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Abstract
In dynamic complex networks, entities interact and form net-
work communities that evolve over time. Among the many
static Community Detection (CD) solutions, the modularity-
based Louvain, or Greedy Modularity Algorithm (GMA), is
widely employed in real-world applications due to its in-
tuitiveness and scalability. Nevertheless, addressing CD in
dynamic graphs remains an open problem, since the evo-
lution of the network connections may poison the identifi-
cation of communities, which may be evolving at a slower
pace. Hence, naı̈vely applying GMA to successive network
snapshots may lead to temporal inconsistencies in the com-
munities. Two evolutionary adaptations of GMA, sGMA and
αGMA, have been proposed to tackle this problem. Yet, eval-
uating the performance of these methods and understand-
ing to which scenarios each one is better suited is challeng-
ing because of the lack of a comprehensive set of metrics
and a consistent ground truth. To address these challenges,
we propose (i) a benchmarking framework for evolutionary
CD algorithms in dynamic networks and (ii) a generalised
modularity-based approach (NeGMA). Our framework al-
lows us to generate synthetic community-structured graphs
and design evolving scenarios with nine basic graph trans-
formations occurring at different rates. We evaluate perfor-
mance through three metrics we define, i.e. Correctness, De-
lay, and Stability. Our findings reveal that αGMA is well-
suited for detecting intermittent transformations, but strug-
gles with abrupt changes; sGMA achieves superior stability,
but fails to detect emerging communities; and NeGMA ap-
pears a well-balanced solution, excelling in responsiveness
and instantaneous transformations detection.

1 Introduction
Dynamic complex networks, or graphs, serve as a powerful
tool to model computer, social or generic communications
where entities (nodes) interact with each other establishing
connections (edges) that evolve over time (Wang et al. 2019;
Dakiche et al. 2019). Detecting communities, or groups of
nodes that exhibit stronger internal connections compared
to their connections with the broader network (Girvan and
Newman 2002), and understanding their temporal dynam-
ics is crucial for a deeper comprehension of the underlying
structure and function of the systems they represent.

The scientific literature is rich in Community Detection
(CD) approaches for static graphs, like the application of
spectral clustering algorithms to the graph Laplacian (Ng,

Jordan, and Weiss 2001; Dall’Amico, Couillet, and Trem-
blay 2020), hierarchical CD (Li et al. 2022) or statisti-
cal modelling (Peixoto 2019; Geng, Bhattacharya, and Pati
2019), just to cite few. Among them, the modularity-based
Louvain, or Greedy Modularity Algorithm (GMA) (Blon-
del et al. 2008), is one of the most used methods for real-
world applications. It is a fast and scalable solution to de-
tect an unspecified number of communities in both small and
large heterogeneous networks by optimising their modular-
ity (Newman 2006), an intuitive and easily understandable
measure of a graph tendency to form communities.

Nevertheless, due to the ever-changing nature of con-
nections, network topologies are constantly changing. Such
changes may or may not represent a natural evolution of the
underlying communities. For example, short-term changes
in node and edge sets might suggest substantial changes.
However, beneath these rapid fluctuations, the underlying
communities might remain consistent or evolve at a sig-
nificantly slower pace than the observed changes suggest.
Finding effective solutions to address CD problems in dy-
namic graphs is still an arduous challenge (Dakiche et al.
2019). A naı̈ve approach involves independently running
GMA on successive snapshots of the dynamic graph. Never-
theless, this necessitates an additional step to align commu-
nities across time, typically by comparing membership over-
lap (Spiliopoulou et al. 2013), which can result in a loss of
temporal coherence. To our knowledge, the first attempt to
adapt GMA for evolutionary scenarios is the Stabilised Lou-
vain (sGMA) (Aynaud and Guillaume 2010). This method
iteratively applies the standard Louvain over snapshots by
initialising nodes as members of their previously assigned
communities. Another approach is Louvain with memory
(αGMA) (Elgazzar, Spurlock, and Bogart 2021). This ap-
proach incorporates a memory term into the weights of the
graph edges prior to the application of standard GMA.

While these algorithms successfully maintain temporal
consistency in community assignments, their relative perfor-
mance in different scenarios of community evolution is still
unclear. For illustration purposes, in Figure 1 we consider
the detection of communities in the SocioPatterns
dataset (Stehlé et al. 2011), which records the interactions
between children and teachers in ten classes of a primary
school during a day. To that end, we run 50 instances of inde-
pendent GMA as well as the two aforementioned evolution-
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Figure 1: Evaluation of static and evolutionary CD algo-
rithms on the real-world SocioPatterns dataset.

ary extensions, comparing their performance with respect to
graph modularity and stability – i.e. how similar the output
is to the previous snapshot, measured every 30 minutes (see
Section 2.3). The latter aims at capturing the consistency of
communities over time, which is a desirable property in a
realistic evolving scenario.

We observe two major effects: for stability, GMA tends
to greatly change the communities across consecutive snap-
shots due to the natural randomness of contacts – i.e.
in many snapshots, stability drops significantly, and both
αGMA and sGMA improve it. Yet, GMA tends to offer
better performance with respect to modularity, since it pro-
vides an independent and unconstrained solution for each
snapshot. These results highlight the need for a trade-off be-
tween different community quality metrics in dynamic envi-
ronments. Different CD approaches address such a trade-off
in different ways. As such, it calls for a deeper study of the
(relative) performance of evolutionary CD algorithms under
different and controllable scenarios.

In this paper, we address these challenges by propos-
ing a framework for benchmarking evolutionary modularity-
based CD algorithms in dynamic networks. To evalu-
ate alternative methods with respect to known ground
truth, we generate community-structured graphs through
the Lancichinetti-Fortunato-Radicchi (LFR) (Lancichinetti,
Fortunato, and Radicchi 2008) benchmark and design 9 in-
vitro graph transformations, reflecting evolutionary patterns
that may arise in real-world scenarios and occurring at dif-
ferent rates. We evaluate the performance of evolutionary
GMA solutions defining three metrics that capture comple-
mentary and yet desirable properties. Namely, Correctness
and Delay to detect the transformations, which are super-
vised metrics leveraging the generated ground truth, and the
aforementioned unsupervised Stability metric. To the best of
our knowledge, we are the first proposing metrics specifi-
cally tailored for this goal.

Furthermore, we introduce a generalised evolutionary al-
gorithm called Neighbourhood-based Louvain (NeGMA)
and compare it against the existing αGMA and sGMA
through the designed framework.

Our findings reveal that (i) αGMA achieves high stability
in intermittent transformations, failing in detecting instanta-
neous transformations; (ii) sGMA outperforms all the tested
solutions in terms of temporal coherence, but prevents the

detection of new emerging communities; (iii) NeGMA is a
well-balanced CD algorithm overcoming the limitation of
existing solutions and proving high responsiveness and de-
tection rates for instantaneous transformations.

2 Framework Overview
We define a dynamic graph {Gt}Nt=1 as a sequence of N
undirected graphs Gt = (Vt, Et), where Vt and Et are, re-
spectively, the set of nodes and edges at snapshot t1. Namely,
an edge ϵ = (u, v, wt) ∈ Et indicates a connection between
nodes u, v ∈ Vt with weight wt ∈ (0, 1] at snapshot t. Fo-
cusing on a single snapshot2, we define a community c ⊆ V
as a set of nodes with a higher density of internal connec-
tions compared to their connections with the rest of the net-
work.

Given a set of non-overlapping communities C such that⋃
c∈C c = V , we rely on the graph modularity (Newman

2006) to quantify how well-defined the communities are. In
a nutshell, modularity compares the density of the within-
community connections to the connections expected in a
random network. Formally, for community c ∈ C, its mod-
ularity is defined as Qc =

win,c

w∗ −
(

wc

2w∗

)2
, where w∗ is the

sum of all edge weights of the graph, win,c is the sum of
the intra-community edge weights, and wc is the sum of the
weighted degree of the nodes in community c. The modular-
ity of the graph is defined as the sum of the modularity of its
communities Q =

∑
c∈C Qc.

GMA (Blondel et al. 2008) is designed to (greedily) max-
imise modularity.

2.1 Generating synthetic graphs
The evaluation of CD algorithms is often challenged by the
lack of ground truth. It becomes even harder in dynamic
scenarios when, as illustrated in Figure 1, metrics captur-
ing different desired properties of a solution may produce
quite opposite results. Thus, to conduct a sound and thor-
ough evaluation of alternative evolutionary CD methods, we
argue for the use of synthetic scenarios reflecting transfor-
mations in the graph topology that occur in real-world evolv-
ing networks and offer a known ground truth against which
alternative solutions can be compared.

Specifically, we run in-vitro experiments generating syn-
thetic graphs through the Lancichinetti-Fortunato-Radicchi
(LFR) benchmark (Lancichinetti, Fortunato, and Radicchi
2008), which is a widely recognised and versatile tool for
creating complex networks exhibiting community structures
and providing known ground-truth (i.e. the assigned com-
munities). Any synthetic community-based graph genera-
tion algorithms can be used. LFR graphs are characterised
by power-law degree distribution and heterogeneous com-
munity sizes. We randomly assign weights ∈ (0, 1].

2.2 Simulated transformations and scenarios
Our framework creates 9 transformations, grouped into 3
scenarios – i.e. (i) Noise, (ii) Morphing and (iii) Disruptive.

1Possibly, each snapshot can represent a single edge or node
change.

2We omit the suffix t for the sake of clarity.
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Table 1: Overview of scenarios and transformations.

Scenario Transf. Description

Noise
Expansion Add nodes within communities
Intermittence Turn off/on nodes for one snapshot
Switch Turn off/on nodes for multiple snapshots

Morphing

Merge Merge community pairs
Split Form sub-communities
Death Dissolve communities
Birth Aggregate nodes in new communities

Disruptive Mixing Decay of community structure
Removal Remove nodes

These transformations can be applied at different rates. We
provide a concise overview of the designed scenarios in Ta-
ble 1.

Noise In this scenario we evaluate the CD algorithm’s ro-
bustness and stability against perturbations over time. We
perturb the graph without affecting the initial ground truth
provided by the LFR graph through 3 transformations: (i)
Expansion. At each snapshot, we progressively add new
nodes to existing communities while preserving node degree
heterogeneity through preferential attachment (Barabaśi and
Albert 1999). The new nodes persist throughout the simu-
lation; (ii) Intermittence. At each snapshot t, we remove a
fraction of nodes ϕint and we re-add them at t + 1. To en-
sure the persistence of hub nodes characterising the commu-
nities, each node k has probability pk ∝ 1

δk
of being se-

lected, where δk is the node degree; and (iii) Switch. At each
snapshot t, we remove a fraction of nodes ϕswi. Each node k
is removed with probability pk, as in the intermittence case.
Inactive nodes reappear with probability pswi ∝ exptoff−γ ,
where γ ∈ N is a user-defined parameter and toff is the
number of snapshots for which the node has been removed.

These transformations reflect real-world scenarios, such
as user behaviour in a social media platform, where user ac-
tivity exhibits an on-off pattern and new users may join the
system without necessarily changing the underlying com-
munity structure.

Morphing In this scenario we progressively change the
community structure and the network topology over time.
We start from the initial ground truth GT0 for communi-
ties provided by the LFR and, after N snapshots, we end up
with a different ground truth GTN (hence different commu-
nities) which we define according to the considered trans-
formation. We design 4 transformations: (i) Split. We select
one or more communities and progressively split them into
two sub-communities by loosening their edge weights; (ii)
Merge. We select one or more community pairs and pro-
gressively merge them into a larger one by tightening the
edge weights; (iii) Death. We select one (or more) com-
munities and progressively dissolve them by loosening the
intra-community edge weights and linking the nodes to other
existing communities through preferential attachment; (iv)
Birth. We progressively loosen the edge weights of some
nodes per community and link them together forming new

communities. We control the speed at which the transfor-
mations occur through the parameter τ ∈ [0, 1], which ex-
presses the variation in edge weights at each snapshot. At
snapshot t we obtain the weight of an edge wt by modi-
fying the weight of the previous snapshot wt−1. Formally,
wt = τ ± wt−1. Notice that we clip wt ∈ (0, 1].

These transformations reflect transitions in real-world
networks, such as the rise of new communities in social net-
works centred on a specific topic or, conversely, the waning
interest in certain subjects.

Disruptive In this scenario, we progressively destroy the
community structure of the network. We define two transfor-
mations: (i) Mixing. At each snapshot, we shuffle the initial
communities replacing the destination node of some edges
with different existing nodes, preserving the weighted de-
gree distribution; (ii) Removal. At each snapshot, we pro-
gressively remove a fraction of nodes ϕrem selected uni-
formly at random.

These transformations reflect real-world scenarios
marked by a shift towards a disordered arrangement of
nodes, like social mixing, where nodes from different
communities randomly connect with each other.

2.3 Quality metrics
While modularity is the gold standard for evaluating com-
munity assignment, Figure 1 highlights that one single met-
ric does not suffice for a complete evaluation of evolutionary
cases. Thus, we define 3 metrics which capture complemen-
tary factors: Stability (unsupervised), Correctness and Delay
(both use the information of the ground truth, hence super-
vised). These metrics rely on the Adjusted Mutual Informa-
tion (AMI) (Vinh, Epps, and Bailey 2009), which measures
the level of mutual information shared between two sets of
communities accounting for unbalanced community sizes.

Stability (S) Formally, St = AMI(Ct−1, Ct). It is a
proxy for the temporal consistency in community assign-
ment. We obtain the overall stability S by averaging St over
the simulation snapshots. A higher stability indicates fewer
changes in community membership between two snapshots.

Correctness (K) Given a ground truth (GT), we evaluate
the correctness of the considered algorithm in detecting the
transformations at snapshot t as Kt = AMI(GT, Ct).

In the noise scenario, where the transformations do not
affect the initial ground truth, we set GT=GT0. Additionally,
we obtain the overall correctness K averaging Kt over the
simulated snapshots.

Conversely, in the morphing scenario, the final ground
truth is different from the initial one. Thus, we set GT=GTN .
Since we cannot define the final ground truth until the trans-
formation has ended, we consider the overall correctness K
as Kt at the final snapshot. Formally, K = KN .

In disruptive transformations, the final ground truth GTN

is not available and we do not consider the correctness in
this scenario.

Delay (D) It is the number of snapshots the algorithm
takes to detect the change to a new community structure.
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As such, we define this metric only in morphing transfor-
mations and use it to assess the responsiveness of each al-
gorithm to detect the transformation. Namely, we define the
Crossing Point CP as the first snapshot at which the com-
munity assignment is closer to GTN compared to GT0. For-
mally, CP = min{t : AMI(GTN , Ct) > AMI(GT0, Ct)}
Hence, we consider the delay D as the difference between
the CP and the snapshot at which the transformation begins.
If CP does not exist, we set the delay to the maximum pos-
sible value of t.

3 Modularity-based CD
The Louvain method, also known as the Greedy Modularity
Algorithm (GMA) (Blondel et al. 2008), is a widely used
and efficient approach for CD in static networks. It operates
by iteratively greedily optimising the graph modularity. In a
nutshell, at the first iteration, GMA assigns each node at ran-
dom to a unique community. At each subsequent iteration,
it merges communities by evaluating the modularity gain re-
sulting from moving a node to a neighbouring community or
merging two adjacent communities. If the modularity gain is
positive, the change is accepted, and the process continues.
We invite the reader to refer to (Blondel et al. 2008) for
details.

In the following, we consider evolutionary CD algorithms
that use GMA as a starting point. A naı̈ve evolutionary ex-
tension consists of applying GMA on each snapshot inde-
pendently. We refer to this approach as independent GMA.

3.1 Louvain with memory (αGMA)
This approach (Elgazzar, Spurlock, and Bogart 2021) con-
sists of prioritising the persistence of certain edges over
time, favouring past partitions over new points to main-
tain community stability. In a nutshell, αGMA introduces a
memory term α in the graph definition (notably in the edge
weights) updating the network weights at snapshot t accord-
ing to its history at snapshot t− 1. Namely, an edge ϵ whose
weight during snapshot t is ŵt has its actual weight updated
to wt = (1− α) · ŵt + α · wt−1 if wt−1 ̸= 0. Otherwise, if
wt−1 = 0, we set wt = ŵt. The application of independent
GMA on such a graph results in gradual modularity adjust-
ments as new information becomes available.

3.2 Stabilised Louvain (sGMA)
This algorithm changes the initialisation process of GMA.
Unlike the traditional method, which assigns each node to a
unique distinct community, at snapshot t sGMA maintains
the previous community membership for nodes active also
in t − 1. Each new node is assigned to a new distinct com-
munity. Given this initialisation, we run the GMA allowing
nodes to adjust their community membership if the initial
assignment is not suitable.

3.3 Novel Neighbourhood-based GMA (NeGMA)
Both αGMA and sGMA employ strategies to maintain sta-
bility in community assignment by keeping the new commu-
nity structure as similar as possible to the previous snapshot.
By doing so, both methods are expected to be better suited

1

Detected
communities at t-1

Old nodes
initialization at t

New nodes
initialization

Modularity gain
and final init.

2 3 4

Figure 2: Proposed NeGMA initialisation of nodes at snap-
shot t starting from snapshot t − 1. Different colours repre-
sent different communities; squares represent new nodes.

for detecting few or slow-rated modifications. Yet, they may
struggle to properly track scenarios of greater or more abrupt
changes. We here address this issue by (i) modifying the
sGMA initialisation of new nodes which were inactive in the
network relying on their neighbourhood in the current snap-
shot and (ii) evaluating the local community modularity Qc

after this novel initialisation. We call our approach NeGMA
and provide an overview in Figure 2.

Namely, (i) we start from the communities detected at the
previous snapshot t − 1. At snapshot t the graph evolves,
some new edges and nodes appear, and some disappear; (ii)
for already existing nodes we assign them to the commu-
nities detected at t − 1 (as in sGMA); (iii) for new nodes,
we assign the community through majority voting on the
communities of their neighbourhood; (iv) for each commu-
nity, we compute the local modularity gain with respect to
the ones of the previous snapshot: ∆Qt

c = Qt
c − Qt−1

c . If
∆Qt

c is lower than a user-defined threshold θQ, we unbind
the community assigning each of its nodes to a distinct com-
munity like traditional GMA (former yellow community in
the upper-left part of the graph at step 4 in Figure 2).

4 Stability and Correctness Evaluation
We start our evaluation by assessing the stability and cor-
rectness of the CD algorithms under the various transfor-
mations presented in Table 1, deferring the discussion on
delay to the next section. We run our experiments gener-
ating 100 independent graphs for each transformation. We
set the LFR parameter µ = 0.2 (Lancichinetti, Fortunato,
and Radicchi 2008) and we generate N = 150 temporal
snapshots. We trigger the beginning of the transformations
at snapshot 25 and conclude it at snapshot 125. For each
temporal graph, we perform 10 independent runs of each al-
gorithm on each graph. To address the variability introduced
by (i) the randomness of the algorithms and (ii) the graph
generation, we initially average the results of the 10 runs on
each graph. Consequently, we evaluate the median and boot-
strapped 99% confidence interval for these medians across
the 100 graphs.

Regarding the transformations, we set the fraction of
nodes for intermittence as ϕint = 0.2; for switch ϕswi =
0.005 and γ = 10; for removal, we uniformly sample ϕrem

between [0.005, 0.02]. When not explicitly stated, we set the
transformation speed τ = 0.01. As suggested by authors
of αGMA (Elgazzar, Spurlock, and Bogart 2021), we set
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Table 2: Overview of Correctness K and Stability S of the tested evolutionary algorithms compared to the median of the
independent GMA (baseline). ‘=’ indicates a performance variation ≤ 0.5%. A number n of ‘+’ indicates an improvement in
the ( 5(n− 1)% , 5n% ] range. A number n of ‘–’ indicates a decrease in the [ −5n% ,−5(n− 1)% ) range.

Noise Scenario Morphing Scenario Disruptive Scenario
Expansion Interm. Switch Merge Split Birth Death Mixing Removal

K†

αGMA = + = = = = = n.a. n.a.
sGMA = – – = = – – – – – – – – – = n.a. n.a.
NeGMA = – = = – – – – = n.a. n.a.

GMA 0.84 0.95 0.99 1.00 0.86 1.00 0.91 n.a. n.a.

S

αGMA = +++ = = = – = = =
sGMA + ++ = + ++ +++ +++ = =
NeGMA = + = + + ++ ++ = =

GMA 0.98 0.90 1.00 0.98 0.93 0.87 0.88 0.99 0.99
† Recall that we compute differently the correctness for noise and morphing scenarios (see Section 2.3).

α = 0.8, whereas for NeGMA we set θQ = 03. Finally, we
run our experiments on a commodity server with 72 CPUs.
We hope our framework and results can inspire other works
towards the analysis of evolutionary CD. For that, we release
our source code and generated graphs upon request.

In Table 2 we provide a bird’s eye overview of the al-
gorithms’ performance across all simulated scenarios. The
signs refer to the relative performance gain/loss obtained by
each algorithm over using independent GMA, considered as
baseline. For reference, we report also the values of the base-
line.

Firstly, independent GMA achieves satisfactory perfor-
mance in noisy scenarios (overall correctness > 80% and
stability ≥ 90%). However, its stability is notably impacted
by morphing transformations, dropping to 87% and 88% in
birth and death transformations, respectively.

By preserving existing connections across successive
snapshots, αGMA enhances correctness and, notably, sta-
bility under intermittence noise (both peaking at ≈ 100%),
but delivers similar performance in all other transformations
(with a small loss in stability for birth).

Both sGMA and NeGMA offer notable improvements
in stability in scenarios when αGMA fails to do so –
i.e. morphing transformations. Nevertheless, such improve-
ments come at the expense of losses in correctness, espe-
cially for transformations leading to the emergence of new
communities (i.e. split and birth). Yet, compared to sGMA,
NeGMA offers a better trade-off between stability and cor-
rectness in such scenarios.

Finally, all the algorithms demonstrate remarkable stabil-
ity (99%) performing on par with the baseline.

As argued, there is no single winner across all scenar-
ios, and each algorithm offers a different trade-off between
correctness and stability, depending on the transformation.
Next, we delve deeper into these results and expand our dis-
cussion on how each algorithm behaves for these transfor-
mations.

3Notice that in case of modularity decrease for all the commu-
nities, NeGMA corresponds to independent GMA. We plan to eval-
uate the impact of θQ in future developments.
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Figure 3: Noise. Median gain and bootstrapped 99% confi-
dence interval in Correctness and Stability.

Noise transformations In Figure 3 we report median cor-
rectness and stability gain/loss compared to independent
GMA in noise scenario, spanning from snapshots 25 to 125.
All tested algorithms perform on par with GMA for the ex-
pansion and switch transformations, yielding a maximum
gain of 2%.

The memory term integrated into αGMA graph gener-
ation smooths the effects of the transformation, enhanc-
ing robustness against intermittent noise by boosting both
correctness (+5%) and stability (+11%). This can be ob-
served in the qualitative visualisation of the example in Fig-
ure 4b, where communities detected by αGMA at snapshot
15 remain largely consistent up to snapshot 90, despite mi-
nor fluctuations. In contrast, independent GMA suffers from
constant changes in community structure and fails to return
to the original configuration, as shown in Figure 4a.

sGMA initialisation improves the stability by 7% for in-
termittent transformation but leads to a 7% loss in correct-
ness compared to independent GMA. As illustrated in the
example of Figure 4c, the intermittent noise leads sGMA to
merge communities at snapshot 60. Subsequent initialisation
maintains these merged communities. Without a refinement,
this causes a rearrangement of the existing communities pre-
venting the detection of more communities in the next snap-
shot and ultimately the reconstruction of the original ones.
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Figure 4: Dynamic evolution of the graph perturbed by the intermittence transformation, showcasing community assignment.
Zoom in a sample of snapshots from 15 to 90 with step 15 where changes occur.
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Figure 5: Morphing. Median gain and bootstrapped 99%
confidence interval in Correctness and Stability.

Conversely, NeGMA introduces a local modularity eval-
uation during initialisation. This overcomes the sGMA lim-
itation and offers the best trade-off between correctness and
stability. This results in a correctness decrease < 1% and
a stability increase of ≈ 3%. Supporting this, Figure 4d il-
lustrates partial reconstruction of original communities be-
tween snapshots 45 to 75.

Morphing transformations Figure 5 reports the median
correctness and stability gain/loss resulting from morphing
transformations. αGMA performs comparably to indepen-
dent GMA across all designed transformations.

Notably, sGMA emerges as the top performer in terms of
stability. It achieves a stability improvement ranging from
+3% for merges, up to +13% for deaths. However, this im-
provement is countered by a significant loss of > 20% in
correctness for split and birth transformations. This lim-
itation is consistent with sGMA challenge in identifying
emerging communities.

NeGMA once again proves to strike the best balance be-
tween correctness and stability. It achieves an overall max-
imum stability improvement of 7% while constraining the
losses in correctness to no more than ≈ −10% for both split
and birth transformations.

Takeaway: (i) The memory term of αGMA does not bring
substantial changes compared to independent GMA, a part

Table 3: Median delay and reached crossing points in mor-
phing scenario. Best results are highlighted in bold, critical
results in red.

Delay D Reached CP [%]
Merge Split Birth Death Merge Split Birth Death

GMA 0.0 0.0 0.0 0.0 0.98 0.88 0.90 1.00
αGMA 3.0 1.0 4.6 2.0 0.98 0.90 0.90 0.96
sGMA 0.0 Max 0.0 0.0 0.98 0.04 0.98 0.82
NeGMA 0.0 0.0 0.0 0.0 0.98 0.94 0.88 1.00

from intermittence transformation; (ii) sGMA achieves high
stability over time in all the scenarios, but fails in detecting
emerging communities; (iii) NeGMA emerges as the most
balanced algorithm in morphing transformations, achieving
competitive performance in both correctness and stability.

5 Responsiveness Evaluation
We assess the responsiveness of evolutionary GMA solu-
tions in detecting changes through a new experiment involv-
ing morphing transformations. We generate 100 independent
graphs for each transformation and run 10 instances of each
algorithm for N = 20 simulated snapshots. We perform an
instantaneous (i.e. τ = 1) transformation at snapshot t = 10.
We measure the delay D to detect this transformation. Given
the setup, D falls in the [0, 10] range and longer delays imply
lower responsiveness.

Table 3 reports the median delay for each transformation
and the fraction of detected transformations (CP is defined).
As expected, independent GMA detects the transformation
at the exact snapshot with D = 0 for all the cases.

The memory term of αGMA, in turn, forces the overall
graph to evolve at a slower rate, resulting in a systematic
delay and lower responsiveness (from D = 1 for splits to
D = 4.6 for births).

While sGMA matches the delay of independent GMA for
merges, births and deaths, it manages to reach only 4% of
the CPs, failing to detect the vast majority (96%) of the splits
(thus D is set to Max) due to the initialisation at each snap-
shot. Preserving the previous snapshot assignment, sGMA
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Figure 6: Dynamic evolution of the graph with instantaneous
birth transformation at time 10, showing the community as-
signment. Zoom in a sample of snapshots from 0 to 20.

fails to detect an increasing number of communities com-
pared to the initialisation. It is worth noting that this limi-
tation emerges also for birth transformations. Even though
sGMA reaches 98% of CPs, it remains tied to the ones
of GT0 (as highlighted in Figure 6a) and it fails to detect
emerging communities. This results in a correctness varia-
tion of −37.8% on GTN .

Finally, NeGMA detects instantaneous transitions with
a median delay D = 0 for all the cases. Its evaluation
of the local modularity ∆Qt

c during node initialisation ad-
dresses the sGMA limitation, refining the initial assignment
and successfully detecting 94% of splits (best performer for
this transformation). Notably, even though NeGMA reaches
10% fewer CPs than sGMA, it successfully detects the trans-
formations (unlike sGMA), as highlighted in Figure 6b, re-
sulting in a correctness of 0.97, compared to the 0.60 of
sGMA on GTN .

Takeaway: (i) The memory term of αGMA introduces
a systematic delay in detecting instantaneous transforma-
tions; (ii) sGMA is insensitive to the abrupt formation of new
communities; (iii) NeGMA exhibits high responsiveness and
detection rates in most of the instantaneous morphing trans-
formations.

6 Scalability Evaluation
Finally, we evaluate the algorithm execution times as the
graph evolves gradually. αGMA exhibits convergence times
≈ 20% slower than independent GMA. Preserving the past
connections among nodes through α causes the algorithm
to process a growing graph (more nodes and more edges)
at each snapshot. This impacts the overall scalability mak-
ing the αGMA less suitable for constantly evolving dynamic
graphs.

Conversely, sGMA emerges as the most scalable algo-
rithm compared to the baseline, with an execution time twice
as fast. By retaining membership of the previously detected
communities for existing nodes, it efficiently bootstraps the
algorithm, yielding a sub-optimal solution as initialisation.

Lastly, NeGMA achieves a convergence time comparable
to the baseline. Exploring different modularity thresholds or
employing a different community assignment of new nodes

among their neighbourhood could further enhance NeGMA
performance.

7 Conclusions
In this paper, we addressed the challenge of evaluating evo-
lutionary CD algorithms in dynamic networks. We proposed
a benchmarking framework relying on a set of graph trans-
formations which reflect real-world scenarios. We supplied
the lack of a comprehensive set of tools to assess the qual-
ity of detected communities proposing three new metrics
(both supervised and unsupervised) complementary to the
widely used modularity. We also proposed NeGMA, a gen-
eralised modularity-based evolutionary CD approach rely-
ing on GMA and node neighbourhood. We adopted the pro-
posed framework to extensively test and compare the perfor-
mance of different evolutionary CD algorithms.

In a nutshell, experimental results reveal that (i) all the
algorithms exhibit robustness against disruptive and noisy
scenarios; (ii) while αGMA demonstrates both high sta-
bility and correctness in detecting intermittent transforma-
tions, it introduces high delays in detecting instantaneous
transformations and strongly impacts on convergence time;
(iii) sGMA excels in scalability and maintains high stabil-
ity over time (especially in gradual transformations affecting
the community structure of the network), but exhibits low
responsiveness and struggles in detecting emerging commu-
nities; (iv) NeGMA is the most balanced algorithm in terms
of correctness and stability. Furthermore, it outperforms the
responsiveness and detection rates of existing evolutionary
solutions when abrupt changes occur.

Future developments include extending the designed
transformations and testing different combinations of them
including also real datasets. A promising extension of the
proposed evaluation comprises other modularity-based CD
approaches and their application to real-world problems.
Additionally, a deeper investigation of the impacts of the
parameters involved in the tested solutions can provide fur-
ther insights into their performance, especially the modu-
larity threshold θQ of NeGMA which could have a strong
impact on some transformations, such as expansion.
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