

Fig. 4: High level packet structure, according to RFC4695.
The RTP Header is the one described in RFC3550, without
header extensions.

joining musician with the list of IP:port pairs of the de-
vices of all the remote musicians participating in that ses-
sion and manages the connection setup. An example of an
audio architecture for a MIDI-based NMP session is de-
picted in Fig.3. For the sake of simplicity, in this descrip-
tion we limit the number of musicians to two and we only
show a unidirectional flow from the right musician’s in-
strument to the left musician’s earphones. The instrument
played by the local musician is connected to a device that
runs a dedicated NMP transmitter application, which com-
municates through a telecommunication network with the
NMP application running on the device of the remote mu-
sician that receives the audio data.

In a realistic scenario, two (or more) musicians ac-
quire/transmit their own MIDI data and receive/reproduce
the data of their remote counterpart(s). In such a case, the
NMP application executed by each musician acts both as
sender and receiver. The sender process is responsible for
conveying the MIDI data generated by the musician’s in-
strument to the remote player. Conversely, the receiver pro-
cess obtains MIDI messages contained in the data stream
generated by each of the remote musicians. The receiver
application is responsible for concealing the effects of pos-
sible packet losses in each stream independently.

3.1 Communication Protocol and Message
Format

We assume the usage of the RTP-MIDI application-level
protocol running over UDP, as in RFC4695 [8]. RTP-MIDI
deals with possible out-of-order datagrams by including a
sequence number. This is provided by the RTP standard
reported in RFC3550[21], which implements source iden-
tification (and multiplexing), packet ordering, and timing.
To send MIDI messages over RTP, we will refer to the mes-
sage format described in [8], which takes into account all
the possible scenarios that may occur during a MIDI ses-
sion.

The high-level structure of the application layer packet,
including an RTP and an RTP-MIDI header, a MIDI Com-
mand section and an RJ section, is depicted in Fig.4. The
sending algorithm [29] implemented by the NMP trans-
mitter requires defining a grouping period ∆t, which is
the time interval between the generation of two consec-
utive packets. Straightforwardly, the longer the grouping
period, the less the overhead generated by both the applica-
tion and transport layers, but increasing the duration of the
grouping period also leads to an increment of the perceived
mouth-to-ear latency and to larger packet sizes (with the
risk of exceeding the Maximum Transmission Unit). Prac-
tical values of the grouping period are in the order of few
milliseconds [1], even though they are likely to imply the

Fig. 5: An example of RJ construction: using ∆t as group-
ing period and assuming that a new period starts at time ti,
the Command section will contain E5 and E6 whereas the
RJ will encode information about the difference between
the system state at ti−1 and the system state at time ti−n
(including events from E1 to E4)

transmission of several empty packets, since distinct mu-
sical events are usually temporally interleaved by at least
some tens of milliseconds [30]. During each grouping pe-
riod ∆t, the sender process of the NMP application gath-
ers all the MIDI messages representing the musical events
generated by the musician’s instrument, and populates the
MIDI Command section of the packet, which follows the
same data representation adopted for file tracks (see Sec.
1). Upon generation of a MIDI event by the user’s instru-
ment, the system state also gets updated. Conversely, the
RJ Section of the packet implements a representation of
the set of differences between system states (∆S). Refer-
ring to Fig. 5, the RJ does not include events that are car-
ried in the Command section of the packet it is appended
to. Instead, it encodes the difference between states Si−1
and Si−m, where Si−1 is the system state at time instant ti−1
(i.e., the beginning of the most recent grouping period) and
Si−m is the system state at time instant ti−m (i.e., the be-
ginning of m-th preceding grouping period). The choice
of n determines the adopted policy. Ref. [8] focuses on
the closed-loop policy, considering it as the default pol-
icy, and envisions as alternatives an anchor policy and an
open-loop policy. The closed-loop policy expects the re-
ceiver to send back acknowledgments in forms of RTCP -
Receiver Report (RR) about received packets. Whenever a
RR for packet j is received, the RJ for packet i is computed
as the difference between state Si−1 and state S j. The an-
chor policy is the simplest one: every RJ is computed as a
difference between states Si−1 and S0. It is important to re-
mark that, since in the anchor policy ∆S is computed as the
difference between the sender’s current state, Si−1, and the
initial (default) state, S0, the receiver can adjust its current
state (which we denote as Sc), even if such state is different
from the default one. The steps necessary to change Sc to
Si, only knowing ∆S = Si−1 − S0 and the MIDI commands
occurred in between time ti−1 and ti, can be easily imple-
mented as described in section 4.2. The open-loop policy
lets the sender decide autonomously how to set m, which
is then kept constant. This policy may lead to unrecover-
able losses in the playback (for example, when more than
m consecutive packets are lost): according to Ref. [8], this

4 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October

PAPERS Assessment of Recovery Journal-based Packet Loss Concealment Techniques for Low Latency MIDI Streaming

can be partially prevented in the initial negotiation phase by
specifying a split for the set of MIDI Commands, accord-
ing to which a subset of commands (e.g., Channel Volume
(Controller 7)) must be sent in every RJ, as if the policy
were anchor-based.

4 The Proposed PLC Policy for MIDI Streaming

In the following, we describe our proposed PLC policy,
which enhances the anchor policy defined in Ref. [8] while
avoiding the risk of introducing unrecoverable artifacts of
the open-loop one (see again Ref. [8]), despite operating
in open-loop fashion as well as the anchor-based one. In-
deed, differently from the closed-loop policy in Ref. [8],
our proposed approach does not require any acknowledg-
ment mechanism.

4.1 Enhanced Anchor Approach
Ref. [8] recommends the usage of the closed-loop pol-

icy, as it is the least bandwidth-consuming one. Indeed, the
anchor policy implies a much larger overhead, due to the
fact that two states interleaved by one or a few grouping pe-
riods usually differ by a limited number of events, whereas
the number of differing events between a generic state Si
and state S0 might be significant. Conversely, the usage of
the open-loop policy is discouraged since it guarantees the
correct recovery of the system state only under further as-
sumptions (see section C.2.2.3 of Ref. [8]).

To reduce the introduced overhead, we propose to make
the sending of the RJ non-compulsory. In our proposed en-
hanced anchor approach, we define a negotiable value k
called refresh rate, which generalizes the anchor policy by
imposing to send one RJ every k packets. The canonical
anchor policy can now be seen as a special case of the en-
hanced anchor policy where k = 1. This new policy can be
easily implemented with the same packet structure defined
in [8]. With the enhanced anchor policy, the RJ section in
Fig. 4 becomes optional, as it is present only once every
k packets. Let t0 be the time at which the session starts.
Packets are generated and sent to the remote musicians at
times ti = i∆t + t0 (with i positive integer) but only packets
where i = nk (with n positive integer) shall include the RJ
Section. Note that in our proposed approach the RJ is com-
puted as in the anchor policy described in Ref. [8], i.e., it
encodes the differences between Si−1 and S0.

4.2 State Maintenance and Update Procedure
To enable the receiver process to perform any correc-

tion, both the sender process and the receiver process have
to keep track of the current system state. As depicted in
Fig. 6, at each RJ reception the receiver must verify the
correctness of its current state Sc by comparing the param-
eters (where the word “parameter” is meant to be an um-
brella term that encompasses note velocities, control val-
ues, etc.) contained in the RJ to those that characterize Sc
and by updating them with the value contained in the RJ in
case of mismatch. This procedure fits both the enhanced-
anchor policy and the closed-loop policy. The transition

Fig. 6: The algorithm to be implemented at the receiver
side to perform packet loss concealment.

to the correct state is then performed by generating all the
MIDI events that modify the system state from the “old”
state Sc to the “new” correct one Sc′ (whereSc′ = Si−1), that
will be considered as the current state from that moment on
(i.e., Sc′ replaces Sc).

Conversely, the sender’s current state is stored in mem-
ory, and it is updated whenever a new MIDI message is
generated by the musician’s instrument. Our proposed en-
hanced anchor policy introduces a simplification in the

J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October 5

SEVERI et al. PAPERS

sender’s implementation compared to the closed-loop pol-
icy, as in the latter case the sender is responsible for memo-
rizing Si and also the most recent acknowledged state Si−n
(i.e., the state at the beginning of the grouping period car-
ried by the last acknowledged packet) for every known re-
ceiver. Indeed, different receivers may provide RRs at dif-
ferent times, thus a dedicated RJ must be produced for ev-
ery receiver, and for each of them the most recent acknowl-
edged state should be updated upon RR reception. This is
a known drawback of the closed-loop policy, as reported in
section C.2.2.2 of [8]. Differently, our proposed enhanced
anchor policy only requires the sender to keep in memory
exactly one state (i.e., Si), regardless of the number of re-
ceivers.

Since several data structures to memorize a given state
exist, Ref. [9] provides some guidelines for a possible im-
plementation. From a high-level perspective, the state of
the system should be a dictionary associating parameters
(e.g. Notes) to their values (e.g. Note On with velocity
= v, Note Off), although the suggested implementation is
based on arrays for each parameter group (Notes, Controls,
Programs...). This dictionary does not contain information
about a parameter in case it has its default value. Straight-
forwardly, S0 is represented by an empty dictionary. It is
worth noticing that the sender’s and receiver’s software
implementing the state-keeping cannot be agnostic about
the specific semantics of MIDI messages. To motivate this
statement, we provide the following example: let us assume
we have a “dummy” software at the sender’s side with no
knowledge of the meaning of MIDI messages, and con-
sider a basic assumption on Control change messages, i.e.,
that their default values equals 0. Assume that the MIDI
Message with status byte = 121 is generated (its meaning
is “all controllers off”). Our dummy software only under-
stands that the status byte 121 is in the range of controls
messages, and eventually modifies its state in the dictio-
nary. This is not the right behavior, as it should reset to
default all the others controllers that are in a non-default
state.

The same holds at the receiver side. The receiver must,
in fact, maintain the current state Sc of the local synthe-
sizer. In case of lost packets, upon reception of an RJ, the
receiver must be able to generate the messages necessary to
adjust the synthesizer’s state to match the received one, fol-
lowing the procedure reported in Fig. 6. The RJ representa-
tion proposed in Ref. [9] is meant to minimize the network
bandwidth usage. It efficiently encodes the current state of
all the parameters that changed their values. By doing so, if
the starting state S0 is the default one, the RJ brings all the
information necessary to build the dictionary representing
the current state.

4.3 Implementation Remarks
A simplified implementation guide for RJ-based PLC

methods at the receiver side may be found in section 7 of
RFC4696 [9], from which it emerges that the complexity
of the PLC algorithm executed by the receiver grows lin-
early with the number of peers participating in the NMP

sessions. Instead, for what concerns the implementation of
our proposed enhanced anchor policy at the sender side, the
sole task of the sender is to keep in memory a dictionary
that reflects the MIDI instrument state. RFC4696 provides
some hints regarding a possible representation in memory
of such a dictionary, and how to build the associated RJ to
be included in the packets that are required to contain it.
As opposite to the closed-loop policy, which requires the
keeping of a dedicated dictionary per each receiver, this
data structure is the same for all the receivers. It follows
that, at the transmitter side, the complexity of the proposed
enhanced anchor policy does not depend on the number of
peers.

Concerning network characterization, we identify three
factors that may have an impact on the performance of our
method: i) network latency, ii) jitter, iii) packet losses. In
the following, we discuss such factors one by one.

Network latency (i.e., the overall contribution to the
mouth-to-ear delay due to transmission and propagation
delays through communication link(s), as well as queuing
and processing delays introduced by routers traversed by
packets along their path from source to destination), does
not have by itself a direct impact on the execution of the
PLC algorithm: indeed, as reported in Fig. 6, the recovery
journal is generated by the transmitter regardless of net-
work conditions and compared by the receiver to the actual
system state upon reception.

Differently, jitter may have an impact on the execution of
the PLC algorithm, as the variation of the end-to-end delay
experienced by consecutive packets may lead to an alter-
ation of the packet sequencing (i.e., packets are received in
a different order with respect to their generation sequence).
If an out-of-order packet arrives too late to be reproduced
by the receiver, it is practically equivalent to a lost packet.
Therefore, by quantifying the packet loss probability, in our
numerical assessment (see Section 5) we will capture the
impact of both lost and late packets. To mitigate the impact
of out-of-order packets, a buffer is typically maintained at
the receiver to operate as “cushion”: the larger the buffer,
the higher the flexibility in re-ordering late packets, but the
higher the increase of the mouth-to-ear delay.

5 Performance Assessment

We provide a quantitative analysis of the performance
of the proposed enhanced anchor PLC method in terms
of similarity of the reproduced audio stream and network
overhead, benchmarking it against the policies described in
Ref. [8]. For the sake of reproducibility, the assessment is
conduced on pre-recorded MIDI files instead of real-time
generated MIDI streams. Our numerical assessment only
takes into account the impact of packet losses and of de-
layed packets arrived too late to be reproduced. The im-
pact of delayed but yet reproducible packets and of local
clock drifts are not taken into account in this work since it
is assumed that the MIDI streaming is implemented within
a NMP system integrating an appropriate clock recovery
mechanism (as proposed, e.g., in [31]) and adequate buffer
size settings, capable of effectively managing the reorder-

6 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October

PAPERS Assessment of Recovery Journal-based Packet Loss Concealment Techniques for Low Latency MIDI Streaming

ing of out-of-order packets. It is worth noting that the im-
pact of clock drifting in MIDI streaming is milder than in
audio streaming: in the latter case, clock misalignment may
lead to buffer over/underruns that in turn generate audio
glitches, whereas in the former case it may only cause alter-
ations of the duration of active events, without introducing
audio artifacts.

5.1 Dataset

10.0 16.5 23.1 29.6 36.2 42.8 49.3 55.9 62.4 69.0 75.6
Event Density (events/s)

0

50

100

150

200

250

300

350

fil
es

(a) Empirical distribution of Events Density

2.9 6.9 10.9 14.9 18.9 22.8 26.8 30.8 34.8 38.8 42.8
Note Events Density (<note events>/s)

0

50

100

150

200

250

300

fil
es

(b) Empirical distribution of Note Events Density

Fig. 7: Empirical distribution of (note) event density values
in the considered MIDI dataset

We considered the Maestro Dataset v3.0.0 [32], which
includes about 200 hours of paired MIDI and Audio
recordings from International Piano-e-Competition events
within nine years. For the purpose of this study, only the
MIDI dataset was considered, consisting in 1276 MIDI
files, with a duration that varies between 45 seconds and
43 minutes, with an average of 9 minutes. Being a pi-
ano dataset, it is representative of a NMP session using a
MIDI keyboard, as it contains Note messages, one Program
Change at the beginning of the track and Control Changes
messages affecting control 64 (Sustain pedal), control 67
(Soft pedal) and control 66 (Sostenuto pedal).

The dataset contains files with one track (namely one
single track with MIDI messages representing MIDI
events, hence not only meta-messages). Each file has a
tempo signature of 120bpm. It can be divided in two sub-
sets based on the timing information. One subset has a
granularity of 384 ticks per beat, the other has a granu-
larity of 480. For simplicity, network overhead measures
have been conduced on the first subset, using as time units
integer multiples of the tick duration.

To evaluate the effectiveness of the enhanced anchor
policy, we identify some features related to the complex-
ity of the performed musical pieces, according to which we
split our dataset. In particular, we characterize the musical
pieces by means of two metrics: the event density and the
note event density. The proposed event density parameter
(ED) aims at quantifying the rhythmic complexity of the
piece being played and is an adaptation of the event den-
sity parameter defined in [3, 33] as the average number of
event onsets per second, where the term onset refers to the
initial transient of a musical note (or of any other sound).
In this study, since we are considering MIDI data, an event
onset refers to the beginning of a generic MIDI event. The
note event density parameter (NED) has the same mean-
ing as the event density, except for the fact that only Note
events are considered (i.e., only Note On/Note Off mes-
sages). Fig. 7 reports the distribution of event density and
note event density values among the MIDI files comprised
in the dataset. As we can see, the distribution of the ED is
well fitted by a normal distribution with mean 35.19 and
variance 89.56 whereas the NED has mean 20.7 and vari-
ance 50.9.

5.2 Evaluation metrics for similarity assessment
The evaluation of the audio similarity achieved by the

proposed enhanced anchor policy has been conducted by
comparing the MIDI stream generated by the sender to
the one played back by the receiver. For this assessment,
the grouping time has been fixed to 3 ticks, which, in this
dataset, correspond to ≈ 3ms or ≈ 4ms, according to eq.
(1), where τ is the duration of a tick in milliseconds, bpm
is the time signature of the track in beats per minutes and
t pb is the tick granularity in ticks per beats.

τ =
6 · 104

bpm · t pb
(1)

To perform such comparison, the content of the original
MIDI file is streamed by the sender process and a new
MIDI file is generated by the receiver process. Such MIDI
file consists in the sequence of all the MIDI events that are
played back, with their corresponding time offsets. In the
absence of any transmission error, the file transmitted by
the sender and the file reconstructed by the receiver must
be identical. Conversely, if packet losses occur, the RJ sec-
tion of a packet successfully received after one or multi-
ple missing ones will be leveraged to conceal errors and to
resume the correct system state. It follows that, in such a
case, the file transmitted by the sender and the file recon-
structed by the receiver will not be identical. For the sake

J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October 7

SEVERI et al. PAPERS

Table 1: Loss probability p and corresponding confidence
interval of 95% of measured loss ratio (CI)

p 0.01 0.2 0.3
CI [0.008,0.011] [0.194,0.203] [0.291,0.301]
p 0.5 0.8 0.9

CI [0.492,0.507] [0.800,0.812] [0.900,0.907]

of our analysis, packet losses are modelled as statistically
independent events, i.e., each packet is assumed to be un-
available for reproduction at the due time (due to either a
loss or an excessive delay) with probability p. It is worth
mentioning that, considering a single file, the longer the file
duration, the more closely the actual ratio of lost packets
(l) to generated ones (g) approximates probability p: Table
1 shows the confidence interval of l

g compared to p. The
discrepancies between the two files are then quantified1.

The comparison algorithm consists in comparing the
state of the two streams, when reproduced simultaneously,
on per-tick basis. For such comparison, we define a very
simple state similarity function e(t). Note that, for the sake
of our similarity analysis, we consider a back-to-back con-
figuration that introduces negligible mouth-to-ear latency
between the sender and the receiver processes to avoid the
need for time realignment among the two streams.

test(Sa,Sb) : =

{
1 if Sa = Sb

0 otherwise,
(2)

e(t) : = test(Sr(t),Ss(t)) (3)

where Sr(t) (respectively Ss(t)) is the state of the receiver
(respectively the sender) at time t.

The stream similarity value s is then defined as:

s =
∫ T

0 e(t)dt
T

(4)

Straightforwardly, formula (4) tends to 0 when the total
time in which the two tracks produce the same musical out-
put tends to 0, it tends to 1 when this time approaches the
entire duration of the track.

We also define sn, which follows the same definition as
above except that we only consider note events (two states
are equal if their set of active notes is the same, even if
other events like control values may differ). This apparent
simplification permits to exclude the impact of slow pedals
variations. In other words, when a control command as-
sociated to a pedal (recall that this is the case for all the
Control Changes in the reference dataset) is generated, the
physical movement associated to the pedal pressure from
up to down or vice versa spans, most of the time, multi-
ple MIDI ticks (see eq.1), resulting in many intermediate

1Note that such evaluation method does not take into account
the perceptual impact of transmission errors (i.e., any discrepancy
between the two files is weighted equally). Future work will be
devoted to the identification of more advanced performance eval-
uation metrics and subjective ratings.

Control Change events that do not significantly alter the
reproduced audio stream (for example, giving an on-off in-
terpretation to control change commands, by mapping the
range of 128 possible values to a boolean variable which
is set to 0 if the Control Change value is 0, to 1 otherwise,
would imply no variation).

Note that the similarity evaluation analysis will focus
only on the enhanced anchor and anchor policies. Indeed,
as already mentioned, the anchor policy is obtained by
setting k = 1 in the enhanced anchor policy, whereas the
closed-loop policy behaves identically to the anchor-based
one (in both cases, the receiver is capable of recovering the
correct state of the system as soon as the RJ is received).
The performance of the open-loop policy depends on the
choice of m and on the burstiness of packet losses, but is
surely upper-bounded by the performance of the closed-
loop policy, so it is excluded from our analysis.

5.3 Evaluation metrics for traffic overhead
To quantify the impact of the considered PLC policies

in terms of traffic overhead, we computed the amount of
bytes transferred at transport layer during the simulated
performance, considering the overhead bytes introduced by
the RTP-MIDI protocol and the 8-byte-long UDP header
at each packet. For this evaluation, we consider a unidi-
rectional MIDI stream from a sender to a remote receiver
process. The parameters influencing the performance of the
closed-loop policy are the Round Trip Time (RTT - i.e., the
time elapsed from the start of the transmission of an RTP-
MIDI packet to the reception of the corresponding RR), the
grouping period ∆t and the packet loss probability p. The
RTT affects the closed-loop policy because it can delay the
pruning of the RJ structure [9], especially when it is higher
than the grouping period (i.e., when RTT> ∆t). Moreover,
every time a packet or its corresponding RR gets lost, the
size of the RJ may increase. Conversely, the performance
of the enhanced anchor policy is influenced by the group-
ing period ∆t and the refresh rate k, whereas the packet loss
probability is not influential because the content of the RJ
section does not depend on the acknowledgment mecha-
nism.

We focus on the closed-loop policy and on our proposed
enhanced anchor policy, since the behavior of the anchor
policy in terms of traffic overhead corresponds to that of
the enhanced anchor policy with k = 1, whereas the be-
havior of the open-loop policy is analogous to that of the
closed-loop one, provided that parameter m in the open-
loop policy is tuned so that m · ∆t =RTT.

We compute the overhead by comparing SRJ to SNRJ ,
where SRJ is the amount of bytes transmitted by the sender
when the PLC policy under investigation is integrated in
the RTP-MIDI protocol and SNRJ is the amount of bytes
transmitted by the sender when no PLC policy is adopted.
It follows that SNRJ depends only on the grouping period
and on the amount of events in the track/performance. De-
pending on whether we include or ignore traffic generated
by RRs sent by the receiver to the sender, the traffic over-

8 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October

PAPERS Assessment of Recovery Journal-based Packet Loss Concealment Techniques for Low Latency MIDI Streaming

p 0.2 0.5 0.8
k 1 2 3 1000 1 2 3 1000 1 2 3 1000

ED ≤ 27.25 98.14 97.08 96.10 21.54 93.14 89.03 85.76 5.68 78.87 68.87 61.90 1.43
27.25 < ED ≤ 32.49 97.61 96.28 95.02 19.04 91.27 86.22 82.25 4.51 74.05 63.01 55.81 1.09
32.49 < ED ≤ 37.21 97.23 95.69 94.25 17.37 89.95 84.27 79.91 4.04 70.93 59.31 51.97 0.95
37.21 < ED ≤ 42.84 96.91 95.19 93.60 15.96 88.88 82.67 77.94 3.57 68.33 56.18 48.64 0.79

ED > 42.84 96.27 94.21 92.32 13.28 86.81 79.62 74.25 2.95 63.59 50.60 42.86 0.68

Table 2: Similarity (%) obtained with the enhanced anchor policy for different packet loss probability values, depending
on the event density range, assuming a grouping period duration of 3 ticks.

p 0.2 0.5 0.8
k 1 2 3 1000 1 2 3 1000 1 2 3 1000

NED ≤ 14.71 98.98 98.39 97.82 25.84 96.19 93.68 91.48 7.71 87.31 79.46 73.40 2.42
14.71 < NED ≤ 18.17 98.61 97.82 97.05 22.98 94.86 91.56 88.69 6.57 83.43 74.12 67.31 2.20
18.17 < NED ≤ 21.82 98.36 97.44 96.53 19.87 94.01 90.23 86.97 5.37 81.07 70.93 63.76 1.70
21.82 < NED ≤ 26.32 98.08 96.99 95.94 17.85 93.02 88.64 84.93 4.70 78.23 67.14 59.65 1.63

NED > 26.32 97.46 96.05 94.68 14.84 91.60 85.56 81.12 4.35 73.22 60.99 53.15 1.67

Table 3: Note similarity (%) obtained with the enhanced anchor policy for different packet loss probability values, depend-
ing on the note events density range, assuming a grouping period duration of 3 ticks.

head is defined as:

OH =
SRJ
SNRJ

(5)

or as:

OHRR =
SRJ + SRR

SNRJ
(6)

when backward traffic SRR generated by the acknowledg-
ment mechanism is taken into account (SRR = 0 in the case
of enhanced anchor policy).

5.4 Similarity Evaluation
Fig. 8 reports the similarity results obtained for differ-

ent values of the refresh rate k, depending on the packet
loss probability p, and show that similarity is heavily influ-
enced by the refresh rate value. In particular, with a refresh
rate k = 1 (which means that every packet carries an RJ,
thus making the behavior of the policy identical to that of
the anchor policy), the protocol achieves about 90% sim-
ilarity when p = 0.5. This means that, even in case of a
communication where half of the transmitted data is lost,
it is possible to reach a very high fidelity in the final audio
playback. Moreover, even with p = 0.8, the proposed PLC
method reaches on average 70% similarity.

When increasing k, the similarity inevitably worsens.
The benchmark case of a very high refresh period is also
reported: with k = 1000 the similarity is about 4% when
p = 0.5. Moreover, a 0.2 packet loss probability is suffi-
cient to make the similarity drop to less than 20%. Results
with p = 0 and p = 1 require particular considerations: in
both cases the achieved similarity does not depend on the
refresh rate. This is because, for p = 0, there are no miss-
ing packets, while, for p = 1, all the packets are lost (no
messages are received).

Note that, in the latter case, the similarity is higher than
in the case with p = 0.9. This behavior is due to the fact
that the absence of active events (i.e., silence) at both
sender and receiver sides is considered as an identical state.
Therefore, in the case of a reproduction characterized by

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Loss probability

0.0

0.2

0.4

0.6

0.8

1.0

Si
m
ila

rit
y

k=1
k=2
k=3
k=5
k=10
k=1000

(a) With a grouping period of 2 ticks

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Loss probability

0.0

0.2

0.4

0.6

0.8

1.0

Si
m
ila

rit
y

k=1
k=2
k=3
k=5
k=10
k=1000

(b) With a grouping period of 5 ticks

Fig. 8: Similarity (%) obtained with the enhanced anchor
policy, depending on the refresh rate and on the packet loss
probability (confidence intervals are below 1.5% and thus
not reported for the sake of readability)

total absence of events, the similarity represents the frac-
tion of silence time among all the musical pieces. In cases
with few packets received (e.g., when p = 0.9), a little
amount of MIDI events is reproduced and, since the ex-

J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October 9

SEVERI et al. PAPERS

act correspondence of silence periods is not preserved any
longer, the average similarity is lower.

To evaluate the impact of different event density and
note event density values on the performance of the PLC
method, the dataset has been subdivided into 5 subsets ac-
cording to their ED (resp. NED), by splitting the whole
ED (resp. NED) range in 5 equally sized sub-ranges. The
global similarity trends reported in Tabs. 2 and 3 for p =
0.2,0.5,0.8 and k = 1,2,3,1000 are similar to those re-
ported in Fig. 8, showing decreasing similarity as k in-
creases. However, for a given packet loss probability and
refresh rate, higher values of ED or NED lead to lower sim-
ilarity. The motivation lies in the fact that, with a higher av-
erage number of events per second, the number of packets
not containing any MIDI event decreases. Therefore, it is
more probable that a lost packet carries one or more MIDI
events.

5.5 Overhead Evaluation
Fig. 9 shows the traffic overhead introduced by the us-

age of the RJ Section, when ignoring RR-related traffic
(OH). Note that, in Fig. 9b, the number of boxplots pro-
gressively decreases when ∆t ≥ 10. This is due to the fact
that a scenario with RT T < ∆t is equivalent to the ideal
scenario where RT T = 0 (i.e., RR acknowledging packet i
is received before packet i + 1 is ready for transmission).

In general, the enhanced anchor policy performs better
when compared to the closed-loop one in terms of over-
head, for k ≥ 3. The lower bound of the overhead of the
closed-loop policy is due to the fact that the Ref. [8] ex-
plicitly imposes that every packet must contain an RJ Sec-
tion (even if empty). Note that the heaviest scenario oc-
curs when ∆t = 1 tick and k = 1 (anchor policy): in such
situation, the highest average observed bitrate for a sin-
gle stream was 38kB/s, which is quite acceptable on mod-
ern networks, even compared to the worst simulated ses-
sion with the closed-loop policy, which produced 22kB/s
(obtained with loss probability p = 0.8, RTT= 200 ticks,
grouping time= 1 tick).

However, as already mentioned, if the grouping period
∆t is in the order of a few milliseconds, a significant
amount of packets will have an empty Command section,
since consecutive musical events are normally distanced by
at least some tens of milliseconds. Therefore, with the aim
of providing a more realistic estimation of the achievable
bitrates, we also consider a more efficient sending policy
by proposing an implementation that avoids unnecessary
packet transmissions. Consequently, we repeat the compu-
tation of SRJ and SNRJ assuming that packets are transmit-
ted only if non-empty. We define a non-empty packet as a
packet which brings information useful for the playout at
the receiver side. More specifically:

r for SNRJ , non-empty packets are the ones that contain a
non-empty MIDI command section;r for SRJ in the closed-loop policy, non-empty packets are
those with either a non-empty RJ, or a non-empty Com-
mand section;

r for SRJ in the enhanced anchor policy, non-empty packet
packets are those either with a non-empty Command sec-
tion or including an RJ (i.e., if, being i the sequential
index of the packet, it holds that i mod k = 0).

We underline that the definition of non-empty packet with
respect to the RJ section differs between the two policies.
The reason behind this is that, in the closed-loop policy
case, the RRs act as an agreement between sender and re-
ceiver on the current state of the receiver. In such situation,
an empty RJ is equivalent to an absent RJ as both mean
that no events occurred at the sender side since the last
acknowledged packet. It follows that, in the closed-loop
policy, the variation of a parameter from a value different
from the default one, to the default value, is a difference
that must be encoded according to the rules of the proto-
col. Conversely, in the enhanced anchor policy, the sender
is agnostic to the current state of the receiver. In this case,
an empty RJ asserts that there are no differences between
the sender state and the default state S0, which is equivalent
to saying that the sender is in the default state. When using
the enhanced anchor policy, if a peer receives an empty RJ,
it has to perform all the necessary actions (if any) to move
to the default state. Thus, according to these observations,
an empty RJ brings no information only in the closed-loop
policy.

Moreover, in this new scenario we take into account the
overhead generated by RRs (OHRR) 2. Results are reported
in Fig. 10, which shows that with the aforementioned im-
plementation the traffic overhead due to adoption of PLC
policies substantially increases. In this case, the enhanced-
anchor policy leads to higher overheads than the closed-
loop one. Comparable or lower overheads are obtained by
the enhanced-anchor policy for k ≥ 5, when RTT≥ 50ms.

For a modern wired network connection, we can con-
sider the following parameters for a plausible scenario:

r ∆t = 3 ticks (≈ 4 ms assuming a tempo of 120 bpm and
480 ticks per beat), which is comparable to the time du-
ration of a raw-audio segment (assuming stereo PCM
audio with 16 bits encoding) conveyed by a packet of
≈ 700 bytes (i.e., approximately a half of Ethernet’s
Maximum Transmission Unit).r k = 3, i.e., an RJ is sent approximately every 12 ms in
the enhanced anchor policy. Scientific literature reports
that the minimum time separation between two consec-
utive acoustic events ensuring that they are perceived as
distinct is in the order of a few ms [34], and that a sep-
aration time of 15− 20 ms is required to make the lis-
tener able to report which of the two sounds preceded the
other. Therefore, we speculate that setting k = 3 guaran-

2The acknowledgment procedure at receiver side is
implementation-specific, however if RRs are sent at a too
low rate, the size of the RJ at sender side increases. In our
scenario, we suppose that a RR is sent upon reception of every
packet. Under different assumptions SRR may decrease, at the
expense of a potential increase of SRJ .

10 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October

PAPERS Assessment of Recovery Journal-based Packet Loss Concealment Techniques for Low Latency MIDI Streaming

1 2 3 5 10 20 50
Grouping period (ticks)

1.0000

1.0667

1.1333

1.2000

1.2667

1.3333

1.4000
ov

er
he

ad
k = 1
k = 2

k = 3
k = 5

k = 10 k = 1000

(a) Enhanced anchor policy (k = 1 represents the anchor policy).

1 2 3 5 10 20 50
Grouping period (ticks)

1.0000

1.0667

1.1333

1.2000

1.2667

1.3333

1.4000

ov
er
he

ad

rtt = 0 ticks
rtt = 6 ticks
rtt = 10 ticks

rtt = 20 ticks
rtt = 30 ticks
rtt = 40 ticks

rtt = 50 ticks
rtt = 60 ticks

rtt = 100 ticks
rtt = 200 ticks

(b) closed-loop policy, assuming a loss probability = 0.

Fig. 9: Transport level overhead with respect to a transmission with no RJ. Time is measured in MIDI clock ticks, 1 tick ≈
1.3ms .

tees state recovery while making the perceptual impact
of an incorrect state almost unnoticeable.r RTT=30 ms, assuming a physical distance between re-
mote players in the range of 500− 1000 km [35]: since
the propagation time of a lightwave in an optical fiber is
roughly 5 ms per 1000 km, and considering that queu-
ing and processing delays at intermediate network nodes
must be taken into account, as well as MIDI data ac-
quisition and buffering delays at the two ends, we be-
lieve that such figure is representative of a wide range
of practical NMP scenarios, with users placed at most
some hundreds of km apart. It is worth remarking that
the computational timings of our proposed PLC method
are in the order of microseconds, thus they represent a
negligible component of the mouth-to-ear latency.r p = 0.01, i.e., we assume 1% of lost packets3.

3Note that a stable network, that is, a network exhibiting neg-
ligible packet loss probability, is considered a requirement for
NMP. Anyway, higher loss probabilities have a small impact on

Under these assumptions, we measured an average bitrate
of 2.62 kB/s (Confidence Interval: (2.27,2.89)) for the en-
hanced anchor policy and 1.37 kB/s (Confidence Interval:
(0.48,2.58)) for the closed-loop policy4. Based on all the
above reported results, it emerges that the proposed en-
hanced anchor policy achieves a good trade-off between
traffic overhead and reduced operational complexity at the
sender side. Therefore, its adoption is particularly suitable
for large sessions where many musicians are involved, as
its lower complexity and memory occupation at the trans-
mitter side w.r.t. the closed-loop policy makes it more scal-
able. Its usage is also recommended for deployments with

the overhead of the closed-loop policy, especially with high RTTs.
To prove that, we measured that p = 0.2 causes a +1.45% aver-
age bandwidth usage w.r.t. p = 0.01.

4It is worth reminding that the amount of participants impacts
the overall data rates received/transmitted by a peer, which grows
linearly with the number of peers, regardless of the PLC approach
being implemented.

J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October 11

SEVERI et al. PAPERS

1 2 3 5 10 20 50
Grouping period (ticks)

1.00

10.89

20.78

30.67

40.56

50.44

60.33

70.22

80.11

90.00
ov

er
he

ad
k = 1
k = 2

k = 3
k = 5

k = 10 k = 1000

(a) Enhanced anchor policy (k = 1 represents the anchor policy)

1 2 3 5 10 20 50
Grouping period (ticks)

1.00

6.33

11.67

17.00

22.33

27.67

33.00

38.33

43.67

49.00

ov
er
he

ad

rtt = 0 ticks
rtt = 6 ticks
rtt = 10 ticks

rtt = 20 ticks
rtt = 30 ticks
rtt = 40 ticks

rtt = 50 ticks
rtt = 60 ticks

rtt = 100 ticks
rtt = 200 ticks

(b) closed-loop policy, assuming p = 0.01

Fig. 10: Transport level overhead with respect to a transmission with no RJ, with the proposed efficient implementation.
Time is measured in MIDI clock ticks, 1 tick ≈ 1.3ms .

computationally-limited hardware (e.g., embedded proces-
sors). Moreover, the proposed policy offers higher flexibil-
ity, since the refresh rate k can be set and dynamically up-
dated based on current network conditions to achieve the
desired trade-off between transmission bitrates and fidelity
of the reproduced MIDI stream.

6 Conclusion

This paper focuses on PLC methods for MIDI musical
signals streamed via RTP-MIDI, using an unreliable trans-
port protocol such as UDP, and proposes an enhancement
of the anchor-based PLC method proposed in RFC4695.
The proposed enhanced anchor policy relies on a repre-
sentation of the MIDI system state and implements loss
recovery without relying on feedback mechanisms (such

12 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October

PAPERS Assessment of Recovery Journal-based Packet Loss Concealment Techniques for Low Latency MIDI Streaming

as the Recovery Journal adopted in RTP). Thanks to the
adoption of such a state representation, the proposed pol-
icy reduces the operational complexity of the data trans-
mission algorithm implemented at the sender side, as it re-
quires the keeping of a single state regardless of the num-
ber of receivers, whereas feedback-based policies require
the construction of a dedicated RJ per receiver. This is par-
ticularly advantageous in Networked Music Performance
applications to ensure scalability to scenarios where mul-
tiple participants are involved. Moreover, the proposed ap-
proach enables to strike a balance between incurred data
transfer overhead and concealment capabilities, by adjust-
ing the frequency of transmission of the system state, thus
granting increased configuration flexibility w.r.t. feedback-
based policies.

Results show that the proposed policy achieves transmis-
sion bitrates in the order of few tens of kB/s in realistic sce-
narios, while preserving the quality of the audio playback
even in lossy network conditions. Future research will be
devoted to the design of an algorithm to dynamically ad-
just the value of the grouping period, depending on actual
network traffic and latency conditions, to ensure the best
trade-off between bandwidth utilization and loss recovery
capabilities.

7 Acknowledgments

Leonardo Severi’s PhD Programme is funded by the Eu-
ropean Union in the framework of the Resiliency and Re-
covery Plan (RRP), within the NextGenerationEU initia-
tive.

The authors thank Prof. Alessandro Giusti and Prof.
Christopher Chafe for the useful discussions.

8 REFERENCES

[1] C. Rottondi, C. Chafe, C. Allocchio, A. Sarti, “An
Overview on Networked Music Performance Technolo-
gies,” IEEE Access, vol. 4, pp. 8823–8843 (2016), URL
https://doi.org/10.1109/ACCESS.2016.
2628440.

[2] MIDI Manufacturers Association (MMA),
“Complete MIDI 1.0 Detailed Specification Docu-
ment,” (1996), URL https://www.midi.org/
specifications-old/item/the-midi-1-0-
specification.

[3] C. Rottondi, M. Buccoli, M. Zanoni, D. Garao,
G. Verticale, A. Sarti, “Feature-Based Analysis of the
Effects of Packet Delay on Networked Musical Interac-
tions,” Journal of the Audio Engineering Society, vol. 63,
no. 11, pp. 864–875 (2015), URL https://doi.org/
10.1109/ACCESS.2016.2628440.

[4] A. Carôt, C. Werner, T. Fischinger, “Towards a com-
prehensive cognitive analysis of delay-influenced rhyth-
mical interaction,” presented at the International Com-
puter Music Conference, ICMC 2009, Montreal, Quebec,
Canada (2009 August).

[5] M. Allman, V. Paxson, W. Stevens, “TCP Conges-
tion Control,” RFC 2581, RFC Editor (1999 April).

[6] M. Allman, S. Floyd, C. Partridge, “Increasing
TCP’s Initial Window,” RFC 3390, RFC Editor (2002 Oc-
tober).

[7] J. Postel, “User Datagram Protocol,” STD 6,
RFC Editor (1980 August), URL http://www.rfc-
editor.org/rfc/rfc768.txt, http://www.
rfc-editor.org/rfc/rfc768.txt.

[8] J. Lazzaro, J. Wawrzynek, “RTP Payload Format
for MIDI,” RFC 4695, RFC Editor (2006 November),
URL https://www.rfc-editor.org/info/
rfc4695.

[9] J. Lazzaro, J. Wawrzynek, “An Implementa-
tion Guide for RTP MIDI,” RFC 4696, RFC Edi-
tor (2006 November), URL https://www.rfc-
editor.org/info/rfc4696.

[10] C. Perkins, O. Hodson, V. Hardman, “A survey of
packet loss recovery techniques for streaming audio,” IEEE
network, vol. 12, no. 5, pp. 40–48 (1998 September), URL
https://doi.org/10.1109/65.730750.

[11] X. Chen, C. Wang, D. Xuan, Z. Li, Y. Min,
W. Zhao, “Survey on QoS management of VoIP,” presented
at the 2003 International Conference on Computer Net-
works and Mobile Computing, 2003. ICCNMC 2003., pp.
69–77 (2003 October), URL https://doi.org/10.
1109/iccnmc.2003.1243029.

[12] E. Thirunavukkarasu, E. Karthikeyan, “A survey
on VoIP packet loss techniques,” International Journal
of Communication Networks and Distributed Systems,
vol. 14, no. 1, pp. 106–116 (2015), URL https://doi.
org/10.1504/ijcnds.2015.066029.

[13] M. M. Mohamed, M. A. Nessiem, B. W. Schuller,
“On deep speech packet loss concealment: A mini-survey,”
arXiv preprint arXiv:2005.07794 (2020).

[14] J.-M. Valin, K. Vos, T. B. Terriberry, “Definition
of the Opus audio codec,” IETF (2012 September), URL
https://doi.org/10.17487/RFC6716.

[15] F. Pflug, T. Fingscheidt, “Robust Ultra-Low La-
tency Soft-Decision Decoding of Linear PCM Audio,”
IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 11, pp. 2324–2336 (2013),
URL https://doi.org/10.1109/TASL.2013.
2273716.

[16] J. Østergaard, D. E. Quevedo, J. Jensen, “Real-
Time Perceptual Moving-Horizon Multiple-Description
Audio Coding,” IEEE Transactions on Signal Processing,
vol. 59, no. 9, pp. 4286–4299 (2011 June), URL https:
//doi.org/10.1109/TSP.2011.2159601.

[17] J. Leegaard, J. Østergaard, S. H. Jensen, R. Za-
mir, “Practical Design of Delta-Sigma Multiple Descrip-
tion Audio Coding,” Eurasip Journal on Audio, Speech,
and Music Processing, vol. 16 (2014 April), URL https:
//doi.org/10.1186/1687-4722-2014-16.

[18] J. Østergaard, “Low Delay Robust Audio Coding
by Noise Shaping, Fractional Sampling, and Source Pre-
diction,” presented at the 2021 Data Compression Con-
ference (DCC), pp. 273–282 (2021 May), URL https:
//doi.org/10.1109/DCC50243.2021.00035.

[19] M. Sacchetto, Y. Huang, A. Bianco, C. Rottondi,
“Using Autoregressive Models for Real-Time Packet

J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October 13

SEVERI et al. PAPERS

Loss Concealment in Networked Music Performance
Applications,” presented at the Proceedings of the 17th
International Audio Mostly Conference, pp. 203–210
(2022 October), URL https://doi.org/10.1145/
3561212.3561226.

[20] P. Verma, A. I. Mezza, C. Chafe, C. Rottondi, “A
Deep Learning Approach for Low-Latency Packet Loss
Concealment of Audio Signals in Networked Music Perfor-
mance Applications,” presented at the 2020 27th Confer-
ence of Open Innovations Association (FRUCT), pp. 268–
275 (2020 September), URL https://doi.org/10.
23919/FRUCT49677.2020.9210988.

[21] H. Schulzrinne, S. Casner, R. Frederick, V. Jacob-
son, “RTP: A Transport Protocol for Real-Time Applica-
tions,” STD 64, RFC Editor (2003 July), URL http:
//www.rfc-editor.org/rfc/rfc3550.txt.

[22] Sonosaurus LLC, “SonoBus,” URL https://
github.com/sonosaurus/sonobus.

[23] “HPSJAM,” URL https://github.com/
hselasky/hpsjam/.

[24] “Setting up a virtual MIDI network,” URL
https://help.ableton.com/hc/en-us/
articles/209071169-Setting-up-a-virtual-
MIDI-network.

[25] “RTP-MIDI or MIDI over Networks,” URL
https://www.midi.org/midi-articles/
rtp-midi-or-midi-over-networks.

[26] J. Virolainen, P. Laine, “Methods and apparatus for
transmitting MIDI data over a lossy communications chan-
nel,” (2005 May 24), uS Patent 6,898,729.

[27] J. Virolainen, P. Laine, “Method and apparatus for
enabling music error recovery over lossy channels,” (2004
Aug. 12), uS Patent App. 10/359,809.

[28] J. R. Nelson, A. J. Heidorn, R. J. Cox, “Reliable
real-time transmission of musical sound control data over
wireless networks,” (2017 Mar. 21), uS Patent 9,601,097.

[29] D. Fober, Y. Orlarey, S. Letz, “Real time musical
events streaming over Internet,” presented at the Proceed-
ings First International Conference on WEB Delivering
of Music. WEDELMUSIC 2001, pp. 147–154 (2001),
URL https://doi.org/10.1109/WDM.2001.
990170.

[30] P. J. Fitzgibbons, S. Gordon-Salant, J. Barrett,
“Age-related differences in discrimination of an interval
separating onsets of successive tone bursts as a function
of interval duration,” The Journal of the Acoustical Society
of America, vol. 122, no. 1, pp. 458–466 (2007 July), URL
https://doi.org/10.1121/1.2739409.

[31] P. Ferguson, C. Chafe, S. Gapp, “Trans-Europe Ex-
press Audio: testing 1000 mile low-latency uncompressed
audio between Edinburgh and Berlin using GPS-derived
word clock, first with jacktrip then with Dante.” presented
at the Audio Engineering Society Convention 148 (2020
May).

[32] C. Hawthorne, A. Stasyuk, A. Roberts, I. Si-
mon, C.-Z. A. Huang, S. Dieleman, E. Elsen, J. Engel,
D. Eck, “Enabling factorized piano music modeling and
generation with the MAESTRO dataset,” arXiv preprint
arXiv:1810.12247 (2018).

[33] O. Lartillot, P. Toiviainen, “A Matlab toolbox for
musical feature extraction from audio,” presented at the In-
ternational conference on digital audio effects, vol. 237, p.
244 (2007).

[34] I. J. Hirsh, “Auditory Perception of Temporal Or-
der,” The Journal of the Acoustical Society of America,
vol. 31, no. 6, pp. 759–767 (2005 July), URL https:
//doi.org/10.1121/1.1907782.

[35] A. Carôt, C. Werner, “Fundamentals and principles
of musical telepresence,” Journal of Science and Technol-
ogy of the Arts, vol. 1, no. 1, pp. 26–37 (2009 May), URL
https://doi.org/10.7559/citarj.v1i1.6.

THE AUTHORS

Leonardo Severi Antonio Cuccarese Andrea Bianco Cristina Rottondi

Leonardo Severi is Ph.D. student in Department of Elec-
tronics and Telecommunications of Politecnico di Torino
(Italy). He obtained the B.Sc. in Politecnico di Torino in

2018 and the M.Sc. in the same university in 2021, both
in Computer Engineering, he also obtained the Dipl. Ing.

14 J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October

PAPERS Assessment of Recovery Journal-based Packet Loss Concealment Techniques for Low Latency MIDI Streaming

in Grenoble INP - Ensimag in 2021. His current research
activity is focused on Networked Music Performance.r

Antonio Cuccarese graduated in Computer Engineering
at the Politecnico di Torino in 2017 and got his M.Sc.
degree in Computer Engineering in 2020 from the same
university. During his Master’s thesis work he focused on
Real-Time Music Performance and, more specifically, on
a low latency packet loss concealment method for MIDI
signals. He is currently working as a Web Developer for
TamTamy Reply. Music lover, he has played piano from
its early years and he is studying Music Composition and
Sound Design at the Scuola Internazionale di Comics.r

Andrea Bianco is Full Professor and Head of the De-
partment of Electronics and Telecommunications of Po-
litecnico di Torino (Italy). He has co-authored over 250
papers published in international journals and presented in
leading international conferences in the area of telecom-
munication networks. He was Area Editor for the IEEE
JLT (Journal of Lightwave Technology) 2013-2018 and
is Area Editor of the Elsevier Computer Communications
journal. He was member of the HPSR steering committee
in 2015. He was Technical Program Co-Chair for IEEE
HPSR 2003 and 2008, DRCN (Design of Reliable Com-
munication Networks) 2005, IEEE ICC 2010 (Optical Net-

works and Systems Symposium), IFIP Networking 2015
and IEEE GLOBECOM 2015 (Next Generation Network-
ing Symposium) and received two best paper awards. His
current research interests are in the fields of all-optical
networks managment, switch architectures, SDN networks
and NMP. Andrea Bianco is an IEEE Senior Member.r

Cristina Rottondi is Associate Professor with the Depart-
ment of Electronics and Telecommunications of Politec-
nico di Torino (Italy). Her research interests include optical
networks planning and networked music performance. She
received both Bachelor and Master Degrees “cum laude”
in Telecommunications Engineering and a PhD in Infor-
mation Engineering from Politecnico di Milano (Italy) in
2008, 2010 and 2014 respectively. From 2015 to 2018 she
had a research appointment at the Dalle Molle Institute
for Artificial Intelligence (IDSIA) in Lugano, Switzerland.
She is co-author of more than 100 scientific publications in
international journals and conferences. She served as As-
sociate Editor for IEEE Access from 2016 to 2020 and is
currently Associate Editor of the IEEE/OSA Journal of Op-
tical Communications and Networking. She is co-recipient
of the 2020 IEEE Charles Kao award, of the 2022 Jour-
nal of the Audio Engineering Society best paper award, of
three conference best paper awards (FRUCT-IWIS 2020,
DRCN 2017, GreenCom 2014), and of one excellent con-
ference paper award (ICUFN2017).

J. Audio Eng. Sco., Vol. 1, No. 1, 2010 October 15

