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Abstract 

The present study focuses on the analysis of the seismic performance of isolated bridges, 

equipped with single concave friction pendulum (FPS) bearings. The bridge is modelled 

through a six-degree-of-freedom system considering two FPS bearings placed on top of the 

rigid abutment and the elastic pier. The six equations of motion are analytically solved in or-

der to obtain the response parameters normalized with respect to the peak ground accelera-

tion-to-velocity ratio (PGA/PGV). In addition, a parametric analysis is conducted by varying 

some bridge properties. All these different bridges are then subjected to a set of 30 far field 

records having low and high PGA/PGV ratios to assess the seismic performance. 

Keywords: Seismic isolation, bridges, FPS bearings, PGA/PGV. 
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1 INTRODUCTION 

Nowadays, the safety of both structures and infrastructures is becoming an important issue. 

Regarding the context of seismic safety, both seismic isolation [1]-[3] and dissipation [4]-[7] 

are key strategies to reduce the seismic risk. Specifically, seismic isolation in case of infra-

structures has the goal to decouple the inertia forces transmitted from the superstructures to 

the piers by increasing the period at the isolation level. The advantage of adopting the friction 

pendulum system (FPS) bearings are that the period of the isolation level becomes independ-

ent from the mass of the deck, the high restoring capacity and the low maintenance needs if 

compared to other isolators [8]-[9]. Many are the researches developed in the contest of seis-

mically isolated bridges: for instance the development of numerical models to represent the 

behavior of the FPS isolators [10]-[14], the investigation of the effects of many geometrical 

and mechanical parameters within a parametric analysis on steel girder bridges isolated with 

FPS bearings [15], the identification of optimal properties of the isolators able at minimizing 

the substructure response [16]-[20]. However, in all these works the response in terms of op-

timal value for the friction coefficient is not independent from the seismic input characteris-

tics.  

The aim of the present study is to analyze the seismic performance of multi-span continu-

ous deck isolated bridges, equipped with single concave friction pendulum system (FPS) 

bearings. A six-degree-of-freedom (dof) system is adopted to model the bridge, by consider-

ing 1 dof for the mass of the deck and 5 dofs corresponding to the lamped masses composing 

the pier. Two FPS isolators are placed on top of abutment, modeled as rigid and fixed, and of 

the elastic pier. The six equations of motion are analytically solved in order to obtain the re-

sponse parameters normalized with respect to the peak ground acceleration-to-velocity ratio 

(PGA/PGV). In addition, a parametric analysis is conducted by varying some bridge proper-

ties. All these different bridges are then subjected to a set of 30 far field records having low 

and high PGA/PGV ratios.  

2 NONDIMENSIONAL FORMULATION OF THE EQUATIONS OF MOTION 

The multi-span continuous deck reinforced concrete (RC) isolated bridges are modeled 

through a six-degree-of-freedom (dof) system composed of 5 dofs associated to the lumped 

masses of the pier and 1 dof for the deck’s mass, in line with [13],[19]-[20].  
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Figure 1 Scheme of the bridge model. 
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In detail, an FPS device is placed on top of the abutment and of the pier. The RC pier is 

modeled as flexible, while the RC abutment is considered rigid and fixed. The schematic rep-

resentation of the bridge model together with the relative displacement of the dofs in longitu-

dinal direction is shown in Figure 1. The equations of motion corresponding to the 6 dofs 

subjected to the horizontal component of the seismic input ( )gx t  are: 
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where xd stands for the deck displacement relative to the pier top, xpi are the relative displace-

ments of the ith lumped masses of the pier with respect to the lower one, md is the mass of the 

deck, mpi is the mass of the ith lumped mass of the pier, while kpi is the corresponding stiffness. 

The viscous damping coefficient for the bearing is cd and cpi is the viscous damping coeffi-

cient for the ith lamped masses of the pier; t is the time instant and the dots are used to indicate 

time derivative. All the lumped masses of the pier are assumed equal. The FPS isolators 

placed on top of the abutment and on the pier are subjected, respectively, to the restoring 

forces  fa(t) and  fp(t). These forces can be expressed as [8]: 
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 (2) 

where the restoring forces of both devices derive from the sum of an elastic component and a 

viscous (i.e., dissipative) component. The only difference is that the force of the device on the 

abutment is function of the displacement and the corresponding velocity of the deck with re-

spect to the ground, while for the isolator on the pier the restoring force depends on the dis-

placement and the velocity of the deck with respect to the pier top. The elastic component 

derives from the pendular behavior of the devices. Furthermore, Rp and Ra are the radii of 

curvature of the isolators on top of, respectively, the pier and the abutment, g is the gravity 

constant, μa and μp are the sliding friction coefficient of the devices on top of the pier and the 

abutment, respectively. From equation (2) and assuming an equal radius of curvature for both 

devices (i.e., R=Ra=Rp), it can be derived the stiffness of the deck as /d dk m g R= . This also 

means that the fundamental period of the isolator does not depends on the mass of the deck 

but only on the geometrical characteristics of the isolator (i.e., 2 / gdT R= ). The sliding co-

efficients can be formulated as function of the sliding velocity as follows [8], [21]-[22]: 

( ) ( ) ( )max max min expd dx x    = − −  − (3) 

where μmin and μmax are the sliding friction coefficients at zero and large velocities, respective-

ly, while   is a coefficient that governs the transition from low to large velocities. In this 

work the following is assumed: min max
1 3 =  and  30 =  according to [22]. 
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3 PROBLEM’S PARAMETERS 

In this work, many bridge properties vary in order to include different types of bridges. In 

particular it is assumed: 2 values of the mass ratio pi dm m =  equal to  0.1 and 0.3; 2 

values of the pier period 
pT  equal to 0.1 s and 0.2 s, 10 values of the ratio Td/Tg from 0.5 to 8; 

71 values of the normalized friction coefficient 
*

max 0f g a =  from 0 to 0.8. In particular, a0 is 

the seismic intensity measure that is assumed equal to the peak ground acceleration (i.e., 

PGA=a0). In addition, it is assumed a fixed value for the viscous damping factors inherent to 

the pier and to the isolator, respectively, as follows: 2 5%pi pi pi pic m = =  and 

2 0%d d d dc m = = . In this way, combining all these parameters, a total of 2840 different 

bridge models are obtained. 

Regarding the seismic input, two sets of non-frequent ground motions are considered: 15 

FF records with high peak ground acceleration-to-velocity ratio (i.e., PGA(g)/PGV>1.2g/m/s) 

and reported in Table 1 and 15 FF records with low peak ground acceleration-to-velocity ratio 

(i.e., PGA(g)/PGV<0.8g/m/s) and reported in Table 2.  

Earthquake Date Magnitudo Distance (km) Component 
PGA(g)/PGV 

(g/m/s) 

Parkfield California June 27 1966 5.6 7 N65W 1.86 

Parkfield California June 27 1966 5.6 5 N85W 1.70 

San Francisco California Mar. 22 1957 5.25 11 S80E 2.28 

San Francisco California Mar. 22 1957 5.25 17 S09E 1.67 

Helena Montana Oct. 31 1935 6 8 N00E 2.03 

Lytle Creek Sep. 12 1970 5.4 15 S25W 2.06 

Oroville California Aug. 1 1975 5.7 13 N53W 1.91 

San Fernando California Feb. 9 1971 6.4 4 S74W 1.86 

San Fernando California Feb. 9 1971 6.4 26 S21W 1.72 

NahanniN.W.T., Canada Dec. 23 1985 6.9 7.5 LONG 2.38 

Central Honshu Japan Feb. 26 1971 5.5 27 TRANS 2.56 

Near E. Coast of Honshu May. 11 1972 5.8 33 N00E 2.43 

Honshu Japan Apr. 5 1966 5.4 4 N00E 2.43 

Monte Negro Yugoslavia Apr. 9 1979 5.4 12.5 N00E 2.63 

Banja Luka Yugoslavia Aug. 13 1981 6.1 8.5 N90W 2.31 

Table 1 Set of 15 far field records with high PGA(g)/PGV ratios. 

Earthquake Date Magnitudo Distance (km) Component 
PGA(g)/PGV 

(g/m/s) 

Long Beach California Mar. 10 1933 6.3 59 N51W 0.41 

Long Beach California Mar. 10 1933 6.3 59 N39E 0.37 

Lower Calif. Dec. 30 1934 6.5 58 S00W 0.77 

San Fernando California Feb. 9 1971 6.4 40 N61W 0.52 

San Fernando California Feb. 9 1971 6.4 39 WEST 0.61 

San Fernando California Feb. 9 1971 6.4 41 S37W 0.69 

San Fernando California Feb. 9 1971 6.4 39 S90W 0.61 

San Fernando California Feb. 9 1971 6.4 38 N15E 0.54 

San Fernando California Feb. 9 1971 6.4 41 S38W 0.69 

San Fernando California Feb. 9 1971 6.4 32 S00W 0.62 

Near E. Coast of Honshu May 16 1968 7.9 290 N00E 0.68 

Near E. Coast of Honshu June 17 1973 7.4 112 N00E 0.75 

Mexico Earthq. Sep. 19 1985 8.1 135 S00E 0.65 

Mexico Earthq. Sep. 19 1985 8.1 333 N00E 0.70 

Mexico Earthq. Sep. 19 1985 8.1 379 N90W 0.36 

Table 2 Set of 15 far field records with low PGA(g)/PGV ratios. 
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4 RESULTS AND DISCUSSION 

To evaluate the performance of the different bridges, the equation of motions in (4) have 

been solved to assess the seismic performance. In particular, the response parameters are as-

sumed to be the maximum normalized isolator response at the deck level (i.e., 
2

d,max d,max 0gx a = ) and the maximum normalized pier response (i.e., 2

p,max p,max 0gx a = ), eval-

uated at the pier top, where g PGA PGV =  represents the circular frequency of the ground 

motion. 

Since each of the bridge model is subjected to a total of 30 FF natural ground motions, the 

responses are probabilistically treated. In particular, the responses are assumed to be lognor-

mally distributed [23]-[32] and are assumed to have geometric mean (GM) and the dispersion 

(β) expressed as: 

( )

( ) ( )
( )( ) ( )( )

1

2 2

1

ln

...

ln ln ... ln ln

1

N
N

N

GM D d d

d GM d GM
D D

N
 
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− + + −
= =

−

 (4) 

where D is the response parameter, dj is the jth realization of the response parameter and 

j=1,…,N with N=30 the total number of far field seismic records.  

To evaluate the performance of the different bridges, the equation of motions in (4) have been 

solved in Matlab-Simulink [33]. 

The results of the GM of the peak normalized displacement of the pier top as function of 

the normalized friction coefficients are shown in Figure 2 and Figure 3 for FF field records 

with, respectively, high and low PGA/PGV ratios.  
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Figure 2 Geometric mean of the peak response of the pier top with respect to Пμ
* for FF records with high 

PGA/PGV ratios. 
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Figure 3 Geometric mean of the peak response of the pier top with respect to Пμ
* for FF records with low 

PGA/PGV ratios. 
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Figure 4 Geometric mean of the peak response of the deck with respect to Td/Tg for FF records with high 

PGA/PGV ratios. 
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Figure 5 Geometric mean of the peak response of the deck with respect to Td/Tg for FF records with low 

PGA/PGV ratios. 

The response is shown for fixed values of the other parameters (i.e., /d gT T , pT  and p ). In

general, the geometric mean of the substructure response increases for lower /d gT T  values, 

increases for larger Tp values and increases for lower values of p, since this reduction causes 

an increase in the forces transmitted from the superstructure to the pier. In addition, larger 

PGA/PGV ratios are more demanding. The interesting aspect is that the response of 
p,max

tends first to decrease and then to increase for larger normalized friction coefficient 
*

  and 

this trend is maintained independently from the values assumed by the other parameters. This 

result derives from two counteracting effects: on the one hand the increase of the friction re-

duces the inertia forces transmitted from the deck to the substructure and, on the other hand, if 

the friction increases higher modes participates to the response increasing its value. This sug-

gests the possibility to identify optimal values of the friction coefficient able at minimizing 

the substructure response. These minimum values are also obtained in similar ranges if the 

other structural parameters change but also by varying the record selection. In addition, it is 

suggested to perform further analyses in order to find numerical expressions for the optimal 

friction coefficient. 

In Figure 4 and Figure 5, it is shown the peak normalized response of the deck as function 

of the ratio /d gT T  for FF field records with, respectively, high and low PGA/PGV ratios. The 

response is shown for fixed values of the other parameters (i.e., 
*

 , pT  and p ). It is possible

to observe that there is an increase of the deck response with /d gT T , followed by a decrease, 

especially, for low 
*

 . This response is similar to the displacement response spectrum of an
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isolated mass. In addition, 
,max( )dGM   is mainly influenced by the normalized friction coef-

ficient 
*

  since its growth reduces the deck response since larger energy dissipation is ob-

tained. Regarding the other parameters, the deck response is not particularly influenced by the 

other two structural parameters. Furthermore, larger PGA/PGV ratios result to be more de-

manding also for the isolation response. 

 

5 CONCLUSIONS 

The present investigation aims at evaluating the seismic response of multi-span continuous 

deck bridges equipped with single concave FPS devices. A parametric analysis is elaborated 

by varying many parameters (i.e., pier period, isolated period, mass of the pier with respect to 

the mass of the deck, friction coefficient), in order to obtain different bridge models. The 

equations of motion have been analytically treated in order to obtain a non dimensional re-

sponse. In particular, the response of the substructure (i.e., the pier) and of the isolation sys-

tem have been normalized with respect to the ground motion characteristics through the 

acceleration-to-velocity (PGA/PGV) ratio. The set of records have been selected in order to 

include 30 far field non-frequent natural ground motions with high and low acceleration-to-

velocity (PGA/PGV) ratio. Results have shown the existence of an optimal value of the nor-

malized friction coefficient able to minimize the peak normalized substructure displacement.  
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