
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On Effectiveness and efficiency of Gamified Exploratory GUI Testing / Coppola, Riccardo; Fulcini, Tommaso; Ardito,
Luca; Torchiano, Marco; Alégroth, Emil. - In: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. - ISSN 0098-
5589. - ELETTRONICO. - 50:2(2024), pp. 322-337. [10.1109/TSE.2023.3348036]

Original

On Effectiveness and efficiency of Gamified Exploratory GUI Testing

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TSE.2023.3348036

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984733 since: 2024-01-14T22:23:50Z

IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 1

On Effectiveness and Efficiency of Gamified
Exploratory GUI Testing

Riccardo Coppola, Tommaso Fulcini, Luca Ardito, Marco Torchiano, and Emil Alègroth

Abstract—Context : Gamification appears to improve enjoyment and quality of execution of software engineering activities, including
software testing. Though commonly employed in industry, manual exploratory testing of web application GUIs was proven to be
mundane and expensive. Gamification applied to that kind of testing activity has the potential to overcome its limitations, though no
empirical research has explored this area yet.
Goal : Collect preliminary insights on how gamification, when performed by novice testers, affects the effectiveness, efficiency, test case
realism, and user experience in exploratory testing of web applications.
Method : Common gamification features augment an existing exploratory testing tool: Final Score with Leaderboard, Injected Bugs,
Progress Bar, and Exploration Highlights. The original tool and the gamified version are then compared in an experiment involving 144
participants. User experience is elicited using the Technology Acceptance Model (TAM) questionnaire instrument.
Results: Statistical analysis identified several significant differences for metrics that represent the effectiveness and efficiency of tests
showing an improvement in coverage when they were developed with gamification. Additionally, user experience is improved with
gamification.
Conclusions: Gamification of exploratory testing has a tangible effect on how testers create test cases for web applications. While the
results are mixed, the effects are most beneficial and interesting and warrant more research in the future. Further research shall be
aimed at confirming the presented results in the context of state-of-the-art testing tools and real-world development environments.

Index Terms—Software Testing, Web Application Testing, Gamification

✦

1 INTRODUCTION

Software testing is a critical activity in the software devel-
opment process. Its main purpose is to reveal faults and
defects, but it is also utilised to ensure reliability and con-
formance to functional requirements of software artefacts.
Several techniques have been proposed for software testing,
ranging from low-level unit testing of individual software
components to higher-level exploratory testing through the
software’s Graphical User Interface (GUI).

In recent years, many tools and techniques have been
proposed by research and industry to automate test gen-
eration in modern software development. However, while
automation generally achieves high coverage in code-level
white-box testing activities, automated test cases do not al-
ways generate realistic GUI-based sequences of interactions.
By contrast, manual exploratory testing has survived as a
costly, error-prone and tedious yet crucial activity. However,
the required manual work does govern the amount of
testing an organisation can support due to financial factors
or human capital. The available support thereby affects the
amount of testing and, in turn, the software’s quality [1].

Gamification is defined as ”the use of game design ele-
ments in non-game contexts” [2]; it is typically employed to
increase the engagement, motivation, and performance of

• R. Coppola, T. Fulcini, L. Ardito and M. Torchiano are with the Depart-
ment of Control and Computer Engineering, Polytechnic University of
Turin, Italy. E-mail: first.last@polito.it

• Emil Alégroth is with the Blekinge Institute of Technology, Sweden.
E-mail: emil.alegroth@bth.se.

Manuscript received January 19, 2022.

participants in solving a task to which game mechanics
are applied [3]. Many works in the field have motivated,
conceptualised, and evaluated gamification mechanics ap-
plied to different activities in Software Engineering. Such
activities range from mutation testing to the management of
the application development lifecycle [4]. Although gamifi-
cation has primarily been proposed in the educational field,
encouraging results have also been provided by industrial
case studies [5].

Software testing is well suited for gamification since the
activity revolves around finding defects/faults, completing
test objectives or increasing test capabilities. Hence, activ-
ities can be quantified, measured and compared among
testers/users in a game-like way. Gamification is seen as
an opportunity to enable, and encourage, crowdsourced
testing tasks. Increasing the number of concurrent testers
will increase the number of test cases defined and executed
on software artifacts [6]. As reported in the mapping study
by de Paula Porto et al. [7], benefits of gamification in
Software Testing include the incentive to log defects, a better
motivation to perform activities, a higher opportunity of
helpful user feedback, and a general improvement of the
quality of the work performed.

This paper builds upon a previous conceptualisation
of a framework for metrics and components for manual
exploratory GUI testing of web applications and leverages a
prototype tool implementing such conceptualisation [8].

The framework incorporates mechanics such as session
scores, leaderboards, and live graphical feedback. To the
best of our knowledge, it is the first attempt at apply-
ing these mechanics to the practice of tool-supported ex-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 2

ploratory GUI testing for web applications.
The main goal of the present paper is to report the

findings of a large-scale experiment with graduate students
to evaluate the impact of gamification mechanics on the
effectiveness, efficiency, quality of generated test cases, and
users’ experience. The experiment is performed by using
a prototypical implementation of gamified mechanics in a
tool for GUI-based Capture & Replay generation of test
sequences for web application, namely Scout. We deemed
the graduate students representative of newly hired workers
in the industry with limited experience, who are frequently
employed in manual testing activities of finite products,
while professionals with sounder domain knowledge are
more indicated to be hired to work with systematic test
case design methods [9]. A measure of the user experience
provided by the framework can also be of interest since
gamification can be seen also as a means to facilitate on-
boarding. Based on the results, we elaborate on the potential
benefits and weaknesses of a gamified approach and pro-
pose extensions and aspects worth investigating in future
research.

The remainder of the manuscript is structured as fol-
lows: Section II discusses the background of the practice of
GUI testing of web applications and related works about
gamification in the Software Engineering discipline; Section
III presents our framework and the gamified mechanics
it implements; Section IV describes the developed tooling,
experimental setting, goals, hypotheses, threats and results;
Section V reports and discusses the experimental findings;
Section VI provides a higher-level discussion of the benefits
and drawbacks that can be carried by using the gamified
mechanics, and frames the results of the study in the context
of the current technical limitations of the used tool. Section
VII concludes the paper by providing pointers for additional
evaluations and extensions of the current work.

2 BACKGROUND AND RELATED WORK

2.1 Exploratory testing
Exploratory Testing (ET) is a form of manual testing widely
used in practice – and popular among agile development
teams – due to its recognised flexibility and defect finding
ability [10]. In practice, ET consists of a process of continu-
ous test design and execution, i.e. tests are created against
the finished SUT, and test design is performed as an integral
part of test execution instead of being conducted in a pre-
liminary design phase. ET leverages the tester’s domain and
technical experience to uncover new, previously unknown
faults in the software [11].

Although manual note-taking is perhaps the most com-
mon way of recording ET, tool support with Capture & Re-
play (C&R) features is also used to generate test scripts from
the sequences of the testers’ interaction with the System
Under Test (SUT). These test scripts can later be re-executed
by a dedicated test engine for regression testing purposes.
The syntax of the generated scripts is most often outside the
user’s control, resulting in an additional technical knowl-
edge learning burden for the tester. Other ET tools record
the interactions as logs for manual analysis or re-execution.

Examples of C&R tools are WebRR, which uses DOM
layout-based locators to identify elements to be interacted

[12], or the general-purpose SikuliX tool, which uses screen
captures of the GUI to drive the test execution [13].

One of the most recent advances in C&R testing is Aug-
mented testing, which facilitates the act of gathering inputs
against the widgets by dynamically superimposing textual
and visual information over the SUT’s GUI. Augmented
testing has been defined by Nass et al. [14] for the Scout tool,
which applies augmented testing to manual exploratory
testing of web applications. During the capture phase, the
tool records the tester’s interactions in a test data model that
is continuously analysed to extract new test data or scenar-
ios that will be shown to the tester in the augmented GUI.
The augmented GUI provides hints, textual test data, and
coverage information. Recorded test cases can be replayed
manually or automatically from the test recordings. The tool
also allows to add assertions (e.g., the presence or content of
an on-screen widget) during the definition of test sessions,
which are later automatically verified when the tests are re-
executed. The tool also allows to signal issues during the
manual exploration phase, thus giving the possibility to the
tester to signal rendering and content errors in the SUT. The
tool provides an API to extend features through plug-ins.

2.2 Gamification

Gamification is currently a promising technological trend
involving gaming mechanics in non-game environments,
systems, and tasks. Many research tools have conceptu-
alised gamification in related literature. Among these, one
of the most comprehensive and adopted is the Octalysis
framework, defined by Yu-Kai Chou. The framework iden-
tifies eight core drives that represent aspects of human
behaviour that can be stimulated through gamification. Ex-
amples of such drivers are development and accomplishment,
social influence, empowerment of creativity, unpredictability and
curiosity. By measuring the elements of each driver, the
framework enables assessment of the level of gamification
in any software [15].

Several sources in the literature have presented gamified
constructs and applied these to software testing. A system-
atic mapping study by Pedreira et al. identified gamification
as an emerging trend in the last decade in all areas of Soft-
ware Engineering. The approach has been applied primarily
to project planning and system implementation activities.
The most frequent game mechanics applied to software
engineering were the adoption of point and score systems
and user badges [2]. De Jesus et al. in [4] characterised
the application of gamification to software testing. They
found that the test case design, evaluation, and maintenance
are the most interesting software testing practices from a
gamification standpoint. An important finding of this map-
ping study for this paper regards the testing level at which
gamification has been applied. While lower-level testing has
been subject to gamification research, no documented effort
was identified at a system level.

Furthermore, several tools have been developed for
teaching software testing by using gaming aspects. An
example is CodeDefenders, proposed by Fraser et al. [16].
The tool is designed to teach mutation testing through com-
petition among two teams of testers: attackers, inject bugs
into existing code, while defenders, who have to strengthen

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 3

the existing test suite, try to predict new bugs introduced
by the attackers. Code Defenders showed increased user
involvement in the testing activity and increased robustness
of generated test suites in an academic course evaluation.

Elbaum et al. [17] introduced Bug Hunt, a web-based
platform to introduce students to the concept of black-
box and white-box unit testing. The tool incorporates game
mechanics such as the presence of levels where the testers
have to advance and the confrontation of the current stu-
dents’ scores against the average score of the classroom. The
application of gamified mechanics was deemed beneficial
since most involved students found the gamified tasks more
engaging and interesting than traditional ones.

Parizi [18] included game concepts in traceability tasks
with the tool GamiTracify, for software testing and mainte-
nance; the game mechanics included points, achievements,
reputation building, time progress and the presence of
quests and challenges. The study included an evaluation
that demonstrated that a higher precision was obtainable
with the gamified tool compared to a non-gamified one.
Laurent et al. [19] proposed a crowdsourcing platform for
mutation labelling and detection, which applies gamifica-
tion in the form of progressive presentation of mutants
according to the testers’ skill level, points, and a live
leaderboard. The scoring gamification mechanism aims at
incentivising task completion by assigning points every time
enough other players agree on the labelling of a mutant.

Few works in the literature have presented evaluations
of gamified mechanics in industrial contexts. Liechti et al. [5]
presented a case study about continuous improvement, au-
tomated testing and feedback mechanisms for developers.
The platform integrated an element of gamification in live
graphical feedback of users’ performance in the assigned
task. The authors measured positive impacts, principally in
terms of the enhancements in the testers’ engagement. The
authors also presented qualitative results hinting that the
gamification features incentivised the involved participants
to write more tests and increased their engagement.

In recent years, the application of the crowdsourcing
technique to testing, the so-called crowdtesting, has become
a trend [20]. This technique makes it possible to intensively
test an application using a very large number of users who,
by breaking down a large problem into microtasks, complete
in a short time, what would take a single tester a great deal
of effort and time. It is particularly suited for big problems
that are difficult to automatise, as they require a human
factor to be solved [21].

Exploratory GUI testing is an example of a fruitful field
of application of crowdtesting: testers can be recruited using
platforms such as Amazon Mechanical Turk1 where they
are asked to perform small tasks and to produce reports
with the outcome of the assigned task, typically under a
monetary remuneration [22].

Although crowdtesting could represent a viable way to
improve test quality, leveraging only extrinsic motivators
(those that are typical of crowdsourcing), it remains a very
expensive approach that only keeps the user effectively
involved for a short time due to over-justification effect,
whereby the effect of an extrinsic motivator diminishes as

1. https://www.mturk.com/

Fig. 1: Results screen, showing the metrics measured for the
session and the related score

the user becomes accustomed to it. Gamification conversely
focuses on creating a playful environment for the user to
improve engagement by providing both extrinsic and intrin-
sic motivators. The final objective of this study is to focus
on gamification without taking into account crowdtesting
mechanics.

3 THE FRAMEWORK

This section describes our conceptual framework for the
gamification of activities related to exploratory GUI testing
of web applications. The framework has been originally
introduced in our previous work [8].

Our conceptual framework has been implemented as a
plug-in for Scout, described in the Background section of the
present manuscript. The tool has been considered apt for the
addition of gamification elements because of the presence of
the augmented layer superimposed on the SUT, which could
be leveraged to convey gamified mechanics.

In our framework, we model a testing session as a forest
structure made of trees, each one representing a test case.
Every node of the tree represents a web page, encapsulat-
ing data related to the interactions (i.e., clicks on interface
elements, selection of menu items, or insertion of text in
text boxes) performed by the tester on that particular page.
Edges between nodes are interactions that trigger page
changes in the SUT, whereas interactions that do not result
in a page change are represented as arrows back to the same
node.

The complete testing session, made of different test
cases, can be reconstructed by running through all the paths
of the different trees. Each session is uniquely identified by
a testerID and timestamp based on when it was terminated.

Our framework includes four different game mechanics:

1) Final Score and leaderboard: The main gamification
element of the proposed framework is a mecha-
nism that assigns a score to each testing session.
We adopted the scoring and leaderboard mechanics
since we aimed at incorporating the competitiveness
dynamic in the gamified tool and, according to the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 4

Fig. 2: Graphical feedback of the tool: progress bar, inter-
actable widgets, and star to indicate a newly discovered
webpage

characterisation study by de Jesus et al. [4], they are
the most widely used in gamified software testing.
A sample prompt of what this looks like to the user
is presented in Figure 1. The score is computed as a
function of the following metrics:

• Coverage: Computed as the ratio of number of
widgets the user has interacted with over the
total number of widgets on a page, averaged
over all visited pages. The coverage is normal-
ized in the range [0,1] for each visited page,
in order to allow comparison between among
different pages. Whenever a tester visits a
new page within their session, the coverage
corresponding to the said page is included in
the average coverage computation;

• Exploration: The percentage of new pages and
widgets a user has interacted with for the
first time. New interactions are compared to
known interactions performed by all users.
Currently, the prototype only works offline,
i.e. the comparison works only if two users
share the same machine to test the same SUT.
We argue that in order to keep this metric
significant, the exploration should refer to
the specific version of the SUT being tested,
resetting the widget discovery at each release
or visual modification of the SUT.

• Diversity: Computed as the ratio between the
total number of interactions and the number
of unique widgets the user interacted with.
Thus quantifying the diversity of the test
cases executed by the tester;

• Time: The duration of the test session, where
longer active sessions are rewarded. To pre-
vent users from exploiting the scoring system,
we use a multi-level multiplier based on the
ratio of actions per minute. Longer sessions
are rewarded as we assumed that they allow
users to test the GUI more thoroughly;

• Problems: The number of issues and bugs sig-
nalled by the tester during the exploration of
the SUT. Tracing this metric allows us to evaluate
the effectiveness of the test session in finding
defects in the SUT.

At the end of the exploratory testing session, the
tester receives a score which is computed as a func-

tion of all the five components described above.
Such score is normalised between 0 and 100, and
based on it the tester is then given a rank as a five-
value grade from D (lowest) to S (highest), following
popular conventions adopted by games [23]. The
interested reader can find the detailed formula for
the computation of the final score in Appendix A.

2) Injected Bugs: the framework includes a module
to generate random visual mutations in the SUT.
The injection of random mutants comes with vi-
sual feedback and a score shown when the user
correctly identifies the mutation on the page. This
is considered a gamification element belonging to
the Accomplishment and Unpredictability dimensions
of the Octalysis framework. One widget is selected
randomly for each page, among all the clickable
widgets with hyperlinks present on that page. A
visual mutation is applied to such a widget. The
mutation can be a Delete mutation (i.e., the widget
is removed), a Change mutation (i.e., the content
or appearance of the widget is changed), or an
Add mutation (i.e., the widget is duplicated). The
categories of widgets are taken from existing works
in the literature about mutation testing [24].
Injected bugs were adapted from the practice of
mutation testing and from existing literature about
gamified software testing. A popular example of a
gamified tool involving mutant injection is Code
Defenders [16]. Our tool, which is not specifically
designed for education about mutation testing, does
not consider mutants as a central game element,
but instead a secondary component to encourage
more diverse and longer GUI explorations. Injected
mutants, in fact, serve both as a form of competition
between the users and evidence of progression.
Finding actual bugs through the pages explored en-
courages page exploration by providing immediate
feedback to the testers.
Injected bugs represent a way to evaluate the
tester’s ability and the tool’s effectiveness. Since
the presence of actual bugs cannot be guaranteed,
the injection of additional, random and dynamic
mutants is required to compare the performance of
testers. Placement of known bugs also helps control
for metrics of interest, e.g. user’s inclination to ex-
plore the SUT.

3) Progress Bar: Feedback mechanics are also used to
increase the user’s engagement with the tool and
understanding and self-evaluation of their activi-
ties. Real-time visual feedback shows the user the
number of widgets they have interacted with as
a green line. The progress bar is rendered over a
red one, representing the total number of widgets
on the current page. The visual feedback for cov-
erage is complemented by a mechanism already
implemented by the Vanilla tool. When hovered, the
widgets that can be interacted with are contoured
by a semi-transparent grey box. This function is
also used to render already interacted widgets with
a blue contour (see Figure 2). Each time a new
interaction in the current page occurs, the green

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 5

portion of the progress bar expands.
Additionally, for pages visited by at least one other
tester, the progress bar shows a blue line between
the green and the red area that represents the maxi-
mum coverage ever reached on that page, i.e. equiv-
alent to the current high score to beat. This visual
element is designed to introduce competition in the
tool. Similarly to the exploration metric, this ele-
ment currently works offline when different testers
share the same device. The progress bar element has
no equivalent in the existing literature and can be
seen as a visual rendition of the high-score gaming
mechanic.

4) Exploration Highlights: A real-time feedback mecha-
nism highlights when a page is discovered for the
first time with a semi-transparent star in the top-
left corner of the page (see Figure 2). This element
is inherently linked to the exploration component
of the score, being related to the pages that were
visited for the first time in a session as opposed to
all past sessions performed by all the users. To avoid
the exhaustion of this mechanic, it is necessary
to reset the relative values release by release. We
use exploration highlights to incentivise the testers
to explore more, and diverse widgets and pages.
Exploration highlights can be considered a form of
achievement shown to the user, a well-established
mechanic in gamified tools. This element shares
with the exploration metric and the progress bar
the precondition that the test sequences must be
generated on the same machine to appreciate the
highlighting.

The selection of the game mechanics was also partially
influenced by the nature of the tool that was extended, and
the type of evaluation that we intended to perform. The
Scout augmented tool was particularly apt for the imple-
mentation of the injected bugs mechanics (since it is based
on Selenium, which allows the live modification of web
pages during exploration) and the visualization of graphical
feedback. We focused on simpler gamification mechanics
to evaluate, since more complex elements (e.g., narratives,
profile management, quests) would have required separate
longitudinal experiments to be properly evaluated.

4 EXPERIMENT DESIGN

We describe the experimental study design according to
the guidelines for reporting software engineering experi-
ments defined by Jedlitschka et al. [25]. We validated our
experiment design description by using the checklists in the
Empirical Standards for Software Engineering Research by
Ralph et al. [26].

The purpose of this experiment is to investigate the im-
pact of applying gamification on exploratory GUI testing.
We have defined our research objectives using the Goal-
Question-Metric template [27] as reported in Table 1.

The goal of the experiment is to gain an understanding
of how gamification affects test case generation in terms
of effectiveness and efficiency when traversing the GUI of
a web application. In particular, if gamification has any
positive effects on the generated test case. The experiment

TABLE 1: GQM template for the experiment

Object of study Manual Exploratory GUI testing of web applications
Purpose Compare traditional and gamified approach
Focus Efficiency, Effectiveness
Context Web applications
Perspective Developers, Researchers

TABLE 2: Experiment Design

Session 1 Session 2
Object Tool Object Tool

Group 1 Mezzanine Gamified Wagtail Vanilla
Group 2 Mezzanine Vanilla Wagtail Gamified
Group 3 Wagtail Gamified Mezzanine Vanilla
Group 4 Wagtail Vanilla Mezzanine Gamified

results are interpreted from the point of view of developers
and testers of web applications, developers of testing tools,
and researchers in the field of GUI testing.

4.1 Research questions
We define the following set of research questions to frame
the experiment design.

• RQ1: Does gamification improve the effectiveness of
test cases generated during manual exploratory test-
ing of web applications compared to non-gamified
manual exploratory testing?

• RQ2: Does gamification improve the efficiency of
manual exploratory GUI test case generation for
web applications compared to non-gamified manual
exploratory testing?

• RQ3: Does gamification improve the quality of test
cases generated during manual exploratory testing of
web applications compared to non-gamified manual
exploratory testing?

• RQ4: Does gamification improve the User Experience
(UX) of manual exploratory testing of web applica-
tions compared to non-gamified manual exploratory
testing?

It is worth underlining that the research questions are
defined to cover related but different aspects that can be
influenced by the application of gamification aspects on
exploratory testing procedures: RQ1 focuses on absolute
quantitative measures on the generated test cases; on the
other hand, RQ2 focuses on the influence of gamification on
the efficiency (i.e., results over time) of the tool.

4.2 Design
The primary focus of the study is the investigation of the re-
sulting test cases generated from manual exploratory testing
through the GUI of web applications. This investigation was
organised as a within-subjects 2x2 full factorial (crossover)
experiment where the treatment was administered to par-
ticipants through two versions of a tool, with gamification
(Gamified) and without (Vanilla).

All the participants received both treatments and had to
test both the two subject applications in two consecutive
tasks (periods). Two possible sequences occurred: Gami-
fied-Vanilla and Vanilla-Gamified. In addition, there are two
possible orders of applications (objects) for a total of four

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 6

different groups. The experimental design is summarised in
Table 2. The participants were assigned randomly to the four
groups.

After the second test session, the participants were asked
to answer the TAM questionnaire about their experience
[28]. The objective of the questionnaire was to investigate
the usability of tool augmentation by means of game me-
chanics. The TAM questionnaire provides questions to eval-
uate four different high-level measures: Perceived Usefulness
(PU), i.e., the degree to which an individual believes that
using a particular system would enhance his or her perfor-
mance; Perceived Ease of Use (PE), i.e., the degree to which an
individual believes that using a particular system would be
free of physical and mental effort; Behavioural intention to use
(BI), i.e., the strength of one’s intention to perform a speci-
fied behaviour; Attitude towards usage (ATU), i.e., the user’s
evaluation of the desirability for them to use the system
[29]. Given the currently limited amount of game mechanics
implemented and the strict correlation between them, we
did not include questions about individual game elements
in the questionnaire. Our focus was to assess the usability
and acceptability of the system as a whole. Nonetheless,
we arranged an open question to let participants express
their suggestions and preferences. The interested reader can
refer to section F of the survey script to find all the specific
questions of the TAM questionnaire2.

4.3 Operationalisation of Variables

Our experimental design is based on three independent
variables. One main factor (treatment) corresponds to the
testing tool, having two levels: Gamified and Vanilla, i.e.
with/without gamification augmentation. Three controlled
co-factors related respectively to the web application used as
a test subject (see section 4.5), the order of the task, that is,
experimental subject 1 or 2, and the sequence of treatments,
i.e. Gamified-Vanilla and Vanilla-Gamified.

The dependent variables evaluated in the experiment
relate to the proposed gamified approach’s effectiveness,
efficiency, and quality. In addition, the TAM constructs are
used to assess the user experience.

4.3.1 Effectiveness
Effectiveness, as defined by the ISO 9001 standard [30], is
”the extent to which planned activities are realised and planned
results are achieved”. It was measured in the experiment using
three variables: the Coverage of the generated test suites, the
number of identified True Positives, and the Bug Reporting
Precision of the test cases.

Coverage was chosen as a metric due to its regular use in
software testing research and because of the correlation be-
tween greater coverage and more significant defect finding
ability [31] [32].

More precisely, widget interaction coverage was mea-
sured. It is the proportion of widgets (e.g. buttons, drop-
down menus or text fields) a participant has interacted with
on a page over the total number of widgets on the page. As
such, higher coverage is assumed to be better.

2. https://figshare.com/articles/online resource/Question forms/
16537002

Session coverage is then computed as the average of all
pages visited by the participant.

Regarding coverage metrics, we have only adopted met-
rics that can be computed at the GUI level of the SUT [33].
The reason for such selection is twofold: first, computing
metrics at lower levels (model-based or code coverage met-
rics) would require instrumentation of the web application
and hence limit the generalisability of their computation;
second, code coverage metrics are not necessarily compa-
rable between web applications developed with different
languages or frameworks.

Next, since the experiment was performed with exter-
nally developed open-source software, the number of actual
defects and their location were unknown. We assumed that
no defects were originally present in the software, therefore
we relied on the concept of mutation analysis, injecting
artificial defects in the SUT. This approach allowed us to
measure the defect finding ability of the test cases/suites
generated by the experiment participants [34] as the number
of True Positive test results, where a higher number is as-
sumed to be better. However, since the number of reported
defects varies among participants and includes both True-
and False-Positive test results, the Bug Reporting Precision
was also measured as the number of True-Positive results
over the total number of reported defects. Once more, a
higher number is assumed to be better.

4.3.2 Efficiency
Efficiency as ”the extent to which time, effort or cost is well used
for the intended task or purpose” [30].

In our experiment, we define Efficiency as the ratio be-
tween the number of reported bugs and the duration of the
test session, i.e. Reported bugs over time [35]. For this metric,
a higher value is perceived better. In addition, since one
of the introduced gamification mechanics was to increase
the tester’s score based on exploration, we also measured
the number of pages visited by each participant and the
number of widgets they interacted with. These metrics were
normalised by the duration of time spent on developing the
test suite, i.e. resulting in Visited pages over time and Interacted
widgets over time. In both cases, a higher value is considered
better.

4.3.3 Quality
To study the Quality of test cases produced from the testing
sessions, we evaluated the type of interactions carried on
by the participants and the structure of generated test cases.
First, since we modelled test sessions as tree structures with
each path through the tree representing a test case, we
measured the ratio between the breadth and the depth of
the generated test tree (Breadth-Depth Ratio). Additionally,
for each sequence, the ratio of added assertions per page
traversed was calculated (Assertion per page). For this anal-
ysis, we only measured the assertions that are allowed by
the specific tool on which we implemented our mechanics:
the Scout tool allows to generate simple assertions about the
presence or the content of an element, to be used in further
re-executions of the test cases. Differences in measurements
of this metric between the gamified tool and the vanilla
tool would indicate that gamification affects how testers
navigate the GUI.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 7

26%

68%

5%

86%

13%

1%

72%

22%

5%

Java Sw Testing Web App Development

0 50 100 0 50 100 0 50 100

<1 year

1−3 years

>3 years

Number of participants

Experience

Fig. 3: Summary of participant’s expertise

To complement this analysis, we applied the Open coding
technique [36] to identify sequences of interactions that were
common to many participants. After identifying the most
common test cases, we performed a second pass on all the
executed test cases to assign them to one category derived
using open coding.

The final realism score was computed as a combination
of the following five criteria (each worth one point): (i)
the test case corresponds to one of the most common test
cases that were coded in the Open Coding phase; (ii) at least
one interaction was performed in each visited page; (iii)
the test case performs operations on pages that are related
(i.e., belonging to the same navigation tree in the web site
hierarchy); (iv) the test case has a number of assertions
which is lower than the number of instructions (e.g., clicks
or types) performed; (v) the test case does not traverse the
home page of the SUT multiple times.

This score was used as a proxy measure of the realism of
the generated test cases. Realism is perceived as important
since it is considered one of the benefits of the exploratory
testing approach compared to model-based or random test
generation techniques [37].

The four variables of the standard TAM (Technology
Acceptance Model) questionnaire were considered as proxies
to evaluate the User Experience (UX) of the tool. Each metric
was measured on a 0-5 scale by computing the rounded
average of all the responses to the related Likert sub-
questions. For all metrics, in the results, a higher average
value is considered positive.

4.4 Participants and Sampling

We recruited 144 participants for the experiment by con-
venience sampling. All participants were students at Po-
litecnico di Torino, enrolled in a graduate-level Software
Engineering course held during the spring semester of 2021.
The students were encouraged to participate in the study
and were given an additional point to their final course
grade if they completed and delivered all the assigned tasks.

We also surveyed the participants’ demographics, explic-
itly asking the participants about their expertise with object-
oriented programming, web application development and
testing (3-point ordinal scale: less than one year, between one
and three years, more than three years), and whether they
worked as professional software developers.

A summary of the responses is reported in Figure 3.
Analysis of the survey showed that most students had less
than one year of expertise in Software Testing (85%) and
Web development (72%). In contrast, 68% of participants
had between one and three years of expertise in Object-

Oriented Programming. Additionally, 16% of the partici-
pants had previous working experience in the field.

4.5 Experimental subject applications

The task given to the experiment participants was to gen-
erate test cases for two different web-based SUTs manually.
For the selection of the SUTs, we started from a list of open-
source web applications available in grey literature3. All
applications in the list were deployed and launched by one
of the authors of the paper, who analysed the application
structure and performed exploratory testing sessions with
Scout, in order to evaluate the following inclusion criteria:

• The default instrumentation of the Scout tool had
to be applicable to perform interaction sequences on
the application without incurring any of the known
limitations of the tool (e.g., the inability to send
inputs to JavaScript forms);

• The applications should allow for the generation of
test cases of reasonable length for scenario-based
testing. We assumed a lower bound of at least five
interactions per scenario and at least five statically
loaded pages at startup. These measures were used
as parameters in previous empirical GUI testing re-
search [38].

• The application had to provide sufficient diversity of
widgets. We verified this property by checking that
the application featured at least one widget for each
category of widgets mentioned in the HTTPArchive
State of the Web report4;

After applying the filtering procedure described above,
41 open-source were considered suitable for selection. From
these, we randomly selected pairs of applications until we
found applications that were comparable in terms of com-
plexity. We assumed that the chosen applications had to be
comparable in terms of the complexity of supported user
interactions. We, therefore, measured the widget density of
each application (i.e., the number of widgets per page).
Comparisons based on the total number of widgets and
pages were not deemed meaningful since many different
applications in the pool allowed the user to create new pages
dynamically.

At the end of such an iterative process, Mezzanine5 and
Wagtail6 were selected as experimental objects. Since the
Wagtail project already provides a set of 25 demo pages,
one of the authors of this manuscript defined an equivalent
amount of pages for the Mezzanine SUT, to provide the
participants with the possibility of generating test sequences
of the same length.

4.6 Instrumentation

We set up four virtual environments corresponding to the
four combinations of the two independent variables – i.e.
Treatment (Vanilla vs Gamification) and SUT (Mezzanine vs

3. https://github.com/unicodeveloper/awesome-opensource-apps
4. https://httparchive.org/reports/state-of-the-web
5. https://github.com/stephenmcd/mezzanine
6. https://github.com/wagtail/wagtail

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 8

Wagtail). This approach allowed the participants to con-
duct the experimental task independently on their own
machines.

The testing environments were created with VirtualBox
system images, using Ubuntu 18.04 OS, 4GB RAM, single
CPUs without execution cap, and 15GB drive size. The
VirtualBox images included, on their desktops, a link to
a survey designed to guide the participants through the
different phases of the experiment. The survey was also
used to elicit additional information from the participants
during the study.

To evaluate the defect-finding capability of generated
test cases, we injected two sets (one per SUT) of twelve
static bugs, in randomly chosen features/functions of the
web applications. The injected bugs were the same for all
sessions. Regarding mutants, the vanilla version of the tool
does not feature any feedback mechanism when a mutant
is found during a test case, i.e. the user is not aware of the
presence of the mutant and they can only implicitly detect it
– as if it were a regular bug – during the page exploration.

For this study, the choice of statically placed mutants was
necessary to make the different test sessions comparable.
Although placing fixed mutants in a particular SUT could
be considered as a non-playful element, we argue that, since
each participant is not aware of the actual mutant operators,
and the bugs vary between the two sessions performed,
a sufficient degree of randomness is maintained and the
nature of the game element is not affected.

We injected mutants belonging to all the three macro-
categories of mutation operators, i.e. addition, change and
deletion. We randomly selected the pages and widgets in
the SUTs to apply the mutant operators and the number of
mutants for each macro category. Specifically, we introduced
five delete mutants, four change mutants, three add mutants
in Mezzanine, four delete mutants, three change mutants,
and five add mutants in Wagtail. The mutants were added
by modifying the source of the altered pages and injecting
it on-the-fly in the emulated browser through Selenium
API calls. A detailed description of the added mutants is
reported as supplementary material in the online replication
package for this manuscript7.

The developed prototype only allowed for a compari-
son of the scores and results (e.g., coverage, exploration,
progress) achieved on a single machine. Therefore it was
not possible to show online updates of the highest score
during our experimental sessions. We resorted to using
asynchronous leaderboards, providing the same high scores
to all the users on startup. These scores were obtained by
four independent test sessions in each experimental subject
to create an initial state, shared among all the partici-
pants, that simulated the behaviour of other testers. The
four test sessions aimed at reproducing different attitudes
of the testers, such as reaching higher coverage in few
pages, exploring several pages with few interactions, or
testing only one precise feature per test case. The game
mechanics relying on other testers’ metrics (leaderboards,
exploration highlight, blue progress bar) were all based on
these mock sessions. The use of simulated leaderboards and

7. https://figshare.com/projects/GamificationReplicationPackage/
127202

high scores is also necessary to avoid biases and make the
users’ results comparable. Since they are asynchronous by
design, if we were not using the same fixed leaderboard,
the users of the first sessions would only experience empty
leaderboards. This would be in contrast with the primary
use of leaderboards as intrinsic motivators: for that purpose,
leaderboards must be populated with realistic results that
are at the same time challenging and achievable.

Participant guidance and data collection were performed
through a questionnaire. The first page of the question-
naire collected demographic information, followed by a
30-minute video tutorial about the basic functions of the
experiment tool. After this preliminary phase, the partici-
pants were instructed to launch two shell scripts to run the
correct version of the experiment tool and SUT, depending
on which group they belonged to. At the end of each test
session, the participants had to fill out a report about what
bugs they found in the SUT. After the second test session,
the TAM questionnaire was administered to the students to
measure the user experience with the tool. Each test session
lasted between 30 and 90 minutes.

The virtual machines and surveys can be found on the
provided replication package.

The testing tool was instrumented to automatically log
all the testers’ interactions and collect the metrics defined
to answer our research questions. Bug Reporting Precision
and Realism were the only metrics that were measured
through manual examination of bug reports entered in the
questionnaire and session logs.

4.7 Hypotheses

To answer research questions 1, 2 and 3, the hypotheses
in Table 3 have been formulated, for which the variables
discussed in Section 4.3 were defined. Quantitative metrics
are used to answer these questions through the use of formal
statistical analysis, discussed further in Section 4.8.

TABLE 3: Null hypotheses for the experiment.

Name Hypothesis

Hc0

Gamification has no statistically significant impact on the Cover-
age of generated test suites.

Htp0

Gamification has no statistically significant impact on the True
Positives found by generated test suites.

Hp0

Gamification has no statistically significant impact on the Preci-
sion of reported bugs in the generated test suites.

Hpt0

Gamification has no statistically significant impact on the num-
ber of pages visited over time during generation of test suites.

Hwt0

Gamification has no statistically significant impact on the num-
ber of widgets interacted with over time during generation of test
suites.

Hrb0

Gamification has no statistically significant impact on the num-
ber of bugs reported over time during generation of test suites.

Hbd0

Gamification has no statistically significant impact on the
Breadth-Depth ratio of generated test suites.

Hap0

Gamification has no statistically significant impact on the num-
ber of Assertions per page in the generated test suites.

Hr0

Gamification has no statistically significant impact on the Real-
ism of the generated test suites.

4.8 Analysis Method

To test the hypotheses, we adopt a non-parametric ap-
proach since we expect most variables to not be normally

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 9

distributed. All statistical analysis is performed using the
statistics tool, R [39].

Given the full factorial crossover design adopted for
our experiment, as recommended by Vegas et al. [40], we
analysed the data using a repeated measures linear mixed
model also considering the sequence and order design fac-
tors to deal with the possible threats to validity deriving
from the design. We analysed variance on such a model
to check the statistical significance of the factors and their
relative interactions. We opted for not using non-parametric
tests since the sample size – 136 participants for a total
of 272 data points – may suffice to make the central limit
theorem hold [41], letting us interpret the results despite
slight departures from normality. Moreover, linear mixed
models have less constraints compared to other methods in
the case of repeated measures ANOVA.

The following formula describes our data analysis:

X = c0 + cT · Treatment+ cA ·Application+

cO ·Order + cS · Sequence+ Error(Subject)

Where:

• X is any of the dependent variables,
• c·, are the coefficients of the regression,
• Application, Treatment, Sequence, and Order are

the variables corresponding to the factors, and
Subject is the subject id variable.

We summarise the results reporting the p-values for each
factor. Each hypothesis is evaluated at a 0.05 significance
level (alpha) with two-tailed tests.

Since we perform tests on nine different dependent vari-
ables, we apply the Bonferroni correction [42] to compensate
for the family-wise error rate. Although the use of this
method is under debate [43], a specific case, when it is
recommended, is when searching for associations without
a predefined set of hypotheses supported by a consistent
theory.

In practice, we divide the significance level by the num-
ber of tests performed on the same data set, i.e. 9. As
such, any statistical test with a p < 0.0056 is considered
significant and implies that the null hypothesis (H0) for the
said test must be rejected in favour of the alternative hypoth-
esis (H1). For example, if Hc0 in Table 3 has a statistically
significant result, this would imply that gamification has an
effect on coverage.

RQ4, regarding user experience, was evaluated using a
questionnaire with answers that are not easily analysable
using formal statistics. Instead, we opted for descriptive
statistics, reporting the results in a stacked diverging bar
chart [44]. Answers are grouped according to the four major
TAM constructs: PU, PE, BI, and ATU.

4.9 Threats to Validity
We discuss the potential threats to the validity of the study
according to the four categories reported by Wohlin et
al. [45].

Conclusion validity threats concern drawing the appro-
priate conclusion based on test results. We employed non-
parametric statistical tests that have essentially no statisti-
cal prerequisite. All measures were collected automatically.

Thus we expect them to be not impacted by human errors
in the collection. The treatment was administrated using
two different operational environments, so the participants
were randomly assigned to groups. No significant differ-
ence existed among the groups in terms of expertise. The
participant allocation to groups is a confounding variable
that could have influenced the statistical result, i.e. a dif-
ferent allocation could have resulted in other statistical test
results. However, due to the number of participants, and
their distribution of knowledge, in each group, this threat is
considered improbable but cannot be eliminated entirely.

Construct validity threats concern the relationship be-
tween theory and observation. While there are a few widely
accepted metrics in software testing, there is no single
universally accepted mapping to abstract constructs such
as effectiveness or efficiency; this is due to the inherent
multifaceted nature of such concepts. In our approach,
concerning efficiency, effectiveness, and test quality, we,
therefore, opted for mapping each of them to three distinct
metrics. This choice balances two contrasting issues: to cover
as many facets as possible and to have a simple and easy-
to-understand design.

To measure the true positives over time signalled in the
test session, we had to resort to defining and injecting a
set of pre-defined bugs in both applications. The number
and nature of bugs were equivalent for both applications, so
we do not expect an influence on the comparison between
the average bugs found in different sessions. There is, still,
a researcher bias related to the absolute discoverability of
the introduced bugs, depending on the perceived visibility
of the bugs injected by the individual researcher performing
such a task. A second researcher bias is related to the manual
addition of a set of default web pages in Mezzanine to
make the SUTs comparable in size for the generation of
exploratory sequences. Albeit the introduced pages were
designed to have the same widget complexity as the default
pages in Wagtail, there is a possibility that the added pages
had an impact on the resulting measures for the metrics
defined in the experiment.

As far as technology acceptance is concerned, we
adopted a widely used questionnaire (Technology Accep-
tance Model) to have a generally accepted mapping. Albeit
a custom questionnaire could have yielded more in-detail
results about the participants’ appreciation of the individual
gamified constructs, using a consolidated evaluation frame-
work allows the comparison of the results with other tools
on which the evaluation has been already performed, or to
compare the results with the evaluation of future gamified
mechanics yet to be designed and implemented.

Internal validity threats concern factors that may affect a
dependent variable and were not considered in the study.
The validity of a crossover design can be exposed to threats
related to fatigue and learning effects on the participants.
We allowed the participants to execute the experiment
remotely. We did not impose when the students had to
perform the two sessions – to avoid concurrency with other
academic tasks. However, we did impose a time limit for
each session. The two test sessions did not have to be
performed consecutively. However, we verified that most of
the participants performed the second session immediately
after the conclusion of the first one.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 10

The adoption of a 2x2 factorial design, by construction,
mitigates learning biases. However, since the gamified and
vanilla treatments were administered with two versions
of the two testing tools that share a common base, we
expect a small learning effect on the results of the second
testing session due to acquired familiarity with the tool
base mechanics in the first one. The experimental design
also reduces the fatigue effects: such effects were primarily
experienced during the second session, where participants
were evenly split between the two Treatments. Fatigue and
learning could be detected by looking at the effects of
the order in the analysis. Eventually, since the two tasks
were performed in immediate sequence, we might observe
a carryover effect, i.e., when a treatment is administered
before the effect of another previously administered treat-
ment has completely receded. Consequently, the treatments
administered last might result in more (or less) effective
than the first [40]. Such an effect might be revealed by a
significant effect of the specific sequence (G-V or V-G) in the
analysis.

We do not consider the incentive, consisting of one
additional grade point, sufficient reason to have attracted
more intrinsically motivated students as a threat towards
the study or the results [46].

External validity threats concern the generalisability of the
results. We expect an impact of the software subject used as
SUT on the dependent variables. We selected experimental
objects belonging to a popular category of web applications
that feature an average number of different pages and an
even distribution of web controls. The selection of only two
subjects is however an inherent limitation for the generalis-
ability of our experiment since we cannot guarantee that our
results can be applicable to any category of web application,
and even less so to applications belonging to other software
domains.

Finally, we expect limitations in the generalisability of
results regarding the representativeness of the injected bugs.
To make the results of different test sessions comparable,
we injected two fixed sets of twelve bugs in the SUTs.
However, these manually defined bugs may not represent
real, random bugs in actual web applications.

5 RESULTS

Before performing the statistical analysis, we confirmed,
using the Shapiro-Wilk test [47], that most variables are
not normally distributed, thus suggesting the use of non-
parametric tests.

We applied a pre-filtering of responses by evaluating the
answers to the control questions of the questionnaire. No
response had to be excluded for such a reason.

5.1 RQ1 - Effectiveness

In Table 4 we report the mean, median and standard devi-
ation for the metrics selected to answer RQ1, i.e. average
coverage per page, number of true positives found, and
precision of reported defects. Figure 4 shows boxplots for
the distribution of each metric aggregated by treatment.
From a visual inspection, the gamified version of the tool
appears to achieve higher average coverage, whereas the

TABLE 4: Summary statistics for RQ1 (Effectiveness) metrics

Mezzanine Wagtail All
V G V G V G

Coverage Mean 8.0% 8.9% 8.6% 10.8% 8.3% 9.9%
Median 6.2% 7.4% 6.5% 8.8% 6.5% 8.1%
Std. dev 6.8% 6.0% 5.5% 6.5% 6.2% 6.3%

True positives Mean 1.87 1.57 3.68 3.58 2.75 2.58
Median 2.00 1.00 1.00 4.00 2.00 2.00
Std. dev 1.23 1.06 1.57 1.68 1.67 1.72

Precision Mean 0.57 0.51 0.68 0.70 0.63 0.61
Median 0.55 0.50 0.67 0.73 0.67 0.60
Std. dev 0.33 0.30 0.22 0.23 0.29 0.28

Vanilla

Gamified

0% 10% 20% 30% 40%
Coverage

Vanilla

Gamified

0 2 4 6 8
True positives

Vanilla

Gamified

0% 25% 50% 75% 100%
Precision

Fig. 4: Boxplots for RQ1 metrics

number of true positives detected and the bug reporting
precision were both slightly higher for the vanilla version
of the tool on average. The results of the ANOVA on the
linear mixed-effects model for the measures related to RQ1
are reported in Table 5.

Based on the p-values, we can reject Hc0 (p = 0.0014)
and conclude that the application of gamified mechanics
has a statistically significant positive effect on the coverage
achieved during exploratory GUI testing. The coverage is
increased by 1.6%, which is a remarkable result when com-
pared to an overall average of 9.9%.

The test results do not allow us to reject Hb0 (p = 0.28)
and Htp0

(p = 0.46). Therefore, we must conclude that
neither the number of true positives nor the precision of
how they are reported are affected by gamification. The Ap-
plication had a significant impact on both the True Positives
found and the measured Precision. We did not measure any
significant impact by either the Order or the Sequence on
the three metrics related to RQ1 hence we can conclude that
we had no carryover or learning and fatigue effects in our
experiment.

5.2 RQ2 - Efficiency

In Table 6 we report the mean, median and standard
deviation for the metrics extracted from test sessions to
answer RQ2, i.e. the ratio between visited pages and session
duration, the ratio between interacted widgets and session
duration, and the ratio between reported bugs and session
duration. Figure 5 shows the boxplots for the distribution

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 11

TABLE 5: Results of Anova for RQ1 metrics: coefficients and
p-values of individual factors

Factor / vars: Coverage True Positives Precision
(Hc0

) (Htp0
) (Hp0

)
coeff. p-value coeff. p-value coeff. p-value

Treatment 0.0174 0.0014 -0.1681 0.2849 0.2849 0.4609
Order -0.0071 0.2428 0.2346 0.0212 0.0267 0.2378
Application 0.0149 0.0075 1.9039 <0.0001 0.1508 <0.0001
Sequence -0.0057 0.5247 -0.4177 0.0313 -0.0811 0.0314

TABLE 6: Summary statistics for RQ2 (Efficiency) metrics
(time in minutes)

Mezzanine Wagtail All
V G V G V G

Pages / Time Mean 0.61 0.49 0.59 0.49 0.60 0.49
Median 0.54 0.42 0.53 0.45 0.54 0.44
Std. dev 0.45 0.26 0.29 0.23 0.38 0.24

Widgets / Time Mean 4.70 4.80 4.72 4.57 4.70 4.68
Median 3.86 4.61 4.39 4.13 4.01 4.33
Std. dev 2.81 2.22 2.31 2.32 2.58 2.27

Reported Bugs / Time Mean 0.17 0.14 0.26 0.20 0.21 0.17
Median 0.14 0.11 0.24 0.20 0.19 0.17
Std. dev 0.11 0.08 0.13 0.09 0.13 0.09

of each metric aggregated by treatment. In Table 7 we
report the results of the statistical analysis performed for
the metrics regarding RQ2.

Regarding pages visited over time, the application of
gamified mechanics (Treatment line in the table) has a sig-
nificant (negative) effect (p = 0.0019). The mean of visited
pages per minute decreases from 0.60 to 0.49 (-18.3%). As
such, we must reject Hpt0 .

Regarding widgets interacted with over time, gamifi-
cation did not affect significantly the number of widgets
interacted per minute. As such, we cannot reject Hwt0 (p =
0.5).

Finally, the application of gamified mechanics has a
significant (negative) effect on the number of reported bugs
over time (p < 0.0001). The mean of reported bugs per
minute decreases from 0.21 to 0.17 (-19%). As such, we must
reject Hrb0 .

Regarding confounding factors, the test results point out
a significant impact of the AUT on the reported bugs over
time. We also observe a significant impact of the order of
administration of the treatment on pages over time and bugs
over time. This result can be interpreted as a possible fatigue
effect. The Sequence variable had no significant impact on
the measured metrics; hence we can conclude that we had
no carryover effect in our experiment regarding RQ2.

5.3 RQ3 - Test case quality

In Table 8 we report the mean, median and standard de-
viation for the metrics used to answer RQ3, i.e. the ratio
between breadth and depth of test cases, number of assertions
per page, and realism of test cases. Figure 6 shows boxplots for
the distribution of each metric aggregated by treatment. As
can be observed, the differences between treatments are neg-
ligible for test realism and breadth-depth ratio. However,
with gamification, a slightly larger difference was measured
regarding the number of assertions per page.

Vanilla

Gamified

0 1 2
Visited pages over time

Vanilla

Gamified

0 5 10
Interacted widgets over time

Vanilla

Gamified

0.0 0.2 0.4 0.6
Reported bugs over time

Fig. 5: Boxplots for RQ2 metrics

TABLE 7: Results of Anova for RQ2 metrics: coefficients and
p-values of individual factors

Factor / vars: Pages/Time Widgets/Time Bugs/Time
(Hpt0) (Hwt0) (Hrb0

)
coeff. p-value coeff. p-value coeff. p-value

Treatment -0.0854 0.0019 0.1132 0.5083 -0.0392 <0.0001
Order 0.1923 <0.0001 0.3445 0.0286 0.0461 <0.0001
Application 0.0033 0.9091 0.0566 0.7186 0.0741 <0.0001
Sequence -0.0205 0.5729 0.0108 0.9764 -0.0046 0.7452

The results of the Anova for the variables related to RQ3
are reported in Table 9.

We observe a statistically significant effect of gamifica-
tion on the average number of assertions per page; thus
we reject Hap0 (p = 0.0001). The number of assertions is
increased from 3.63 to 4.69 (+29%). No significant effect
could be detected on the other dependent variables; thus
we cannot reject Hbd0 (p = 0.30) and Hr0 (p = 0.92).

For what concerns confounding factors, we observe no
effect of the order of tasks on any of the dependent variables.
The SUT has a significant impact on the structure of the test
cases (measured as the ratio between breadth and depth).
Finally, the Sequence of tasks significantly impacted the
realism of test cases. We speculate that this change was due
to the fact that the used gamification elements encouraged
some specific behaviours that are related to our definition of
test case realism, and therefore a carryover effect could be
experienced when gamified sessions were performed before
non-gamified sessions.

5.4 RQ4 - User Experience

Figure 7 shows the distribution of the answers to the TAM
Questionnaire, which all 144 participants of the study an-
swered. To make the representation and the discussion of
the results more compact, for each participant, we consider
the rounded mean of the answers for each category of
the questionnaire (i.e., Attitude towards Usage or ATU,
Perceived Usefulness or PU, Behavioural Intention or BI,
Perceived Ease of Use or PE) [48]. We observe, on average,
that participants had mostly positive perceptions towards
all the metrics measured by the TAM model. The metric
with the most positive responses was the Attitude towards

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 12

TABLE 8: Summary statistics for RQ3 (test case quality)
metrics

Mezzanine Wagtail All
V G V G V G

Breadth / Depth Mean 0.34 0.36 0.44 0.46 0.39 0.41
Median 0.32 0.31 0.42 0.41 0.35 0.37
Std. dev 0.13 0.17 0.17 0.23 0.15 0.21

Assertions / Page Mean 3.77 4.45 3.47 4.92 3.63 4.69
Median 2.51 3.07 2.33 3.71 2.45 3.63
Std. dev 5.25 4.63 3.34 4.25 4.42 4.43

Realism Mean 3.50 3.52 3.48 3.44 3.49 3.48
Median 3.67 3.65 3.66 3.64 3.67 3.64
Std. dev 0.77 0.74 0.79 0.80 0.78 0.77

Vanilla

Gamified

0.4 0.8 1.2 1.6
Breadth−Depth ratio

Vanilla

Gamified

0 10 20 30
Assertions per page

Vanilla

Gamified

0 1 2 3 4 5
Average test sequence realism

Fig. 6: Boxplots for RQ3 metrics

Usage metric, with 17% of participants strongly agreeing
and 66% agreeing that gamification is a desirable addition
to the practice of exploratory testing. High positive per-
ceptions were also measured for Perceived Usefulness and
Behavioural Intention. These results suggest that most of the
participants would use tools with gamification if they had
to perform testing activities in the future. Additionally, it
indicates that gamification was perceived as valuable and
usable.

The most negative perceptions were aimed toward Per-
ceived Ease of Use (16% Disagree, 4% Strongly disagree).
This result, however, can be explained by the prototypical
nature of the tool, and the administration of the experi-
mental sessions through a virtual machine that could have
lowered the overall usability of the tool.

By considering the TAM metrics as proxies for user
experience and usability of a software system, we can state
that the overall good results we gathered suggest a good UX
for our gamified prototype tool.

Participants’ suggestions, collected by means of open
questions in the questionnaire, were mainly related to the
inclusion of profile customisation (e.g., with avatars) and
reward mechanics such as badges. Negative textual com-
ments were mostly related to technical issues and low
responsiveness experienced with the virtual machine.

6 DISCUSSION

For this study, gamification was added to a testing tool to
investigate the impact on manual exploratory testing. We

TABLE 9: Results of Anova for RQ3 metrics: coefficients and
p-values of individual factors

Factor / vars: Breadth/Depth Assertions/Page Realism
(Hbd0

) (Hap0
) (Hr0

)
coeff. p-value coeff. p-value coeff. p-value

Treatment 0.0199 0.3030 1.2326 0.0001 -0.0098 0.9206
Order -0.0221 0.4131 -0.8272 0.0097 -0.0433 0.6249
Application 0.1020 <0.0001 0.3470 0.2645 -0.0459 0.6211
Sequence 0.0104 0.6258 -01365 0.8290 -03415 0.0003

4%

14%

20%

14%

85%

53%

52%

65%

11%

34%

28%

22%

ATU

BI

PE

PU

100 50 0 50 100
Percentage

Response Strongly
disagre Disagree Neutral Agree Strongly

agree

Fig. 7: Distribution of the answers to the TAM Questionnaire

evaluated the impact of added gamification mechanics in
terms of effectiveness, efficiency, and realism of the gener-
ated test cases.

The most evident result that we verified is a statis-
tically significant increase in the coverage obtained with
the gamified testing tool. In fact, gamification induced the
participants to focus more on the exploration of the pages of
the SUT. The main explanation for this behavioural change
is the addition of gamification mechanics, especially the
progress bar. This feature shows the user’s current coverage
of the currently tested page and, due to the instant feedback,
it enables the user to see when they are making progress;
thus it helps guide their efforts, rewarding them for being
thorough. In practice, testers are highly motivated to per-
form more interactions on the same page to increase the
coverage – visually shown by the progress bar – instead of
deeply exploring the whole page tree of the SUT. This result
was indeed expected since the gamification elements imple-
mented in the prototype tool were designed with increased
coverage as one of the main objectives. Therefore, this result
can serve as a demonstration that tailored gamification
mechanics can successfully modify testing habits when de-
signed with a specific purpose. Regarding test effectiveness,
no other significant effects (neither positive nor negative)
were observed with the introduction of gamification.

Regarding the efficiency of the exploratory testing pro-
cess, we measured statistically significant negative effects of
gamification mechanics: a reduction of the number of pages
visited over time, and a reduction of the number of bugs
reported over time with the issue signalling feature of the
Scout tool. Albeit these effects may suggest a detrimental
effect of the application of gamified mechanics in general,
it is worth underlining that the implemented mechanics
demanded attention from the testers for the number of inter-
actions performed on the same page, and newly interacted
widgets. Therefore, it is reasonable that the efficiency in
performing operations can be lowered when participants are

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 13

encouraged to perform more focused operations on the SUT.
Hence, each application page was tested more thoroughly
as opposed to a shallower exploration of pages observed
without gamification. We hypothesize that the adoption of
gamified elements designed specifically for better efficiency
(e.g., timers) could have an opposite impact on such met-
rics. Our prototype tool actually evaluated the pace of the
performed interactions as one of the components of the final
score of the user - we however suppose that such a scoring
component was not sufficiently evident to the participants
to generate biased behaviours towards faster interactions
with the SUT. We, therefore, suggest that such mechanics
ought to be additionally evaluated and calibrated to ensure
that the benefits guaranteed by some gamified elements
are not provided at the cost of the overall efficiency of the
testing technique.

Regarding the quality of the generated test sequences,
we measured a significant increase in the number of gen-
erated assertions per page when gamified mechanics are
used. Conversely, we observed no significant changes in the
realism of test cases – measured as a function of multiple
properties of exploration sequences, as described in section
4.3.3 – neither in the breadth over depth of test cases. The
higher number of assertions per page can be justified again
as the outcome of a changed behaviour by the testers, who
were encouraged to stay more focused on individual pages
rather than moving onto different ones. This reasoning also
justifies the small (and not significant) increase in the ratio
between the breadth and depth of generated test cases. The
added assertions in the generated exploratory sequences
could also be an object of game exploit by the participants,
for instance by putting random assertions on irrelevant web
elements or adding an assertion on the same web element
multiple times. We therefore performed an analysis of the
logs of the generated sequences, and we verified that no
participant performed any exploit.

It is worth stressing that the nature of the test suites
and of the generated assertions was not influenced by the
adoption of gamification elements. This result is important
because the adoption of highlighting mechanisms like the
progress bar could have encouraged the participants to per-
form random operations on the SUT to increase their scores.
On the contrary, the produced test cases followed the main
use cases of the experimental objects, resulting in mostly
valid test cases for the SUTs. We can argue, based on such
results, that testers, during exploratory testing, limit their
exploration to sequences that make cognitive sense rather
than random sequences. The fact that gamified mechanics
do not affect the realism and structure of test cases is a
strong point in favour of gamification adoption.

Concerning the acceptance by users, results showed that
the proposed gamification approach led to a reasonable user
experience and good usability. As such, the approach can
provide solid support in practice, mitigating manual testing
challenges (i.e. that it is costly and frequently perceived as
an unappealing activity) while preserving all the benefits
of human test case generation over automated or random
generation.

Finally, we remark that the present study results only
allow us to consider the impact of all gamified mechan-
ics as a whole without discriminating the impact of each

mechanic taken individually. Further experiments would
be needed to pursue that end. An example of still needed
experimentation is an evaluation of the mutant injection
mechanism. The current analysis has only employed static,
researcher-injected mutants in both the SUTs. Also, since
one of our research questions was about the bug-finding
effectiveness of generated test sequences, the same mutants
were injected into the non-gamified version of the tool, to
enable comparability between the test sequences. As such,
injected mutants by now are a means to increase the partici-
pants’ engagement and to complement the evaluation of the
other gamification mechanics that have been implemented.
Future research efforts are needed to evaluate the mutant
injection mechanism in isolation and to understand how the
injection of random mutants can impact other metrics that
are not directly related to bug finding (e.g., on exploration
or coverage metrics). More specific experimental settings
would also be needed to evaluate the impact of the leader-
board mechanic. In the described evaluation, since each
participant conducted only one task with the gamification,
this feature was highly unlikely to alter their behaviour.

6.1 Current Limitations

The main objective of the present paper was to provide in-
sights on the results of the application of the basic concepts
of gamification to an existing testing tool. The technical
contribution (i.e., implementation of advanced gamification
concepts) was not the focus of the paper. Regarding the
type of mechanics, we focused on the implementation of the
gamification elements that could be evaluated in the parallel
experimental setting. Other mechanics (e.g., profile creation,
achievements, social interaction) would have required lon-
gitudinal course-long projects to be evaluated properly.

One of the main technical limitations of the current
version of the tool is the missing support for online syn-
chronous competition between different players. This lim-
itation is however not perceived as detrimental for the
evaluation described in the present paper, since an unbiased
evaluation of leaderboards and highest score mechanics
would have in any case required the definition of a stable
asynchronous starting point for all the involved users. En-
abling live competition (or collaboration) would however
allow for the implementation of more refined mechanics
and provide the basis for additional analyses about the most
impactful gamification elements in our setting. The need for
an unbiased setup led to a similar approach regarding the
Bug Killing Score mechanic: to allow for comparable results
between different users, we resorted in providing a static
set of bugs for all the testers of the same SUT. The tool
already contains an engine capable of generating random
bugs across the different pages explored by the tester.

A second limitation of the tooling adopted for the ex-
perimentation is the absence of a nuanced possibility of
adding assertions. The Scout tool allows only to verify the
presence or the textual content of a widget encountered
during an exploratory session. On one hand, this limitation
in the assertion reduces the variability in the complexity
of the created assertions, which would make impossible a
comparative evaluation of the generated test sequences. On
the other hand, since many assertions can be easily placed

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 14

with such mechanism in the same or similar pages, there is
a theoretical possibility of exploiting such a mechanism by
placing multiple assertions on a page which is known to be
particularly stable. It is, however, not possible to generate
assertions that are always true by definition.

Finally, some limitations are due to the type of SUTs
considered. Web applications are typically large in terms of
number of pages available - in some cases, e.g. for CMS
systems, additional pages can be created at run time during
the execution of test scenarios. Without the implementation,
as of now missing, of crawlers of the full application struc-
ture, it was not possible to provide a measure of the widget
coverage over all the widgets of the web application. As
of now, the tool only computes the widget coverage over
the set of visited pages, by adding the normalized widget
coverage for each page that is encountered by the tester in
their test session. This way of computing coverage is indeed
not optimal - since by construction, it creates a temporary
drop in the overall average coverage every time a new page
is discovered. Future work may be conducted to analyze
alternatives to the current widget coverage formula. The
use of web applications as SUTs also poses generalizability
issues when computing coverage at levels that are different
from that of the GUI components. Even though through
instrumentation of the backend it is possible to compute
code-level coverage when performing exploratory testing
of web applications through the GUI, the high variability
of frameworks and languages that can be adopted in the
development stack of web applications invalidates any as-
sumption on code coverage measures on different SUTs.

7 CONCLUSION AND FUTURE WORK

In this study, we have investigated the impact of gamifica-
tion on manual exploratory testing. In particular, we defined
a set of game mechanics and implemented them by adding
such gamified elements to a tool called Scout.

The main element of novelty of our tool is that it is
applied at a different testing level from those existing in
related work, which applies gamified mechanics to software
test generation. Available research efforts have proposed
gamified mechanics to improve the effectiveness of test
case generation at the unit level and for mutation testing
(e.g., [16], [18]). Instead, to the best of our knowledge, the
set of mechanics that we discuss constitutes the first non-
educational gamified testing framework applied to end-to-
end exploratory GUI testing.

We ran an experiment comparing 144 human partici-
pants’ performance when using the tool with and without
gamification. In particular, gamification was compared to
the non-gamified version of the tool in terms of effective-
ness, efficiency, quality of tests and user experience.

The study showed that gamification provides higher
page coverage than non-gamified testing from an effective-
ness standpoint. From an efficiency standpoint, gamifica-
tion has shown to have no beneficial effects. Instead, non-
gamified testing was found to result in both more pages
being tested over time and more bugs being reported over
time. In terms of test quality, gamification resulted in an
addition of more assertions. Finally, as implemented, gami-
fication was considered to provide a good user experience.

In summary, although the number of variables of signif-
icance in the experiment was underwhelming, these results
still indicate the value of gamification and its impact on
the testers’ behaviour. As such, we propose that further
research is warranted into gamification features that aid
testers through test augmentation and guide the tester’s
behaviour in different ways depending on testing needs.

To overcome the tool-based limitations described in sec-
tion 6.1, our primary future work will include implemen-
tation efforts targeted to the construction of a more flexible
framework to implement further gamification mechanics, to
assist the integration of more refined gamification elements
in the practice of exploratory testing. Some examples of
more advanced gamification elements are avatars, achieve-
ments, and narrative metaphors of the testing activities be-
ing carried on. Research should also focus on the empirical
evaluation of each element in isolation, to pinpoint which
effects on testing practice, user experience and user be-
haviour can be associated with each element. It would also
be beneficial to extend the set of experimental subjects used
in the current study, also considering multiple categories
of web applications, to enhance the generalisability of our
findings. Finally, we also plan to evaluate the possibility of
introducing multi-tester activities (either online or offline)
in order to combine the benefits provided by crowdsourced
architectures and gamified testing.

ACKNOWLEDGMENT

This study was carried out within the “EndGame - Improv-
ing End-to-End Testing of Web and Mobile Apps through
Gamification” project (2022PCCMLF) – funded by the Min-
istero dell’Università e della Ricerca – within the PRIN 2022
program (D.D.104 - 02/02/2022). This manuscript reflects
only the authors’ views and opinions and the Ministry
cannot be considered responsible for them.

REFERENCES

[1] E. Borjesson and R. Feldt, “Automated system testing using visual
gui testing tools: A comparative study in industry,” in 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation. IEEE, 2012, pp. 350–359.

[2] O. Pedreira, F. Garcı́a, N. Brisaboa, and M. Piattini, “Gamification
in software engineering–a systematic mapping,” Information and
software technology, vol. 57, pp. 157–168, 2015.

[3] M. V. Mäntylä and K. Smolander, “Gamification of software
testing-an mlr,” in International conference on product-focused soft-
ware process improvement. Springer, 2016, pp. 611–614.

[4] G. M. de Jesus, F. C. Ferrari, D. de Paula Porto, and S. C.
P. F. Fabbri, “Gamification in software testing: A characterization
study,” in Proceedings of the III Brazilian Symposium on Systematic
and Automated Software Testing, 2018, pp. 39–48.

[5] O. Liechti, J. Pasquier, and R. Reis, “Supporting agile teams with
a test analytics platform: a case study,” in 2017 IEEE/ACM 12th
International Workshop on Automation of Software Testing (AST).
IEEE, 2017, pp. 9–15.

[6] G. Fraser, “Gamification of software testing,” in 2017 IEEE/ACM
12th International Workshop on Automation of Software Testing (AST).
IEEE, 2017, pp. 2–7.

[7] D. de Paula Porto, G. M. de Jesus, F. C. Ferrari, and S. C.
P. F. Fabbri, “Initiatives and challenges of using gamification in
software engineering: A systematic mapping,” Journal of Systems
and Software, vol. 173, p. 110870, 2021.

[8] F. Cacciotto, T. Fulcini, R. Coppola, and L. Ardito, “A metric
framework for the gamification of web and mobile gui testing,”
in 2021 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE, 2021, pp. 126–129.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 15

[9] T. Lorey, S. Mohacsi, A. Beer, and M. Felderer, “Storm: A
model for sustainably onboarding software testers,” arXiv preprint
arXiv:2206.01020, 2022.

[10] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “The role of the
tester’s knowledge in exploratory software testing,” IEEE Trans-
actions on Software Engineering, vol. 39, no. 5, pp. 707–724, 2012.

[11] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple
case study,” in 2005 International Symposium on Empirical Software
Engineering, 2005., 2005, pp. 10 pp.–.

[12] Z. Long, G. Wu, X. Chen, W. Chen, and J. Wei, “Webrr: self-replay
enhanced robust record/replay for web application testing,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 1498–1508.

[13] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using gui screenshots
for search and automation,” in Proceedings of the 22nd annual ACM
symposium on User interface software and technology, 2009, pp. 183–
192.

[14] M. Nass, E. Alégroth, and R. Feldt, “Augmented testing: Industry
feedback to shape a new testing technology,” in 2019 IEEE In-
ternational Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 2019, pp. 176–183.

[15] Y. Chou, Actionable Gamification: Beyond Points, Badges, and
Leaderboards. Createspace Independent Publishing Platform,
2015. [Online]. Available: https://books.google.it/books?id=
jFWQrgEACAAJ

[16] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gamifying a
software testing course with code defenders,” in Proceedings of the
50th ACM Technical Symposium on Computer Science Education, 2019,
pp. 571–577.

[17] S. Elbaum, S. Person, J. Dokulil, and M. Jorde, “Bug hunt: Making
early software testing lessons engaging and affordable,” in 29th
International Conference on Software Engineering (ICSE’07). IEEE,
2007, pp. 688–697.

[18] R. M. Parizi, “On the gamification of human-centric traceability
tasks in software testing and coding,” in 2016 IEEE 14th Interna-
tional Conference on Software Engineering Research, Management and
Applications (SERA). IEEE, 2016, pp. 193–200.

[19] T. Laurent, L. Guillot, M. Toyama, R. Smith, D. Bean, and A. Ven-
tresque, “Towards a gamified equivalent mutants detection plat-
form,” in 2017 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, 2017, pp.
382–384.

[20] J. Wang, M. Li, S. Wang, T. Menzies, and Q. Wang, “Images
don’t lie: Duplicate crowdtesting reports detection with screenshot
information,” Information and Software Technology, vol. 110, pp. 139–
155, 2019.

[21] F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the
crowd solve the oracle problem?” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, 2013, pp.
342–351.

[22] Y. Chen, M. Pandey, J. Y. Song, W. S. Lasecki, and S. Oney, “Im-
proving crowd-supported gui testing with structural guidance,”
in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 2020, pp. 1–13.

[23] C.-I. Lee, I.-P. Chen, C.-M. Hsieh, and C.-N. Liao, “Design aspects
of scoring systems in game,” Art and Design Review, vol. 5, no. 1,
pp. 26–43, 2016.

[24] E. Alégroth, Z. Gao, R. Oliveira, and A. Memon, “Conceptual-
ization and evaluation of component-based testing unified with
visual gui testing: an empirical study,” in 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2015, pp. 1–10.

[25] A. Jedlitschka and D. Pfahl, “Reporting guidelines for controlled
experiments in software engineering,” in 2005 International Sym-
posium on Empirical Software Engineering, 2005. IEEE, 2005, pp.
10–pp.

[26] P. Ralph, S. Baltes, D. Bianculli, Y. Dittrich, M. Felderer,
R. Feldt, A. Filieri, C. A. Furia, D. Graziotin, P. He, R. Hoda,
N. Juristo, B. A. Kitchenham, R. Robbes, D. Méndez, J. Molleri,
D. Spinellis, M. Staron, K. Stol, D. A. Tamburri, M. Torchiano,
C. Treude, B. Turhan, and S. Vegas, “ACM SIGSOFT empirical
standards,” CoRR, vol. abs/2010.03525, 2020. [Online]. Available:
https://arxiv.org/abs/2010.03525

[27] V. R. Basili, “Goal question metric paradigm,” Encyclopedia of
software engineering, pp. 528–532, 1994.

[28] Y. Lee, K. A. Kozar, and K. R. Larsen, “The technology acceptance
model: Past, present, and future,” Communications of the Association
for information systems, vol. 12, no. 1, p. 50, 2003.

[29] C. Gardner and D. Amoroso, “Development of an instrument to
measure the acceptance of internet technology by consumers,” in
37th Annual Hawaii International Conference on System Sciences, 2004.
Proceedings of the, 2004, pp. 10 pp.–.

[30] “Iso 9001:2005,” International Organization for Standardization,
Standard, 2005.

[31] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, “Test coverage
and post-verification defects: A multiple case study,” in 2009
3rd International Symposium on Empirical Software Engineering and
Measurement, 2009, pp. 291–301.

[32] A. S. Namin and J. H. Andrews, “The influence of size
and coverage on test suite effectiveness,” in Proceedings of
the Eighteenth International Symposium on Software Testing and
Analysis, ser. ISSTA ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 57–68. [Online]. Available:
https://doi.org/10.1145/1572272.1572280

[33] R. Coppola and E. Alégroth, “A taxonomy of metrics for gui-based
testing research: A systematic literature review,” Information and
Software Technology, p. 107062, 2022.

[34] R. A. Oliveira, E. Alégroth, Z. Gao, and A. Memon, “Definition and
evaluation of mutation operators for gui-level mutation analysis,”
in 2015 IEEE Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, 2015, pp.
1–10.

[35] A. Gupta and P. Jalote, “An approach for experimentally evalu-
ating effectiveness and efficiency of coverage criteria for software
testing,” International Journal on Software Tools for Technology Trans-
fer, vol. 10, no. 2, pp. 145–160, 2008.

[36] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research: a critical review and guidelines,” in
Proceedings of the 38th International Conference on Software Engineer-
ing, 2016, pp. 120–131.

[37] O. Stadie and P. M. Kruse, “Closing gaps between capture and
replay: Model-based gui testing,” in 1st INTUITEST Workshop,
2015.

[38] E. Borjesson, “Industrial applicability of visual gui testing for
system and acceptance test automation,” in 2012 IEEE Fifth In-
ternational Conference on Software Testing, Verification and Validation.
IEEE, 2012, pp. 475–478.

[39] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2021. [Online]. Available: https://www.R-project.org/

[40] S. Vegas, C. Apa, and N. Juristo, “Crossover designs in software
engineering experiments: Benefits and perils,” IEEE Transactions
on Software Engineering, vol. 42, no. 2, pp. 120–135, 2015.

[41] J. C. De Winter, “Using the student’s t-test with extremely small
sample sizes,” Practical Assessment, Research, and Evaluation, vol. 18,
no. 1, p. 10, 2013.

[42] J. M. Bland and D. G. Altman, “Multiple significance tests: the
bonferroni method,” Bmj, vol. 310, no. 6973, p. 170, 1995.

[43] T. V. Perneger, “What’s wrong with bonferroni adjustments,” Bmj,
vol. 316, no. 7139, pp. 1236–1238, 1998.

[44] J. Bryer and K. Speerschneider, likert: Analysis and Visualization
Likert Items, 2016, r package version 1.3.5. [Online]. Available:
https://CRAN.R-project.org/package=likert

[45] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer
Science & Business Media, 2012.

[46] P. C. Jordan, “Effects of an extrinsic reward on intrinsic motivation:
A field experiment,” Academy of Management Journal, vol. 29, no. 2,
pp. 405–412, 1986.

[47] P. Royston, “Approximating the shapiro-wilk w-test for non-
normality,” Statistics and computing, vol. 2, no. 3, pp. 117–119, 1992.

[48] J. R. Lewis, “Comparison of four tam item formats: Effect of
response option labels and order.” Journal of Usability Studies,
vol. 14, no. 4, 2019.

Riccardo Coppola Riccardo Coppola received the M.Sc. degree in
computer engineering from Politecnico di Torino, Turin, Italy, where
he is currently working towards a PhD degree. His research interests

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, AUGUST 20XX 16

include automated GUI testing for web and mobile applications and the
evaluation of non-functional properties of testware.

Tommaso Fulcini Tommaso Fulcini received a M.Sc. degree in com-
puter engineering, Software branch, from Politecnico di Torino, Turin,
Italy, where he is currently working towards a PhD degree. His research
interests include gamification in Software Engineering, particularly soft-
ware testing. He is currently working on building a gamified environment
for end-to-end testing.

Luca Ardito Luca Ardito is an Assistant Professor at Dept. of Control
and Computer Engineering of Polytechnic of Turin, where he works in
the Software Engineering research group. He received BSc, MSc, and
PhD in Computer Engineering from Politecnico di Torino. His current
research interests are mobile development and testing, gamification in
software engineering, green software and empirical software engineer-
ing methodologies.

Marco Torchiano Marco Torchiano is an associate professor at the
Control and Computer Engineering Dept. of Politecnico di Torino, Italy;
he has been a post-doctoral research fellow at the Norwegian University
of Science and Technology (NTNU), Norway. He received an MSc and
a PhD in Computer Engineering from Politecnico di Torino. He is a
Senior Member of the IEEE and a member of the software engineering
committee of UNINFO (part of ISO/IEC JTC 1). He is the author or co-
author of over 140 research papers published in international journals
and conferences of the book “Software Development—Case studies
in Java” from Addison-Wesley, and co-editor of the book “Developing
Services for the Wireless Internet” from Springer. He recently was a
visiting professor at Polytechnique Montréal studying software energy
consumption. His current research interests are green software, UI
testing methods, open-data quality, and software modelling notations.
The methodological approach he adopts is that of empirical software
engineering.

Emil Alégroth Emil Alégroth is an Assistant Professor at the Software
Engineering Research Lab (SERL) at the Blekinge University of Tech-
nology in Karlskrona, Sweden. His research has primarily focused on
automated GUI testing, in particular Visual GUI Testing, which was the
topic of his dissertation that he defended in 2015. Emil’s research is also
empirical in nature, performed in collaboration with industry, including
companies such as Spotify, Saab, Jeppesen and Grundfos.

