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Abstract

The generation of random numbers
is too important to be left to chance1

Robert R. Coveyou,
Oak Ridge National Laboratory

Cryptography is vital in securing sensitive information and maintaining privacy
in the today’s digital world. Though sometimes underestimated, randomness plays a
key role in cryptography, generating unpredictable keys and other related material.
Hence, high-quality random number generators are a crucial element in building a
secure cryptographic system. In dealing with randomness, two key capabilities are
essential. First, creating strong random generators, that is, systems able to produce
unpredictable and statistically independent numbers. Second, constructing validation
systems to verify the quality of the generators.

In this dissertation, we focus on the second capability, specifically analyzing the
concept of hypothesis test, a statistical inference model representing a basic tool
for the statistical characterization of random processes. In the hypothesis testing
framework, a central idea is the p-value, a numerical measure assigned to each
sample generated from the random process under analysis, allowing to assess the
plausibility of a hypothesis, usually referred to as the null hypothesis, about the
random process on the basis of the observed data.

P-values are determined by the probability distribution associated with the null
hypothesis. In the context of random number generators, this distribution is inherently
discrete but in the literature it is commonly approximated by continuous distributions
for ease of handling. However, analyzing in detail the discrete setting, we show
that the mentioned approximation can lead to errors. As an example, we thoroughly

1Thanks to Antonio José Di Scala for pointing out this brilliant quote.



vii

examine the testing strategy for random number generators proposed by the National
Institute of Standards and Technology (NIST) and demonstrate some inaccuracies in
the suggested approach. Motivated by this finding, we define a new simple hypothesis
test as a use case to propose and validate a methodology for assessing the definition
and implementation correctness of hypothesis tests. Additionally, we present an
abstract analysis of the hypothesis test model, which proves valuable in providing a
more accurate conceptual framework within the discrete setting.

We believe that the results presented in this dissertation can contribute to a better
understanding of how hypothesis tests operate in discrete cases, such as analyzing
random number generators. In the demanding field of cryptography, even slight
discrepancies between the expected and actual behavior of random generators can,
in fact, have significant implications for data security.
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Chapter 1

Introduction

The aim of this dissertation is to provide a contribution to the theory of statistical
analysis of random numbers generators. In particular the scenario considered is that
of generators producing binary sequences, especially for cryptographic applications
which, by their nature, are very demanding in terms of randomness quality.

The current chapter contains a brief introduction to the topic addressed in this
dissertation and is organized as follows: in §1.1 a quick overview of the subtle
relation between cryptography and randomness is given, followed in §1.2 by some
examples of cryptographic failures due to misuse of randomness. Then in §1.3 a
brief description of the two main classes of random generators (physical and logical
devices able to produce (pseudo)randomness) is given and the National Institute of
Standards and Technology (NIST) recommendations to build and validate random
generators are introduced. In the following §1.4 some considerations on how to test
the quality of a random generator are reported. Finally, in §1.5, the organization of
the chapters of this dissertation is given.

1.1 Cryptography and Randomness

Cryptography and randomness are closely related concepts, even if this relationship
is often underestimated or not fully understood. Randomness is, in fact, an absolutely
fundamental and essential element in the security of a cryptographic system and
represents a critical link in every information security chain. Misuse of random
numbers almost invariably results in vulnerable cryptography in applications.
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A cryptographic system is usually described in terms of algorithms and protocols,
that is, of deterministic primitives, assuming that the choice of robust (deterministic)
components implies the security of the resulting system. In reality, the strength of
these components is typically implicitly based on the existence of secret material
(keys and other cryptographic parameters), which is supposed unknown to anyone
but the legitimate users. If this material were obtainable by an attacker, then the
security of the entire system would be compromised. Hence, the need to be able to
generate high-quality random material, which the attacker cannot guess (of course
an attacker might have non-cryptographic means to recover the secret information,
like threatening or bribing, but this is obviously outside the scope of this work).

The use of random generators impacts the very basic tools and mechanisms of
cryptography including, among others, encryption, message authentication, digital
signatures, PIN and password generation.

1.2 Examples of cryptographic systems failures

Without going into the details and the exact meaning of the mechanisms listed
above, we point out that a poor understanding of the importance of randomness
in cryptographic systems often leads to catastrophic compromises of the resulting
security.

This section contains some relevant examples of cryptographic system failure
caused by poorly implemented randomness, but many others can be easily found in
literature.

1.2.1 Netscape SSL implementation

A well-known case concerns the first implementations of the Secure Socket Layer
(SSL) protocol by Netscape, in which the production of cryptographic material relied
on a deterministic algorithm (pseudo random noise generator, see §1.3.2) initialized
with the value of three system-related variables: the time of day, the process ID, and
the parent process ID.
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Although apparently these three values have a good variability, in fact they
result in low entropy1 allowing an attacker to predict the cryptographic parameters
produced and thus, ultimately, break the system. Given the widespread use of SSL it
is easy to understand the devastating impact of the mentioned attack, proposed by
Goldman and Wagner in 1996 [1].

1.2.2 Debian random generator

Another notorious example concerns the random number generator implemented
in the version of OpenSSL present on Debian Linux and other Debian-based distri-
butions. Due to an implementation error, introduced in 2006, the resulting entropy
of the generator was much lower than expected, making the keys produced by the
generator potentially vulnerable to brute force attacks. The problem was very im-
portant because it affected keys used in extremely popular systems, such as SSH,
OpenVPN, and TLS. In 2008 the error was detected and corrected and many weak
keys replaced, but it is likely that many other weak keys are today still in use. See
[2] for the security advisory document released by Debian.

1.2.3 RSA public keys factoring attack

In 2012 Lenstra, Hughes, Augier, Bos, Kleinjung, and Wachter ([3]) collected
millions of RSA public keys from X.509 certificates and PGP keys available on the
Internet2 . They found that, in a surprisingly large fraction of these keys, the RSA
modules shared a prime factor with other keys. With a simple application of Euclid’s
algorithm this allowed to factor the modules and then break the RSA keys. The
reason for this weakness lies in poor quality random generators used to produce the
keys, leading to output repetition.

1Entropy is the property of a random process which in some way formalizes and measures its
unpredictability. A low-entropy secret is easy to guess by an attacker, typically through a brute force
attack. Although it is here not necessary to go into the detail of the definition of entropy, it is reported
in §A.6 for completeness.

2RSA [4] is a widely used cryptographic algorithm whose strength relies on the difficulty of
factoring large numbers (under proper assumptions). X.509 [5, 6] is a standard for certificates used to
securely deliver RSA keys. PGP [7] is a well-known encryption program using RSA keys.
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1.3 Random number generators

Hence, if we want to build a cryptographic system, we must necessarily rely on
the existence of high-quality random bit generators (or more generally random
number generators), expected to be indistinguishable from ideal random generators.
Unfortunately, generating random material (in fact bits) is a very slippery and in no
way obvious task. The two basic classes of random generators, which in practice are
often combined appropriately, are described in §1.3.1 and §1.3.2. The remarkable
effort made by NIST, providing recommendations to build and then to validate
random generators, is reported in §1.3.3.

1.3.1 True Random Number Generator (TRNG)s

TRNGs are based on the measurement of a given physical process considered to
be random, like thermal noise or quantum phenomena. TRNGs inherently contain
true randomness but often fail in terms of output production speed and quality. For
example, they frequently contain some form of bias (e.g. prevalence of 1 over
0 or vice versa), which typically requires some post-processing to be removed.
Furthermore, they are often quite slow. See for example [8].

1.3.2 Pseudo Random Number Generator (PRNG)s

At the other end of the spectrum are the PRNGs, consisting of a function which
deterministically expands an initial value supplied as an external input (seed). The
output of the expansion consists of long sequences entirely determined by the seed
and therefore has little true randomness; however, if the expansion function is chosen
appropriately, the process is very rapid and the sequences produced seem highly
random. Hence they are commonly used in cryptographic applications3. See [9] for
an overview.

3Of course the actual randomness is entirely given by the (short) seed and this must be considered
when designing and analysing the application scenario.
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1.3.3 NIST recommendations

Given the large quantity and heterogeneity of random generators proposed by aca-
demic researchers and industries, the NIST has produced an interesting series of
recommendations in order to make their design easier and their evaluation more
consistent. In this remarkable work NIST has clearly defined some fundamental
concepts and provided useful guidelines in the construction of random number gener-
ators for cryptographic and non-cryptographic uses. In particular, NIST has released
three Special Publications (SP).

In SP800-90A ([10]) the construction of different families of deterministic gener-
ators (PRNG) is considered. All these families are based on cryptographic techniques
which, starting from an initial seed, generate sequences of bits with good statistical
properties. SP800-90B ([11]) provides recommendations on the principles of design
and validation of the entropy sources (in fact, TRNGs) used to supply the seeds
to the PRNGs. The concept of entropy4 is critical in a random generation system,
as it formalizes and specifies the rather vague, imprecise and therefore slippery
concepts of unpredictability and randomness. Finally, SP800-90C specifies how to
implement random number generators by putting together the PRNGs defined in
[10] and the entropy sources considered in [11]. In practice, the two approaches are
often combined in order to obtain generation efficiency and high randomness: the
TRNG is, in fact, typically used to produce the seed provided in input to the PRNGs.
NIST’s work is of considerable importance because it provides a solid reference
framework for designing and analyzing random number generators, which, as shown,
are a fundamental element in any information security system.

1.4 Quality assessment

In accordance with the above considerations, in order to gain confidence in the
security of a cryptographic system it is necessary to assess the quality of the random
number generator(s) used.

Gaining access to the design and internal details of the generator would obviously
be of great help in its evaluation. However, very often this is not possible and the
evaluation of the quality of the generator must be done indirectly by analyzing the

4For a formal definition of entropy see §A.6.
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sequences it produces. In this dissertation we are going to focus on this second and
more common scenario.

Measuring the quality of a random number generator through the analysis of the
output sequences is a subtle and complex task. Defining an appropriate metric is, in
fact, difficult and quite subjective and the problem can be approached from multiple
point of views, which are often connected in non-obvious ways, including:

• estimating the unpredictability of the generator, through the concept of entropy;

• studying its algebraic properties (especially for PRNGs);

• analyzing the statistical behaviour of the output sequences.

A common methodology is to combine different approaches, since carrying out
multiple and different analyses of a generator can certainly give good confidence
on its quality (especially in a negative sense, when a “non-random” behavior is
highlighted). However, it should be noted that no analysis, statistical or of any other
nature, can give a definitive and absolute answer on the degree of randomness of a
generator. This is not a technological but a conceptual limitation and has to do with
the ambiguous and elusive nature of the very concept of randomness.

1.5 Dissertation structure

As anticipated at the beginning of Chapter 1, the goal of this work is to provide
some contribution to the framework of random generators statistical analysis. The
dissertation is structured in five more chapters (followed by the conclusions and
an appendix), where Chapter 2 contains a description of the existing theoretical
framework, while Chapters 3, 4, 5 and 6 constitute the original contribution of this
work.

In particular, Chapter 2 gives a reasoned overview of the well-known hypothesis
test model, a statistical inference model representing a basic tool for the statistical
characterization of random processes. The main concept in the hypothesis test
framework is the p-value, a numeric index associated to each sample produced by
the random process, allowing to assess the plausibility of a hypothesis (typically
said null hypothesis) about the random process on the basis of the observed data.
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The setting considered in this chapter is very general and addresses primarily the
continuous data distribution case, since the discrete case can often be approximated
with a continuous one, typically much easier to manage.

However, in Chapter 3 it is observed that the above-described approximation can
introduce subtle discrepancies between the expected and the observed behaviours,
which in turn can result in wrong assumptions and, ultimately, in incorrect conclu-
sions. The chapter is thus devoted to the detailed analysis of the discrete case and in
particular considers the distribution of the p-values associated to a given test, as the
sample varies in the sample space. The notion of p-tuple is defined as the tuple of
p-values associated to a given test, which is then characterized in many respects and
under different assumptions.

The following Chapter 4 proposes a more abstract definition of hypothesis test
in the discrete case, based on the observation that the ultimate goal of a test is to
differentiate between samples that provide evidence supporting the acceptance of
the null hypothesis and those that result in rejecting it, while all the typical concepts
associated to a hypothesis test, including the p-value, are in fact just intermediate
tools. Hence, a test can also be seen as a partition of the sample space in two subsets,
known as the acceptance region and the rejection region. Based on this view, a
number of considerations is proposed.

Chapter 5 considers the most commonly used collections of statistical tests to
assess the quality of random numbers generators. Among them, the most important
is the NIST Statistical Test Suite (NIST-STS) which represents the de facto standard
in the field and consists of 15 different tests. As for every collection of tests, a critical
point is how to draw an overall conclusion on the basis of the results of the individual
tests. Relying on the theory developed in Chapters 3 and 4, the methodology
proposed by NIST is analysed, observing that some assumptions appear somewhat
questionable.

Then, in Chapter 6, a toy hypothesis test for binary sequences is presented, with
a rigorous analysis of its properties. Interestingly, despite its quite simple definition,
the test turns out to be very effective against a specific well-known and widely
used class of random generators, namely the Linear Congruential Generator (LCG)s.
In this specific case the proposed test appears, in fact, more effective than all the
common suites, including the one proposed by NIST.

In the following Chapter 7 the conclusions on the entire work are presented.
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Finally, in Appendix A, the basic concepts of Statistics, Information Theory and
Cryptography used throughout the dissertation are briefly reported.



Chapter 2

Hypothesis Tests

This chapter contains an introduction to the well-known hypothesis testing model
The content is not meant to be exhaustive, rather it is focused on providing the
theoretical framework necessary for the development of subsequent chapters. For a
more detailed treatment of the topic, we refer to a probability book, like for example
[12] or [13], §8.

Statistical analysis of a random generator is typically done by applying one
or more hypothesis tests to the sequences produced by the generator. Hypothesis
tests are a general class of statistical tests commonly used in a very broad range of
application scenarios, for which we want to verify a certain hypothesis on the basis
of the observations of available experimental data (samples). The output of these
tests provides an indication of the consistency of the observed data with the given
hypothesis.

The chapter is organized in two main sections. In §2.1 we summarize how a
generic hypothesis test works, introducing the main related concepts. In §2.2 we
describe and compare the two methods typically used in its implementation (namely
the critical value method and the p-value method).

2.1 Hypothesis test scheme

In the general scheme of a hypothesis test we consider a random experiment, where
samples are randomly extracted from a given sample space. According to the goal
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of the test, two hypotheses are defined in terms of the underlying distribution of the
sample extraction process, also known as data distribution:

• the null hypothesis (H0), which is the statement to be tested. It expresses a
condition on a data distribution parameter (like the mean or the variance) or
on the data distribution itself (like normal, Poisson, uniform, ...). Equivalently,
the null hypothesis consists of a set of possible data distributions, those for
which the statement is true. If a unique data distribution is determined, then
the null hypothesis is said simple, otherwise it is said composite.

• the alternative hypothesis (HA), which is the statement considered alternative
to the null hypothesis. While it can in principle consist of a unique data
distribution, it is typically defined as the negation of the null hypothesis, thus
consisting of the infinite set of data distribution complementary to the null
hypothesis (this point will be reconsidered in §2.1.4 and §4.3).

Three examples of null hypothesis follow.

• null hypothesis #1: the mean year salary in the industry sector in Italy is more
than 25 ke. In this case the statement is about a distribution parameter (the
mean); equivalently, the (composite) null hypothesis can be described as the
(infinite) set of salary distributions whose mean value is more than 25 ke. The
alternative hypothesis here is that the mean value is less than or equal to 25
ke.

• null hypothesis #2: in the population of all college students, the height is
normally distributed. In this case the statement is about a distribution type
(normal); equivalently, the (composite) null hypothesis can be described as the
(infinite) set of normal height distributions. The alternative hypothesis here is
that the height distribution is not normal.

• null hypothesis #3: given a random generator of numbers in a certain set,
numbers are extracted according to a uniform distribution. In this case the
statement is about a precisely defined distribution; equivalently, the (simple)
null hypothesis can be described as the (unique) uniform distribution on the
given set of possible output numbers. The alternative hypothesis here is that
the extraction process distribution is not the uniform one.
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Notice that null hypothesis #3 is precisely the main case we are going to consider
in this thesis, see Chapter 3 (§3.3.5), Chapter 4 (from §4.4 onwards), Chapter 5 and
Chapter 6. Here we also observe that the random variable describing the sample
extraction process can be continue (as in null hypothesis #1 and in null hypothesis
#2) or discrete (as in null hypothesis #3). In this regard, we anticipate that, while
the discrete case is often treated through a continuous approximation, it requires
a careful and specific analysis in order to avoid subtle but critical mistakes (see
Chapter 3).

Given an observed data sample randomly extracted from the sample space, the
purpose of the test is to confirm H0 or to reject H0 in favour of HA, on the basis of the
comparison of the observed sample with the expected data based on the (theoretical)
model associated with H0. If data are consistent, then H0 is accepted, otherwise it is
rejected in favor of HA. Here consistent means that any difference between observed
data and expected data can be attributed to chance1 (according to some criterion to
be defined) and does not reflect a structural difference between the two sets.

From the methodological point of view, the null hypothesis is what is assumed
to be true unless the experimental evidence, quantified through the hypothesis test,
indicates that the alternative hypothesis is true. Consequently, accepting the null
hypothesis means in fact that the tests are not able to give sufficient evidence to
support the alternative hypothesis.

2.1.1 Test Statistic

In practice, given a data sample a hypothesis test works as follows. A real value,
called test statistic, is associated2 to the given data sample, and then a conclusion is
drawn by comparing the test statistic with the pre-defined acceptance region (also
known as confidence interval, made of the values of the test statistic for which H0 is
accepted) and rejection region (made of the values of the test statistic for which H0

is rejected and thus HA accepted). The process is represented in Figure 2.1. How a
given test statistic is associated to the data sample and how the acceptance region and

1The term “chance” is commonly used in literature, but to us it appears somewhat inappropriate,
as we discuss in §2.1.3.

2The kind of association depends on the sample nature. When samples are numeric, the association
is typically algorithmic but other types of sample requires of course different definitions, according to
the considered setting.
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the rejection region are pre-defined constitutes the definition of a specific hypothesis
test.

From a more formal point of view, we note that, before being observed, the data
sample has to be considered random. Therefore, since the test statistic takes in input
a random data sample and provides in output a numeric value, it can be modeled as
a random variable, hereinafter referred to as T S, while ts will typically indicate its
realization3.

Hereinafter we assume that the probability distribution associated to the test
statistic under the null hypothesis (also referred to as null distribution or sampling
distribution) is known and univocally defined. The above assumption is necessary to
build the hypothesis test since knowledge of the null distribution allows to precisely
compute the probability that, assuming the null hypothesis to be true, a sample falls
in the acceptance region (or in the rejection region) or, alternatively, to choose an
acceptance region (or a rejection region) such that the above probability equals some
desired value.

Sample 
data

Test
Statistic

Belongs
to 

Acceptance
Region

?

Accept
H0

Reject
H0

Yes

No

Fig. 2.1 Hypothesis Test, general model

2.1.2 Test conclusions

Given the null hypothesis H0, the alternative hypothesis HA, and a data sample,
application of the test leads to two possible output conclusions:

• either to accept H0 (and refuse HA);

• or to refuse H0 (and accept HA).

3The realization of a random variable is the value concretely observed in a specific experiment,
see also §A.1.
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CONCLUSION
H0 REAL VALUE Accept H0 Reject H0

H0 true Correct Type I Error
H0 false Type II Error Correct

Table 2.1 Test configurations

As shown in Table 2.1 we thus have 4 possible configurations, linking the output
of the test and the actual value of H0 (true, false) which, of course, is not known (the
goal of a hypothesis test is exactly to infer a conclusion on it).

Two of the above configurations correspond to a correct conclusion of the test

• the null hypothesis is true and the test accepts it;

• the null hypothesis is false and the test rejects it.

The other two configurations correspond instead to an incorrect conclusion of
the test

• the null hypothesis is true but the test rejects it (false positive): this type
of error is called Type I. The probability of encountering a Type I Error is
normally indicated with α . When the null hypothesis is rejected we say that
the result of the test has statistical significance with significance level α .

• the null hypothesis is false but the test accepts it (false negative): this type
of error is called Type II. The probability of encountering a Type II Error is
usually indicated with β . Finally 1− β is called the test power and is the
probability that the test correctly supports the alternative hypothesis.

Let us now analyze a bit more in depth the meaning of α and β .

2.1.3 Meaning of α

The value α associated to a test represents the probability of false positives, that is, of
falling with the test statistic in the rejection region, despite the null hypothesis being
true, that is, assuming that the sample is extracted from the sample space according
to the data distribution.
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Since the null distribution is assumed to be precisely known, in principle it
is always possible to know the probability of each test statistic to be observed
(according to the underlying null distribution) and thus precisely calculate the value
of α associated to the test.

We observe that the meaning of α is often described in literature as the probability
to fall in the rejection region by chance, but we believe this is a bit misleading
description, somehow implying that falling into the acceptance region is normal and
correct, while falling into the rejection region is an error, which happens by chance.
Instead, assuming the null hypothesis is true, we expect that the relative frequency of
the observed data samples falling in the rejection region is precisely α , by the very
definition of Type I Error. Thus, if we analyse N data samples, extracted according
to the data distribution, we expect that about Nα of them fall in the rejection region,
hence, not by chance, but precisely because this is what is expected. Analogously
we expect that about N(1−α) times an observed data sample falls in the acceptance
region.

In practice, if α is low, then falling in the rejection region, assuming the null
hypothesis is true, happens rarely (for example, if we analyse a data sample and α

is set to 0.01, we know that we fall in the rejection region on average just once in a
hundred). Hence, when it happens, we are quite confident there is some structural
reason behind the event, that is, the null hypothesis is probably not true. However
we can be unlucky and conclude that null hypothesis is false (Type I Error) when
this is not the case. In order to reduce this risk, we can choose a smaller α , e.g. .001,
but of course in this way we raise the risk to deem the null hypothesis as true when it
is not (Type II Error). The optimal choice for α is left to the analyst, according to
the application scenario. The value of α is in principle arbitrarily chosen as a test
parameter, however 0.01 and 0.05 are the most used values in literature.

2.1.4 Meaning of β

The value of β , instead, represents the probability of false negatives, that is, of falling
with the test statistic in the acceptance region, despite the null hypothesis being false.
When the alternative hypothesis is also precisely defined by a unique probability
distribution, then it is possible to calculate β (and it can be shown that as α increases
β decreases and vice versa).
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Much more often, however, the alternative hypothesis is defined simply as the
negation of the null hypothesis and, therefore, there are infinitely many possible
alternative distributions that describe it. Consequently, computing the value of β is,
in general, very hard4 and, hence, we are normally limited to focusing on the value
of α .

2.2 Evaluation methods

As described in §2.1.1, the acceptance region and the rejection region are part
of the definition of a hypothesis test. Given the test statistic of an observed data
sample, in order to decide if the null hypothesis H0 has to be accepted or rejected (or,
equivalently, to define the acceptance region and the rejection region) two methods
are typically used: the critical value method (described in §2.2.1) and the p-value
method (described in §2.2.2). As shown in §2.2.2, the latter can be interpreted as an
(equivalent) extension of the former.

2.2.1 Critical Value method

The critical value method requires the definition of one or more critical value(s),
which act as cut-off point(s) separating the acceptance region and the rejection region.
Then, for each data sample, the null hypothesis H0 is rejected if the test statistic is
equal to or more extreme (in the direction of the alternative hypothesis, as better
precised later) than the critical value; otherwise it is accepted.

Given a data sample, the associated test statistic ts and a critical value CV , three
models are normally used to draw a conclusion about the null hypothesis, leading to
different meaning of the word extreme. For each of them a reference figure is given
to better illustrate the model, assuming that a bell-shaped normal curve describes

4In order to compute the expected value of β varying across the set of all the possible probability
distributions, we should know their probability distribution as well, which is in practice quite
unrealistic. However, when this distribution of distributions is known, then computation is in principle
feasible. We anticipate that in §4.3 we consider the specific case where the alternative distribution is
uniformly taken from the set of all the possible distributions.
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the null distribution, that is, the distribution of the values that the test statistic ts can
take5:

• in the left-tailed model, extreme means too small: the null hypothesis is
rejected if ts ≤CV . As an example we can refer to Figure 2.2.

• in the right-tailed model, extreme means too big: the null hypothesis is rejected
if ts ≥CV . As an example we can refer to Figure 2.3.

• in the two-tailed model, extreme means too small or too big: we actually have
two critical values CVL and CVR, defining a left region and a right region, whose
union determines the actual rejection region. The null hypothesis is rejected if
ts ≤CVL or ts ≥CVR. Of course this model can be seen as a combination of
the two previous ones. As an example we can refer to Figure 2.4.

In all the three referenced figures, the critical value(s), separating the acceptance
region and the rejection region, determines the value of the Type I Error probability,
α , defined as the area underlying the Probability Density Function (PDF)6 of the test
statistic values covered by the rejection region. However, what normally happens is
that a value is first chosen for α and then the critical value is derived according to the
expected (theoretical) probability distribution associated to H0 and to the value of α .

The choice of the model to be used is in practice is determined by the goal of the
statistical test. If we consider again example #1 in §2.1 the null hypothesis is that
the year average salary is more than 25 ke and, therefore, the alternative hypothesis
is that it is less than or equal to that amount. The test statistic ts is exactly the year
average salary. We then reject the null hypothesis when the test statistic is too small
(ts ≤ 25 ke): we are thus in the left-tailed model.

5The assumption of a bell-shaped normal curve (for example purposes) is arbitrary but, in most
cases, quite natural. For example it holds in the very frequent case where we randomly extract samples
from a given data set and take their means as our test statistic. In this setting, applying the Central
Limit Theorem, whatever the data distribution is, it can be proved that as the sample size increases
the resulting null distribution approaches a normal distribution. However we anticipate that not all
the test statistics can be modeled in this way. As an example, in §6.3.2, we will use a test statistic
following the Gumbel distribution, which cannot be approximated with a normal distribution.

6The PDF of a continuous random variable is the function that describes the likelihood of the
outcomes, providing a continuous representation of the probability distribution. See §A.2.3 for a
more formal definition.
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ts

1

Rejection Region Acceptance Region

cv

Fig. 2.2 Left-tailed model

Conversely, if our null hypothesis were that the year average salary is less than
25 ke, then we would be in the right-tailed model, rejecting the null hypothesis
when the test statistic is too big (ts ≥ 25 ke).

Finally, if the null hypothesis were that the year average salary is more than 20
ke and less than 30ke, then we would be in the two-tailed model, rejecting the null
hypothesis when the test statistic is too small or too big (ts ≤ 20 ke or ts ≥ 30 ke).

The three mentioned models are commonly used since they are easier to manage
and result satisfactory for most situations. However we emphasize that any alternative
model is by itself correct, provided it is consistently defined. For example, one may
consider a rejection region consisting of an arbitrary number of disjoint sub-intervals
of the acceptance region (through the definition of consistently many critical points),
obtaining a valid (but scarcely practical) model7.

2.2.2 P-value method

The p-value method relies on the critical value method, adding a probabilistic
interpretation in order to make the testing process more friendly and the results easier

7More considerations on this are proposed in §4.6.3.
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Fig. 2.3 Right-tailed model
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Fig. 2.4 Two-tailed model
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to interpret. In the p-value method a value pv is associated to each test statistic ts
according to Definition 1.

Definition 1. Given a test statistic value ts, the corresponding p-value pv = PV (ts)
represents the probability under the null hypothesis of obtaining a test statistic equal
to or more extreme than ts.

In other words, if we run an experiment, take the observed data and compute the
corresponding test statistic value tsobs, then we know that the a priori probability
to obtain a value at least as extreme as the one actually observed (tsobs) was exactly
PV (tsobs), assuming the null hypothesis being true.

We remark that a very common misconception is that the p-value represents the
probability that the null hypothesis is correct, which is subtly but clearly different
from what stated in Definition 1 (we also observe that the mentioned interpretation
cannot be correct since in the p-value computation the null hypothesis is assumed to
be certainly -and not probabilistically- true).

It is worth observing that, being a function of a random variable (the test statistic),
the p-value is a random variable as well (see [14]), which hereinafter is referred to
as PV , whereas by pv we indicate its realization.

Given a test statistic ts, the p-value is calculated using the sampling distribution
of the test statistic under the null hypothesis. The exact definition of the p-value
pv = PV (ts) depends on the considered model. In the left-tailed model, pv expresses
the probability that, under the null hypothesis H0, the observed test statistic is equal
to or smaller than ts. Equivalently, pv can be defined through the Cumulative
Distribution Function (CDF)8 FH0 associated to the null distribution

pv = PrH0(t ≤ ts) = FH0(ts) (2.1)

where t is taken according to the null distribution. The definition of pv for the
right-tailed model is symmetrically given, with pv expressing the probability that,
under the null hypothesis, the observed test statistic is equal to or bigger than ts.

pv = PrH0(t ≥ ts) = 1−FH0(ts) (2.2)

8The CDF of a random variable is the function providing the probability that a random variable is
less than or equal to a specified value. See §A.2.3 for a more formal definition.
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Model p-value
left-tail pv = PrH0(t ≤ ts) = FH0(ts)

right-tail pv = PrH0(t ≥ ts) = 1−FH0(ts)
two-tailed pv = 2PrH0(t ≥ |ts|) = 2(1−FH0(|ts|))

Table 2.2 P-value and test statistic relation

Finally the two-tailed model is a sort of combination of both. Assuming for
simplicity that the null distribution is symmetric about the origin9, pv can be defined
as:

pv = PrH0(t ≤−|ts|)+PrH0(t ≥ |ts|) = 2(1−FH0(|ts|)) (2.3)

with pv expressing the probability that, under the null hypothesis, the observed test
statistic is equal or smaller than ts if ts < 0 or equal or bigger than ts if ts ≥ 0. The
three cases are summarised in Table 2.2.

In each case, in order to decide if H0 has to be accepted or rejected, pv is then
compared to the probability α as defined in §2.1.3, that is, the probability that under
the null hypothesis a sample falls in the rejection region. If

pv ≤ α

then the null hypothesis is rejected, otherwise it is accepted.

Notice that in literature the criterion that determines whether the test statistic
associated to a given sample belongs to the rejection region is expressed both as

pv < α

and
pv ≤ α (2.4)

We observe that the two formulations are equivalent when the underlying null
distribution is continuous because in this case the probability of the test statistic
taking on any specific value (including α) is zero.

9The assumption that the distribution is symmetric is quite common and reasonable, see for
example Footnote 5 at page 17. Moreover, simple transformation can often be applied to translate it
around the origin (think for example of the Normal Distribution Standardization, transforming an
arbitrary Normal Distribution in the Standard one N(0,1), see §A.4.3.2).
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However, if the distribution is discrete, then the equality shown in Equation (2.4)
should be considered, because by definition α is precisely the probability to fall in
the rejection region under the null hypothesis.

Observation 1. According to the above description, given a sample, the p-value
method can be seen (1) as producing a hard decision about the null hypothesis
(accept, reject); or (2) as providing a p-value that is then compared with an exter-
nal threshold given by the Type I Error α . Hereinafter we will adopt the second
interpretation (2), because more flexible (as later discussed in §2.2.3.2).

A methodological remark can be made here. As well discussed in [15], a testing
procedure requires that a data-independent decision rule is set in advance, before the
data analysis. Thus, in our case, this means that first we set the (data-independent)
Type I Error probability α , then we observe data samples and compute the corre-
sponding (data-dependent) p-values, thus taking the final decision (accept/reject the
null hypothesis) by comparing the obtained p-value with the pre-defined value of α .
While this may look trivial, misinterpretation of the exact relation between Type I
Error probability and p-values is quite common. In [15] interesting considerations at
this regard are proposed.

2.2.3 Comparison of the two methods

We can now compare the two methods. First of all, we observe that the two methods
have different domains. The critical value method works on the set of values that the
test statistic can assume (for example the year salary, as in the case #1 in §2.1, or the
stature of a group of people) and the acceptance region and the rejection region are
defined by the critical value(s). The p-value method, on the contrary, operates in the
probability realm, therefore in the set of values [0,1], and the acceptance region and
the rejection region are defined by the parameter α .

The two concepts are however closely related, since p-values are obtained simply
applying to the test statistic values the associated CDF FH0 , as per Table 2.2, while
α and the critical value(s) CV are linked by the relation shown in Table 2.3.

Figures 2.5, 2.6 and 2.7 represent the relation between the two methods in a
simple example in the left-tailed model. More precisely, Figure 2.5 contains the
sample space (the lilac cloud, with a subset where each gray circle is a sample) and
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Model α

left-tailed α = FH0(CV )
right-tailed α = 1−FH0(CV )
two-tailed α = FH0(CVL)+1−FH0(CVR)

Table 2.3 Computation of α from the critical value(s)

the test statistic range on the real axis, with the critical point CV (the small gray
vertical segment) separating the rejection region (red, on the left) and the acceptance
region (green, on the right).

RR

CV

R

CV

ts

Fig. 2.5 Sample space and test statistic axis in the left-tailed model

Figure 2.6 in addition maps each sample on a test statistic value on the real axis.
Red samples are those mapped on a a red star on the real axis, corresponding to a
test statistic value less than or equal to the critical value, and thus fall in the rejection
region. Conversely, green samples are those mapped on a a green star on the real
axis, corresponding to a test statistic bigger than the critical value, and thus fall in
the acceptance region.
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Rts

CV

Fig. 2.6 Samples mapped on the test statistic axis in the left-tailed model

Finally Figure 2.7 maps each test statistic value (red or green star) onto a p-value
(a little circle with the same color of the star), where the critical value is mapped
onto the Type I Error α , separating rejection and acceptance regions. We thus have
a mapping from the possibly infinite test statistic domain on the [0,1] probability
range.

R

CV

R

CV

pv

ts

0                                                                                                                            1

α

Fig. 2.7 Test statistic values mapped on the p-values in the left-tailed model

Figures 2.8 shows the relation between the critical value method and the p-value
method in the right-tailed model. A proper combination of Figures 2.7 and 2.8 would
provide a representation of the two-tailed model, here skipped for simplicity.
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Model critical value method p-value method
left-tailed ts ≤CV

pv ≤ αright-tailed ts ≥CV
two-tailed ts ≤CVL or ts ≥CVR

Table 2.4 Rejection region criterion

ts

CV

pv

α

0                                                                                                                            1

R

Fig. 2.8 Test statistic values mapped on the p-values in the right-tailed model

2.2.3.1 Methods equivalence

Although the p-value method may look more general than the critical value method,
in fact they are equivalent: for any given critical value CV and test statistic ts we can
always make use of the CDF FH0 associated to the probability distribution of the test
statistic (see Equations (2.1), (2.2) and (2.3)) and indifferently apply either method.

In fact, if we consider the left-tailed model, we set

pv = FH0(ts),α = FH0(CV ) (2.5)

and we equivalently, reject the null hypothesis both when ts ≤ CV (critical value
method) and when pv ≤ α (p-value method). The same equivalence clearly holds
for the right-tailed model and the two-tailed model, with the obvious modifications
shown in Table 2.4.
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The equivalence between the two methods above described can also be seen
from an information theory point of view, observing that the random variable
PV = PV (T S), despite being typically interpreted as a probability, can also be
seen as a bijection between the test statistic range and a bounded interval which,
chosen by convenience equal to the probability range [0,1], allows the probabilistic
interpretation (see for example [15] for a more formal analysis). Being a bijection,
the p-value cannot add or remove any information already provided by the corre-
sponding test statistic, thus explaining, in information theory terms, why the two
methods are indeed equivalent.

2.2.3.2 Practical considerations

Although the two methods are in principle equivalent when α is fixed (as shown
above), the p-value method can be preferred in practice because it is more versatile.
Thanks to the wide availability of software tools implementing the most common
probability distributions underlying the null hypothesis, and, therefore, able to
derive the corresponding CDF FH0 (see Equation (2.5)), in many cases we can easily
compute the p-value pv for a given data sample. While in the critical value method
we can just compare the test statistic with one single pre-defined critical value (or
pair of values), in the p-value method we can compare the resulting pv with any
value of α chosen according to the test needs (in this sense we conveniently consider
α as an external parameter of the p-value method, as anticipated in Observation 1).
However, even if the p-value provided by the p-value method apparently gives the
analyst a richer information than the binary result of the critical value method, it is
worth realizing that the advantage is practical and not conceptual. Indeed, to decide
when the null hypothesis should be accepted or rejected, the analyst must ultimately
set an explicit limit value (α), which in the critical value method is simply hidden in
the critical value(s). In this regard, see also the methodological remark at the end
of §2.2.2.

A second reason to prefer the p-value method is that the meaning of the test
statistic, as provided by the critical value method, depends on the specific application
and its value varies in a specific scenario-dependent range. As a consequence the test
statistic value cannot be directly used for comparison. On the contrary the p-value
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provides a probability, which is very easy to interpret and has the same meaning for
any test and thus allow to directly compare values10.

10As a toy example, given an 9-years old female, 128 cm tall and 27 kg heavy, with the critical
value method we cannot say if she is, in a sense, taller or heavier (according to the respective known
distributions). However with the p-value method we can rely on children growth charts, which
associate a p-value to each height and another p-value to each weight (in this interpretation p-values
are normally referred to as percentiles). Assuming the p-values provided by the charts are pH = .32
for 25 kg and pW = .14 for 125 cm, since pW > pH we can conclude that the girl is heavier than she
is tall.



Chapter 3

P-values analysis

As discussed in Chapter 2, given a hypothesis test, a real-valued test statistic is
associated to each sample taken from the sample space. The test statistic can
be interpreted as a random variable and, as such, has an associated probability
distribution, said null distribution. Furthermore, if the test is implemented according
to the p-value method (as commonly happens in practice and as assumed hereinafter),
an additional (probability) p-value is derived from the test statistic and represents the
output of the test1. The p-value can be interpreted in turn as a random variable with
an associated probability distribution. The object of the chapter is the study of the
probability distribution of the p-value and other related properties.

In particular, in §3.1 we consider the case of a continuous null distribution
observing that the resulting p-value distribution is uniform on [0,1] independently
of the underlying null distribution. However, when we move to the discrete null
distribution case, things unfortunately turn out to be much less regular. Most of the
chapter (from §3.2 to the end) is, therefore, devoted to the discrete case.

Hence, in §3.2 we introduce the discrete setting and in particular the finite case.
Then we propose the concept of p-tuple, that is, the list of all the observable p-values
for a given test, which turns out to be a basic tool for the subsequent analysis. Finally,
we study the probability distribution functions of the p-value random variable.

1As shown in §2.2.2, the resulting p-value is then compared with a pre-defined threshold in order
to take a hard decision about accepting or rejecting the null hypothesis on the basis of the observed
sample.
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Then, in §3.3, we analyze the p-tuples in relation to the data distribution of
the sample space. In particular, after providing the general model and some useful
related concepts, we characterize the form the p-tuples can assume, according to
the underlying data distribution. Three cases are examined, each with increasingly
specific definitions: when no constraint on the data distribution is given, when the
data distribution is arbitrary but fixed, and ultimately, when the data distribution is
uniform. The latter case is particularly significant to us as it encompasses random
number generators with a uniform probability distribution.

Finally, the following Section §3.4 is devoted to the case of uniform distribution
of the p-values. In particular its application as a basis to build a meta-test for the
validation of the null hypothesis is considered.

3.1 The continuous case

If the null distribution is continuous, by definition of p-value (as the probability
under the null hypothesis that the observed test statistic is equal to or more extreme
than a given value (see Definition 1)), a very important condition follows, mentioned
for example in [16] and precised by the following Theorem 1.

Theorem 1. If the null hypothesis is satisfied and the null distribution is continuous,
then the p-value is uniformly distributed.

Proof. For simplicity let us consider the left-tailed model2. The p-value PV can be
expressed as a function of the test statistic T S

PV = FH0(T S)

pv = FH0(ts)

where FH0 is the CDF of the random variable T S under the null hypothesis H0. Let
us now compute the CDF F ′

H0
of the random variable PV . Assuming that FH0 is

2Proofs for the right-tailed and two-tailed models follow the same path.
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invertible3, for any pv we have

F ′
H0
(pv) =

Pr(PV < pv) =

Pr(FH0(T S)< pv) =

Pr(T S < F−1
H0

(pv)) =

FH0(F
−1
H0

(pv)) =

pv

(3.1)

From Equation (3.1) we then have F ′
H0
(pv) = pv which is equivalent to saying

that PV is uniformly distributed and, thus, proves the theorem.

The condition of uniform distribution of the p-value can be equivalently expressed
as

Pr(PV ≤ a|H0) = a,∀a ∈ [0,1] (3.2)

We observe that the nice property proved in Theorem 1 about the CDF of the
p-value follows from the fact that the p-value is itself a CDF (of the test statistic).
Remarkably, the uniformity proved in Theorem 1 means that, in the considered
setting of continuous null distribution, the p-value distribution is independent of
the underlying null distribution. While this independence may appear surprising,
it can be explained observing that the null distribution is actually encompassed in
the definition of the p-value4. In Figures 3.1 and 3.2 the PDF and the CDF of the
p-value, respectively, for an arbitrary continuous null distribution are represented.

3The invertibility of FH0 in Equation (3.1) can be assumed with little loss of generality, since it
holds in most frequently used models, like for example when the null distribution follows a normal, a
uniform, a chi-squared or other common distributions (see §A.4).

4In fact the null distribution encompasses in turn both the extraction process of the samples
(described by the data distribution) and the test statistic function mapping a sample on a test statistic.
The same test statistic with a different data distribution would in general result in a different probability
distribution of the p-value. Likewise, given the same data distribution with a different definition of
the test statistic, we likely obtain a different distribution of the p-value.
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Fig. 3.1 P-value Probability Density Function (continuous case)
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Fig. 3.2 P-value Cumulative Distribution Function (continuous case)
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3.2 The discrete case

In practice however we often work with discrete distributions which, for ease of
calculation, are replaced by their continuous approximations. While this works very
well in most cases, it sometimes leads to assumptions and results that are incorrect
due to the specific discrete nature of the setting.

For example in the statistical test suite proposed by NIST [17] to analyse binary
sequences produced by random generators (see §5.2), one of the decision criteria is
based on the assumption that the p-values are uniformly distributed, as per Theorem 1.
However, as we will see in §3.4, this is conceptually incorrect because of the discrete
nature of binary sequences and turns out to be practically imprecise even for some
tests of the suite, as shown in §5.2.2.2.

For this reason hereinafter we elaborate on the specific setting of a discrete null
distribution, which implies that the distribution of the p-values is necessarily discrete
as well. As a consequence, Equation (3.2) cannot hold, because infinitely many
values a ∈ [0,1] are not observable p-values (that is, it is impossible that they appear)
and the equality cannot be satisfied.

Because of the very definition of p-value, however, as shown in [18], the p-value
random variable PV still partially satisfies Equation (3.2) in the (weaker) sense that,
assuming the null hypothesis true, for any given test,

Pr(PV ≤ ω|H0) = ω,∀ω ∈ Ω (3.3)

where Ω is the set of observable p-values (or, equivalently, Ω is the support of PV )
for the considered test, as we introduce in the following definition

Definition 2. For a given test, let Ω be the set of p-values ω for which there exists at
least one test statistic value ts such that PV (ts) = ω .

Equation (3.3) defines a sort of uniformity, which will be reconsidered in §3.4.
We anticipate however that it does not imply discrete uniformity, that is the property
that all the elements of Ω have the same probability: Pr(PV = ω1) = Pr(PV =

ω2),∀ω1,ω2 ∈ Ω (see later Definition 11).

We also note that the set Ω of Definition 2 strictly depends on the specific test
we are considering and hence Equation (3.3) depends on the considered test as well,
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while Equation (3.2) holds for an arbitrary test in the continuous setting, as earlier
observed.

3.2.1 P-tuples

Let us now consider in particular the discrete and finite case, where the number of
observable test statistic values is finite and therefore the number of distinct p-values
is finite as well5. We can then write

Ω = {ω1,ω2, . . . ,ωNΩ
}

Assuming, without loss of generality, that

ωi < ωi+1,∀i ∈ [1,NΩ −1]

then Ω can also be seen as a tuple (that is, an ordered list) and more consistently
indicated as p-tuple and referred to with the notation

Ω = (ω1,ω2, . . . ,ωNΩ
)

3.2.2 P-value probability distribution functions

Being in the finite case, if we want to analyse the distribution of the p-values we do
not deal with the PDF but instead with the Probability Mass Function (PMF)6 of
the p-value PV , hereinafter indicated by the notation fPV (ω) = Pr(PV = ω). An
interesting thing here is that the p-tuple Ω and the PMF fPV (ω) completely define
each other, as shown below.

Since ωi < ωi+1,∀i ∈ [1,NΩ −1], Equation (3.3) can be re-written as

ωi =
i

∑
j=1

fPV (ω j) (3.4)

5This is the setting of our main interest, since it captures also the case of random generators
producing bit sequences of a given finite length.

6The PMF of a discrete random variable is the function that assigns the probability to be observed
to each possible value of the variable. See §A.2.2 for a more formal definition.
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or, equivalently,
ω1 = fPV (ω1)

ωi = fPV (ωi)+ωi−1,∀i ∈ [2,NΩ]
(3.5)

and reciprocally,
fPV (ω1) = ω1

fPV (ωi) = ωi −ωi−1,∀i ∈ [2,NΩ]
(3.6)

In addition, as for any probability distribution, given the PMF fPV , the CDF FPV

is completely determined (Equation (3.7)) and vice versa (Equation (3.8)).

FPV (pv) = ∑
ωi≤pv

fPV (ωi) (3.7)

fPV (ωi) = FPV (ωi)−FPV (ωi−1),∀i ∈ [2,NΩ]

fPV (ω1) = FPV (ω1)
(3.8)

As an example, let us now consider Figure 3.3, representing again the setting
considered in Figure 2.7, extended with an arbitrarily chosen p-tuple Ω of observable
associated p-values7

7For example purposes, the p-values listed in Equation (3.9) are determined assuming uniform
sampling from the lilac cloud (in this setting, the probability to observe any given test statistic value
ts is proportional to the number of samples u ∈U mapped onto ts). Any other arbitrary set of distinct
p-values would work as well (with the only constraint that the set represents a valid tuple, according
to Definition 8 given later in §3.3.4.2).
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pv
0 0.1 0.15 0.3 0.35 0.5 0.6 0.7 0.75 0.9 1

Fig. 3.3 Left-tailed model with p-values

Ω = {0.1,0.15,0.3,0.35,0.5,0.6,0.7,0.75,0.9,1} (3.9)

As shown by Equation (3.6), the PMF of the p-values is completely determined
by the above tuple Ω (see Equation (3.9)) and is represented in Figure 3.4
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which gives the probability of PV being equal to any value of Ω:

fPV (0.1)= 0.1, fPV (0.15)= 0.05, fPV (0.3)= 0.15, . . . , fPV (0.9)= 0.15, fPV (1)= 0.1

The resulting staircase CDF is represented in Figure 3.5, according to Equation (3.7).
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Fig. 3.5 P-value Cumulative Distribution Function (discrete case, example)

Hence, we can make the following observation

Observation 2. Given a test and the associated p-value variable PV , then PV can
be equivalently described by its PMF fPV , its p-tuple Ω (see Equations (3.4), (3.5)
and (3.6)) or its CDF FPV (see Equations (3.7) and (3.8)).

In order to better describe the p-values behaviour, we can now make some simple
but useful considerations about their distribution.

3.2.2.1 Extreme p-values

First, from Equation (3.4), setting i = NΩ and taking into account that, being fPV a
PMF,

NΩ

∑
i=1

fPV (ωi) = 1
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we derive the following

Observation 3. The biggest value of Ω is always equal to 1 (that is, ωNΩ
= 1).

Equivalently, we note that, being in the finite case, we necessarily always have a
least extreme value for the test statistic, where the meaning of extreme depends on
the specified model (see §2.2). By Definition 1 of p-value, that extreme test statistic
value is mapped on a p-value equal to 1, because any other observable test statistic is
certainly more extreme. Thus in a finite distribution we always have max(Ω) = 1, as
represented on the right edge of the p-value axis in Figures 2.7 and 2.8. For example,
if we refer to the left-tailed model (Figure 2.7), the least extreme test statistic value
is the one on the right on the ts axis and the corresponding p-value is indeed 1 on the
pv segment.

On the other hand, denoted by ω1 the minimum value in Ω, we observe that by
Definition 2 each ωi, thus including ω1, has at least one counter-image. Therefore
we have fPV (ω1)> 0, but also ω1 = fPV (ω1) by eq. (3.6) and thus ω1 > 0. Hence,
we can make the following remark.

Observation 4. The smallest value of Ω is always strictly positive (that is, ω1 > 0).

3.2.2.2 P-values distance

Furthermore, we consider the spacing among observable p-values.

Observation 5. The distance among the p-values (in the (0,1] probability range)
does not depend on the distance of the corresponding test statistic values (in R),
rather on the probabilities associated to them (that is, the cumulative probabilities
of extraction of the samples mapped on them and thus the PMF values fPV )8.

In particular, applying Equation (3.5) we see that the distance between two
consecutive p-values is equal to the PMF of the bigger one:

ωi −ωi−1 = fPV (ωi),1 < i ≤ NΩ

8For example, if all the samples are extracted with the same probability from the sample space, as
in Figure 3.3, then the probability of a given test statistic is proportional to the cardinality of the set
of samples mapped on it.
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and in general the distance between two p-values is given by the sum of the PMF of
the bigger one and of the intermediate p-values

ωi −ω j =
i

∑
k= j+1

fPV (ωk),1 ≤ j < i ≤ NΩ

3.2.2.3 Estimation of the Type I Error probability α

Here we focus for simplicity on the left-tailed model (but similar considerations hold
for the right-tailed and the two-tailed model), for which a certain probability value µ

acts as separator between the rejection region RR = [0,µ] and the acceptance region
AR = (µ,1] on the [0,1] probability range (see §2.2.2). Recalling that the Type I
Error probability α represents the probability Pr(PV ≤ µ) that (the test statistic
associated to) a sample, randomly taken from the sample space according to the
underlying data distribution, falls in the rejection region, we first note that α = αµ ,
that is, α is determined by µ (for a given test).

Then, in the continuous setting, it follows by Equation (3.2) that

αµ = Pr(PV ≤ µ) = µ

that is, for any µ ,
αµ = µ

However, in the discrete case we know that Equation (3.2) does not hold in
general and, in fact, it holds only for the elements of the Ω set, made of the observable
p-values, as by Equation (3.3). In particular, for any µ ∈ [0,1], the staircase CDF
(see Figure 3.5) shows that

Pr(PV ≤ µ) =

0 if µ < minΩ

min{ω ∈ Ω such that ω ≤ µ} otherwise

and, therefore,

αµ = Pr(PV ≤ µ)

= µ if µ ∈ Ω

< µ if µ /∈ Ω

(3.10)

Hence, we can make the following
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Observation 6. In the discrete case, the Type I Error probability (α) is equal to the
probability separator value between the acceptance region and the rejection region
(µ) only if the separator is taken from the set (Ω) of the possible p-values. Otherwise
it is smaller.

In concrete hypothesis testing procedures, the Type I Error probability is typically
considered an external parameter (see also Observation 1) and, as such, is set by the
analyst. However, what the analyst typically does in practice is to set the µ value,
assuming that αµ = µ . While this is correct in the continuous case, Observation 6
says that in the discrete case, instead, we always have α < µ for any µ , but for a
countable number of values (those for which µ ∈ Ω) where equality holds.

Unfortunately, we also remark that, in general, it is not easy to fully determine
the elements of Ω9. Hence, when we choose a µ value, we are not always able to
precisely compute αµ . As an extreme case, Equation (3.10) tells that if the separator
is (unawarely) chosen smaller than the smallest value of Ω (that is, µ < ω1), then
the test statistic value can never fall in the rejection region (differently said, it is not
just a matter of observing enough samples in order to find one rejection).

Equation (3.10) is also important in correctly building a validation methodology
for a given test, that is, fixing a separator value µ , taking a sample space and checking
that the number of samples falling in the rejection region tends to αµ as the sample
space size increases. Assuming that αµ = µ can lead to incorrect results.

In view of the preceding considerations, we introduce the following

Definition 3. A µ value is said admissible if it belongs to the set (Ω) of observable
p-values.

From Equation (3.10) we derive that αµ = µ if and only if µ is admissible.

3.3 P-tuples characterization

A deep understanding of the p-value is very important, since the ultimate output of
a test is precisely a p-value (which is then compared to a predefined threshold to

9Of course, if NU is small, we can exhaustively compute all the observable p-values. In general,
however, it might be prohibitive to analytically determine the whole set Ω.
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take the final hard decision, see §2.2.2). As observed in §3.2, the p-value random
variable associated to a given test can be equivalently described by its PMF or its
CDF but also through the associated p-tuple, formed by the list of the observable
p-values produced by the test (for the definition of p-tuple see §3.2.1). Hence, in
this §3.3 we study some properties of the p-tuples, giving a characterization under
different assumptions10.

The section is organized as follows. In §3.3.1 we analyse the general model of
a hypothesis test, emphasizing the relation among its elements: the sample space,
its probability distribution, the test statistic function and the p-value variable. Then
in §3.3.2 the probabilities associated to the observable p-values are analyzed and
the concept of ordered set partition is introduced. In §3.3.3, the definition of valid
tuple is proposed, allowing to fully characterize the set of the observable p-tuples
when no constraint is given on the data distribution. Then, in §3.3.4, we consider the
more practical setting with an arbitrary but fixed data distribution: we first introduce
the concept of equivalent tests; then we give the definition of F-valid tuple which,
combined with the notion of ordered set partition, allows to characterize the set of
observable p-tuples with a given (arbitrary but fixed) data distribution; subsequently
we prove a bijection between the set of the ordered set partitions and the set of
non-equivalent tests which can be defined under the given data distribution11; finally
we count the number of non-equivalent tests and derive a necessary and sufficient
condition on the data distribution in order to have a distinct p-tuple for each non-
equivalent test. Then, in §3.3.5, we consider the case of uniform data distribution,
introducing the concept of U-valid tuple and determining a characterization of the
set of the observable p-tuples in the given setting. Finally, in §3.3.6 a summary of
the key points developed in the whole §3.3 is presented.

10Hereinafter we focus on the single null hypothesis setting, which means that a unique data
distribution (that is, the underlying distribution of the sample extraction process) is associated to the
null hypothesis (see §2.1), thus allowing to use interchangeably the two concepts of null hypothesis
and data distribution. Note that a remarkable example of this setting is the null hypothesis of most
interest for us, i.e. when the samples are uniformly extracted (as in the case of the random generators
model we are mainly addressing in this dissertation).

11We stress that the data distribution is part of the definition of the test, since it impacts on the
p-value definition.
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3.3.1 Hypothesis test general model

Here we summarize the general model of a hypothesis test when the sample space
is finite, as described in §3.2 and shown for example in Figure 3.3. The test can be
seen as a 3-steps process:

• sample extraction. Given a finite sample space U = {u1,u2, . . . ,uNU}, each
sample u = ui is extracted with probability fV (ui), where V is the random vari-
able modeling the extraction process from U according to the data distribution
and fV is its PMF. In the following the data distribution will thus be described
by fV ;

• test statistic. The extracted sample u is then mapped by the test statis-
tic function (T S) on a test statistic value T S(u). If we indicate with T =

{τ1,τ2, . . . ,τNT } the set of the test statistic values obtained as the sample vary
in U , we have NT ≤ NU since in general more samples can be mapped on the
same test statistic value12. Without loss of generality we can assume that

τi < τi+1,∀i ∈ [1,NT −1] (3.11)

and T can thus also be seen as a tuple (that is, an ordered list) and more
consistently referred to with the notation

T = (τ1,τ2, . . . ,τNT )

• p-value. In the next step for each i the test statistic value τi is mapped by the
p-value function (PV ) into a p-value ϕi,

ϕi = PV (τi) = Pr(T S(u)≤ τi) =
i

∑
h=1

Pr(T S(u) = τh) (3.12)

thus defining the set Φ of the observable p-values

Φ = {ϕ1,ϕ2, . . . ,ϕNT }
12For example, if the space U is made of all the binary sequences of a given length and the test

statistic function counts the number of 1s in a given sequence, then we clearly have multiple sequences
colliding on the same test statistic.
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whose cardinality is NT as well because of the bijection between T and Φ13.

Figure 3.6 exemplifies the process, with NU = 12 and NT = 6. In the figure we also
introduce the subsets Ui of the sample space U . Their meaning will be detailed
in §3.3.2, here we anticipate that samples of U are grouped in subsets Ui, according
to the test statistic τi on which they are mapped.

τ1 τ4τ2 τ5 τ6

ϕ1 ϕ2 ϕ3

τ3

ϕ4 ϕ5 ϕ6

U1 U2 U3 U4 U5 U6

U

Т=TS(U)

Ф=PV(TS(U))

fV(u2) fV(u3) fV(u4) fV(u5) fV(u6) fV(u7) fV(u8) fV(u9) fV(u10) fV(u11) fV(u12)

TS

PV

fV(u1)

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

Fig. 3.6 From sample space U to p-values

Relying on the above description, we can make the following observations.

Observation 7. A hypothesis test is completely defined by three elements:

• the sample space U;

• its data distribution fV ;

• the test statistic function T S, mapping samples u ∈U to real numbers.

The fourth element mentioned in the above description, that is, the PV function
mapping the test statistic values on probability values, is not listed in Observation 7

13The bijective relation was already anticipated in §2.2.3.1 for the continuous case. In the discrete
case we observe that the mapping from T to Φ is a surjection by construction, while the injection
can be proved as follows: given τi and τ j, with i < j and therefore τi < τ j, we have ϕi = Pr(T S(u)≤

τi) =
i

∑
h=1

Pr(T S(u) = τh)<
j

∑
h=1

Pr(T S(u) = τh) = Pr(T S(u)≤ τ j) = ϕ j and hence ϕi < ϕ j.
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because it is completely determined by the others, as already shown in §2.2.2 (see in
particular Table 2.2).

We note that Observation 7 is consistent with the claim expressed in §2.2.3.1
that the critical value method and the p-value method are equivalent, since the
introduction of the p-value does not add (or remove) any information but it simply
reshapes the existing one in a more homogeneous and easy-to-use form.

Finally, on the basis of Observation 7, we give the following definition.

Definition 4. A triple made of a sample space U, a function fV and a function T S,
is said legitimate if fV represents a data distribution of U and T S is a real-valued
function defined on U. Given a legitimate triple, a test can be associated to the triple
according to the model given in §3.3.1. For the sake of simplicity, we will also refer
to the resulting test as legitimate, meaning that it is consistently defined.

3.3.2 P-values probability

Examining the probability of a p-value to be observed, according to the model
described in §3.3.1, we have in general

Pr(PV = ϕ) = ∑
u∈T S−1(PV−1(ϕ))

fV (u) (3.13)

More in detail, referring to Figure 3.6, we note that for each i,1 ≤ i ≤ NT , the
probability that τi is selected (that is, T S = τi) as the sample is extracted from U
(according to the data distribution fV ) is by construction equal to the sum of the
probabilities of the samples mapped on τi.

If we define Ui as the counter-image of τi (as anticipated in §3.3.1), that is,

Ui = T S−1(τi) = {u ∈U |T S(u) = τi} (3.14)

then
Pr(T S = τi) = Pi (3.15)

with
Pi = Pr(u ∈Ui) = ∑

u∈Ui

fV (u) (3.16)
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Because of the bijection between T and Φ14, we have that Pr(PV = ϕi) = Pr(T S =

τi) and therefore the probability that ϕi is selected (that is, PV = ϕi) as the sample is
extracted from U is again given by (compare with Equation (3.15))

Pr(PV = ϕi) = Pi (3.17)

Replacing Pr(PV = ϕi) with fPV (ϕi) in Equation (3.17), from Equation (3.6) we
can express Pi in terms of the p-values {ϕi}

P1 = ϕ1

Pi = ϕi −ϕi−1, i > 1
(3.18)

and vice versa

ϕi =
i

∑
j=1

Pj,∀i (3.19)

From Equations (3.17), (3.16) and (3.14) we also see that the probability of each
p-value ϕi to be observed is determined by the combination of the data distribution
fV and the test statistic function T S because the probability of a sample u to be in
the set Ui is determined by fV , see Equation (3.16), and the set Ui is defined in terms
of T S, see Equation (3.14).

We highlight however that in Equation (3.14), for any given i the definition of
the Ui set is irrespective of the actual value of τi: what is instead relevant is how the
test statistic function T S groups the samples of U in subsets {Ui} such that for any i
all the samples belonging to Ui are mapped on the same test statistic value τi. The
subsets Ui can, hence, be characterized by the following observations.

Observation 8. Each Ui is an equivalence class induced by the equivalence relation
on the samples defined as having the same image under the test statistic function.

Observation 9. Ui does not depend on the output values of the test statistic function.

In summary, what a test statistic function does is to partition the sample space
U in NΩ subsets (Ui). It also assigns a value τi to each subset, which however has
the only role to determine an index for the corresponding subset according to its
ranking in the tuple of the test statistic values (i < j if and only if τi < τ j, according
to Equation (3.11)). We emphasize that the definition of the test statistic function is

14For an analysis of the mentioned bijection, see Footnote 13 at page 42.
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part of the definition of the hypothesis test, but the actual values of the test statistic
do not impact on the resulting p-values which represent in fact the ultimate output of
the test.

This is represented for example in Figure 3.7, where the probability of the
orange-circled p-value ϕ9 to be observed is equal to the sum of the probabilities
(determined by fV ) of the three yellow-circled samples (forming collectively the set
U9 = T S−1(τ9)) to be extracted from the sample space but does not depend on the
actual test statistic value τ9 (compare with Equations (3.15) and (3.16)):

Pr(PV = ϕ9) = ∑
u∈U9

fv(u)

R

φ9

Rts

pv
0 0.1 0.15 0.3 0.35 0.5 0.6 0.7 0.75 0.9 1

τ9

U9

Fig. 3.7 Probability of a p-value

In order to summarize what above discussed, we observe that each test on a
sample space U is characterized by three tuples with the same cardinality, given by
the number of distinct p-value, NT : a tuple of subsets (U1,U2, . . . ,UNT ), a tuple of
test statistic values (τ1,τ2, . . . ,τNT ) and a tuple of p-values Ω = (ω1,ω2, . . . ,ωNT ).

3.3.2.1 Ordered set partitions

We note that, given a test on a sample space U , the associated tuple of subsets (Ui)

determined by the test as by Observation 8 is an ordered set partition, as per the
following definition (see also [19]).
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Definition 5. Given a set U, an ordered set partition of U is a list of pairwise disjoint
non-empty subsets of U such that the union of these subsets is U.

We remark that by definition of list the order of the subsets is relevant, thus for
example (U1,U2,U3) is a different ordered set partition with respect to (U2,U3,U1).

3.3.3 Unconstrained data distribution

Now we analyse the form that a p-tuple can assume when no restriction is set on the
data distribution. For this purpose, we first propose the following definition

Definition 6. Given a sample space U (of cardinality NU ), a tuple Ω=(ω1,ω2, . . . ,ωNΩ
)

is said valid if

1. NΩ ≤ NU

2. 0 < ωi < 1 if i < NΩ

3. ωNΩ
= 1

4. ωi < ω j if i < j

The first property implies that the number of observable p-values cannot exceed
the number of possible samples but can be smaller. The second and third properties
mean that the set of the p-values is made of a certain number of values in (0,1)
plus an additional maximum value equal to 1. The fourth property requires that the
p-values are ordered according to their index.

Recalling Observation 7, which states that a test is defined by the sample space,
its data distribution and the test statistic function, we can now express the following
theorem

Theorem 2. Given a sample space, an arbitrary data distribution and an arbitrary
test statistic definition, the resulting p-tuple is valid (that is, satisfies Definition 6).
Vice versa, given a sample space, an arbitrary valid tuple represents the p-tuple
resulting from at least one choice of the data distribution and of the test statistic
function.
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Proof. Given a data distribution and a test statistic function, the set Ω of observable
p-values (see Figure 3.6) is defined as

Ω = {PV (T S(u)),u ∈U}

We observe that a such Ω is valid according to Definition 6. In particular,
the first property is satisfied by construction (with the equality holding when no
samples collide on the same test statistic and thus on the same p-value). The second
and third properties are satisfied by definition of the p-value as probability and by
Observation 3. The fourth property can be assumed true without loss of generality,
as it is implicit in the definition of p-tuple (see §3.2.1).

Conversely, given a sample space U = {u1,u2, . . . ,uNU} and an arbitrary tuple
Ω = (ω1,ω2, . . . ,ωNΩ

) satisfying Definition 6, we can choose a data distribution
fV and a test statistic function T S producing a p-tuple equal to Ω according to
Equation (3.13) as follows.

First we define a tuple T = (τ1,τ2, . . . ,τNΩ
), made of NΩ distinct ordered real

numbers (their actual values are irrelevant, it is just required that τi < τ j for i < j).
Then we

• define the data distribution fv as

fV : U → [0,1] (3.20)

fV (ui) =


ω1 if i = 1

ωi −ωi−1 if i ∈ [2,NΩ −1]
1−ωNΩ−1

NU −NΩ +1
if i ∈ [NΩ,NU ]

which is consistently defined since

– fV (u)> 0,∀u ∈U

– ∑
u∈U

fv(u) = 1

because of properties 2 and 4 of Definition 6;
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• define the test statistic function T S

T S : U → T (3.21)

T S(ui) =

τi if i ∈ [1,NΩ −1]

τNΩ
if i ∈ [NΩ,NU ]

• observe that the p-value function PV is implicitly defined as15

PV : T → Ω

PV (τi) = ωi ∀i ∈ [1,NΩ]

What we do, in essence, is to build a one-to-one map from the sample space U to
the set T for all but one elements τi of T and to map all the remaining samples of U
onto the last element of T , τNΩ

. In doing so we normalize the samples probabilities
used in the second step in order to obtain the desired probability for τNΩ

indepen-
dently of the number of samples mapped on τNΩ

(which is guaranteed to be always
at least one from property 1 of Definition 6).

Referring to the definition of the sets Ui and of the probabilities Pi given by
Equations (3.14) and (3.16), and here recalled in the following equations:

Ui = {u ∈U |T S(u) = τi}

Pi = Pr(u ∈Ui)

we observe that the above-described process determines NΩ sets Ui (i = 1,2, . . . ,NΩ)
as follows.

For any i ∈ [1,NΩ −1] the set Ui is defined by a unique sample Ui = {ui} with

P1 = ω1

Pi = ωi −ωi−1, if i ∈ [2,NΩ −1]
(3.22)

15According to the model depicted in Figure 3.6 we also need to define a p-value function PV but,
as summarized in Observation 7, PV is entirely determined by fV and T S.
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The last set UNΩ
is composed by the remaining NU −NΩ + 1 samples, UNΩ

=

{u j, j ∈ [NΩ,NU ]}, with
PNΩ

= ωNΩ
−ωNΩ−1 (3.23)

Comparing Equations (3.22) and (3.23) with Equation (3.18), we derive that τi

is in turn mapped onto the p-value ωi for each i, thus concluding the proof.

The whole construction is exemplified in Figure 3.8, with NU = 8 and NΩ = 6,
where Ω = (ω1,ω2, . . . ,ω6) is the target p-tuple we want to obtain16.

U

T τ1 τ2 τ3 τ4 τ5 τ6

φ1 φ2 φ3 φ4 φ5 φ6

ω1 ω2-ω1 ω3-ω2 ω4-ω3 ω5-ω4

ω6-ω5
3

ω6-ω5
3

ω6-ω5
3

Ω ω1 ω2 ω3 ω4 ω5 ω6

fV

= = = = = =

u1 u2 u3 u4 u5 u6 u7 u8

Fig. 3.8 Construction of an arbitrary Ω set

Recalling from Observation 7 that a test is completely defined by a triple made
of the sample space, its data distribution and the test statistic function, the meaning
of Theorem 2 is that all and only the valid p-tuples represent legitimate tests (that

16We observe that the pair of maps fV and T S defined in Equations (3.20) and (3.21) is just one
among infinitely many, with the exception of the case NU = NΩ where the solution is essentially
unique (up to permutations of the samples in the definition of the subsets {Ui}).
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is, consistently defined by a sample space, a data distribution and a test statistic
function, as for Definition 4).

3.3.4 Fixed data distribution

Now we consider the case in which the data distribution is (arbitrary but) fixed,
that is, the underlying distribution of the sample extraction process is unique, thus
defining a simple null hypothesis (see §2.1)17.

3.3.4.1 Equivalent tests

We first propose the following definition, which turns out to be fundamental in the
fixed data distribution setting.

Definition 7. Given a sample space and its data distribution, two tests are said
equivalent if, given an arbitrary identical input, they produce an identical p-value as
output18.

Two equivalent tests are, hence, essentially the same test (and, consequently,
produce the same p-tuple). Since it makes sense to compare two tests only under
the same data distribution, in the following, when we refer to equivalent tests, we
always (sometimes implicitly) assume they have the same data distribution.

We are now able to state the following theorem.

Theorem 3. Given two tests on a sample space with the same data distribution, they
are equivalent if and only if they determine the same ordered set partition.

Proof. If the two tests determine the same ordered set partition (Ui) (see §3.3.2.1),
then, given a sample u it belongs for both tests to the same subset of the sample
space U , say Ui for some index i. Then by construction (see Figure 3.6) the sample u

17The setting considered includes the one required to build a hypothesis test for randomness, where
the sample space is made of all the possible binary sequences of a given length and the null hypothesis
is that they are independently and uniformly extracted.

18We remind from §2.2.3.2 that the most convenient way to interpret a hypothesis test is that it
produces in output a probability value (the p-value). A further value α , which is compared with the
resulting probability to take a hard acceptance/rejection decision about the null hypothesis, can be
seen as an external parameter.
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is sent on two test statistics τ1i and τ2i, possibly distinct for the two tests but with
the same index i. Finally from τ1i and τ2i it is sent on two values ϕ1i,ϕ2i, with
ϕ1i = ϕ2i because of equations (3.12), (3.15) and (3.16). Since this holds for each
sample u, then the two tests are equivalent by Definition 7.

Conversely, if the two tests are equivalent, then each u is sent for both tests to
the the same p-value, say ϕi for some index i. This means that the corresponding
test statistic values for the two tests, despite being possibly different, share the same
index i: τ1i and τ2i. Then, by Equation (3.14), u belongs to the same subset Ui for
both tests, again for the same index i. Since this holds for each sample u, it follows
that the two ordered set partitions, corresponding to the two tests, coincide.

Theorem 3 states that tests can be grouped in disjoint classes, where each class
is made of all and only the equivalent tests, while (consequently) non-equivalent
tests belong to different classes. Moreover, each class is associated to an ordered set
partition, which can thus be interpreted as the essential representation of the whole
class. Then, with a little abuse of terminology, we can restate Theorem 3 as follows

Observation 10. There exists a bijection between ordered set partitions and non-
equivalent tests.

It is worth pointing out that the equivalence among tests is irrespective of the
actual values of the test statistic tuples, as can be shown extending Observation 9
from a single subset Ui to the whole ordered set partition. Hence, for a fixed ordered
set partition, any set of test statistic values defines a different but equivalent test.
Thus, since there are infinite choices for the test statistic values, we can make the
following

Observation 11. Each test defines (and belongs to) a class of infinite equivalent
tests, which differ for the output values of the test statistic function.

3.3.4.2 F-valid tuples

We can now define the concept of F-valid tuples

Definition 8. Given a sample space U = {u1,u2, . . . ,uNU} and its data distribution
{ fV (ui), i ∈ [1,NU ]}, a tuple Ω = (ω1,ω2, . . . ,ωNΩ

) is said F-valid if there exists an
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ordered set partition M of U

M = (U1,U2, . . . ,UNΩ
)

such that

ωi =
i

∑
j=1

Pj,∀i ∈ [1,NΩ]

with
Pj = ∑

u∈U j

f v(u)

We also say that Ω is the p-tuple associated to M and we denote it by ΩM.

A graphical representation of the meaning of Definition 8 is given in Figure 3.9,
where NU = 8,NΩ = 4 and M = (U1,U2,U3,U4) with

U1 = {u1,u2},U2 = {u3},U3 = {u4,u5,u6,u7},U4 = {u8}

P4P2 P3

U1 U2 U3 U4

fV(u2) fV(u3) fV(u4) fV(u5) fV(u6) fV(u7) fV(u8)fV(u1)

+ P1 + + +

ω1
ω4ω2 ω3

+ + +

u1 u2 u3 u4 u5 u6 u7 u8

Fig. 3.9 Example of F-valid tuple

By Definition 8 we can make the following observation.
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Observation 12. For an arbitrarily fixed data distribution, the (F-valid) p-tuple
associated to a a given ordered set partition is uniquely defined. On the contrary,
a single (F-valid) p-tuple can be associated with multiple ordered set partitions or
may not be associated with any ordered set partition at all.

With regard to Observation 12, here we anticipate that Theorem 5 will provide a
necessary and sufficient condition to have a single ordered set partition for a given
p-tuple (or, equivalently, to have a bijection between the set of ordered set partitions
and the set of (F-valid) p-tuples).

Now we can state the following theorem.

Theorem 4. Given a sample space, a fixed data distribution and an arbitrary test
statistic definition, the resulting p-tuple is F-valid (that is, satisfies Definition 8). Vice
versa, given a sample space and a fixed data distribution, an arbitrary F-valid tuple
represents the p-tuple resulting from at least one choice of the test statistic function.

Proof. Given a sample space U of cardinality NU , a fixed data distribution fV
and a test statistic function T S mapping U on a tuple T = (τ1,τ2, . . . ,τNT ), by
construction (see Equations (3.14), (3.15), (3.16) and (3.19)) the resulting p-tuple
Ω = (ω1,ω2, . . . ,ωNΩ

) is determined as

ωi =
i

∑
j=1

Pj,

with NΩ = NT and Pj = Pr
u∈U

(u ∈ T S−1(τ j)).

If we set
Ui = T S−1(τi), i ∈ [1,NΩ]

then Ω is associated to the ordered set partition M = (U1,U2, . . . ,UNΩ
) according to

Definition 8 and Ω is therefore F-valid.

Conversely, given a sample space U of cardinality NU , a fixed data distribution
fV and a F-valid tuple

Ω = (ω1,ω2, . . . ,ωNΩ
)

we want to choose a test statistic function such that the resulting p-tuple is Ω.

To do so, we observe that Equation (3.13) still holds, but in order to assign the
target probability to the p-values probabilities Pr(PV = ϕ) (on the left side of the
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equation) we can no more rely on modifications of the data distribution ( fV (u)) (on
the right side of the equation) which is now fixed. So we are left to play with the
summation range only and then with the definition of the test statistic T S as follows.

Since Ω is F-valid we know by Definition 8 that there exists an ordered set
partition M = (U1,U2, . . . ,UNΩ

) such that

ωi =
i

∑
j=1

Pj,∀i ∈ [1,NΩ]

with
Pj = ∑

u∈U j

f v(u)

We define an arbitrary tuple T = (τ1,τ2, . . . ,τNΩ
), made of NΩ arbitrary distinct real

numbers with τi < τ j for i < j. We then set

T S(u) = τi,∀u ∈Ui,∀i ∈ [1,NΩ]

By construction the p-tuple determined by the test statistic function above defined
coincides with Ω.

3.3.4.3 On the number of non-equivalent tests

Given a sample space U of cardinality NU in the fixed data distribution setting, it is
interesting to count the number of non-equivalent tests. By Observation 10 we know
that non-equivalent tests and ordered set partitions are in bijective relation, so we
can instead count the number B(NU) of distinct ordered set partitions, which can be
expressed as in Equation (3.24):

B(NU) =
NU

∑
k=1

{
NU

k

}
k! (3.24)

where
{NU

k

}
represents the Stirling number of the second kind, that is, the number of

ways we can partition a set of NU elements into k non-empty subsets19. Since we
are taking the order of the parts in account, we still have to multiply that number by

19A such number can be expressed as
{NU

k

}
= 1

k!

k
∑

i=0
(−1)i

(k
i

)
(k− i)NU . See [20].
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k! in order to have all the partitions with k parts. Finally we have to span over the
possible values of k (from 1 to NU ) to consider all the possible ordered set partitions,
thus obtaining B(NU) (which is known as Fubini Number or Ordered Bell Number,
see [21]).

The first elements of the sequence (BNU ,NU ≥ 1)20 are:

1,3,13,75,541,4683,47293,545835,7087261, . . .

For example, if N = 4 we have the 75 ordered set partitions reported in Table 3.1,
where Mk represents the generic partition of U in k subsets.

k Mk {Ui}
1 (U1) {u1,u2,u3,u4}

2 (U1,U2)

({u1},{u2,u3,u4}), ({u2,u3,u4},{u1})
({u2},{u1,u3,u4}), ({u1,u3,u4},{u2})
({u3},{u1,u2,u4}), ({u1,u2,u4},{u3})
({u4},{u1,u2,u3}), ({u1,u2,u3},{u4})
({u1,u2},{u3,u4}), ({u3,u4},{u1,u2})
({u1,u3},{u2,u4}), ({u2,u4},{u1,u3})
({u1,u4},{u2,u3}), ({u2,u3},{u1,u4})

3 (U1,U2,U3)

({u1},{u2},{u3,u4}), ({u1},{u3,u4},{u2}), ({u2},{u1},{u3,u4})
({u2},{u3,u4},{u1}), ({u3,u4},{u1},{u2}), ({u3,u4},{u2},{u1})
({u1},{u3},{u2,u4}), ({u1},{u2,u4},{u3}), ({u3},{u1},{u2,u4})
({u3},{u2,u4},{u1}), ({u2,u4},{u1},{u3}), ({u2,u4},{u3},{u1})
({u1},{u4},{u2,u3}), ({u1},{u2,u3},{u4}), ({u4},{u1},{u2,u3})
({u4},{u2,u3},{u1}), ({u2,u3},{u1},{u4}), ({u2,u3},{u4},{u1})
({u2},{u3},{u1,u4}), ({u2},{u1,u4},{u3}), ({u3},{u2},{u1,u4})
({u3},{u1,u4},{u2}), ({u1,u4},{u2},{u3}), ({u1,u4},{u3},{u2})
({u2},{u4},{u1,u3}), ({u2},{u1,u3},{u4}), ({u4},{u2},{u1,u3})
({u4},{u1,u3},{u2}), ({u1,u3},{u2},{u4}), ({u1,u3},{u4},{u2})
({u3},{u4},{u1,u2}), ({u3},{u1,u2},{u4}), ({u4},{u3},{u1,u2})
({u4},{u1,u2},{u3}), ({u1,u2},{u3},{u4}), ({u1,u2},{u4},{u3})

4 (U1,U2,U3,U4)

({u1},{u2},{u3},{u4}), ({u1},{u2},{u4},{u3}), ({u1},{u3},{u2},{u4})
({u1},{u3},{u4},{u2}), ({u1},{u4},{u2},{u3}), ({u1},{u4},{u3},{u2})
({u2},{u1},{u3},{u4}), ({u2},{u1},{u4},{u3}), ({u2},{u3},{u1},{u4})
({u2},{u3},{u4},{u1}), ({u2},{u4},{u1},{u3}), ({u2},{u4},{u3},{u1})
({u3},{u1},{u2},{u4}), ({u3},{u1},{u4},{u2}), ({u3},{u2},{u1},{u4})
({u3},{u2},{u4},{u1}), ({u3},{u4},{u1},{u2}), ({u3},{u4},{u2},{u1})
({u4},{u1},{u2},{u3}), ({u4},{u1},{u3},{u2}), ({u4},{u2},{u1},{u3})
({u4},{u2},{u3},{u1}), ({u4},{u3},{u1},{u2}), ({u4},{u3},{u2},{u1})

Table 3.1 List of all the ordered set partitions for set size equal to 4

20The sequence (BNU ,NU ≥ 1) is indexed as A000670 in the On-Line Encyclopedia of Integer
Sequences (OEIS) [22]. For the sake of precision, the mentioned sequence in OEIS includes also the
first element B0=1.
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3.3.4.4 On the number of observable p-tuples

We also note that Theorem 4 states that all and only the F-valid tuples are observable
p-tuples and by Observation 12 we derive that B(NU) is also an upper limit for the
number of distinct F-valid tuples and thus of distinct observable p-tuples. The actual
number of distinct observable p-tuples depends on the data distribution fV of the
sample space U , as shown in the following theorem, which determines when this
upper limit is reached (that is, there are no ordered set partitions colliding on the
same F-valid tuple).

Theorem 5. Given a set U and its (B(NU)) distinct ordered set partitions, the
associated p-tuples are all distinct if and only if there is no pair of subsets U1,U2 ⊂
U, with U1 ̸=U2 and P1 = P2, where P1 and P2 are the subset probabilities defined
as P1 = ∑

u∈U1
fV (u),P2 = ∑

u∈U2
fV (u).

Proof. Let us assume there exist two subsets U1,U2, with U1 ̸=U2 and P1 = P2.
Then the two ordered set partitions

M = (U1,U2,U \ (U1∪U2))

and
M′ = (U2,U1,U \ (U1∪U2))

produce the same p-tuple

ΩM = ΩM′ = (P1,2P1,1)

Conversely, let us take two ordered set partitions

M = (U1,U2, . . . ,Uk)

and
M′ = (U ′

1,U
′
2, . . . ,U

′
k)

with the corresponding p-tuples

ΩM = (ω1,ω2, . . . ,ωk)



3.3 P-tuples characterization 57

and
ΩM′ = (ω ′

1,ω
′
2, . . . ,ω

′
k)

and let us suppose that M ̸= M′ but ΩM = ΩM′ .

Since M ̸= M′, there are one (in fact, at least two) or more indexes such that the
corresponding subset in the two partitions differ. Let i∗ be the smallest such index:

Ui =U ′
i ,∀i < i∗

Ui∗ ̸=U ′
i∗

(3.25)

Since ΩM = ΩM′ , we have ∀i,ωi = ω ′
i and in particular ωi∗ = ω ′

i∗ or equivalently,
by Definition 8,

i∗

∑
i=1

Pi =
i∗

∑
i=1

P′
i (3.26)

with Pi = ∑
u∈Ui

fV (u),P′
i = ∑

u∈U ′
i

fV (u).

Since Ui = U ′
i ,∀i < i∗ we also have Pi = P′

i ,∀i < i∗. Therefore, in order for
Equation (3.26) to hold, it is necessary that

Pi∗ = P′
i∗ (3.27)

Comparing Equations (3.25) and (3.27) we see that we have found two distinct
subsets with the same subset probability.

Hence, Theorem 5 gives a necessary and sufficient condition to obtain the maxi-
mum number B(NU) of distinct p-tuples (given by Equation (3.24)) as the ordered
set partition takes all the possible configurations (which, by Observation 10, is equiv-
alent to say that all possible non-equivalent tests are considered). The condition is
expressed in terms of the data distribution of the sample space U of cardinality NU .

3.3.4.5 An example

As an example, consider a set U = {u1,u2, . . . ,u6} of cardinality 6, with the following
data distribution

fV = {0.05,0.25,0.20,0.18,0.22,0.10}
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Then we have

B6 =
6

∑
k=1

{
6
k

}
k! =

1 ·1+31 ·2+90 ·6+65 ·24+15 ·120+1 ·720 = 4683

(3.28)

Now, since fV (u1)+ fV (u2)+ fV (u6) = fV (u4)+ fV (u5), as shown in Theorem 4
we can build two ordered set partitions of U with the same resulting p-tuples:

M1 = ({u1,u2,u6},{u4,u5},{u3})

M2 = ({u4,u5},{u1,u2,u6},{u3})

with
ΩM1 = ΩM2 = (0.4,0.8,1)

Hence, the total number of different p-tuples is less than 4683, which is the total
number of possible ordered set partitions computed in Equation (3.28).

We note however that it is always possible to define a data distribution such that
all the p-tuples are distinct, that is, each (non-equivalent) test on the sample space U
determines a different p-tuple. For example the following data distributions

∀b > 1,k ∈ N,
{

fV (ui) =
b−1
bk −1

bi−1, i = 1,2, . . . ,k
}

(3.29)

with k = NU for an arbitrary set U of cardinality NU , guarantee that there are no
subsets with the same probability (since b can be seen as the base of the b-ary
numeral system, all the sums of powers of b are distinct).

For instance, in the same setting of the previous example (NU = 6) we can build
the following data distribution according to Equation (3.29) with b = 2, guaranteeing
by construction that all the 4683 resulting p-tuples are different

fV =

{
1
63

,
2
63

,
4
63

,
8
63

,
16
63

,
32
63

}
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3.3.4.6 A graphical representation

Figure 3.10 gives an illustrative view of the relation among (equivalent) tests, ordered
set partitions and F-valid p-tuples. In particular, tests are shown grouped by equiva-
lence sets (in the upper area of the figure), which are mapped onto the corresponding
ordered set partitions (central area), which in turn are mapped onto F-valid tuples
(shown in the lower area). We note that tests are infinite (see Observation 11), while
ordered set partitions (that is, non-equivalent tests) and F-valid tuples are finite, as
shown in §3.3.4.3 and §3.3.4.4.

T11

OSP1

FVT1 FVT2

…T12 T13 T21

OSP2

…T22 T23 T31

OSP3

…T32 T33 T41

OSP4

…T42 T43

All tests
(grouped by 
equivalence)

Ordered Set Partitions
(non-equivalent tests)

F-Valid tuples

Fig. 3.10 Relation among tests, ordered set partitions and F-valid tuples (I)
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…T42 T43

All tests
(grouped by 
equivalence)

Ordered Set Partitions
(non-equivalent tests)

F-Valid tuples FVT1 FVT3FVT2 FVT4

Fig. 3.11 Relation among tests, ordered set partitions and F-valid tuples (II)

Figure 3.11 adapts the generic scheme of Figure 3.10 to the case where, according
to Theorem 5, all the p-tuples are distinct and are, thus, in bijective relations with
the ordered set partitions.
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3.3.5 Uniform data distribution

A specific setting is when the data distribution is the uniform one. Being in the finite
case, we observe that a finite distribution cannot be uniform in the continuous sense.
A useful approximation is however represented by the discrete uniformity property,
which requires that all the possible outcomes have the same probability

Definition 9. A random variable is said discrete uniform (or to have a discrete
uniform distribution) if all the possible outcomes are equally likely to be observed.

In our case it means that, given the sample space U of cardinality NU , all the

samples u ∈U have the same probability
1

NU
to be observed. This is of particular

interest for us because it is exactly what we consider when applying statistical tests
for randomness, where we assume that the random generator under analysis produces
equally likely samples (that is, binary sequences of a given length).

In this context it is useful to introduce the following definition

Definition 10. Given a sample space U = {u1,u2, . . . ,uNU} with discrete uniform
data distribution, a tuple Ω = (ω1,ω2, . . . ,ωNΩ

) is said U-valid if it can be expressed
in the form

Ω = (
k1

NU
,

k2

NU
, . . . ,

kNΩ−1

NU
,1) (3.30)

with

• NΩ ≤ NU ;

• ki integer ∈ [1,NU −1], ∀i ∈ [1,NΩ −1];

• ki < ki+1,∀i ∈ [1,NΩ −2];

• kNΩ−1 < NU .

We can prove the following theorem, which states that Equation (3.30) gives the
form of all and only the F-valid tuples in the uniform distribution case.

Theorem 6. Under the data distribution discrete uniformity assumption, a tuple is
U-valid if and only if it is F-valid.
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Proof. Let us assume that Ω = (ω1,ω2, . . . ,ωNΩ−1,ωNΩ
) is a F-valid tuple. Then by

Definition 8 there exists an ordered set partition

M = (U1,U2, . . . ,UNΩ
)

with NΩ ≤ NU and such that, for any i ∈ [1,NΩ],

ωi =
i

∑
j=1

Pj,∀i ∈ [1,NΩ] (3.31)

with
Pj = ∑

u∈U j

fV (u)

By definition of discrete uniformity, we have

fV (u) =
1

NU
,∀u ∈U

and then
Pj =

|U j|
NU

The tuple Ω = (ω1,ω2, . . . ,ωNΩ−1,ωNΩ
) defined by Equation (3.31) then satisfies

Definition 10 and is thus U-valid.

Conversely, let us assume that Ω = (ω1,ω2, . . . ,ωNΩ−1,ωNΩ
) is a U-valid tuple.

Then Ω is associated to any ordered set partition M = (U1,U2, . . . ,UNΩ
) such that

|U1|= k1, |U2|= k2 − k1, . . . , |UNΩ−1|= kNΩ−1 − kNΩ−2, |UNΩ
|= NU − kNΩ−1

Since
NΩ

∑
i=1

|Ui|= NU

it is always possible to define a such M and then by Definition (8) Ω is a F-valid
tuple.

Thanks to Theorem 6 we can now adapt Theorem 4 to the discrete uniform data
distribution case:

Theorem 7. Given a sample space with discrete uniform data distribution and an
arbitrary test statistic definition, the resulting p-tuple is always U-valid (that is,
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satisfies Definition 10). Vice versa, given a sample space with discrete uniform data
distribution, an arbitrary U-valid tuple represents the p-tuple resulting from at least
one choice of the test statistic function.

Let us now briefly compare Theorem 2 and Theorem 7. Theorem 2 essentially
states that, when the data distribution is not fixed, any valid tuple of distinct real
values in (0,1] (that is, any strictly increasing sequence which includes 1 as last
value, see Definition 6) corresponds to a legitimate test (see Definition 4) and vice
versa. Theorem 7 states that the same holds when the data distribution is fixed and
uniform, with the more stringent constraint that the tuple of real values is U-valid
(see Definition 10).

We remark from Theorem 7 that any Ω which is U-valid corresponds to a
legitimate test (see Definition 4), that is, there exists a test statistic function (in
fact infinitely many, simply playing with the test statistic values, according to
Observation 11) that, given the discrete uniform data distribution, determines Ω

as p-tuple. This is a fundamental fact because it means that if we do not have
knowledge about the test statistic function, then we cannot make any assumption on
the associated p-tuple, apart from being in the form given by Equation (3.30).

3.3.5.1 An example

As an example of application of the theory developed in the previous sections, we
now consider the setting where the sample space U is made of all the 4-bit sequences
(and then NU = 16) and the data distribution is discrete uniform (that is, our null
hypothesis is that all the sequences are equally likely). If we consider the p-tuple

Ω = (ω1,ω2,ω3,ω4,ω5) = (
3

16
,

5
16

,
11
16

,
14
16

,1)

then we observe that Ω is a U-valid tuple, according to Definition 10. Hence, by
Theorem 6 we know that it is F-valid as well and thus, by Definition 8, that there is
at least one corresponding ordered set partition. In fact, we can choose any ordered
set partition of U , M = (U1,U2,U3,U4,U5) such that

|U1|= 3, |U2|= 2, |U3|= 6, |U4|= 3, |U5|= 2
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Examples of solutions are

U1 = {u1,u2,u3},U2 = {u4,u5},U3 = {u6,u7,u8,u9,u10,u11},
U4 = {u12,u13,u14},U5 = {u15,u16}

and also any other choice of the samples which maintains the cardinality of the
subsets (|Ui|), like for example

U1 = {u4,u7,u15},U2 = {u2,u9},U3 = {u1,u3,u10,u13,u14,u16},
U4 = {u5,u8,u12},U5 = {u6,u11}

Once an ordered set partition is built as above described, a legitimate test can be
obtained determining Ω as p-tuple (see proof of Theorem 4).

From Theorem 7 we also know that p-tuples which are not U-valid are instead
impossible to obtain. For example, the p-tuple

Ω = (ω1,ω2,ω3,ω4,ω4,ω6) = (
4

32
,

7
32

,
14
32

,
19
32

,
26
32

,1)

is impossible to observe, because ω2 and ω4 cannot be put in the form
k

16
with k

integer (see Definition 10).

Conversely, in Theorem 7 we have also shown that any U-valid tuple actually
corresponds to a legitimate test. Below we verify this claim with the following trivial
U-valid p-tuple:

Ω = (ω1,ω2) = (
15
16

,1)

which is really poor in terms of uniformity, as clearly shown also by the PMF in
Figure 3.12.
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Fig. 3.12 Poorly uniform p-tuple

The given Ω is, however, the p-tuple of the legitimate test defined through its test
statistic function:

T S(ui) = τ1,∀i < 16

T S(u16) = τ2

for arbitrary τ1,τ2 with τ1 < τ2.

3.3.6 Section synthesis

Here we briefly recapitulate the concepts introduced and developed in the current
Section §3.3. In particular, in §3.3.6.1 we recall the general notions used throughout
the whole section, while in the following Subsections §3.3.6.2, §3.3.6.3 and §3.3.6.4
we focus on the three data distribution settings considered, namely the unconstrained
one, the fixed one and finally the uniform one. Results reported apply to the specific
setting considered in the corresponding subsection.
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3.3.6.1 General

See §3.3.1 and §3.3.2.

• It is shown that each test is determined by a triple (U, fV ,T S), where U is the
sample space, fV its data distribution and finally T S the test statistic function;

• the concept of legitimate test is introduced, to identify tests whose triple is
consistently given;

• an ordered set partition (U1,U2, . . . ,UNT ) is associated to each test, where NT

is the number of distinct values produced by the test statistic function as the
sample varies in the sample space U ;

• it is shown that each Ui is an equivalence class made of the set of samples
mapped on the same test statistic value;

• a p-tuple is associated to each ordered set partition and, thus, to each test. It is
made of the ordered set of p-values produced by the test as the sample varies
in the sample space U according to the data distribution fV ;

• it is proved that the p-tuple associated to a a given ordered set partition is
uniquely defined. On the contrary a single p-tuple can be associated to more
(or no) ordered set partitions.

3.3.6.2 Unconstrained data distribution setting

See §3.3.3.

• The concept of valid p-tuple is introduced and characterized;

• it is shown that all and only the valid p-tuples correspond to legitimate tests.

3.3.6.3 Fixed data distribution setting

See §3.3.4.

• The concept of equivalent tests is introduced, that is, two tests that, under the
same data distribution, associate the same p-value to the same sample;
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• it is proven that two tests are equivalent if and only if they determine the same
ordered set partition;

• it is shown that infinite equivalent tests are associated to each ordered set
partition and that equivalent tests differ only in the values produced by the test
statistic function (but samples are grouped in the same ordered set partition);

• the concept of F-valid p-tuple is introduced and characterized;

• it is shown that all and only the F-valid p-tuples correspond to legitimate tests;

• it is proved that there exists a bijection between the set of the ordered set
partitions and the set of the non-equivalent tests;

• the number of non-equivalent tests is determined;

• a necessary and sufficient condition to have different p-tuples for different
non-equivalent tests is derived, depending on the underlying data distribution.

3.3.6.4 Uniform data distribution setting

See §3.3.5.

• The concept of U-valid p-tuple is introduced and characterized;

• it is shown that all and only the U-valid p-tuples correspond to legitimate tests.

3.4 On the uniformity of p-values

Specializing to the p-value random variable the general concept of discrete uniformity
given with Definition 9, we have the following definition:

Definition 11. The random variable PV with support Ω = (ω1,ω2, . . . ,ωNΩ
) is said

discrete uniform if Pr(PV = ωi) =
1

NΩ

,∀i ∈ [1,NΩ]

The following theorem provides a necessary and sufficient condition for the
discrete uniformity of the p-values.
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Theorem 8. The random variable PV with support Ω = (ω1,ω2, . . . ,ωNΩ
) is discrete

uniform if and only if its elements are uniformly spaced and more precisely:

Pr(PV = ωi) =
1

NΩ

,∀i ∈ [1,NΩ]

if and only

ωi =
i

NΩ

,∀i ∈ [1,NΩ] (3.32)

Proof. The theorem is a direct consequence of Equation (3.6).

We point out that Equation (3.3), despite stating a (weak) form of uniformity
even in the discrete distribution case, in general does not provide discrete uniformity
for the p-value distribution, as shown for example in Figures 3.4 and 3.12. On the
contrary, by Theorem 8 we derive that discrete uniformity implies the weak form of
uniformity given by Equation (3.3).

When Equation (3.32) holds, then for ease of terminology we extend to the
p-tuple Ω the definition of discrete uniformity.

3.4.1 Number of (discrete uniform) U-valid p-tuples

Hereinafter we maintain the setting defined in §3.3.5, that is, the discrete uniform
data distribution case. Under this assumption, given a sample space U of cardinality
NU , it is interesting to compute the number NUV of distinct observable U-valid
p-tuples and, among them, the number NDU of those which are also discrete uniform.

As observed in §3.3.4.4, Equation (3.24) provides an upper limit for the number
of distinct F-valid p-tuples. The same limit holds for the number of distinct U-valid
p-tuples, since in the uniform data distribution scenario by Theorem 6 the two
definitions coincide. The actual number of distinct U-valid p-tuples is, however,
necessary smaller in virtue of Theorem 5, as we can easily find a couple of subsets
U1,U2 of U such that ∑

u∈U1
fV (u) = ∑

u∈U2
fV (u): since we are in the discrete uniform

data distribution case, we have fV (u) = 1
NU

,∀u ∈ U and, thus, we can simply set
U1 = {u1} and U2 = {u2} for two arbitrary distinct samples u1,u2 ∈U .

The number of observable distinct U-valid p-tuples can be computed observing
that, because of Theorem 7, all and only the p-tuples defined in Equations (3.30)
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have to be taken into account. Hence, we have

NUV =
NU−1

∑
i=0

(
NU −1

i

)
(3.33)

= 2NU−1

where i is the number of terms in the p-tuple Ω in Equation (3.30) (with the exception
of the final 1) and

(NU−1
i

)
is the number of ways they can be chosen. Notice that, in

Equation (3.33), i = 0 corresponds to the trivial p-tuple (ω1 = 1), so the number of
meaningful p-tuples is actually 2NU−1 −1.

The computation of NDU requires to satisfy both Equation (3.30) (for the defini-
tion of U-valid p-tuple) and (3.32) (for the characterization of discrete uniformity).
Thus we have to find all the tuples of integers {k1,k2, . . . ,kNΩ−1} such that, for any i,

ωi =
ki

NU
=

i
NΩ

or, equivalently,

k1 =
NU

NΩ

observing that, once k1 is defined, the whole p-tuple is determined by

ki = i · k1, i = 1,2, . . . ,NΩ (3.34)

Since k1 has to be an integer, the number of solutions is

NDU = d(NU) (3.35)

where by d(NU) we indicate the number of divisors of NU .

In the specific case (of our main interest) where the sample space size is a power
of 2, NU = 2n, we have

NUV = 22n−1

NDU = n+1

We then note that, among all the observable p-tuples, the number of the discrete
uniform ones is negligible.
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3.4.2 Number of tests with discrete uniform p-tuple

Of interest is also the number NT
DU of tests admitting a discrete uniform p-tuple.

This quantity is related to, but different from, the NDU expressed in Equation (3.35),
which counts the number of discrete uniform p-tuples. In fact, as we already know
from Observation 12, many tests can determine the same p-tuple and, thus, for each
discrete uniform p-tuple we have now to compute the number of associated tests.

We observe that for each given k1 divisor of NU , the corresponding p-tuple

is determined by Equation (3.34) and is made of
NU

k1
terms (compare with Equa-

tion (3.30)), thus determining an ordered set partition Mk1 made of
NU

k1
subsets of

U , with constant probability equal to
k1

NU
. Since the underlying data distribution is

uniform, it follows that each subset of U contains k1 elements (refer to Figure 3.6).

So, in order to count the number NMk1
of tests determining the ordered set

partition Mk1 , we count the number of ways we can partition U in
NU

k1
subsets of k1

elements each, obtaining

NMk1
=

(
NU

k1

)(
NU − k1

k1

)(
NU −2k1

k1

)
. . .

(
2k1

k1

)(
k1

k1

)
(3.36)

=
NU !

(k1!)
NU
k1

Finally, in order to compute NT
DU , we still have to sum the right term of Equa-

tion (3.36) over the divisors of NU , obtaining

NT
DU(NU) = ∑

k1|NU

NMk1
(3.37)

= ∑
k1|NU

NU !

(k1!)
NU
k1

The first elements of the sequence (NT
DU(NU),NU ≥ 1)21 are:

1,3,7,31,121,831,5041,42911,364561,3742453, . . .

21The sequence (NT
DU (NU ),NU ≥ 1) is indexed as A061095 in the On-Line Encyclopedia of Integer

Sequences (OEIS) [23].
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3.4.3 Probability of randomly picking a discrete uniform p-tuple

Now, it is also of interest to evaluate the probability that, uniformly randomly
choosing a test, the associated p-tuple is discrete uniform. To this aim, we can
compute the ratio R(NU) of the number of tests with discrete uniform p-tuple, given
by Equation (3.37), and the number of possible (non-equivalent) tests, given by
Equation (3.24):

R(NU) =
NT

DU(NU)

B(NU)
(3.38)

Below we show that R(NU) tends to 0 as NU grows to ∞. To do it, we first study the
numerator of Equation (3.38), observing that for any NU ≥ 2 we have

NT
DU(NU) = ∑

k|NU

NU !

(k!)
NU

k

(3.39)

≤
NU

∑
k=1

NU !

(k!)
NU

k

<
NU

∑
k=1

NU !
(k!)

= NU !
NU

∑
k=1

1
(k!)

Now we analyse the denominator of Equation (3.38), showing that, as NU goes to
∞, it tends to ∞ as well because of the approximation given by Equation (3.40), see
[24]:

B(NU)≈
NU !

2(ln2)NU+1 (3.40)

and, hence,
lim

NU→∞
B(NU) = ∞
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L NU = 2L R(NU)

2 4 0.4133
3 8 0.0786
4 16 0.0039
5 32 1.11 ·10−5

6 64 9.00 ·10−11

7 128 5.85 ·10−21

8 256 2.47 ·10−41

9 512 4.41 ·10−82

10 1024 1.40 ·10−163

Table 3.2 Probability of discrete uniform p-tuple

Taking into account Equations (3.39) and (3.40) and applying the well-known Taylor

expansion of the Euler’s number e =
∞

∑
k=0

1
k!

, we obtain

lim
NU→∞

R(NU) = lim
NU→∞

NT
DU(NU)

B(NU)
(3.41)

≤ lim
NU→∞

NU !
NU

∑
k=1

1
(k!)

NU !
2(ln2)NU+1

= lim
NU→∞

2(e−1)(ln2)NU+1

= 0

Moreover, directly computing the first values of R(NU),NU = 2L,L = 2,3, . . . ,10
(Table 3.2), we see that the probability R(NU) is extremely low even for very little
sample space cardinalities.

Because of Equation (3.41), we can make the following observation, which holds
unless the sample space is extremely small and, then, with no practical interest (see
Table 3.2):

Observation 13. Uniformly randomly taking a test among all the possible ones in
the discrete uniform data distribution setting, the probability that it determines a
discrete uniform p-tuple is negligible.
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This observation will be useful in Section §3.4.4 and later in Section §5.2.2.2,
where the strategy to build a (meta)test based on the uniformity (discrete) assumption
is examined.

3.4.4 P-value uniformity as meta-test

The uniformity property of the p-values in the continuous case (see Equation (3.2))
can in principle be used to build a meta-test to validate the null hypothesis.

In particular a Goodness-of-Fit test22 in the continuous setting can be imple-
mented based on the following observation: under the null hypothesis, given N
observed samples, if we take an arbitrary integer K and split the probability range

[0,1] in K disjoint consecutive sub-intervals I1, I2, . . . , IK , each of size
1
K

, then the
expected number Ni of samples whose p-value falls in a given sub-interval Ii is
constant:

Ni =
N
K
,∀i ∈ [1,K] (3.42)

The continuous uniformity property of the p-value however does not make sense
in the finite setting (where we can at most approximate the p-value distribution
with a discrete uniform distribution, see Definition 11) and, hence, in general Equa-
tion (3.42) does not hold.

In the finite setting, if given the test we are able precisely compute the corre-
sponding p-tuple Ω= (ω1,ω2, . . . ,ωNΩ

)23, then we can exactly compute the expected
number Ni of samples whose p-value falls in a given sub-interval Ii. If we denote by
Ωi the set of values of Ω belonging to Ii

Ωi = {ω ∈ Ω,ω ∈ Ii}

then we have
Ni = N ∑

ω∈Ωi

fPV (ω) (3.43)

22A Goodness-of-fit test [25], [26], [27] is a hypothesis test which tells how well a statistical model
fits the observed data. A typical example is the χ2 test, see §A.5.

23The p-tuple is actually determined by the test specifications, which are of course known to the
analyst. This does not however necessarily mean that the p-tuple is easy to derive.
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Thanks to Equation (3.6) we can re-write Equation (3.43) as follows

Ni =

0 if |Ωi|= 0

N(ωMi −ωmi−1) otherwise

where Mi and mi are the indexes of the maximum and minimum elements of Ωi:

Mi = max j|ω j ∈ Ωi

mi = min j|ω j ∈ Ωi

and ω0 is conventionally set to 0 for ease of notation.

Otherwise, if we do not know the resulting p-tuple Ω, we can rely on Equa-
tion (3.42) assuming that the uniform distribution is a good approximation. We must
however be aware that this is a risky choice, because the actual p-tuple can be quite
erratic.

If we consider in particular the uniform data distribution case (see §3.3.5),
Observation 13 shows that the p-tuple associated to a generic test is highly unlikely
to be discrete uniform. Moreover, Theorem 7 states that any U-valid p-tuple Ω =

(ω1,ω2, . . . ,ωNΩ
) (see Definition 10) represents a legitimate p-value distribution

(that is, corresponding to a legitimate test) and it is then very easy to build a such
distribution not satisfying Equation (3.42), despite the (uniform) null hypothesis
being true (thus determining false positive results, increasing the Type I Error
probability). To do so we can properly choose

• either a non-uniformly spaced Ω;

• or a big K (relatively to NΩ).

As an example of the first approach, if we take ω1 > .5, then all the
⌊

K
2

⌋
sub-intervals in

[
0,

1
2

]
will be empty for any K: |Ni|= 0,∀i ≤

⌊
K
2

⌋
.

As an example of the second approach, even if we take Ω as uniformly spaced
as possible, that is all the p-values are equidistant (and therefore equally likely, see
Equation (3.32)), then for any K > NΩ some sub-interval will be empty because there
are more sub-intervals than observable p-values: |Ni|= 0 for at least one i,1 ≤ i ≤ K.
As K grows, more and more sub-intervals will be obviously empty.
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In both cases any Goodness-of-Fit test based on the (alleged) p-values uniformity
is likely to fail. Based on the above considerations, we can give the following
recommendation:

Given a hypothesis test in the discrete setting, let Ω be the set of its
p-values, with |Ω| = NΩ, and let (0,1] be split in K equally sized sub-
intervals . Then, in order to mount a Goodness-of-Fit test based on the
observed frequencies of the samples in the K sub-intervals, the following
constraints should be met:

1. the Ω values are approximately uniformly spaced over (0,1];

2. K is very small with respect to NΩ.

Table 3.3 Conditions to build a Goodness-of-Fit test in the discrete setting



Chapter 4

A more general interpretation

In this chapter we propose a more general and abstract interpretation of the concept
of hypothesis test, compared to the one given throughout Chapter 2. In particular,
in §4.1 some preliminary considerations are developed, enabling the hypothesis
test generalized interpretation proposed in §4.2. In §4.3 we leverage the setting
developed in §4.2 to reconsider the concepts of test power and Type II Error prob-
ability, introduced in §2.1.2, showing how to compute their expected value in the
(mostly theoretical) scenario in which we have no hint about the actual structure of
the generator under analysis. Later, in §4.4 we formalize the setting of the random-
ness tests for generators producing uniformly distributed and independent binary
sequences, that is, the properties required for cryptographic applications. Relying
on the results of §4.3 we also show that, in this model and assuming no information
is given about the alternative hypothesis, for a fixed Type I Error probability all the
tests are, in a sense, equally effective. Then, in §4.5 we analyse the relation between
two generic tests which share the same Type I Error probability, computing the
probability of success/failure of a test on a given sample, conditioned on the result
of the application of the other test on the same sample. Finally, in §4.6, we analyse
some practical issues, showing that only a negligible fraction of the possible tests
can be actually implemented and developing some considerations on the concept of
test usefulness.



76 A more general interpretation

4.1 Preliminaries

In this section, in §4.1.1 we model the extraction process, while in §4.1.2 we
formalize the classical interpretation of hypothesis test, in view of the following
generalization given in §4.2.

4.1.1 The extraction process

Given a sample space, the null hypothesis can be described by the probability
distribution of the extraction process1, which can be seen as a random experiment.
Following the traditional modeling of random experiments, it can be considered as a
probability space defined by a triple (U,F, fV ), where:

• U is the sample space, made of all the possible outcomes;

• F is the event space, which in our case can be limited to the set of elementary
events, that is the events made of a single outcome. Since we consider only
elementary events, U and F are coincident and, hence, hereinafter we will
refer to U only;

• fV is the probability function2, assigning a probability to each event. In
particular, fV (u) defines the probability that a sample u is randomly extracted
from U assuming that the null hypothesis is true.

4.1.2 Classical interpretation of hypothesis tests

In §2.2 two methods are given to test the null hypothesis: the critical value method,
see §2.2.1, and the p-value method, see §2.2.2. In the following we refer to the former,
since it is essentially equivalent to the latter (see §2.2.3.1) but for our purposes it is
more convenient to analyse.

1We assume the null hypothesis to be simple, that is, being represented by a unique data distribution
(see §2.1). While this choice may appear a bit limiting, it is, in fact, in line with the final target of the
chapter, that is, focusing on a single specific distribution, the uniform one, considered in §4.4 and
following sections.

2The notation fV is here kept for consistency from Chapter 3. We anticipate that in §4.3 it will be
replaced for ease of notation.
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In classical terms, given the sample space U and the null hypothesis, a hypothesis
test is described by the following elements:

• the definition of a test statistic T S mapping a sample u ∈U into a real value
ts = T S(u) ∈ R;

• the definition of a rejection region RR ⊂R, such that, if ts falls in the rejection
region, then the null hypothesis is rejected, and the definition of the comple-
mentary acceptance region AR ⊂ R, such that, if ts(u) falls in the acceptance
region, then the null hypothesis is accepted. The definition of these regions is
typically given according to a critical value in the one-tailed models or two
critical values in the two-tailed model (see §2.2.1 for the definition of the
different models).

Then a test T can be modeled as a composed function:

T : U → R→ OUT

T : u → ts = T S(u)→

Accept if ts ∈AR

Re ject if ts ∈RR

(4.1)

where OUT = {Accept,Re ject} is the space of the possible outcomes of the test,
which indicates if observation of u supports or refuses the null hypothesis.

4.2 A generalization of the hypothesis tests

We are now ready to give a more abstract definition of the hypothesis test. Although
the usual description, summarized in §4.1.2, makes use of many concepts such as test
statistic, critical value(s), acceptance region and rejection region (and, in addition,
p-value if we consider the p-value method), here we observe that these are in fact just
intermediate tools to reach the ultimate purpose of a hypothesis test, that is simply to
determine whether a data sample has to be accepted or rejected, meaning by this that
it is consistent or inconsistent with the null hypothesis.

What a hypothesis test basically does is to take in input a data sample and
determine if it supports (accepts) or refuses (rejects) the null hypothesis. In this
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sense the definition of a generic test given in Equation (4.1) can be re-written as:

T : U → OUT

T : u ∈U →{Accept/Re ject}

Therefore a hypothesis test determines a partition of the set of the samples into
two subsets, one made of the samples mapped to the output Accept and the other
one made of the samples mapped to the output Re ject.

Based on this consideration, we propose the following

Definition 12. Given a hypothesis test T defined on a data sample space U, the
partition of U in two subsets (TA,TR) such that

TA = {u ∈U |T (u) = Accept}

TR = {u ∈U |T (u) = Re ject}

is said the essential form of T .

Hereinafter, when referring to the essential form of a test T , we will use the
terms acceptance region and rejection region to indicate the two subsets TA and TR,
respectively. Moreover by 2-partition we will refer to any partition (of U) in two
subsets.

From Definition 12 it is clear that each test, defined in classical terms according
to Equation (4.1), admits one and only one essential form. Conversely, any given
2-partition is the essential form of infinitely many tests, as shown by the following
theorem.

Theorem 9. Given a 2-partition (TA,TR), there exist infinitely many tests admitting
(TA,TR) as their essential form.

Proof. According to the description given in §4.1.2 and in particular to Equa-
tion (4.1), a test can be completely defined through the test statistic T S, the ac-
ceptance region AR and the rejection region RR. Thus, if we define these components
as:

T S : ts(u) =

any a ∈ AR if u ∈ TA

any r ∈ RR if u ∈ TR
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where AR and RR are arbitrarily defined, according to the chosen hypothesis test
model3, we obtain infinitely many tests admitting (TA,TR) as their essential form.

Hence, the map that associates a test with its essential form is surjective but
not injective: one and only one essential form is associated with a given test, while
infinite tests are associated with a given essential form. The reason for this asym-
metry lies in the construction of the tests given in Equation (4.1), which require the
definition of some (auxiliary) intermediate elements:

• a test statistic T S that sends each sample u into a real value;

• two disjoint and complementary subsets AR,RR ∈ R.

Given a map U → OUT there are clearly infinite combinations of T S, AR and RR
satisfying the map and which are thus in a sense the same test. Hence we introduce
the following

Definition 13. Two tests are said indistinguishable if they have the same essential
form.

We observe that the notion of equivalence between tests given by Definition 7
in §3.3.2.1 is stronger than that of indistinguishability given by Definition 13, since
equivalence requires that, given an arbitrary sample, the two tests associate the same
p-value to the sample. This implies that, once the Type I Error value α is fixed,
the two samples are eventually mapped on the same output (Accept/Reject) and,
hence, that the two tests are indistinguishable by Definition 13. On the other hand,
non-equivalent tests (that is, with different mappings from the sample space to the
p-value range) can of course be indistinguishable. Again, this asymmetry stems from
the fact that the concept of indistinguishability is an abstraction which gets rid of the
internal details of the test and considers only the final acceptance/rejection result.

Complementarily to the definition of indistinguishability, we also propose the
following

Definition 14. Two tests admitting different essential forms are said distinct.
3The following definitions can be used: for arbitrary critical values of δ and δ2, with δ < δ2: in

the left-tailed model, RR = (−∞,δ ] and AR = (δ ,+∞); in the right-tailed model, AR = (−∞,δ ) and
RR = [δ ,+∞); in the two-tailed model, AR = (δ ,δ2) and RR = (−∞,δ ]∪ [δ2,+∞).
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4.3 Test power

As anticipated in Sections §2.1.2 and §2.1.4, given a test, the test power is defined as
1−β , where β is the Type II Error probability, that is, the probability of accepting
the null hypothesis when it is concretely false. Maximizing the test power (or,
equivalently, minimizing β ) is therefore very important. However, in practice, given
a test T , it can be very hard to compute β (and thus the power) because the alternative
hypothesis is often simply defined as the negation of the null hypothesis and, thus, is
made of infinite (alternative) probability distributions.

Nevertheless, in this section we compute the Type II Error probability β in a
specific setting, that is, when the alternative distribution is assumed to be uniformly
taken from the space of all the possible distributions, representing the (mostly
theoretical) scenario where the analyst has no clue about the actual distribution.

Let us now consider a generic alternative distribution S, defined as

S = {(ui, fV (ui))}

where ui is an element of the sample space U and fV (ui) is its associated probability.
Hereinafter, for ease of notation, we will replace fV (ui) with pi. Moreover, when
more convenient, we will equivalently refer to S by the tuple

S = (p1, p2, . . . , pNU )

where NU is the cardinality of the set U .

The value of β depends not only on the test T = (TA,TR) but on the probability
distribution S as well and it is by definition the probability that a sample s from U
falls in the acceptance region of T according to the probability distribution S:

βT (S) = ∑
ui∈TA

pi (4.2)

We can assume, without loss of generality, that

TA = {uNU−K+1,uNU−K+2, . . . ,uNU}
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for a certain K,1 ≤ K ≤ NU −1. Equation (4.2), thus, can be rewritten as

βT (S) =
NU

∑
j=NU−K+1

p j (4.3)

Moreover, let Σ be the set of all the possible probability distributions on U . Thus,
E(βT ) can be computed as the expected value of βT (S) as S spans over Σ, observing
that the contribution of the null distribution, which must be omitted by definition of
Type II Error probability, is null since any specific distribution is a single point in
the infinite space Σ and, hence, does not impact the overall computation of E(βT ).

Now, let us assume that the alternative distribution is uniformly chosen from the
infinite set of possible probability distributions and compute the expected value of
βT . We prove the following theorem.

Theorem 10. Given a sample space of cardinality NU , for any test T = (TA,TR) on
U with acceptance region cardinality |TA| = K, the expected value of the Type II
Error βT , as the alternative probability distribution uniformly varies in the space of
all the possible probability distributions, is

E(βT ) =
K

NU

Below we present two independent proofs of Theorem 10. The first one is given
in §4.3.1 and is based on the calculation of the integral of the probability for a sample
to fall in the acceptance region; the second one is provided in §4.3.2 and relies on
the action of the symmetric group on the set of the probability distributions. Finally,
in §4.3.3, some remarks are reported.

4.3.1 Proof #1

For ease of notation, we first introduce the auxiliary variable ψi defined as follows.
For i = 1,2, . . . ,NU , we set

ψi =
i

∑
t=1

pt

which implies
ψ1 = p1
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ψi+1 = ψi + pi+1,∀i ∈ [1,NU −1] (4.4)

For convenience, we also set ψ0 = 0. Then we prove the two following lemmas:

Lemma 1. For any pair (i,k), with k = 0,1,2, . . . and i = 1,2, . . . ,NU ,

∫ 1−ψi−1

0
(1−ψi)

kd pi =
(1−ψi−1)

k+1

k+1

Proof. Because of Equation (4.4),

∫ 1−ψi−1

0
(1−ψi)

kd pi =
∫ 1−ψi−1

0
(1−ψi−1 − pi)

kd pi

=−
[
(1−ψi−1 − pi)

k+1

k+1

]1−ψi−1

0

=
(1−ψi−1)

k+1

k+1

Lemma 2. For t ≤ NU ,

∫ 1−ψNU−t

0
. . .
∫ 1−ψNU−3

0

∫ 1−ψNU−2

0
d pNU−1d pNU−2 . . .d pNU−t+1 =

(1−ψNU−t)
t−1

(t −1)!

Proof. Applying Lemma 1 with k = 3,4, . . . , t −2 and i = NU − k−1,

∫ 1−ψNU−t

0
. . .
∫ 1−ψNU−3

0

∫ 1−ψNU−2

0
d pNU−1d pNU−2 . . .d pNU−t+1

=
∫ 1−ψNU−t

0
. . .
∫ 1−ψNU−4

0

∫ 1−ψNU−3

0
(1−ψNU−2)d pNU−2d pNU−3 . . .d pNU−t+1

=
1
2

∫ 1−ψNU−t

0
. . .
∫ 1−ψNU−5

0

∫ 1−ψNU−4

0
(1−ψNU−3)

2d pNU−3d pNU−4 . . .d pNU−t+1

=
1
2

1
3

∫ 1−ψNU−t

0
. . .
∫ 1−ψNU−6

0

∫ 1−ψNU−5

0
(1−ψNU−4)

3d pNU−4d pNU−5 . . .d pNU−t+1

...

=
(1−ψNU−t)

t−1

(t −1)!
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We are now ready to give the first proof 4 of Theorem 10.

Proof. We observe that, given an arbitrary probability distribution

S = (p1, p2, . . . , pNU )

the NU probabilities pi can be seen as continuous random variables, uniformly
distributed in the (NU −1)-dimensional domain D defined by the following relations:

0 ≤ pi ≤ 1, i ∈ [1,NU ]
Nu
∑

i=1
pi = 1

(4.5)

We can now compute the expected value of βT as the ratio between the sum of
the values taken by βT (S) in D, indicated by IK,NU , and the volume of D, indicated
by INU ,NU :

E(βT ) =
IK,NU

INU ,NU

(4.6)

with

INU ,NU =
∫ 1

0

∫ 1−p1

0
. . .
∫ 1−

NU−2
∑

i=1
pi

0
d pNU−1 . . .d p2d p1 (4.7)

IK,NU =
∫ 1

0

∫ 1−p1

0
. . .
∫ 1−

NU−2
∑

i=1
pi

0
(1−

NU−K

∑
j=1

p j)d pNU−1 . . .d p2d p1 (4.8)

where the integrand in Equation (4.8) derives from Equations (4.3) and (4.5).

In order to compute INU ,NU and IK,NU , Lemmas 1 and 2 turn out to be very useful
in explicitly evaluating Equations (4.7) and (4.8). Applying Lemma 2 with t = NU ,
computation of I(NU ,NU ) is straightforward:

INU ,NU =
∫ 1

0

∫ 1−p1

0
. . .
∫ 1−ΨNU−2

0
d pNU−1 . . .d p2d p1 =

=
1

(NU −1)!
(4.9)

4This proof derives from a joint work with Vittorio Bagini and Francesco Stocco [28]; most of the
credit of the result goes to them.
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On the other hand, computation of IK,NU is a bit more tricky. Observing that
ψNU−K depends only on p1, p2, . . . , pNU−K and, subsequently, applying 2 with t = K,
we obtain

IK,NU =
∫ 1

0

∫ 1−ψ1

0
. . .
∫ 1−ψNU−2

0
(1−ψNU−K)d pNU−1 . . .d p2d p1

=
∫ 1

0
. . .
∫ 1−ψNU−K−1

0
(1−ψNU−K)

(∫ 1−ψNU−K

0
. . .
∫ 1−ψNU−2

0
d pNU−1 . . .d pNU−K+1

)
d pNU−K . . .d p1

=
∫ 1

0

∫ 1−ψ1

0
. . .
∫ 1−ψNU−K−1

0
(1−ψNU−K)

(1−ψNU−K)
K−1

(K −1)!
d pNU−K . . .d p2d p1.

Then, applying Lemma 1 with k = K,K + 1, . . . ,NU − 1 and i = NU − k, we
conclude

IK,NU =
1

(K −1)!(K +1)

∫ 1

0

∫ 1−ψ1

0
. . .
∫ 1−ψNU−K−2

0
(1−ψNU−K−1)

K+1d pNU−K−1 . . .d p2d p1

=
K

(K +1)!

∫ 1

0

∫ 1−ψ1

0
. . .
∫ 1−ψNU−K−2

0
(1−ψNU−K−1)

K+1d pNU−K−1 . . .d p2d p1

...

=
K

(NU −1)!

∫ 1

0
(1− p1)

NU−1d p1 =
K

NU !
(4.10)

Comparing Equation (4.6) with Equations (4.9) and (4.10), we obtain

E(βT ) =
IK,NU

INU ,NU

=
K

NU !
(NU −1)! =

K
NU

thus proving the theorem.

4.3.2 Proof #2

Here we give the second proof 5 of Theorem 10.

5This proof stems from an inspiring talk with Marco Coppola [29].
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Proof. Recalling that Σ is defined as the set of all the possible probability distribu-
tions on U, we observe that Σ can be partitioned in (infinite) subsets, corresponding to
the orbits determined by the action6 of the symmetric group SNU on Σ. In particular,
given an arbitrary probability distribution

S = (p1, p2, . . . , pNU )

the resulting orbit Orb(S) is the set of probability distributions which can be reached
from S through an element (that is, a permutation) of SNU , permuting the probabilities
associated to the samples. Thus, given a permutation π ∈ SNU , applying π to S we
obtain

S′ = π(S) = (pπ(1), pπ(2), pπ(3), . . . pπ(NU ))

According to Equation (4.3), the Type II Error probability that a sample u, extracted
from U according to S′, falls in

TA = {uNU−K+1,uNU−K+2, . . . ,uNU}

is then

βT (S′) =
NU

∑
j=NU−K+1

pπ(u j) (4.11)

As π spans over the whole set of permutations SNU = {π1,π2, . . . ,πNU !}7, we obtain
the orbit of S

Orb(S) = {π1(S),π2(S), . . . ,πNU !(S)} (4.12)

formed by NU ! distributions (possibly with repetitions, if pi = p j for some i, j,1 ≤
i < j ≤ NU ).

Let us denote by E(β X
T ) the expected value of βT (S′) as S′ spans over a given

set X , X ⊆ Σ. After observing that, under this notation, our final target E(βT ) can
be expressed as E(βT ) = E(β Σ

T ), from Equations (4.11) and (4.12) we derive the

6Given a group G and a set A, a group action of G on A is a function GxA → A, (g,a)→ (g ·a)
such that I) 1G ·a = a,∀a ∈ A; II) g · (h ·a) = (gh) ·a,∀g,h ∈ G,a ∈ A. A such function partitions the
set A in equivalence classes, named orbits. See [30], pp. 115-119, for an introduction to this topic.

7Here the ordering of the permutations πi with respect to the index i is irrelevant. We simply
assume that the set {πi}, as i spans in [1,NU !], is composed by all and only the permutations on NU
elements.
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expected value of βT in the orbit of a given permutation S:

E(β Orb(S)
T ) =

NU !
∑

i=1

(
NU

∑
j=NU−K+1

pπi(u j)

)
NU !

(4.13)

If we rewrite Equation (4.13) as

E(β Orb(S)
T ) =

NU

∑
j=NU−K+1

(
NU !
∑

i=1
pπi(u j)

)
NU !

(4.14)

we observe that, for any j ∈ [NU −K + 1,NU ], the term pπ(u j) assumes exactly
(NU − 1)! times each value ph,h = 1, . . . ,NU , since πi spans over the whole set
of permutations (see §4.3.2.1 for an example). Therefore Equation (4.14) can be
rewritten as

E(β Orb(S)
T ) =

(
K
∑
j=1

(NU −1)!

)(
NU

∑
h=1

ph

)
NU !

(4.15)

=

K
∑
j=1

(NU −1)!

NU !

=
K · (NU −1)!

NU !

=
K

NU

Thus, the expected value of the Type II Error probability, as the alternative
probability distribution spans in Orb(S), is, for any probability distribution S,

E(β Orb(S)
T ) =

K
NU

(4.16)

We observe that the cardinality of the orbits is not constant. More precisely, given
S = (p1, p2, . . . , pNU ), if all the values pi are distinct, then in Orb(S) there are NU !
distinct distributions. When, instead, some pi values collide, the number of distinct
resulting distributions consistently decreases, but Equations (4.13), (4.14), (4.15)
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and (4.16) still hold (that is, the orbit size is smaller, but the average of the resulting
βT values is unchanged).

Now, in order to extend Equation (4.16) from the orbit of a given (arbitrary)
distribution S to the whole set Σ of probability distributions on U , we make the
following

Observation 14. Given an arbitrary number of sets composed of equally-likely real
numbers, if the expected value of each set is equal to T (for some constant value T ),
then the expected value of the union of all the sets is still T .8

Recalling that Σ can be written as the union of infinite disjoint orbits and ob-
serving that Equation (4.16) holds for every S, from Observation 14 we derive
that

E(β Σ
T ) =

K
NU

(4.17)

Since E(βT ) = E(β Σ
T ), this proves the theorem.

4.3.2.1 An example

As a concrete example, let us consider the case NU = 4 and K = 3, therefore
U = {u1,u2,u3,u4} and TA = {u2,u3,u4}. Then, given an arbitrary probability
distribution S = (p1, p2, p3, p4), we have that Orb(S) is made of NU ! = 4! = 24
probability distributions πi, i = 1,2, . . . ,24, listed in Table 4.1 (arbitrarily ordered),
where for each permutation πi we report the probability p′i associated to each sample
ui (i = 1,2,3,4) and the resulting probability to fall in the acceptance region TA,
which, according to Equation (4.3), is equal to p′2 + p′3 + p′4. We also highlight
that the sum of this probability, as πi spans over S4, is K · (NU −1)! = 3 · (3!) = 18,
consistently with Equation (4.15). The resulting Type II Error probability is, hence,

exactly
K

NU
=

3
4

, as expected.

E(βT ) =
18
4!

=
18
24

=
3
4

8The claim can be proven observing that, given two sets A and B, with A = {a1,a2, . . . ,aNA}

and B = {b1,b2, . . . ,bNB}, with 1
NA

NA
∑

i=1
ai =

1
NB

NB
∑

i=1
bi = T , then

NA
∑

i=1
ai = NAT and

NB
∑

i=1
bi = NBT . Hence,

NA
∑

i=1
ai +

NB
∑

i=1
bi = (NA +NB)T and, finally, 1

NA+NB

NA
∑

i=1
ai +

NB
∑

i=1
bi = T .
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Permutation Probability Distribution πi TA Probability (β )
p′1 p′2 p′3 p′4 p′2 + p′3 + p′4

π1 p1 p2 p3 p4 p2 + p3 + p4
π2 p1 p2 p4 p3 p2 + p4 + p3
π3 p1 p3 p2 p4 p3 + p2 + p4
π4 p1 p3 p4 p2 p3 + p4 + p2
π5 p1 p4 p2 p3 p4 + p2 + p3
π6 p1 p4 p3 p2 p4 + p3 + p2
π7 p2 p1 p3 p4 p1 + p3 + p4
π8 p2 p1 p4 p3 p1 + p4 + p3
π9 p2 p3 p1 p4 p3 + p1 + p4
π10 p2 p3 p4 p1 p3 + p4 + p1
π11 p2 p4 p1 p3 p4 + p1 + p3
π12 p2 p4 p3 p1 p4 + p3 + p1
π13 p3 p1 p2 p4 p1 + p2 + p4
π14 p3 p1 p4 p2 p1 + p4 + p2
π15 p3 p2 p1 p4 p2 + p1 + p4
π16 p3 p2 p4 p1 p2 + p4 + p1
π17 p3 p4 p1 p2 p4 + p1 + p2
π18 p3 p4 p2 p1 p4 + p2 + p1
π19 p4 p1 p2 p3 p1 + p2 + p3
π20 p4 p1 p3 p2 p1 + p3 + p2
π21 p4 p2 p1 p3 p2 + p1 + p3
π22 p4 p2 p3 p1 p2 + p3 + p1
π23 p4 p3 p1 p2 p3 + p1 + p2
π24 p4 p3 p2 p1 p3 + p2 + p1

Sum of TA probabilities= 18(p1 + p2 + p3 + p4) = 18
Table 4.1 Orbit and β values of a generic distribution

4.3.3 Remarks

We have thus proven that, assuming that the (alternative) distributions are uniformly
taken from Σ, the expected value for the Type II Error is independent of the specific
test (T ) and depends only on the cardinalities of the whole sample space and of the
acceptance region, taking the form given in Equation (4.17).
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We note however that this result is mostly of theoretical interest since the above
claim holds if the analyst has no specific information about the actual (alternative)
distribution. In practice it can, in fact, happen that the analyst is able to make
some hypotheses, for example she/he may suspect some specific bias to be present
in the generation process, leading to a non-uniform distribution of the alternative
hypotheses and, thus, invalidating the model.

4.4 The Cryptographic Random Test setting

Hereinafter, for the remaining part of Chapter 4, we focus on the specific case of our
interest, namely the hypothesis tests to validate generators used for cryptographic
applications. As anticipated in §1.3, a strict requirement for these generators is to be
indistinguishable from ideal random processes. Hence, in our model we consider
random bit generators that produce sequences of a given fixed length L and our null
hypothesis is that the sequences are produced uniformly and independently. More
formally, the model is defined as follows:

1. The sample space U is made of all the 2L L-bit possible sequences, thus
NU = 2L;

2. At each sequence generation, the output sequence (extracted from the genera-
tor) is uniformly taken from the sample space U , that is, all the 2L sequences
have the same probability 2−L to be produced;

3. Each produced sequence is independent of those produced earlier (and, thus,
later).

In this section we analyse some properties holding in the above-mentioned setting,
determined by the uniformity property (2) of the extracted sequences (anticipating
that the independence property (3), which becomes relevant when we consider a
collection of sequences, will be considered in §5.2.2). In particular, in §4.4.1 we
analyse the meaning of the Type I Error probability α and in §4.4.2 we study the
cardinality of the test space.
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4.4.1 The parameter α

Given the sample space U and the null hypothesis of uniformity, let T = (TA,TR) be a
hypothesis test expressed by its essential form (see Definition 12). Let K,0 ≤ K ≤ 2L,
be the cardinality of the acceptance region AR, thus also determining the cardinality
(NU −K) of the rejection region RR:

|AR|= K, |RR|= 2L −K (4.18)

In general, the probability α of a Type I Error (see §2.1.2) is the probability that
T (u) ∈ RR, given a sample u extracted from U according to the data distribution
(that is, the probability distribution underlying the null hypothesis). In our specific
setting (the null hypothesis being the uniform distribution) α can thus be written as

α =
|{u ∈ TR}|

2L =
2L −K

2L (4.19)

As anticipated in §3.2.2.3, α is not free to take any value in [0,1]. More precisely,
according to Equation (4.19), the set A of values that α can assume in our setting
(as K varies in [0,2L]) has cardinality 2L +1 and is defined by

A = { i
2L , i = 0,1, . . . ,2L} (4.20)

including the two trivial values α = 0,1.

Under the uniform null hypothesis, the meaning of α is also to determine the
relation between the cardinality of the acceptance region AR and the cardinality
of the rejection region RR. More precisely, by construction (see Equations (4.18)
and (4.19)) we have

|AR|
|RR|

=
1−α

α
(4.21)

A graphical representation is given in Figure 4.1a, with L= 5,2L = 32,α =
1
8
, |AR|=

28, |RR| = 4. Each blue circle represents a sample, while the red area (made of 4
samples) is the rejection region and the green area (made of 28 samples) is the
acceptance region. We point out that samples in the red area in Figure 4.1a are drawn
close to each other for visual simplicity, but this does not reflect any natural structure
or concept of distance among the samples. In fact, any other visual arrangement of
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the sample space would be correct as well, like for example the unstructured one
represented in Figure 4.1b9.

(a) Structured representation (b) Unstructured representation

Fig. 4.1 Acceptance and rejection regions for a generic test, α = 1
8

Figure 4.1a (or, equivalently, 4.1b) represents the samples distribution in the
acceptance region AR and the rejection region RR, with the ratio between the cardi-
nalities of the two regions given by Equation (4.21).

4.4.1.1 Test decision on multiple samples

Hence, if we randomly take a set of samples under the null hypothesis, we expect
that, observing N samples, the ratio between the number of samples falling in
the acceptance region (NAR) and those falling in the rejection region (NRR), with
N = NAR +NRR, is again

NAR

NRR
=

1−α

α
(4.22)

This gives a criterion to take a decision on the null hypothesis when dealing with
multiple samples, as informally illustrated in Figures 4.2, where black circles rep-
resent observed samples and, according to Equation (4.21), the relative area of the
rejection region is α (with α ≈ 0.09 in the figure). Thus, given the rejection re-
gion and the acceptance region inside the sample space (Figure 4.2a), according
to Equation (4.22) we accept the null hypothesis when the fraction NRR

N of samples
falling in the rejection region is approximately α (Figure 4.2b), while we reject the

9We observe this is not true for the practical models described in Chapter §2, where closeness and
ordering are key concepts. More considerations on this later in §4.6.3.
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null hypothesis both when NRR
N is (too) big (Figure 4.2c) or small (Figure 4.2d) with

respect to α .

(a) A/R regions (b) Test passed (c) Test failed (I) (d) Test failed (II)

Fig. 4.2 Test decision on the ratio of observed samples in the rejection region

This qualitative description can be made more precise depending on the actual
values of the parameters (α and the number of observed samples), as we will do
in §5.2.2.1 analysing the testing procedure proposed by NIST.

We emphasize three aspects. First, as anticipated in §2.1.3, the expected fraction
of observed samples falling in the rejection region is exactly α , not at most α . Thus,
NRR
N must converge to α as N grows. This implies that the null hypothesis has to be

rejected not only in presence of a sample space with too many samples falling in the
rejection region, but also when too few samples fall in the rejection region.

Second, the above considerations hold for any value of α ; while typical values are
0.01 and 0.05, also smaller or bigger values can be used to build the testing procedure
above described. In fact, it makes sense to implement the procedure with different
values of α (with values closer to 0.5 easier to manage, because convergence is
faster).

Third, acceptance region and rejection region (green and red areas) do not identify
good or bad samples (in the uniform data distribution setting, all the samples are
equally likely). They simply partition the set of samples in two subsets, each with an
associated probability that a randomly taken observed sample falls inside. Given any
test, we can, in fact, swap its acceptance and rejection regions and obtain another
valid and consistent test (where good and bad swap their meaning and the Type I
Error probability α is replaced by 1−α).
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4.4.1.2 Relation between α and β parameters

Finally, let us now consider the relation between the α and β parameters, in view
of the analysis of the latter conducted in §4.3, where it is shown that the expected
value E(βT ), as the alternative distribution is uniformly taken on the whole set of
the possible distributions, is independent of the test and, instead, depends only on
the cardinalities of the sample space and the acceptance region (or, equivalently, the
rejection region):

E(βT ) =
K
2L (4.23)

In general, hence, for a given test T = (TA,TR) there is no structural relation between
αT and E(βT ), since the former can take any value in the set A (see Equation (4.20)),
while the latter has a fixed value determined by Equation (4.23). However, in the
uniform data distribution setting, comparing Equations (4.19) and (4.23), we obtain

β = 1−α (4.24)

independently of the specific test T 10. Equation (4.24) also tells that, under the uni-
form data distribution and the assumption that the alternative probability distribution
is uniformly taken from the set of all the probability distributions, all the tests with
the same α share also the same β and, hence, are in a sense equally effective. This
can be summarised in the following

Observation 15. Under the null hypothesis of uniformity, if no information is given
about the alternative hypothesis, then, for a fixed α , no test is a priori better than
any other.

4.4.2 Test space cardinality

Each different 2-partition defines a distinct test (see Definition 14), therefore the
number of possible distinct tests is equal to the number NT of distinct 2-partitions of
the set U , given by the cardinality of the power set of U , NU .

10We observe that, if we are not under the uniform data distribution, Equation (4.24) can still hold,
but only for specific combinations of the rejection region RR and the data distribution. More precisely,

this happens when the underlying data distribution {(ui, pi)} is such that αT = ∑
ui∈RR

pi =
K
2L and,

hence, αT = 1−βT because of Equation (4.23).
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As |NU |= 2L we have
NT = 22L

which includes the two trivial 2-partitions: (TA,TR) = (U, /0) and (TA,TR) = ( /0,U).

Since a value of α is associated to each test, we can count the number Nα
T of

different tests with a given α . According to Equation (4.20), α is necessarily in the

form α =
i

2L for some integer i in [0, . . . ,2L]). Under the uniform null hypothesis,
Nα

T is equal to the number of 2-partitions (TA,TR) for which the rejection region TR

has cardinality i = 2Lα and is therefore

Nα
T =

(
2L

i

)
, i = 2L

α (4.25)

With the help of Figure 4.1, we observe that, given a test with Type I Error equal
to α , the probability that a sample u, (uniformly) randomly taken from U , falls in the
acceptance region or in the rejection region is equal to 1−α and α , respectively. On
the other hand, given a sample u from U , the probability that it falls in the acceptance
region or in the rejection region as a test is (uniformly) randomly taken with with
Type I Error equal to α , is equal to 1−α and α , respectively. Equivalently, the
number Nα

TA
of tests for which u falls in the acceptance region and the number Nα

TR

for which u falls in the rejection region are

Nα
TA

= Nα
T (1−α),Nα

TR
= Nα

T α

respectively.

4.5 Relation between tests

Given the sample space U made of all the possible 2L binary sequences, |U |= 2L,
let T 1 and T 2 be two tests defined on U :

T 1 = (T 1A,T 1R),T 2 = (T 2A,T 2R)

with
αT 1 = αT 2 = α
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We have by construction

|T 1A|= |T 2A|= 2L(1−α)

|T 1R|= |T 2R|= 2L
α

Focusing on the rejection region (complementary considerations hold for the accep-
tance region), let γ be the ratio of the cardinality of the intersection of T 1R and T 2R

over the cardinality of T 1R (or T 2R)

γ =
|T 1R ∩T 2R|

2Lα
(4.26)

In essence γ tells how much T 1R and T 2R overlap, spanning from 0 (the two sets are
disjoint) to 1 (the two sets coincide), with any intermediate value indicating a partial
overlapping.

The value of γ is constrained by Equation (4.27)

max(0,2− 1
α
)≤ γ ≤ 1 (4.27)

determined from the obvious condition 0 ≤ γ ≤ 1 following Equation (4.26) and
from the observation that 2L ≥ |T 1R∪T 2R|= |T 1R|+ |T 2R|− |T 1R∩T 2R|= 2Lα +

2Lα −2Lαγ and therefore 1 ≥ 2α −αγ and finally

γ ≥ 2− 1
α

From Equation (4.27) we derive the following necessary condition

Observation 16. In order to have γ = 0 it is required that α ≤ 1
2

.

Given arbitrary values for α and γ , in the following we analyse the mutual
information provided by test T 1 on test T 2. In particular, given a sample u ∈U , we
compute the conditional probability that u falls in the acceptance region or in the
rejection region of T 2, assuming first that u falls in the acceptance region of T 1, then
that u falls in the rejection region of T 1. Probabilities, shown in Equations (4.28)
and (4.29), are computed as ratios of set cardinalities according to Figure 4.3,
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assuming that all the samples are equally likely and taking into account that

T 1A =U \T 1R,T 2A =U \T 2R

|T 1A|= |T 2A|= (1−α)2L

|T 1R|= |T 2R|= α2L

|T 1R ∩T 2R|= γα2L

T1R T2R

γα2L

α2L

2L

U

Fig. 4.3 Tests mutual information for a generic γ

The resulting conditional probabilities are thus:

T 1(u) = Accepted ⇒ T 2(u) =


Accepted with prob.

1−2α + γα

1−α

Rejected with prob.
α − γα

1−α

(4.28)

T 1(u) = Rejected ⇒ T 2(u) =

Accepted with prob. 1− γ

Rejected with prob. γ

(4.29)

Notice that probabilities in (4.28) are correctly in the range [0,1] thanks to the
constraints in Equation (4.27). The above equations are summarized in Table 4.2.
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T1(u) T2(u) Prob (T2(u) | T1(u))

Accept Accept
1−2α + γα

1−α

Accept Reject
α − γα

1−α

Reject Accept 1− γ

Reject Reject γ

Table 4.2 T1 implications on T2

We have two extreme cases, γ = 0 and γ = 1, which applying Equations (4.28)
and (4.29) result into the following:

• T 1R=T 2R (γ = 1, see Figure 4.4(a)): the rejection regions coincide. This
means that test T 1 and test T 2 are indistinguishable (see Definition 13) and
therefore test T 1 provides full information on test T 2. Given u ∈U we have

T 1(u) = Accept ⇒ T 2(u) = Accept

T 1(u) = Reject ⇒ T 2(u) = Reject

• T 1R ∩T 2R = /0 (γ = 0, see Figure 4.4(b)): the rejection regions are disjoint.
This means that T 1 provides partial information on T 2. Given u ∈U we have

T 1(u) = Accept ⇒ T 2(u) =


Accept with prob.

1−2α

1−α

Reject with prob.
α

1−α

(4.30)

T 1(u) = Reject ⇒ T 2(u) = Accept

We observe that probabilities reported in Equation (4.30) correctly fall in the

range [0,1] since α ≤ 1
2

in order to have γ = 0 (see Observation 16).
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T2R

T1R

(a) γ = 1

T2RT1R

(b) γ = 0

Fig. 4.4 Tests mutual information for extreme values of γ

The above equations describe the information that a test T 1 provides about a test
T 2. In particular when we observe the result of T 1 on a given sample we can
gain some information on the expected result of the application of T 2 on the same
sample. When no information is provided from T 1 about T 2 we say that the tests
are independent11. By definition of independence, the output of T 2 is not affected
by the output of T 1. Therefore, remembering that Pr(T 2(u) = Re ject) = α and
Pr(T 2(u) = Accept) = 1−α , from the second line of Equation (4.29) it follows that

α = γ

is the (necessary and sufficient) condition to have independence between two tests
T 1 and T 2, which share the same Type I Error probability α 12.
According to Equation (4.26), it means that, given two tests T 1 and T 2 with the
same Type I Error probability α , they are independent if and only if α is also the
relative size of the intersection of their rejection regions T 1R and T 2R (with respect
to each rejection region)

α =
|T 1R ∩T 2R|

2Lα

Finally we note that in the above considerations the roles of T 1 and T 2 can be
interchanged, leading to the following observation detailed in Table 4.3.

11Here we point out that the concept of independence just introduced refers to the relation between
tests and is, hence, different from the one presented in §4.4, which is, instead, referred to the relation
between sequences.

12Alternatively we can solve for α any of the three other following (equivalent) equations derived

from Equations (4.28) and (4.29): 1−α =
1−2α + γα

1−α
; α =

α − γα

1−α
; 1−α = 1− γ .
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Event Probability
Pr(T2(u))=Accept | T1(u)=Accept

1−2α+γα

1−α
=

Pr(T1(u)=Accept | T2(u)=Accept
Pr(T2(u))=Reject | T1(u)=Accept

α−γα

1−α
=

Pr(T1(u))=Reject | T2(u)=Accept
Pr(T2(u)=Accept | T1(u)=Reject

= 1− γ

Pr(T1(u))=Accept | T2(u)=Reject
Pr(T2(u)=Reject | T1(u)=Reject

= γ

Pr(T1(u)=Reject | T2(u)=Reject
Table 4.3 T1 and T2 mutual implications

Observation 17. Given two tests T 1 and T 2 with the same Type I Error probability,
information provided by T 1 on T 2 is the same as that provided by T 2 on T 1.

We note that Observation 17 is consistent with Observation 15, showing that
all the tests with Type I Error probability equal to α are a priori equally effective
(assuming no information about the actual analyzed distribution is known in advance).

4.6 Real world tests

Given L and α , with α =
i

2L for some integer i in [0,2L], as shown in Equation (4.25)
the number of possible different tests is

Nα
T =

(
2L

i

)
which is a huge number for any reasonable values of L and α . Despite all the tests
being in a sense equally effective (as noted in Observation 15), in practice only a
very small number of them are actually used. It is therefore natural to wonder if tests
of practical use can be characterized in some sense. A reasonable answer is that a
test of practical use must satisfy two basic requirements:

• it must allow a compact definition;
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• it must be easy to implement.

Although being trivial requirements, they lead to some (mostly qualitative) consid-
erations. Thus, in this section we elaborate a bit on the concepts of test definition
and test implementation, in §4.6.1 and §4.6.2, respectively, and analyze the issues in
concretely implementing a generic test, as finally discussed in §4.6.3.

4.6.1 Definition

Given a test T , we say that it admits a compact definition if the minimum amount
of information required to univocally describe (identify) the test, I(T ), is small. In
order to quantify I(T ) (hereinafter referred to as definition size), let us consider
the essential form of the test T = (TA,TR) and let I(TA) and I(TR) be the minimum
amount of information required to describe the acceptance region TA and the rejection
region TR, respectively.

TR is made of α2L samples of U , where each sample u is an L-bit sequence.
Since the straightforward description of TR requires enumerating all its elements in a
list λ = λ (TR), we can upper limit I(TR) by the size of the list λ (TR) (expressed in
bits)

I(TR)≤ α2LL (4.31)

The actual value of I(TR) may be of course (much) smaller than the right side of
Equation (4.31). This happens if the list λ (TR) can somehow be lossless compressed.
A high lossless compression ratio requires a high redundancy in the structure of TR,
that is, a limited amount of information about T (R) is sufficient to recover its com-
plete definition. However, while the redundancy (and therefore the compressibility
factor) can be relevant in some specific cases, for a generic list we do not expect any
significant compression. Hence, given a test T , the actual value of I(TR) is in general
not far from α2LL and only a negligible fraction of the possible tests admits a small
value for I(TR).

Analogously, in general I(TA) is not far from (1−α)2LL, with

I(TA)≤ (1−α)2LL

and only a negligible fraction of the possible tests admits a small value for I(TA).
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Since TA and TR are complementary in U (TA=U \TR), once one of the two regions
is defined, the other is defined as well and thus

I(T ) = min(I(TA), I(TR))

From the above considerations, it follows that, if we take an arbitrary test, we expect
that its definition size is high, that is, it requires an intractable amount of information,
and that only a negligible fraction of the possible tests admits a small value for their
definition size and are, thus, compact.

4.6.2 Implementation

When we consider implementation, we take into consideration concepts like space,
memory and time complexities. For a test to be implementable, it is very important
that it

1. can be described by a small code;

2. can be executed in short time;

3. requires little run-time memory.

The above requirements essentially state that the test can be effectively implemented
in practice (the exact meaning of small, short and little obviously depends on the
specific scenario).

The straightforward way to implement the test is to build a look-up table
[T (u),u ∈U ] as

T (u) =

Accept if u /∈ λ (TR)

Re ject if u ∈ λ (TR)

This approach is in principle always possible, but its implementation (for example
a software code) typically requires an intractable amount of space to encode the
lookup-up table and, hence, is not a practical option.

The three above-mentioned criteria are often dependent on each other. In par-
ticular, we observe that, given a test, a necessary condition to allow a small code is
that it admits a compact definition, since any code implementing the test is in fact a
definition of the test.
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However we also note that a small code size is not enough to guarantee an
efficient implementation, since time and memory complexity can still be high, as the
following example proves.

4.6.2.1 Example

Let U be the sample space made of the set of the 2L L-bit sequences and let the test
T be defined by

TR = {ui ∈U,ui = H(ui−1, i > 0)} (4.32)

where u0 is a given sample from U and H is a given cryptographic hash function13

with an L-bit output. In other words TR is defined as the set of the samples obtained
repeatedly applying a hash function starting from a given initial value (since the
cardinality of U is finite, at some point the process starts cycling and no new samples
are added to the set).

The definition of TR, and thus of the test T , is as simple and compact as Equa-
tion (4.32). Since it allows for a direct implementation, the resulting code size is very
low as well and the space requirement is fulfilled. However when, given a sample u,
we want to verify if u ∈ TR, we necessarily have to run the whole process defined in
Equation (4.32), until we find u or exhaust the look-up table TR. Or, alternatively, we
can do it in an una-tantum pre-processing phase but then we have to store in memory
the resulting look-up table TR. Since the size of TR is expected to be very large (about√

π2L−1, see [32], §2.3.1), both options are impracticable and the memory and time
requirements are not fulfilled.

4.6.3 Practical tests

From the above sections it is clear that the generic test is not implementable and
only a negligible fraction of all the possible tests can be actually of practical use.
What we do in practice is then to use tests that are implementable by construction.
This is exactly what is allowed by the model described in §2.1.1 and followed by
virtually every practical test: given a sample from the sample space, a test statistic is

13With the definition cryptographic hash function we assume that H is computationally non-
invertible, that is, given ui it is practically not possible to recover ui−1. For a formal description see
[31], §4.
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associated to the sample and then compared to one or two thresholds14 separating the
acceptance region from the rejection region, thus determining if, given a sample, the
test succeeds or fails (that is, gives evidence to support or reject the null hypothesis).

With this strategy, coding complexity is thus essentially limited to building
the test statistic function and setting the threshold(s). The test statistic function
is typically described in an algorithmic way (for example, in a frequency test on
random sequences, the test statistic can be defined as “count the number of ones in
the given sequence”), thus allowing for a very compact and efficient implementation,
and the use of thresholds permits to easily define the acceptance region and the
rejection region.

This approach makes tests concretely implementable. The price to pay is that,
in doing so, we introduce an artificial ordering among the samples, determined by
the associated test statistic real values. This ordering determines a strong correlation
between samples with “close” test statistic values, since they result highly likely to
provide the same Accept/Reject output. We observe that the concepts of ordering
and correlation among samples are not structurally present in the general model
described in Sections §4.2 and §4.4.1 and greatly limit the test variability, but allow
to overcome the difficulties described in Sections §4.6.1 and §4.6.2 in concretely
implementing a generic test.

4.6.3.1 Test usefulness

In practice tests are designed not only to be easy to implement but, of course, also to
be useful. While it seems an obvious requirement, it is not so immediate to define
the concept of usefulness since, as shown in §4.4.1.2, all the tests with the same
Type I Error probability can be considered in some sense equally effective. The
above claim, however, holds only when we have no information about the alternative
hypothesis and, thus, we assume that the alternative distribution is uniformly taken
from the space of all the probability distributions.

In fact, we can often make some guess about the general structure of the genera-
tion process, thus possibly identifying some bias that a properly designed test may be
able to detect in the output sequences. A useful observation in this direction is that,

14The one-threshold configuration corresponds to the single (left or right) tailed model, while the
two-thresholds configuration corresponds to the two-tailed model, see §2.2.1.
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while an ideal generation process consists in atomically selecting a sequence among
the set of all the sequences of a given length (according to the model adopted in §4.4),
what real generators typically do is to produce one short information unit15 at a time
until the desired length is reached. This observation may be the base to build con-
cretely useful tests. For example, when we analyze a generation process producing
one bit at a time, it is certainly appropriate to consider the NIST frequency test (see
for example [17], p. 3-1, §3.1), checking the given sequences for balancing of 0s and
1s. We note, however, that while the frequency test may be effective against a TRNG,
relying on a physical process, it is likely ineffective against a PRNG, still producing
one bit at a time but based on algebraic properties presenting by construction optimal
statistical profile (see §1.3.2). Other tests, like the NIST Linear Complexity Test
([17], p 2-24, §2.10), or the one we develop in §6, on the contrary, look for specific
structures underlying the generation process and, hence, are expected to be less
effective against TRNGs but are more effective against peculiar classes of PRNGs
(namely, the Linear Feedback Shift Register (LFSR)s and the LCGs, respectively, as
shown in the given references).

In conclusion, when we want to assess the quality of a random generator checking
the output sequences against the null hypothesis of uniformity and independence,
if we are able to make some assumptions on the generation process and to identify
possible intrinsic biases, then we choose tests which are (hopefully) effective in
detecting these biases. Hence, the usefulness of a test is not an absolute property but
strictly depends on the assumptions we are able to make on the possible biases of
the generation process.

15The typical information unit is a bit for TRNGs and a byte or a word for (software implemented)
PRNGs.



Chapter 5

Statistical tests suites

This chapter introduces a commonly used tool, that is, the suites of statistical tests.
In §5.1 the need for and the concepts behind this tool are explored and the most
common solutions briefly presented. In §5.2 the most widely used suite, namely the
NIST-STS provided by NIST, is briefly described and then analyzed in some critical
aspects.

5.1 Requirements and common solutions

It is worth observing that the test statistic associated to a given test is a numeric index
able to provide a synthesis of the sample data. Of course, precisely because it is a
synthesis, it captures only some aspects of the given data.

The class of statistical anomalies that the test can identify, determined by the
test statistic, is thus in general not able to detect any other deviations from the null
hypothesis. For example, if in the analysis of a random binary sequence the test
statistic counts the number of 1s present, it is useful to verify that the sequence
respects the balancing criterion (expected number of 0s equal to the expected number
of 1s) but in general it does not allow to check other irregularities, such as whether
there is a correlation between consecutive bits. Therefore, the effectiveness of the
test in providing useful answers depends on the captured properties being relevant or
not in the specific use scenario.
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In order to be more effective in the analysis, instead of single tests we typically
make use of test suites (also known as collections or batteries) made up of several
distinct tests with the aim of capturing as many statistical anomalies as possible. Even
so, however, no suite of tests is able to identify all the infinite possible anomalies.

The list of tests to be included in a suite must therefore be a tradeoff between
implementation efficiency and ability to detect useful anomalies. In principle we try
to:

• minimize the number of tests, in order to reduce implementation costs;

• maximize their effectiveness, that is, the ability to capture the non-random
properties of interest in the specific use case1;

• choose independent tests. A subtle point in the definition of a test suite is the
independence of the selected tests. Informally, two tests are independent if
the output of one of them does not provide any information about the output
of the other one. Test independence in a battery is a desirable property for
two reasons. First, fresh information about the consistency with the null
hypothesis is provided by each test, whereas in case of dependence we would
waste computing power to obtain information which is somehow redundant.
Second and even more important, independence allows to draw more precise
conclusions from multiple tests application.

In literature several suites have been proposed and are commonly used to test the
randomness quality of a given generator. The suites differ under many aspects, like
the choice of the tests, the implementation efficiency, their flexibility and the user
interface. See [35] for an overview and a comparison of the different options. Here
we list the most popular batteries:

• Knuth: the first widely used suite was proposed by Donald Knuth ([36])
in 1969. It contains a basic set of 11 tests and is considered the pioneer
of systematic randomness testing. However it addresses more specifically

1According to the specific use case, an analyst may be more interested in some statistical properties
than in others. For example in a Monte Carlo simulation [33], [34] it is vital that the random data
used to feed the process appear random, but it is often not required that they are actually random and
thus unpredictable. On the contrary, the possibility to repeat an experiment with the same input may
result very useful.
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real numbers and, therefore, is not so suitable for integer (binary) sequences.
Therefore here it is mentioned mostly for historical reasons;

• Diehard: test battery developed by Marsaglia, published in 1995 ([37]). It still
represents a useful tool in the statistical community, but is limited on sample
size and user-friendliness. An analysis of the battery is proposed in [38].

• Dieharder: an extended version of Diehard, including additional tests, shared
by Robert G. Brown ([39]) in 2006. A critical analysis of the suite implemen-
tation has been recently proposed in [40].

• TestU01: proposed by L’Ecuyer and Simard [41]. It is an extensive battery,
very flexible and with an efficient implementation, first proposed in 2007. A
review of the battery can be found in [42];

• PractRand: efficient and versatile suite proposed in 2010 by Chris Doty-
Humphrey [43]. It is gaining consideration in the research community. See
[44] for a comparison between TestU01 and Practrand;

• gjrand: emerging suite developed by G. Jones [45] contains both a set of
PRNGs and a collection of statistical tests;

• NIST-STS: proposed in 2001 by NIST [17] it is the de-facto standard for
testing of binary random sequences, with special focus on cryptographic
applications. Some analysis of the NIST suite is provided in [46], [47] and
[48].

5.2 NIST Statistical Tests Suite

The NIST battery [17] is made of a set of 15 tests (plus some variations for a few of
them) which are applied to sequences (samples) of a given arbitrary length. The tests
are listed in Table 5.1 along with the statistical property addressed by each of them.
Here however we do not analyze in detail the single tests, we just highlight that all
of them are built according to the p-value method (§2.2.2) and share the same Type I
Error probability α = 0.01.

Rather, we comment on some methodological aspects of the suite. Thus, in §5.2.1
we provide some considerations on the definition of null hypothesis used in [17];
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Test Statistical property analysed
Frequency (Monobit) Proportion of zeroes and ones
Frequency within a Block Proportion of ones within bit blocks
Runs Total number of runs (uninterrupted

sequence of identical bit)
Longest Run of Ones in a Block Longest run of ones within blocks
Binary Matrix Rank Rank of disjoint sub-matrices
Discrete Fourier Transform (Spectral) Peak heights in the Discrete Fourier

Transform
Non-overlapping Template Matching Occurrences of given aperiodic pat-

terns
Overlapping Template Matching Occurrences of pre-specified target

strings
Maurer’s Universal Statistical Number of bits between matching

patterns
Linear Complexity Length of a linear feedback shift reg-

ister (LFSR)
Serial Frequency of all possible overlap-

ping patterns
Approximate Entropy Frequency of repeating patterns in

the string
Cumulative Sums (Cusums) Maximal excursion of the random

walk defined by the cumulative sum
of adjusted (-1, +1) digits

Random Excursions Number of cycles having exactly K
visits in a cumulative sum random
walk

Random Excursions Variant Total number of times that a particu-
lar state is visited (i.e., occurs) in a
cumulative sum random walk

Table 5.1 List of tests in the NIST-SP800-22 Rev. 1a suite, [8]
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then, in §5.2.2 we elaborate on the methods suggested in [17] to interpret the results
obtained by the analysis of more sequences; finally, in §5.2.3 we briefly consider
the issue of test independence and in §5.2.4 we comment on the rationale behind
choosing (or not) a specific order in tests execution.

5.2.1 On the null hypothesis

In the setting defined in [17] it appears that the object of the null hypothesis is the
randomness level of the analyzed sequences. This is explicit for example [17] at pp.
1-3 and 1-4, §1.1.5:

The null hypothesis under test is that the sequence being tested is ran-
dom. [. . . ] If a P-value for a test is determined to be equal to 1, then
the sequence appears to have perfect randomness. A P-value of zero
indicates that the sequence appears to be completely non-random

or at p. 2-1, §2:

tests that were developed to test “the randomness of (arbitrarily long)
binary sequences”

We do not feel comfortable with this approach which, in our view, is misleading.
Instead we believe that the null hypothesis should be expressed in terms of the
random generator producing the sequences. More precisely, rather than saying that
the sequence is random we should define the null hypothesis as the generator outputs
sequences following the uniform distribution and the independence property. In
essence we do not test sequences for randomness, we test generators for uniformity
and independence (see §4.4 for the meaning of these properties).

In other words, the focus of the null hypothesis should not be on the properties of
the observed sequences (the samples of the hypothesis test model) but on those of the
underlying random generator (the source of the samples). In particular, for a given
fixed sequence length, under the null hypothesis the random generator is expected to
produce all the possible sequences with the same probability and independently of
each other.

While this distinction may appear artificial, we believe it captures the essence
of the hypothesis test model. In particular we observe that we cannot evaluate the
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randomness of an observed sequence, by the very fact that as we observe a sequence,
it is completely determined and hence has no randomness at all2. Given a sequence
(or a set of sequences), the goal of a hypothesis test is to help to determine if the
underlying generator is good or not (or, equivalently, if the null hypothesis can be
deemed true or false).

If we focus on the generator distribution instead of on the sequences properties,
then we recognize that all the sequences are expected to be equally likely and thus
there is no concept like good or bad sequences (in any respect, including their
randomness level), as already discussed in §4.4.1.1.

Thus, sequences are not more or less random: they are simply more or less
consistent with a given null hypothesis according to a given hypothesis test. It is
perfectly acceptable that a sequence passes some tests and fails other tests: what we
expect is that the number of passed tests is proportional to 1−α and the number
of failed tests is proportional to α , according to the meaning of α as Type I Error
probability (assuming the tests are mutually independent). In fact, given a null
hypothesis, it is as if each test looks for consistency of observed data with the null
hypothesis from a different perspective.

The above distinction seems relevant when considering one of the assumptions
made at in [17] at p. 1-5, §1.1.6 with respect to the sequences to be tested:

Scalability: Any test applicable to a sequence can also be applied to
subsequences extracted at random. If a sequence is random, then any
such extracted subsequence should also be random. Hence, any extracted
subsequence should pass any test for randomness.

Since randomness is not an intrinsic property of a sequence (rather, of the generator),
there is no a priori guarantee that a subsequence inherits the property of passing a
given test3. Moreover, referring to the quoted claim, under the null hypothesis of a
good generator (that is, producing uniformly distributed and independent sequences),

2This could be more formally expressed in terms of entropy (see §A.6), which represents the
uncertainty about the sample: if we are able to observe the sample, it has no uncertainty and thus zero
entropy.

3Of course, a sequence and its subsequences are not independent, thus there may be a correlation
between the output of a test applied on the sequence and on any subsequence. However, it is easy to
build tests and sequences such that the output of the test applied on a given sequence differs from
the output of the same test applied on a certain subsequence. As a trivial example, this happens
applying a frequency test (which counts the number of 0s and 1s) on the 2N-bit sequence built as
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we can expect that a given sequence passes not any but a fraction 1−α of hypothesis
tests4.

5.2.2 Results interpretation

Due to their probabilistic nature, a very subtle task is to interpret the results provided
by the tests. Since a Type I Error probability greater than 0 is present in each test, a
strategy to deal with false positives has to be defined. The methodology suggested
by NIST ([17] at p. 4-1, §4.1) can be summarised in three steps:

1. fix a length L and collect m sequences (samples) of that length
produced by the generator;

2. for each test of the suite execute the test on every sequence and
collect the obtained p-values (one for each sequence);

3. take a decision (relative to every specific test) based on the col-
lected p-values.

Table 5.2 NIST strategy for test results interpretation

Let us now analyze the last step, that is, how to decide on a peculiar test (we note
that no strategy to decide on the ensemble of the tests is given in [17], in spite of the
recommendation to execute multiple tests given in step 2 of the above methodology).

Given the collection of p-values, two criteria are proposed (and below analyzed)
in [17], where we believe a strong implicit assumption is made, that is, all the
sequences produced and analyzed are independent of each other5.

00 . . .0︸ ︷︷ ︸
Ntimes

11 . . .1︸ ︷︷ ︸
Ntimes

(for some N) and then on the first half subsequence 00 . . .0︸ ︷︷ ︸
Ntimes

. It is clear that, for any N,

the test is successful on the whole sequence and fails on the subsequence.
4In requiring that a fraction 1−α of tests are passed, we implicitly assume that the considered

tests are mutually independent. While, strictly speaking, this is not true for the NIST-STS (as later
shown in §5.2.3), it does not appear to significantly invalid the above claim.

5The mentioned assumption appears quite natural and is, in fact, required by the model we have
described in §4.4. However it is not explicitly reported in [17], where the focus is more on the single
sequence properties than on the overall generation process.
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5.2.2.1 Proportion of successful sequences

Under the null hypothesis (all the sequences are equally likely and independent
of each other), if we set the Type I Error probability equal to α and consider
m sequences, then the number T of those passing the test follows the binomial
distribution6

T ∼ B(m,1−α) (5.1)

since α is by definition the probability to fail the test and then 1−α is the probability
to pass it. We have obviously 0 ≤ T ≤ m. In order to define if the overall test (made
of m single tests, one on each sequence) is successful, we can select two integers
MinT ,MaxT , with 0 ≤ MinT ≤ MaxT ≤ m, and define the acceptance interval as
[MinT ,MaxT ]. If T falls in the interval then the overall test is passed, otherwise it is
failed.

Under the null hypothesis, according to Equation (5.1), the probability that T
falls in the acceptance interval can be computed as

Pr(T ∈ [MinT ,MaxT ]) =
MaxT

∑
i=MinT

(
m
i

)
(1−α)i

α
(m−i) (5.2)

From Equation (5.2) we can immediately derive the Type I Error probability α ′ of
the overall test when the acceptance region is defined by the interval [MinT ,MaxT ]:

α
′ = 1−Pr(T ∈ [MinT ,MaxT ]) (5.3)

= 1−
MaxT

∑
i=MinT

(
m
i

)
(1−α)i

α
(m−i)

We observe that α ′ cannot take an arbitrary value in [0,1] but, as a consequence of the
discrete nature of the Binomial Distribution, it is forced inside the finite set defined
by Equation (5.3) as MinT and MaxT vary. When however the number of samples m
is big enough, the Central Limit Theorem can be used to approximate the discrete

6See §A.4.2 for a description of the Binomial Distribution.
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Binomial Distribution (Equation (5.1)) with the continuous Normal Distribution7,8.

T ∼ N(µ,σ)

with µ and σ being the expected value and the standard deviation of T :

µ = m(1−α)

σ =
√

mα(1−α)
(5.4)

If we want to consider the proportion of sequences TP passing the test instead of the
absolute value, we just divide by m the expressions in Equation (5.4) and we obtain

TP ∼ N(µP,σP)

µP = 1−α

σP =

√
α(1−α)

m

(5.5)

In [17], p. 4-2, §4.2.1, the above approximation is used to determine the acceptable
proportion of sequences passing the test. More precisely, it is required that

TP ∈ [µp −3σp,µp +3σp] (5.6)

with µP and σP given by Equation (5.5).

The definition of the interval in (5.6) corresponds to the well-known 3σ rule for
the Normal Distributions [49]. The choice is admittedly arbitrary9 and determines
the following probability p that TP satisfies requirement (5.6):

p =

1− [F(−3)+(1−F(3))] =

F(3)−F(−3) =

2F(3)−1 =

≈ 0.9973

7See §A.4.2 and §A.4.3 for a description of the Binomial Distribution and the Normal Distribution.
8As a rule of thumb, in order for the approximation to hold it is required that mα ≥ 10 and

m(1−α)≥ 10, see §A.4.3.1.
9From [17], p. 4-2, §4.2.1: “Note that other standard deviation values could be used”.
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where F is the CDF of the Standard Normal Distribution, exploiting the fact that F
is symmetric about 010.

In practice p is the probability that executing the test on m sequences and
calculating the proportion TP of sequences passing the test, TP falls in the acceptance
interval and thus we consider the overall test passed. Equivalently,

α
′ = 1− p ≈ 0.0027 (5.7)

is the Type I Error probability associated to the overall test according to the specifi-
cations given in [17].

We note however that, even agreeing that the choice of the acceptance interval
for TP is discretionary, there is no apparent specific reason to choose the 3σ setting.
We can in fact reverse the process, fixing the desired value for p and consistently
computing the acceptance interval width. For a generic p, the acceptance interval
can be determined as

TP ∈ [µp − γσp,µp + γσp]

with
γ = F−1(

1+ p
2

) (5.8)

The value of p and therefore the value of α ′ (see Equation (5.7)) can be arbitrarily
selected, but a natural choice, for the sake of consistency, would be to set α ′ = α

and thus p = 1−α .

In the specific case of the NIST-STS we have α = 0.01, thus Equation (5.8)
would become

γ = F−1(1− α

2
) = F−1(0.995)≈ 2.5758

determining an overall Type I Error probability α ′ = α = 0.01.

5.2.2.2 Uniformity of p-values

A common claim about p-values is that they follow a uniform distribution in [0,1]
(see for example [50], p. 2). In Section §3.1 and §3.2, however, we have shown that
the p-values uniformity assumption is correct in the continuous case, but is imprecise

10Evaluation of F is available in many software applications and in many on-line resources as well.
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in the discrete setting. Nevertheless, a second criterion suggested by NIST in [17] (p.
4-3, §4.2.2) to evaluate a collection of a given test on m sequences is to compute the
p-value for each sequence and then check that the m resulting values are uniformly
distributed. Since the considered setting is discrete, we think that the proposal is
somewhat questionable, as argued below.

The above-mentioned procedure proposed by NIST consists in dividing the
interval (0,1] in ten equal sub-intervals, counting the number of p-values falling in
each sub-interval and then determining if they can be deemed uniformly distributed.
For this purpose two methods are proposed: a (qualitative) visual check of the
resulting histogram and a (quantitative) application of a χ2 test (see §A.5). We here
focus on the second method, as it can be treated in a more precise way.

The procedure (hereinafter referred to as NIST procedure for simplicity) is
described in more detail in Table 5.3 for a generic number of sub-intervals K (with
K = 10 for the specific case of the NIST procedure11), emphasizing that the NIST
procedure is itself a hypothesis test, where the null hypothesis is that the p-values are
uniformly distributed. Looking at Table 5.3, we observe that in step 1 the p-value is
computed according to the underlying test definition; in step 2 the extreme value 0 is
excluded because we know from Observation 4 that all the observable p-values are
greater than 0; in step 4 the expected value (η) for each hi is computed according
to Equation (3.42), that is, under the uniform null hypothesis (that the p-values are
uniformly distributed); finally in step 5 the resulting χ2 index is checked against the
suggested Type I Error probability α ′′ = 0.0001 in order to determine if the set of
sequences supports or rejects the null hypothesis.

11The procedure, defined by a fixed value K = 10 by NIST in [17] (p. 4-3, §4.2.2), has been
here generalized to an arbitrary value of K, because later two distinct values ok K will be actually
considered in our analysis, namely K = 10 and K = 100.
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Given an integer K and m independent sequences {st , t = 1,2 . . .m},

1. for each sequence st , compute the corresponding p-value pvt

pvt = PV (st)

2. divide the (0,1] interval in K equal sub-intervals

Ii =

(
i−1

K
,

i
K

]
, i = 1,2, . . . ,K

3. compute the number hi of p-values falling in Ii

hi = #{pvt ∈ Ii, t = 1,2, . . .m}, i = 1,2, . . . ,K

4. compute the χ2 index with K −1 degrees of freedom

C =
K

∑
i=1

(hi −η)2

η
with η =

m
K

5. compute the p-value of C according to the χ2 distribution

pvC = PV (C)

6. output Accept if pvC > α ′′, with α ′′ = 0.0001; output Reject otherwise.

Table 5.3 NIST procedure to check p-values uniformity

Now we observe that, since the χ2 index is itself a p-value, if the approach
followed by NIST were correct, then we would expect that executing the procedure
M times (that is, taking M ·m independent random sequences, grouping them in M
blocks, each one made of m sequences, and running the procedure for each block),
the M resulting χ2 values were uniformly distributed as well. Hence, we propose
the procedure defined in Table 5.4, hereinafter referred to as meta-procedure, which
follows the principle discussed in §3.4.4.
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Given M ·m independent sequences

1. group them in M blocks Bi, i = 1,2, . . . ,M, each made of m sequences;

2. for each block Bt , compute the χ2 index ct applying the NIST procedure
of Table 5.3 (steps 5 and 6 are here ignored);

3. divide the (0,1] interval in 10 equal sub-intervals

Ii =

(
i−1
10

,
i

10

]
, i = 1,2, . . . ,10

4. compute the number hi of p-values falling in Ii

hi = #{ct ∈ Ii, t = 1,2, . . .M}, i = 1,2, . . . ,10

5. compute the χ2 index with 9 degrees of freedom

C =
10

∑
i=1

(hi −η)2

η
with η =

M
10

6. compute the p-value of C according to the χ2 distribution

pvC = PV (C)

7. output Accept if pvC > α ′′, with α ′′ = 0.01; output Reject otherwise.

Table 5.4 Meta-procedure to check p-values uniformity

We notice that steps 3-6 of the meta-procedure are basically the same as steps 2-5
of the NIST procedure, replacing the χ2 indexes computed on the (m) sequences with
those computed on the (M) blocks, K with 10, m with M and finally α ′′ = 0.0001
with (the arbitrary but more standard) α ′′ = 0.01. We also note that the chosen
number of intervals (10) is arbitrary, but in Table 5.4 it has been fixed to make the
description easier to read, also in view of the fact that 10 is the actual value used in
the following analysis. We remark that the number of intervals in the meta-procedure
is 10, irrespective of the value ok K in the NIST procedure.
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Finally, in order to report the results of the meta-procedure applied on the
NIST-STS battery ([17]), we remark that the set of the meta-procedure parameters
(which include those of the NIST procedure) is composed of

• m, the number of sequences;

• M, the number of blocks, each made of m sequences;

• K, the number of sub-intervals of (0,1] considered in the NIST-procedure;

• L, the bit length of the sequences.

In an ongoing joint work with Alessandro Giacchetto, following his Master’s thesis
[51], we have implemented the meta-procedure defined in Table 5.4 for all the tests
proposed in [17] (see Table 5.1). We have done it in two configurations, first with
K = 10 sub-intervals, as suggested in [17] (p. 4-3, §4.2.2), with the other parameters
set to M = 100 blocks and m = 1000 sequences; then with K = 100, maintaining the
same values as before for M = 100 and m = 100012.

The sequences used for the experiments are L = 1,000,000-bit long and were
generated using the cryptographic primitive AES-GCM (see §A.7), which is firmly
believed by the cryptographic community to be a high quality pseudo-random
generation mechanism, statistically indistinguishable from ideal random generators,
and able to produce (statistically) independent sequences. More on this and the
validation methodology in §6.5.1.

Results found vary greatly with the specific test considered. For example, if we
consider the Approximate Entropy Test, the resulting p-values distribution looks
approximately uniform in both configurations (K = 10 and K = 100), as shown
in Figures 5.1 and 5.2, obtaining convincing χ2 and corresponding p-values13:
(C10 = 5.6, pvC−10 = 0.78) and (C100 = 6.2, pvC−100 = 0.72), respectively.

12The two configurations reported explain the above-mentioned choice to have 10 sub-intervals in
the meta-procedure (Table 5.4). As explained in §A.5, the value of η (step 5 of the meta-procedure),
that is, the expected number of p-values falling in each sub-interval, must be at least 5 (and preferably

more). Since M = 100 for both configurations, choosing 10 sub-intervals leads to η =
100
10

= 10,

which is a safe value for the application of the χ2 test.
13See steps 5 and 6 of the meta-procedure described in Table 5.4.
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Fig. 5.1 Approximate Entropy Test, χ2 p-values distribution, K = 10, pvC−10 = 0.78
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Fig. 5.2 Approximate Entropy Test, χ2 p-values distribution, K = 100, pvC−100 = 0.72

However, other tests do not exhibit an equally good behaviour, the Discrete
Fourier Transform Test and the Binary Matrix Rank Test being the worst ones. In
particular, if we consider the Discrete Fourier Transform Test, the resulting p-values
are well distributed for K = 10 (C10 = 11.80, pvC−10 = .22) as shown in Figure 5.3,
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but fail miserably for K = 100 (C100 = 880.20, pvC−100 = 10−183) as shown in
Figure 5.4.
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Fig. 5.3 Discrete Fourier Transform Test, χ2 p-values distribution, K = 10, pvC−10 = 0.22
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Fig. 5.4 Discrete Fourier Transform Test, χ2 p-values distribution, K = 100, pvC−100 =
10−183
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Similarly, the Binary Matrix Rank Test behaves well (C10 = 5.80, pvC−10 = 0.76)
for K = 10 and fails for K = 100 (C100 = 480, pvC−100 = 1.1 ·10−97) as shown in
Figures 5.5 and 5.6, respectively.
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Fig. 5.5 Binary Matrix Rank Test, χ2 p-values distribution, K = 10, pvC−10 = 0.76

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0

10

20

30

40

50

60

70

fre
qu

en
cy

Fig. 5.6 Binary Matrix Rank Test, χ2 p-values distribution, K = 100, pvC−100 = 1.1 ·10−97
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In [17], §4.2.2, no justification for the NIST procedure (Table 5.3) is given,
apart from the assumption that p-values are uniformly distributed. However the
above-mentioned assumption on the p-values uniformity, while being correct in the
continuous case, is just an approximation in the finite discrete case, as discussed
in §3.4, and in fact it is not clear what NIST exactly means, when in [17] at p. 4.3,
§4.2.2, they write

The distribution of P-values is examined to ensure uniformity.

A plausible interpretation is that by uniformity they mean discrete uniformity (see
Definition 11). We remark however, as pointed out in Observation 13, that discrete
uniformity, although possible, is extremely unlikely for a generic test, that is, for an
arbitrarily test taken among all the possible ones in the given setting14, where the
sample space is made of all the possible binary sequences of a given length and the
null hypothesis is that they are (independent and) uniformly distributed

Nevertheless, as argued in §3.4.4, the NIST procedure can still be useful in the
discrete case if the p-tuple associated to the test (see §3.2) is actually approximately
(discrete) uniform and the number of intervals (K, in Table 5.3) is small with respect
to the number of distinct possible p-values. The tricky point is that both conditions
require to know the p-tuple associated to the test (that is, the set of observable
p-values, §3.2.1), which, although completely determined by the test definition, is
not always easy to derive analytically. If the p-tuple is not known, then using the
discrete uniform approximation can be a risky choice, because the above-mentioned
conditions may not be met.

In order to understand why different tests have so different behaviours, as shown
in Table 5.5, we have analysed through simulations the p-tuples associated to the
NIST-STS tests presented in [17]. Though necessarily imprecise, this method allows
to derive some useful information. In particular Table 5.5 reports for each test
the number of distinct p-values observed executing the test on 100,000 random
sequences15 . We note a great variability in the results. Not surprisingly, the Binary
Matrix Rank Test and especially the Discrete Fourier Transform Test are among

14Of course no test is randomly taken, since it always has a rationale behind its design. However, if
discrete uniformity is not considered as part of the requirements, then, with regard to this specific
property, the resulting test can be a priori considered randomly taken.

15When more variants of a given test are defined, we report the average value of the number of
distinct p-values observed.
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Test Number of distinct
observed p-values

Frequency (Monobit) 1,658
Frequency within a Block 18,759
Runs 91,052
Longest Run of Ones in a Block 92,153
Binary Matrix Rank 4,112
Discrete Fourier Transform (Spectral) 419
Non-overlapping Template Matching 16,804
Overlapping Template Matching 94,818
Maurer’s Universal Statistical 95,067
Linear Complexity 93,955
Serial 21,199
Approximate Entropy 95,205
Cumulative Sums (Cusums) 2,953
Random Excursions 59,484
Random Excursions Variant 52,538

Table 5.5 Number of distinct observed p-values on 100,000 test executions

those with only a very small number of different observed p-values (it is of course
possible that, increasing the number of tested sequences, some new p-value appears,
but it is quite likely that only a small increment could be observed)16.

Given the low number of distinct p-values observed for these tests, it is natural
to check how the 100,000 p-values are distributed in (0,1]. The result is shown in
Figures 5.7 and 5.8, respectively.

16Frequency (Monobit) Test and Cumulative sums (Cusums) Test have a low number of observed
p-values as well. However, here we focus on the Binary Matrix Rank Test and the Discrete Fourier
Transform Test because these are the ones exhibiting the worst profiles in terms of pvC values.
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Fig. 5.7 Discrete Fourier Transform Test, distribution of p-values
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Fig. 5.8 Binary Matrix Rank Test, distribution of p-values

It clearly appears that the resulting distributions for both tests (and especially for
the Discrete Fourier Transform Test) are far from satisfying the discrete uniformity
property (requiring all the values to be equally spaced and equally likely, see Theo-
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rem 8). On the contrary, as shown in Figure 5.9, the situation for the Approximate
Entropy Test is much better, though not optimal17.
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Fig. 5.9 Approximate Entropy Test, distribution of p-values

According to the conclusions of §3.4.4, which require the p-tuple to be (approxi-
mately) discretely uniform, this explains why the Discrete Fourier Transform Test
and the Binary Matrix Rank Test grossly fail the meta-procedure with K = 100.

Moreover in §3.4.4 it is also required that the number of sub-intervals (that is, K
in the NIST procedure reported in Table 5.3) is small with respect to the cardinality
of the set of p-values associated to the considered test. This looks consistent with
the observation that all the NIST-STS test pass the χ2 meta-procedure with K = 10
but some of them fail with K = 100. Although no explicit rationale is given in
[17] behind the choice to set K = 10 in the NIST-STS procedure, it is reasonable
that a so small value was chosen to mitigate the discretization effect, as discussed
in §3.4.4, and make the NIST procedure (Table 5.3) likely to be passed under the
null hypothesis of p-values uniformity.

We also note that the Type I Error probability α ′′ suggested in the procedure is
as small as 0.0001, which is clearly inconsistent with the values α = 0.01 associated

17The χ2 value on the observed p-values for the Approximate Entropy Test is equal to 0.0069 if
computed with 1,000 bins and to 0.0945 if computed with 10,000 bins, while it is < 10−300 in both
cases for the Binary Matrix Rank Test and the Discrete Fourier Transform Test.
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to each single test and α ′ = 0.0027 (see Equation (5.7)) associated to the Proportion
of Sequences Passing a Test described in [17], §4.2.1. We believe that this small
value for α ′′ has been chosen to increase the success rate for sequences produced
under the null hypothesis. In fact, our simulations have shown that using a more
standard value for α ′′ would cause an unacceptably high rejection ratio for χ2 values
produced according to the NIST procedure under the null hypothesis.

For example if we set α ′′ = 0.01 and we zoom in Figures 5.4 and 5.6 on the
[0,0.01] range, as shown in Figures 5.10 and 5.11, we observe that 95 out of 100
p-values for the Discrete Fourier Transform Test and 35 out of 100 p-values for the
Binary Matrix Rank Test are smaller than 0.01, thus determining an abnormally high
failure rate, much bigger than the expected α ′′ = 0.01.
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Fig. 5.10 Discrete Fourier Transform Test, χ2 p-values distribution, K=100, range [0,0.01]
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Fig. 5.11 Binary Matrix Rank Test, χ2 p-values distribution, K=100, range [0,0.01]

Moving the threshold α ′′ to 0.0001 obviously increases the success rate, but only
limitedly. According to our simulations, the number of p-values below α ′′ are in
fact reduced to 38 and 6 (out of 100) for the Discrete Fourier Transform Test and the
Binary Matrix Rank Test, respectively, still corresponding however to unacceptably
high failure rate (again very far from the expected 0.0001). We emphasize that this
inconsistency is not due to poor randomness quality of the generators producing
the analyzed sequences, but instead to an imprecise test model (based on the wrong
assumption of p-value uniformity in the discrete case).

We conclude this section with the following observation.

Observation 18. As the p-values get denser, they also become less likely.

This effect, which is implied by Equation (3.6) and is especially evident in Fig-
ure 5.7, is somehow consistent with the NIST-STS procedure, reported in Table 5.3.
In other words, the expected uniformity in the distribution of the frequencies of the
p-values observed in each of the K sub-intervals is in some sense correct (with easy
to find exceptions, as above shown). However this result does not come from the
deemed p-value uniformity (which is not guaranteed moving from the continuous
setting to the discrete finite one), but instead from Observation 18.
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5.2.3 Test independence

As anticipated in §5.1, collections made of mutually independent tests are preferable
because they are easier to characterize. Essentially, given two independent tests and
a sample to analyse, the probability that both tests are passed, both are rejected or
one is passed and the other one is rejected, is easy to compute from the individual
probabilities, while the case of dependence can be much harder to deal with.

In [17] at p. 4.4, §4.6, some analysis is reported on the redundancy (and therefore
dependency) of the tests in the NIST-STS, concluding that the

The degree of duplication among the tests seems to be very small.

Despite this, a few papers in literature [52], [53], [54], including the recent Master’s
thesis by Alessandro Giacchetto that we have supervised [51], show that some tests
in the NIST-STS have a statistically significant mutual correlation. It is however
unclear if and how this can concretely impact on the global reliability of the suite.

5.2.4 Test execution order

In [17], p. 2-1, §2, it is suggested that the Frequency Test is run before the others

Since this supplies the most basic evidence for the existence of non-
randomness in a sequence, specifically, non-uniformity. If this test fails,
the likelihood of other tests failing is high.

and later, in [17], p. 3-1, §3.1, the hint is reinforced

All subsequent tests are conditioned on having passed this first basic test

In Observation 17 we have shown, however, that two tests with the same Type I Error
probability (as is in the case of the NIST-STS, where for all the tests the parameter
α is set to 0.01), are symmetric in the information they provide on each other, that
is, the probability of failure of the frequency test given that another test fails is the
same as the probability of failure of the second test given that the frequency test
fails. In this sense, uniformity of bits in a given sequence, despite being the most
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intuitive property, is in fact no more important than other properties18. Moreover,
as emphasized in §5.2.1, according to our null hypothesis, we do not look for bit
uniformity inside a given sequence, instead we look for sequence uniformity (and
independence) among sequences produced by the generator extraction process.

A more convincing reason to run the frequency test first is somehow given in the
same [17],p. 2-1, §2, where emphasis is put on the computational effort required by
the tests

(The most time-consuming statistical test is the Linear Complexity test)

implicitly pointing out that it is advantageous to run the frequency test first because
it is faster. We note, however, that, even if the frequency test fails, a good practice is
to run the other tests as well, in order to minimize the risk of rejecting a valid null
hypothesis (Type I Error on the ensemble of the tests) on the basis of a single test
failure. In this view, the order of execution of the tests looks, hence, irrelevant.

18For example, a pseudo-random sequence generated according to a linear recurring sequence is, in
general, well balanced (that is, passes the frequency test) but fails the Linear Complexity Test, which
is part of the NIST-STS (see [17], p. 2-24, §2.10).



Chapter 6

A new hypothesis test suite

In this chapter we present a simple (toy) collection of hypothesis tests, named DECT
Suite1. Although it was primarily designed to provide practical hands-on experience
with the concepts discussed in previous chapters, as we will see, the suite proves to
be quite effective in certain concrete situations.

The chapter is organized as follows. After some necessary preliminaries in §6.1,
in §6.2 we introduce an intermediate hypothesis test, named K-Test, whose purpose
is to make the the subsequent section smoother to treat. Moreover, the analysis
of the K-Test leads to an insightful view on the practical difference between exact
and approximate calculations (specifically the Binomial Distribution and its Normal
Distribution approximation) in terms of the specific application scenario. Then,
in §6.3, we define two further hypothesis tests, one named DECT-W Test and based
on the K-Test, the other named DECT-Q Test. Both of them have multiple instances,
which hereinafter are collectively referred to as DECT Suite. In the next section, §6.4,
we describe the software implementation of the DECT-W Test and the DECT-Q Test,
which is also fundamental in their validation procedure2 reported in detail in §6.5 and
leading to a good confidence that the two tests are correctly defined and implemented
(and, thus, the DECT Suite as well). Later, in §6.6, we report on the application of
the DECT Suite to detect statistical biases in a widely used class of PRNGs, namely
the LCGs. Somewhat unexpectedly, it appears that our toy suite performs better than
the most commonly used collections of statistical tests when it comes to this specific

1DECT stands for “Decimation Test”.
2As later discussed in §6.5.1, when defining a test, a strong validation procedure is of paramount

importance.
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class of generators. Finally, in §6.7, we propose a list of topics, discussed in this
chapter, which seem worthy of further investigation.

6.1 Preliminaries

Let L be an integer power of 2, L = 2l , and let λ be an integer, λ < l. Given an L-bit
sequence S = (s1,s2, . . . ,sL), let us split S in N adjacent disjoint 2λ -bit-long blocks,
with N = 2n and

n = l −λ . (6.1)

Hereinafter we assume that
n ≥ 5,λ ≥ 7 (6.2)

and, hence, l ≥ 12 (the rationale behind this choice is given in §6.3.3). Let us
indicate the i-th block (i = 1,2, . . . ,N) with Di = (di, j, j = 1,2, . . . ,2λ ), where di, j =

s(i−1)2λ+ j, and, for each j = 1,2, . . . ,N, we define

K j =
N

∑
i=1

di, j (6.3)

Thus, as summarized in Figure 6.1, K j counts how many times di, j is equal to 1 as
we move across all the N blocks Di, i = 1,2, . . .N. Differently said, K j sums all the
bits of the sequence obtained decimating S by a factor 2λ with offset j.

s1 … sj
… s2λ s2λ+1 … s2λ+j

… s2λ+1 s(N-1) 2λ+1
… s(N-1) 2λ+j … sN2λ

…

block D1 (2λ bits) block D2 (2λ bits) block DN (2λ bits)

d1,j d2,j dN,j

+

…

Fig. 6.1 From sequence to K j

Under the null hypothesis that the sequences analyzed are produced according
to the uniform distribution, we expect that, for any j, K j follows the Binomial
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Distribution

K j ∼ B
(

N,
1
2

)
(6.4)

with mean value µN and standard deviation σN equal to

µN =
N
2
,σN =

√
N

2
(6.5)

respectively (see §A.4.2).

Alternatively, the well-known Normal Distribution approximation to the Bino-
mial Distribution (see §A.4.3.1) provides an approximate distribution of K j as

K j∼̇N (µN ,σ
2
N) (6.6)

From Equation (6.6), applying the standard normal transformation (see §A.4.3.2)

z j =
K j −µN

σN
(6.7)

we move to the easier to manage Normal Standard Distribution N (0,1)

z j∼̇N (0,1) (6.8)

6.2 K-Test

Here we define an intermediate test, referred to as K-Test, upon which in §6.3.1
we will build the DECT-W Test. The K-Test is a hypothesis test in the two-tailed
model (see §2.2), taking in input an integer value in [0,N] (that is, the range of the
K j values). The null hypothesis is that the input variable is distributed according to
Equation (6.4) and we would like to define the rejection region of the K-Test so that
the associated Type I Error probability α is 0.13. However, from Definition 3 we
know that only some values of α are admissible. Thus, in general, the best we can

3We remark that the choice of the model (two-tailed) and of the α value (0.1) are completely
arbitrary, with the only goal to split the sample space in two complementary sets (acceptance
and rejection regions) in order to (indirectly) verify the uniform null hypothesis, in line with the
methodology presented in §4.4.1.1. Other models and other values of α would work as well, simply
resulting in different tests.
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do is to choose a rejection region whose corresponding Type I Error probability is as
close as possible to the target value 0.1.

The section is organized as follows: in §6.2.1 we provide an exact definition
of the acceptance and rejection regions, up to the point where it is computationally
feasible. Then in §6.2.2 we go further, relying on approximations, thus arriving at
the complete definition of the acceptance and rejection regions. Then, in §6.2.4 we
compare the exact and approximated computation methods and provide some related
remarks.

6.2.1 Acceptance and rejection regions definition

Given N = 2n, for an integer n, in the (symmetric) two-tailed model the acceptance
and rejection regions are in the form

ARN = [
N
2
−νN +1,

N
2
+νN −1]

RRN = [0,
N
2
−νN ]∪ [

N
2
+νN ,N]

for an integer value νN ,1 ≤ νN ≤ N
2 . The Type I Error probability associated to the

couple (N,νN) can be precisely computed as

α
N
νN

= 1− 1
2N

N
2 +νN−1

∑
i=N

2 −νN+1

(
N
i

)
(6.9)

Thus, given N, we choose νN such that the resulting αN
νN

is the closest possible value
to 0.1, as reported in Table 6.1, which is made of 4 columns: the first one containing
the value of n = log2 N, the second one indicating the chosen value of νN , the third
one showing the resulting acceptance region ARN , and finally the fourth one giving
the corresponding Type I Error probability αN

νN
. For any n, the rejection region RRN

is obviously equal to [0,N]\ARN
4.

4In Table 6.1 and later in Table 6.2, for ease of reading only the acceptance regions are reported,
with the rejection regions easily determined simply complementing the acceptance regions with
respect to the whole set [0,N].
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n νN ARN αN
νN

(N = 2n) (RRN = [0,N]\ARN)

5 5 [12,20] 0.11018417
6 7 [26,38] 0.10342188
7 10 [55,73] 0.09269003
8 14 [115,141] 0.09131209
9 19 [238,274] 0.10191701

10 27 [486,538] 0.09762363
11 38 [987,1061] 0.09743877
12 53 [1996,2100] 0.10086355
13 75 [4022,4170] 0.09970991
14 106 [8087,8297] 0.09925997
15 149 [16236,16532] 0.10085643
16 211 [32558,32978] 0.10006578
17 298 [65239,65833] 0.10028519
18 422 [130651,131493] 0.09966389
19 596 [261549,262739] 0.10000026
20 843 [523446,525130] 0.09986509
21 1192 [1047385,1049767] 0.09985797
22 1685 [2095468,2098836] 0.09996577
23 2383 [4191922,4196686] 0.09992915
24 3369 [8385240,8391976] 0.10001614

Table 6.1 Acceptance and rejection regions and Type I Error probability

6.2.2 Extension to arbitrary values of N

As N grows, exact computation of the Type I Error probability (see Equation (6.9))
becomes very time-consuming and, eventually, unfeasible. Consequently, Table 6.1
reports values only for N up to 224. For higher values of N we can, however, rely
on the Normal Distribution approximation to the Binomial Distribution and on its
standardization, expressed in Equations (6.6), (6.7) and (6.8). This allows to work,
more comfortably (though approximately), on the Normal Standard Distribution
N (0,1), whose CDF is hereinafter referred to as FN (0,1). Moreover we indicate
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with τ the value taken by its inverse in 0.95

τ = F−1
N (0,1)(0.95)≈ 1.64485362

which also imply, due to the symmetry of N (0,1) about the origin,

−τ = F−1
N (0,1)(0.05)

Thus, if we set
RR′ = (−∞,−τ]∪ [τ,+∞) (6.10)

as the rejection region in the standard setting, then the resulting Type I Error proba-
bility is .05+ .05 = 0.1.

Now we can move back to the original value of N, derive the rejection region
RR′

N and compare it with the rejection region RRN reported in Table 6.1 (obtained
by exact computation), in order to understand how good is the approximation found
in Equation (6.10). To do so, we simply apply the inverse of Equation (6.7) to the
extremes of RR′, setting z j =±τ:

RR′
N = (−∞,µN − τσN ]∪ [µN + τσN ,+∞)

with σN and µN defined according to Equation (6.5). Complementarily, we have

AR′
N = (µN − τσN ,µN + τσN) (6.11)

In Table 6.2 the first column reports the value of n, while the second column shows
the corresponding acceptance region AR′

N , as for Equation (6.11). Finally, the third
column contains the acceptance region with integer extremes

AR′′
N = [

⌈
inf(AR′

N)
⌉
,
⌊
sup(AR′

N)
⌋
] (6.12)

= [⌈µN − τσN⌉ ,⌊µN + τσN⌋]

obtained from the corresponding AR′
N ; we observe that AR′

N and AR′′
N turn out to be

equivalent since the input to the K-Test is an integer value.

Considering the values of N for which exact computation ARN is available (that
is N ≤ 224) and comparing the values of ARN in Table 6.1 and AR′′

N in Table 6.2, we
observe that the acceptance regions (and, thus, the rejection regions) determined



136 A new hypothesis test suite

n AR′
N AR′′

N
(N = 2n) (RR′

N = [0,N]\AR′
N) (RR′′

N = [0,N]\AR′′
N)

5 (11.348,20.652) [12,20]
6 (25.421,38.579) [26,38]
7 (54.695,73.305) [55,73]
8 (114.841,141.159) [115,141]
9 (237.391,274.609) [238,274]

10 (485.682,538.318) [486,538]
11 (986.781,1061.219) [987,1061]
12 (1995.365,2100.635) [1996,2100]
13 (4021.562,4170.438) [4022,4170]
14 (8086.729,8297.271) [8087,8297]
15 (16235.125,16532.875) [16236,16532]
16 (32557.459,32978.541) [32558,32978]
17 (65238.250,65833.750) [65239,65833]
18 (130650.917,131493.083) [130651,131493]
19 (261548.499,262739.501) [261549,262739]
20 (523445.835,525130.165) [523446,525130]
21 (1047384.999,1049767.001) [1047385,1049767]
22 (2095467.670,2098836.330) [2095468,2098836]
23 (4191921.998,4196686.002) [4191922,4196686]
24 (8385239.340,8391976.660) [8385240,8391976]
25 (16772451.995,16781980.005) [16772452,16781980]
26 (33547694.680,33561169.320) [33547695,33561169]
27 (67099335.990,67118392.010) [67099336,67118392]
28 (134204253.359,134231202.641) [134204254,134231202]
29 (268416399.980,268454512.020) [268416400,268454512]
30 (536843962.718,536897861.282) [536843963,536897861]
31 (1073703711.960,1073779936.040) [1073703712,1073779936]
32 (2147429749.436,2147537546.564) [2147429750,2147537546]
33 (4294891071.920,4295043520.080) [4294891072,4295043520]
34 (8589826794.873,8590042389.127) [8589826795,8590042389]
35 (17179716731.841,17180021628.159) [17179716732,17180021628]
36 (34359522775.745,34359953964.255) [34359522776,34359953964]
37 (68719171843.681,68719781636.319) [68719171844,68719781636]
38 (137438522311.491,137439384688.509) [137438522312,137439384688]
39 (274877297107.363,274878516692.637) [274877297108,274878516692]
40 (549754951522.982,549756676277.018) [549754951523,549756676277]
... ... ...

Table 6.2 Estimated acceptance region by Normal Distribution approximation
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by the two methods (namely, the exact computation and the Normal Distribution
approximation) are equivalent:

for N ≤ 224,ARN ≡ AR′′
N ,RRN ≡ RR′′

N

We also observe from Table 6.1 that, as N increases, the difference between αN
νN

and
the target probability 0.1 tends to decrease (although not monotonically). Hence, we
can safely extend Table 6.1 to arbitrary values of N using the Normal Distribution
approximation to define the acceptance region (as done in Table 6.2 up to N = 240,
but easily extensible to higher values, if needed) and setting αN

νN
= 0.1.

6.2.3 K-Test definition

We can now define the K-Test as follows. Given N and an integer k, 0 ≤ k ≤ N,

K −Test(k) =

Passed if k ∈ ARN

Failed if k ∈ RRN
(6.13)

where ARN and RRN are complementary regions defined as in Table 6.1 if N ≤ 224

and as for Equation (6.12) and Table 6.2 if N > 224. Consistently, for any N ≤ 224

the Type I Error probability is

Pr(k ∈ RRN) = α
N
νN

according to Table 6.1, while it can be assumed to be equal to 0.1 for any N > 224. For
example, if N = 14, we have ARN = [8087,8297], RRN = [0,8086]∪ [8298,16384]
and αN

νN
= 0.09925997.

6.2.4 Methods comparison

Above we have described two methods to compute the rejection region, namely
the exact computation (§6.2.1) and the Normal Distribution approximation (§6.2.2).
Then we have verified that the two methods produce the same rejection region, for
any N ≤ 224.
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However, here we observe that relying on the Normal Distribution approximation
allows for very fast computation and, moreover, permits to obtain values for arbi-
trarily large values of N (reported up to N ≤ 240 in Table 6.2). These considerations
make the Normal Distribution approximation generally preferable. Nevertheless, a
caveat is necessary, given in the following

Observation 19. With exact computation, the actual Type I Error probability is
precisely known. On the contrary, with the Normal Distribution approximation it
can only be (in general imprecisely) assumed to be as determined by the model
considered.

Whether this discrepancy is relevant or not depends on the specific case. In
general, the more we use a wrong approximation, the more the effect on the final
correctness is amplified. The following (qualitative) observation can then be useful
(as for example later in §6.3.3):

Observation 20. If the difference between the actual and the assumed Type I Error
is small, the impact on a single application of the test may be negligible. However, if
we mount a (meta)test based on multiple samples analysis (as discussed in §4.4.1.1),
then the impact of the difference on the overall result may be meaningful.

In our specific setting, we observe from Table 6.1 that the disagreement between
the correct Type I Error probability αN

νN
and the estimated value 0.1 can vary sig-

nificantly with N, see for example the extreme opposite cases N = 5 and N = 19.

6.3 DECT Suite

In this section we introduce two tests, namely the DECT-W Test and the DECT-Q
Test, which are defined and commented in §6.3.1 and §6.3.2, respectively. Then,
in §6.3.3, we give some remarks common to both.

Both tests take the set K = {K j, j = 1 . . .2λ} (see Equation (6.3)), compute an
overall index on K and then associate a p-value to that index. In particular, the
DECT-W Test focuses on the average profile of K, while the DECT-Q Test analyses
its extreme behaviour. The following description of both tests assumes that n (with
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1. Compute K j, for j = 1,2, . . . ,2λ , according to Equation (6.3);

2. apply the K-Test on K j, for j = 1,2, . . . ,2λ , according to Equation (6.13),
see §6.2;

3. compute W as the number of K j values failing the K-Test;

4. set α = αN
νN

, as defined in Table 6.1, if n ≤ 24; α = 0.1 otherwise;

set µW = 2λ α;

set σW =
√

2λ α(1−α);

compute zW =
W −µW

σW
;

5. compute pW = 2 · (1−FN (0,1)(|zW |)).

Table 6.3 DECT-W Test

N = 2n) and λ are given, with n ≥ 5,λ ≥ 7 (see Equation (6.2)). Differently said,
for a given sequence of length L = 2l (with l ≥ 12, l = n+λ ), we can consider any
pair (λ ,n) such that

λ = 7,8, . . . , l −5

n = l −λ
(6.14)

The pair of values (λ ,n), given according to Equation (6.14), defines a specific
instance for both tests.

6.3.1 DECT-W Test

The definition of the DECT-W Test test is given by table 6.3. Steps 1, 2 and 3 are
self-explanatory and end with the computation of W as the number of K j values
failing the K-Test. We observe that, under the null hypothesis of uniformity, W
follows the Binomial Distribution with 2λ samples and success probability equal
to α and, hence, can be approximated by the Normal Distribution with parameters
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1. Compute K j, for j = 1,2, . . . ,2λ , according to Equation (6.3);

2. set µN =
N
2

;

set σN =

√
N

2
;

compute z j =
K j −µN

σN
, for j = 1,2, . . . ,2λ ;

3. compute Q = max
j∈[1,2λ ]

(|z j|);

4. set µQ = F−1
N (0,1)(1−

1
2λ
);

set βQ = F−1
N (0,1)(1−

1
e2λ

)−µQ;

set γQ = e−e
−

Q−µQ
βQ ;

compute pQ = 1− γ2
Q.

Table 6.4 DECT-Q Test

(µW ,σ2
W ), see §A.4.2 and §A.4.3.1:

W ∼ B
(

2λ ,α
)
∼̇N (µW ,σ2

W ) (6.15)

Step 4 applies the normal standard transformation to W , obtaining zW which is,
hence, approximately distributed as the Normal Standard Distribution, see §A.4.3.2:

zW ∼̇N (0,1)

Step 5, finally, computes the p-value pW associated to zW (and then to W ), according
to Table 2.2 for the two-tailed model.

6.3.2 DECT-Q Test

The definition of the DECT-Q Test test is given by Table 6.4. Steps 1, 2 and 3 are
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self-explanatory and end with the computation of the set of z j values, according to
Equation (6.7), and of Q as the maximum absolute value among all the z j values.

Step 4, finally, computes the p-value pQ associated to Q, according to the following
observations. First, Q can be written as

Q = max(Q′,Q′′) (6.16)

with
Q′ = max

z j<0
(−z j)

Q′′ = max
z j≥0

(z j)

Thus, Q′ and Q′′ represents the extreme left and right values of z j, corresponding
to the minimum value and the maximum value of K j, respectively. Then, under the
null hypothesis, the probability distributions of Q′ and Q′′ are identical and can be
approximated by the Gumbel distribution, since they can be seen as the maximum of
a set of independent and identically (normally) distributed variables (see §A.4.4):

Q′,Q′′∼̇G(µQ,βQ) (6.17)

with

µQ = F−1
N (0,1)

(
1− 1

2λ

)
βQ = F−1

N (0,1)

(
1− 1

e2λ

)
−µQ

where µQ and βQ are the location and the scale of G, respectively.

According to Table A.4, the CDF of the Gumbel distribution in Equation (6.17)
is

FG(q) = e−e
−
(q−µQ)

βQ (6.18)

In order to compute the p-value associated to Q, pQ, that is, the probability that
a value more extreme (higher) than Q is observed, we note that Q′ and Q′′ can be
considered statistically independent, identically distributed random variables. As
such, the CDF of their maximum is equal to the product of their CDFs (see [55], p.4,
§1.3).

FQ(q) = FQ′(q)FQ′′(q) = FG(q)2
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Thus, according to Table 2.2 for the right-tailed model,

pQ = 1−FG(Q)2

Defining, for the sake of easy reading, the auxiliary variable

γQ = e−e
−
(Q−µQ)

βQ

from Equation (6.18) we finally obtain

pQ = 1− γ
2
Q

6.3.3 Remarks

Some methodological considerations follow.

First, we observe that the DECT-Q Test relies on the z j values, which are com-
puted by the Normal Standard Distribution approximation, as by Equations (6.7)
and (6.8), and step 2 of Table 6.4. On the contrary, the DECT-W Test is based on the
K j values, which (for N ≤ 224) are precisely determined through exact computation,
as shown in Equations (6.3) and (6.4). Despite being apparently inconsistent, we
believe that the choice to adopt two different methods makes sense and has the
following motivation. The Q value produced by the DECT-Q Test depends only on
one value, that is the maximum (absolute) of the K j values; hence, a small error in
each K j value estimation results at most in a small error in determining Q. On the
contrary, the W value produced by the DECT-W Test is a sort of average index of
the behaviour of all the K j values, counting those passing and failing the K-Test;
thus, even a small evaluation error on the used values may have considerable impact
on the computation of the overall index W . Therefore, consistently with Observa-
tions 19 and 20, it makes sense to use the (simpler) Normal Standard Distribution
approximation for the z j computation and the (more expensive) exact computation
for the K j computation. For completeness, it has to be noted that for N > 224 the
Normal Standard Distribution approximation is used also to compute W (due to the
computational complexity of the exact computation), however the resulting estima-
tion is very good, as discussed in §6.2.2, and thus the potential errors are negligible.



6.4 Implementation 143

All the claims just reported have been confirmed by extensive simulations (see §6.5
and especially §6.5.3).

Second, we explain the constraints given on n and λ in Equation (6.2). Both come
from the the rule of thumb given in Equation (A.1), to apply the Normal Distribution
approximation to the Binomial Distribution. In particular, the approximation of
Equation (6.4) given in Equation (6.6) implies 2n−1 ≥ 10 and then n ≥ 5, while
Equation (6.15) implies 2λ α ≥ 10, with α = 0.1, and then λ ≥ 7. Moreover, we
comment on the choice of requiring L,λ and (consequently) N to be powers of 2:
the base 2 looks the more natural when dealing with bit sequences, but other tests
can be defined with different bases (this will be considered again in §6.7).

Third, we elaborate a bit on the test model chosen for the K-Test, the DECT-W
Test and the DECT-Q Test. Though the choice is in principle arbitrary, the rationale
behind is that for the first two we look for a balanced behaviour of the analysed
sequences, which is consistent with the two-tailed model for K j and W , while for the
third, which considers the extreme (maximum and minimum) values, the right-tailed
model is best suited for Q.

6.4 Implementation

We have implemented (in C language) the DECT-W Test and the DECT-Q Test
described in the previous sections. According to Equation (6.14), given an L-bit
input sequence, with L = 2l , the implementation runs both tests with the following
values for λ :

λ = 7,8, . . . , l −5

Thus, the implementation is, in fact, a collection of H pairs of DECT-W Tests and
DECT-Q Tests, with

H = l −11 (6.19)

As anticipated, the collection of these 2H tests is referred to as DECT Suite. The
default output of DECT Suite provides the basic information, as for example in
Figure 6.2, where the input file (rand5) has size L = 227 bits and then λ = 7,8, . . . ,22.
For each value of λ (first column, λ ), the corresponding p-values (truncated to 4

5Here it is not relevant how the file has been generated, since we are just describing the implemen-
tation interface.
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F i l e ’ rand ’ o f s i z e 2^27 b i t s

λ |======== W =========|======== Q =========|
| | |

7 | 0 .3458 | 0 .8038 |
8 | 0 .5880 | 0 .4068 |
9 | 0 .4795 | 0 .2118 |

10 | 0 .0838 W1 | 0 .8576 |
11 | 0 .2956 | 0 .4401 |
12 | 0 .5527 | 0 .7231 |
13 | 0 .0953 W1 | 0 .6963 |
14 | 0 .6084 | 0 .4782 |
15 | 0 .6744 | 0 .5041 |
16 | 0 .2587 | 0 .4135 |
17 | 0 .4810 | 0 .8798 |
18 | 0 .6234 | 0 .9267 |
19 | 0 .7474 | 0 .9735 |
20 | 0 .4238 | 0 .0520 Q1 |
21 | 0 .2565 | 0 .9874 |
22 | 0 .7716 | 0 .9572 |

Fig. 6.2 Test output (I)

decimal places) are reported: pW (second column, W ) and pQ (third column, Q),
computed as in Tables 6.3 and 6.4, respectively. We observe that a W1 tag appears
in the W column for λ = 10 and λ = 13, and that a Q1 tag appears in the Q
column for λ = 20. These tags highlight that the corresponding p-values are less
than 10−1. More in general, each time a p-value (either pW or pQ) falls in the
range [10−(t+1),10−t) for an integer t, 1 ≤ t ≤ 8, an analogous tag is reported with
index t. If the p-value falls in the range (−∞,10−9), then tags W9 and Q9 are
used (we believe that a more fine-grained resolution would be useless: there is no
practical difference in knowing that the a priori probability, according to the null
hypothesis, of an observed value is equal to 10−9 or, instead, even smaller: the null
hypothesis has certainly to be rejected in either case). For example, in Figure 6.3,
tags W2,W3,Q2,Q3,Q4,Q7 and Q9 appear as well (since only 4 decimal places
are reported for each p-value, Q4,Q7 and Q9, and in general each tag ≥ 4, are
indistinguishable).

The goal of the tags is simply to provide a quick visual evidence that the observed
p-values may indicate a discrepancy with the assumed null hypothesis. In this regard,
some comments are however presented below.
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F i l e ’ seq48_0 . bin ’ o f s i z e 2^26 b i t s

λ |======== W =========|======== Q =========|
| | |

7 | 0 .0875 W1 | 0 .9610 |
8 | 0 .4533 | 0 .5256 |
9 | 0 .8597 | 0 .5012 |

10 | 0 .6467 | 0 .5694 |
11 | 0 .8945 | 0 .7275 |
12 | 0 .6171 | 0 .0000 Q7 |
13 | 0 .2820 | 0 .0001 Q3 |
14 | 0 .8044 | 0 .0000 Q4 |
15 | 0 .6298 | 0 .0698 Q1 |
16 | 0 .1365 | 0 .0000 Q9 |
17 | 0 .0003 W3 | 0 .0000 Q4 |
18 | 0 .0612 W1 | 0 .0025 Q2 |
19 | 0 .0035 W2 | 0 .1534 |
20 | 0 .7202 | 0 .8819 |
21 | 0 .6337 | 0 .7884 |

Fig. 6.3 Test output (II)

First, we observe that, as already discussed in §2.1.3 and §4.4.1.1, if the null
hypothesis is correct, then occasional failures (that is, low p-values and then high tag
indexes) are not only acceptable, but expected. More precisely the probability that a
given sequence for a given λ determines a tag with index t is approximately6 ft , with

ft = 10−t −10−(t+1) (6.20)

Thus, for each column (W , Q), it is not surprising to observe one or a few tags with
index 1 (that is, W1 or Q1): such a situation does not contradict the null hypothesis,
since each column contains 16 elements and ft ≈ 0.1. On the contrary, finding tags
with high indexes, like in Figure 6.3, strongly supports the rejection of the null
hypothesis: for example for λ = 12 we find the Q7 tag, meaning that the observed
p-value is expected to appear on average just about once over 10 millions times if
the null hypothesis is satisfied.

6The actual value can be different since we are in the discrete setting, which has been analyzed in
Chapter 3.
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Second, if all the values in each column were independent, then we would
precisely compute the number Et of expected tags with index t as

Et = ftH = (10−t −10−(t+1))(l −11)

(see Equations (6.19) and (6.20)). We observe however that all the values in each
column derive from the same sequence and, hence, are dependent on each other. In
particular, looking at the definition of the tests it is clear that the closer the values of
λ , the stronger the relation between the corresponding p-values (and, then, of the
tags)7. It is therefore not surprising that statistical anomalies (or, equivalently, tags
with high indexes) tend to appear in clusters (like λ ∈ [17,19] for the W column and
λ ∈ [12,18] for the Q column in Figure 6.3).

Finally, we note that outputs reported in Figures 6.2 and 6.3 are the basic report
form of the tests implementation. Options for more detailed outputs, including all
the intermediate values as defined in Tables 6.3 and 6.4, are also available, but here
we skip their description since we are more focused on the conceptual level.

6.5 Validation

Both the definition and the implementation of a hypothesis test can conceal many
pitfalls, as well discussed in [17], §4.3. Issues can be very subtle and hard to
recognize, so a strong validation strategy is necessary. In this section we propose
a validation methodology and describe its application to the DECT-W Test and the
DECT-Q Test. In particular, in §6.5.1 we outline a general validation procedure,
which we apply first in §6.5.2, following a (questionable) NIST recommendation,
and then in §6.5.3, based on a different rationale.

6.5.1 Methodology

In its typical use, a hypothesis test, T , allows to draw a (probabilistic) conclusion
about the correctness of a certain null hypothesis, H0, on the data distribution of the
random generation process, based on the analysis of a set of input data: if data are

7Investigation of the exact relation between the p-values obtained for different λ is left as future
work.
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consistent with H0, then H0 is considered true, otherwise it is deemed false. Doing
this, we obviously make the assumption that the test itself, T , is correct8.

Hereinafter we refer to the standard process just described as direct validation
procedure. An example of such a procedure is given by NIST ([17] at p. 4-1, §4.1)
and is summarized in Table 5.2, whilea high-level description of the direct procedure
is given in Table 6.5.

Given a hypothesis test T and a null hypothesis H0, in order to validate H0

1. Assume T is correct;

2. observe a large number of samples (for example, sequences);

3. apply the hypothesis test T to the observed samples of step 2;

4. verify that the results obtained in step 3 are consistent with those ex-
pected based on the theoretical analysis of the hypothesis test, T , and of
the null hypothesis, H0;

5. if step 4 is successful, then conclude that the null hypothesis, H0, is true.
Otherwise, that it is false.

Table 6.5 Direct validation procedure

Conversely, if the goal is to validate the test (both the definition and the imple-
mentation), we can invert the point of view: rather than employing a (correct) test,
T , to validate a null hypothesis, H0, about the data, we can use input data generated
according to H0 to validate the correctness of the test T . The role of the assumption
and of the null hypothesis are, thus, switched compared to the direct validation
procedure: the resulting process is still a hypothesis test, but the null hypothesis, V0,
is that the test T is correct, while we assume that input data are generated according
to (the data distribution underlying) H0.

8Henceforth, sometimes for simplicity we say “correct” instead of “correctly defined and imple-
mented”, keeping however in mind that implementation issues are as important and error-prone as
theoretical ones.
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Hereinafter we refer to the process just described as inverse validation proce-
dure9.

Moving to our specific setting of binary sequences randomness tests, the null
hypothesis in the inverse validation procedure is that a given test is correct and the
assumption is that all the input sequences are random10. Thus, applying the inverse
validation procedure means that, instead of using a (correct) test to validate the
randomness of the sequences, we use random sequences to validate the correctness
of the test.

Thus, a high-level description of the inverse procedure is given in Table 6.6.

Given a hypothesis test T with an associated null hypothesis H0, in order to
validate the null hypothesis V0 that the test is correct

1. Assume input data follow the data distribution underlying H0, that is all
the input sequences are random;

2. take a large number of random sequences;

3. apply the hypothesis test T to the random sequences of step 2;

4. verify that the results obtained in step 3 are consistent with those ex-
pected based on the theoretical analysis of the hypothesis test, T ;

5. if step 4 is successful, then conclude that the hypothesis test, T , is correct.
Otherwise, that it is not correct.

Table 6.6 Inverse validation procedure

We emphasize that the inverse validation procedure described in Table 6.6 is
basically the same as the direct one described in Table 6.5, with two slight (but
fundamental) differences, shown in Table 6.7.

9The distinction between direct and inverse validation procedure is not standard, but here it turns
out to be a useful terminology.

10In fact, as discussed in §5.2.1, we should more properly speak of sequences randomly generated
according to the uniform distribution. Here, however, for the sake of clarity we conform to the
common simplification of referring to random sequences.
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• in step 2, the input sequences in the inverse procedure are taken accord-
ingly to the theoretical null hypothesis, H0 (that is, in our case, sequences
are random), while in the direct procedure they are the actual observed
data;

• in step 5, in the inverse procedure the conclusion is drawn on the cor-
rectness of the hypothesis test, while in the direct procedure it is drawn
on the correctness of the null hypothesis, H0.

Table 6.7 From direct to inverse validation procedure

If the null hypothesis of the inverse validation procedure, V0, is satisfied (that
is, the test is correct), then the procedure succeeds, up to occasional failures (Type
I Errors). Conversely, if V0 is not satisfied, then the validation procedure is likely
to fail11, even if it can occasionally be successful as well (Type II Errors). As with
any hypothesis test, in order to be useful, both the Type I Error probability and
the Type II Error probability of the inverse validation procedure should be as low
as possible. Estimation of Type I Error probability for the inverse procedure is in
principle straightforward, as it coincides with that of the direct procedure, since the
two settings are coincident by construction12. However, the Type I Error probability
of the direct procedure is often not easy to determine, as seen in §5.2.2.2, where we
show that the value proposed by NIST in Table 5.3 (α ′′ = 0.0001) is questionable.
Moreover, Type II Error probability is hard to compute and, in practical cases, it is in
fact impossible, as discussed in §2.1.4. Though, the inverse validation procedure can

11We observe that, when this happens, it does not provide a clear indication of where the error
lies, but it tells that somewhere in the procedure there likely is an hidden issue (either logical or
implementation-related, possibly even in the definition or implementation of the validation procedure
itself) which should be investigated.

12When it comes to evaluating the Type I Error, both the direct and the inverse validation procedures
assume that two conditions are satisfied: the test is correct (that is V0) and the input sequences are
random. On the contrary, when evaluating the Type II Error, the direct procedure assumes that the
condition on the correctness of the test is valid, while the condition on the randomness of the input
sequences represents the null hypothesis and is, therefore, assumed false. On the other hand, the
inverse procedure assumes that the condition on the randomness of the input sequences is valid, while
the condition on the correctness of the test represents the null hypothesis and is, therefore, assumed
false.
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still be useful, but requires a more qualitative approach (as we see later, in §6.5.2
and §6.5.3).

Relying on the above considerations, and in particular to Tables 6.6 and 6.7, we
can make the following

Observation 21. Every direct procedure (designed to validate a given hypothesis
test) can be converted into an inverse procedure (aimed at validating the test itself),
applying the (small) changes reported in Table 6.7.

The test validation procedure described in Table 6.6 looks then very simple. How-
ever, there is a fundamental conceptual problem here: we need random sequences
to validate the correctness of the tests necessary to validate the randomness of the
sequences. Apparently, it’s a dog chasing its own tail. Furthermore, to complicate
matters, the concept of randomness itself is very elusive by nature and is therefore not
easy to define. Indeed, as we have seen in the previous chapters, statistical tests can
provide strong evidence that a generation process is not (sufficiently) random, but,
on the contrary, they can never guarantee that a given process is perfectly random.

So, what we can concretely do is to to take sequences for which we have high con-
fidence that they behave (in any reasonable concrete sense) as if they were randomly
generated13. For this aim, we use the Advanced Encryption Standard (AES)-based
generation mechanism described in §A.7, that is, AES-GCM. Feeding AES-GCM
with distinct (key, nonce) pairs, we obtain a (virtually) unlimited number of sequences
which appear to be generated by a uniform random process14. We emphasize the
conceptual step: we just have to guarantee that the input pairs are distinct (which
is easy to do, no randomness is required) and the AES-GCM mechanism provides
a set of corresponding sequences that can be considered (practically) random and
independent. The reliability of this approach lies in the confidence that the en-
tire cryptographic community places on the indistinguishability of the sequences
(keystreams) produced by AES-GCM compared to those produced by an ideal
random uniform process.

13More technically, we assume there is no (concrete) way to build a distinguisher, that is, an
algorithm able to detect in the sequence a statistical anomaly with respect to ideal random data.

14Incidentally, we observe that using pseudo-random sequences instead of truly random ones has an
advantageous side effect, that is, in the presence of unclear experimental results, it is always possible
to precisely replicate the experiment to gain a better understanding of the observed data: we just have
to store the (short) (key, nonce) pairs determining the sequences, instead of the (impracticably long)
sequences themselves.
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6.5.2 A first (unsuccessful) attempt

Once completed the DECT-W Test and DECT-Q Test definitions and implementa-
tions, our chronologically first validation attempt was to build an inverse validation
procedure (to validate the two tests), applying Observation 21 to the NIST procedure
proposed in [17] (p. 4-3, §4.2.2), which we have reported in Table 5.3 and com-
mented in §5.2.2.2. Given a hypothesis test, the NIST procedure consists in taking
a set of sequences, deriving the corresponding p-values and verifying that they are
uniformly distributed. With this aim, two methods are suggested: first, to build a
histogram of the frequencies of the p-values and visually check their distribution;
second, to apply a χ2 test to the collected p-values.

Relying on the procedure just recalled, we implemented the inverse validation
procedure described in Table 6.6. Results are shown in Figure 6.4, obtained from a
set of 1,000 sequences (hereinafter, unless otherwise stated, random sequences are
generated by AES-GCM, as anticipated in §6.5.1), each L = 2l-bit long, with l = 22,
thus determining the λ range as [7,17], according to Equation (6.14). The figure
contains the histograms of the p-values obtained for both the DECT-W Test and the
DECT-Q Test, for λ = 7,12,17 (that is, the two extreme and an intermediate values,
as significant example settings). In addition, in the header of each figure, besides the
obvious parameters, we include the number N pV of different p-values found among
the 1,000 considered sequences (then 1 ≤ N pV ≤ 1000) and the corresponding χ2

p-value, computed according to the NIST procedure15.

Table 6.8 extends the observed values to any λ ∈ [7,17]. Unfortunately, results
are discouraging. Even with a simple visual qualitative inspection, it is immediately
clear that most distributions are far from uniformity (Figures 6.4a and 6.4f are
particularly evident cases, but also Figures 6.4c and 6.4d clearly show a bad profile).

A quantitative analysis of Table 6.8 is even more convincing. We note that most
χ2 p-values are very close to 0 and that, even generously setting the acceptance
threshold to α ′′ = 0.0001, as suggested in [17] (p. 4-3, §4.2.2), the NIST procedure
is successful only for a minority of the λ values, namely λ = 10 and λ ≥ 13 for the
DECT-W Test and λ ≤ 9 for the DECT-Q Test, while all the other values, highlighted
in red, are less than α ′′ (notice that, in Table 6.8, every value in the range (0,10−5)

is indicated as < 10−5 because the precision of the values reported in the table is 5

15The χ2 p-value is abbreviated in the figures as χ2 for space reasons. Also notice that any χ2

p-value less than 10−5 appears as 0.0.
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Fig. 6.4 P-value histograms, λ = 7,12,17
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DECT-W Test DECT-Q Test
λ N pV χ2 pv N pV χ2 pv
7 22 < 10−5 165 0.12887
8 30 < 10−5 116 0.28123
9 44 < 10−5 83 0.00125

10 59 0.00098 61 < 10−5

11 76 < 10−5 42 < 10−5

12 100 0.00007 31 < 10−5

13 143 0.67247 22 < 10−5

14 180 0.35864 15 < 10−5

15 233 0.37701 12 < 10−5

16 300 0.12520 6 < 10−5

17 405 0.88764 5 < 10−5

Table 6.8 Number of distinct p-values and χ2 p-value, λ ∈ [7,17]

decimal places). The failures reported motivated us to conduct a thorough analysis
of the discrete setting, which led to the writing of Chapter 3. Based on the results
obtained in the mentioned chapter, we realized that the issue did not lie in the tests
definition and implementation, but rather in the logic of the NIST procedure, as
below examined.

Indeed, from Table 6.8 we note that the number of distinct observed p-values
(N pV ) varies monotonically with λ (increasing for the DECT-W Test and decreasing
for the DECT-Q Test). In both cases, when N pV is small, the corresponding χ2

p-values are generally close to 0 and the NIST procedure fails. In light of the results
obtained in §3.4.4, this is not surprising, since the requirements for the application
of a χ2 test (and, more in general, of a Goodness-of-Fit test), based on the alleged
uniformity of the p-values, are not met. In particular, Table 3.3 requires K to be very
small with respect to NΩ, where K is the number of sub-intervals in the χ2 test and
NΩ is the cardinality of the set (Ω) of p-values associated to the test under validation
(namely, the DECT-Q Test and the DECT-W Test). In our case (that is, the χ2 test
of the NIST procedure, see Table 5.3), however, the condition is not met for most
values of λ , as shown in Table 6.8, where we have K = 10 and NΩ ≈ N pV 16.

16Rigorously, we have NΩ ≥ N pV , since NΩ is the number of possible p-values, while N pV is
the number of observed p-values. However, since the number of observed sequences (1,000) is
significantly higher than N pV , we do not reasonably expect that the difference between NΩ and N pV
is significant.
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6.5.3 A second (more satisfactory) attempt

Once realized that the validation procedure of Table 5.3 is not always reliable, we
took another approach, based on Equation (3.3) which here we recall

Pr(PV ≤ ω|H0) = ω,∀ω ∈ Ω

As observed in §3.2, the equality holds only for ω ∈ Ω, that is, only for the p-values
determined by the definition of the test under validation.

Equation (3.3) implies that all the NΩ points of the set Ω∗ = {(ω,FPV (ω)),ω ∈
Ω}, with FPV being the CDF of the p-value, lay on the identity line y= x. Hence, con-
sidering the same setting of §6.5.2 (that is 1,000 random and independent sequences,
each 222-bit long) we have plotted Ω∗ for each λ ∈ [7,17]. Visual analysis of the
obtained graphs confirms the expected behaviour, with the p-value CDF points sub-
stantially overlapping the identity line y = x (with stronger visual evidence where the
number of observed p-values, N pV , is higher). For example purposes, in Figure 6.5
we report (in blue) the graphs obtained for λ = 7,12,17 for both the DECT-W Test
and the DECT-Q Test (whereas the identity line is in orange).
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Fig. 6.5 P-value CDF, λ = 7,12,17
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As already discussed at a higher level in §6.5.1, the visual test above described
can be seen as a (qualitative) hypothesis test17, where the null hypothesis, V0, is
given in Table 6.9.

the DECT-W Test and the DECT-Q Test are correctly defined and implemented.

Table 6.9 Null Hypothesis, V0, DECT Suite

Extensive simulations (exemplified here by Figure 6.5) give us good evidence
that, when the null hypothesis V0 (Table 6.9) is satisfied, our validation procedure,
applied to the DECT-W Test and the DECT-Q Test, is successful, that is, the p-value
CDF is well approximated by the identity line (in [0,1]).

As discussed in §6.5.1, in order to gain more confidence in the correctness of
our two tests, we are also interested in checking that, when the null hypothesis
(Table 6.9), V0, is not satisfied, the validation procedure is, consistently, likely to
fail. Hence, here we invalidate V0 (Table 6.9), providing an incorrect test p-value
computation, in §6.5.3.1 for the DECT-W Test and in §6.5.3.2 for the DECT-Q
Test. Moreover, in §6.5.3.3, we analyse the setting where the input sequences are
non-perfectly-random (thus violating the assumption made in Table 6.6).

6.5.3.1 Incorrect DECT-W Test definition

The DECT-W Test is defined in Table 6.3. In particular, in step 3, the parameter α is
approximated to 0.1 for n > 24, in view of the good approximation provided by the
Normal Distribution to the Binomial Distribution. Conversely, for n ≤ 24 the exact
computation is preferred, because the above-mentioned approximation is not good
enough for small values of n, as discussed throughout §6.2.

In order to (slightly) alter the p-value computation, we have changed the definition
of the DECT-W Test, setting α = 0.1 for any n. In the same setting and with the
same 1,000 sequences as in §6.5.3, we have run experiments for λ ∈ [7,17] for the

17Strictly speaking, a hypothesis test is by nature quantitative. The difficulty in computing a precise
test statistic here is that, in general, we do not know the full p-values set Ω, but only the subset of
p-values we have actually observed. So we limit to a more qualitative, but still meaningful, visual
check.
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DECT-W Test. As expected, the biggest discrepancies with the results obtained
with the exact version of the test (reported in §6.5.3) occur for those values of λ for
which the corresponding α is farthest from 0.1, see Table 6.1. We observe that the
worst cases are, not surprisingly, for the smallest values of n, while the best results,
with α values only negligibly far from 0.1, can be found for the highest values of
n. Recalling that λ = l − n according to Equation (6.1), in Figure 6.6 we report
some example graphs of the resulting p-value CDF for different values of λ (on the
right side), together with the corresponding graphs obtained from the correct test
implementation (on the left side), maintaining the same layout of Figure 6.5.
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(d) λ = 16, altered definition
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(e) λ = 12, correct definition
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(f) λ = 12, altered definition
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(g) λ = 7, correct definition
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Fig. 6.6 DECT-W Test p-value CDF, λ = 17,16,12,7, correct and altered definitions
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As expected, we see that for high values of λ (λ = 17, Figures 6.6a, 6.6b, and λ =

16, Figures 6.6c, 6.6d), the two curves are significantly different (in Figure 6.6b the
function even collapses in a single dot in the upper left corner of the graph), whereas
for the intermediate value of λ (λ = 12, Figures 6.6e, 6.6f) the difference is still
present but smaller and finally for the lowest value of λ (λ = 7, Figures 6.6g, 6.6h)
the two curves coincide. Overall, observing the high values of λ (that is, the low
values of n) we can conclude that, given the approximated version of α values in
Table 6.3, the validation procedure fails, confirming the importance of using, instead,
the exact computation of Table 6.1 for low values of n.

6.5.3.2 Incorrect DECT-Q Test definition

Similarly, we show that an incorrect computation of the p-value in the DECT-Q Test,
defined in Table 6.3, leads to evident disagreement in the p-value CDF if compared
with the correct definition. To alter the definition of the p-value computation, we
(arbitrarily) replace pQ = 1−γ2

Q with pQ = 1−γQ in step 4 of Table 6.418. Extensive
simulations have been done for different values of λ and results are reported in
Figure 6.7 for λ = 7,10,13,17 (that is, the extreme and two intermediate values),
using again the same layout of Figures 6.5 and 6.6.

18This modification corresponds to substitute Q = max(|z j|) with Q = max(z j) in step 3 of the
same table. In particular, in Equation (6.16) we are replacing Q = max(Q′,Q′′) with Q = Q′′.
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(c) λ = 10, correct definition

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

Q    Nseq: 1,000    L: 2^22    : 10    NpV: 61    Algo: AES

(d) λ = 10, altered definition
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(e) λ = 13, correct definition
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(f) λ = 13, altered definition
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(g) λ = 17, correct definition
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Fig. 6.7 DECT-Q Test p-value CDF, λ = 17,16,12,7, correct and altered definitions
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Analysis has revealed that for any λ the discrepancy with the correct version of
the DECT-Q Test is evident, as shown for λ = 7 (Figures 6.7a and 6.7b), λ = 10
(Figures 6.7c and 6.7d) and λ = 13 (Figures 6.7e and 6.7f). An exception is observed
for λ = 17 (Figures 6.7g and 6.7h), probably due to the small number of p-values
(which tends to decrease as λ increases, as already observed)19.

6.5.3.3 Non-random sequences

In §6.5.3.1 and §6.5.3.2 we have seen that our validation procedure is able to detect,
at least to some extent, imprecise test definition (or implementation), that is a
violation of the null hypothesis given in Table 6.9. Here, we also want to verify the
relevance of the assumption made in Table 6.6, namely that the input sequences are
random. Thus, we feed the validation procedure with non-random sequences, using
however the correct versions of the DECT-W Test and the DECT-Q Test. In the
same setting as before, we still consider 1,000 sequences, each 222-bit long, but we
produce them with a PRNG which is considered statistically good but not ideal (and,
hence, not suitable for cryptographic use), that is the Microsoft Visual C++ LCG20,
initialized with 1,000 different seeds. Also in this case, results of the simulations
unambiguously indicate a failure of the validation procedure. Figure 6.8 reports the
output of the two tests for λ ∈ [7,10]. Although with a couple of borderline cases
(Figures 6.8a and 6.8e), on the whole, graphs of Figure 6.8 give strong evidence
that the validation procedure fails in this case, where the input sequences do not
satisfy the randomness assumption. For λ > 10 graphs of both tests even collapse in
a single dot in the upper left corner and, thus, are not reported here.

6.5.3.4 Conclusions

Summarizing, in this section (§6.5.3) we have considered a concrete realization
of the high-level validation procedure presented in §6.5.1. First we have verified
that, when the underlying null hypothesis on the test itself (Table 6.9) is satisfied,

19A future work should analyse how much the Gumbel approximation in Equation (6.17) is correct
for high values of λ .

20A more detailed description of the LCGs is given in §A.8. Here it suffices to know that an
LCG is a PRNG initialized by a seed and is defined by a set of three parameters: a multiplicative
constant, an additive constant and a modulus, which in the specific case of the Microsoft LCG are
A = 214013,B = 2531011 and m = 231, respectively.
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(a) λ = 7, DECT-W Test
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(c) λ = 8, DECT-W Test
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(d) λ = 8, DECT-Q Test
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(e) λ = 9, DECT-W Test
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(g) λ = 10, DECT-W Test
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Fig. 6.8 LCG sequences, p-value CDF, λ ∈ [7,10]
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then the validation procedure of the test is successful. Then, we have also shown
that (slightly) invalidating the null hypothesis or other underlying assumption (the
randomness of the sequences) can be enough to make the validation procedure fail.
In particular we have considered three different kinds of invalidation:

• in §6.5.3.1 we have invalidated the DECT-W Test definition, replacing the
exact computation of the acceptance region with its standard approximation.

• in §6.5.3.2 we have invalidated the DECT-Q Test definition, replacing the
computation of the p-value of the maximum absolute value of all the values
with that of the maximum value among the positive values.

• in §6.5.3.3 we have invalidated the random sequences generation process,
replacing the set of AES-based random sequences with a set of (non ideally
random) LCG-based ones.

We emphasize that all the mentioned modifications appear as minor ones (or even
legitimate). Nevertheless, we have shown that in all three cases the validation proce-
dure fails, thus proving to be quite sensitive to deviations from the null hypothesis
and other associated assumptions. Of course, it is possible that other discrepancies
from the null hypothesis can go undetected, but on the basis of our experiments we
feel quite confident concluding that the DECT-W Test and the DECT-Q Test are
correctly defined and implemented (and, thus, also the DECT Suite, which collects
H = l −11 instances for each test, see Equation (6.19)).

6.6 Linear Congruential Generators analysis

After its validation, we have applied the DECT Suite to many commonly used
TRNGs and PRNGs, comparing the results with those obtained with the NIST-STS
suite proposed by NIST (see §5.2) and with other suites (collections) of tests
(see §5.1). As expected for any suite (or single test), the DECT Suite is more
effective on some classes of generators and less on others. In particular, in an on-
going joint work with Edoardo Signorini, we have used the DECT Suite on many
different LCGs (see §A.8) and observed that it performs very well with most pa-
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rameter choices, including those reported in Table A.521. In §6.6.1 we describe the
application of the DECT Suite on the Microsoft Visual C++ LCG and compare the
results with those obtained by applying the NIST-STS on the same generator. Then,
in §6.6.2, we extend the analysis to generators with much larger parameters and
consider other test suites as well.

6.6.1 Microsoft Visual C++ LCG

In Figure 6.9 we report the results of the DECT Suite applied to sequences of different
length produced by the Microsoft Visual C++ LCG, see Table A.5. In detail, a single
100,000,000-bit long file (named MS-LCG-100Mb) was initially generated, from
which three files (named MS-LCG-16, MS-LCG-19 and MS-LCG-22) were derived
by truncating the first file to the desired length (216, 219 and 222, respectively).

We observe that with L = 216, Figure 6.9a, the DECT Suite does not reveal
any statistical anomalies (a single W1 tag which is not meaningful, as discussed
in §6.4). However, when we move to L = 219, Figure 6.9b, and even more to L = 222,
Figure 6.9c, we gain strong evidence of non-randomness of the analyzed sequence,
with the appearance of high-index tags (we recall from §6.4 that a W < t > or
Q < t > tag corresponds to a Type I Error probability smaller than 10−t).

The above observations imply that, at least for certain classes of LCGs, the DECT
Suite can be used as a distinguisher, that is, an algorithm capable of identifying
statistical irregularities in LCG sequences which are not present in ideal random
data22. To support this claim, we conducted the following experiment. First we
generated 100 sequences, consisting of 50 produced with AES-GCM (and, thus,
assumed to behave as ideally random) and 50 with the Microsoft Visual C++ LCG23.
Then, we analyzed all of them using the DECT Suite, having (arbitrarily) established

21We recall that it is well-known that LCG-generated sequences have good but non optimal
statistical behaviour, see §A.8 and §6.5.3.3, hence, it makes sense that a statistical test is able to detect
some anomalies.

22At the moment it is not clear to us on which classes of LCGs the test is effective. Based on some
experiments, we can hypothesize that, in its current form, the test works well only when the modulus
is a power of 2 (which, by the way, is by far the most common practical case). It is reasonable that,
properly modifying the block length (currently set to 2λ , see §6.1), it can work with other values of
the modulus. However, this is an aspect that needs to be further investigated in future work.

23For completeness, we mention that the AES-GCM sequences were generated from 50 distinct
(key, nonce) pairs, and similarly, the LCG sequences were generated from 50 distinct seeds. For
further details on the mechanisms used and the applied methodology, refer to §A.7, §A.8 and §6.5.1.
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that the DECT Suite fails24 when it determines at least one tag with index greater
than or equal to 6 among all the W and Q values25. We verified that the DECT Suite
failed with all and only the sequences produced with the LCG (while, consequently,
it succeeded with all and only the sequences produced with AES-GCM), thus giving
evidence of the effectiveness of the DECT Suite as LCG distinguisher.

We also analysed the above-mentioned file MS-LCG-100Mb with the NIST-STS
suite. In Figure 6.10 we report an extract of the corresponding output. The suite
was configured to treat the 100,000,000-bit long file as a set of 100 sequences, each
1,000,000-bit long, according to the recommendations of [11]. Here we do not
detail the format of the output produced by the NIST-STS tests (see again [11], §5.7).
We just mention that, according to [11], §4.2.1, in our setting the NIST procedure
requires that at least 96 over 100 sequences are successful for all the tests but the
Random Excursion and the Random Excursion Variant tests, which, instead require
a 56 over 58 success rate. Column “Proportion” of Figure 6.10 clearly shows that
the considered file MS-LCG-100Mb passes the NIST-STS suite analysis.

Comparing Figures 6.9 and 6.10, we see that the DECT Suite detects the statistical
anomalies of the LCG-generated sequence based on the observation of the 219-bit
long file MS-LCG-19, while the NIST-STS suite does not catch any irregularities on
the much longer 100,000,000-bit (approximately 226.58-bit) file MS-LCG-100Mb.
Increasing the length of the sequence analyzed by the NIST-STS suite doesn’t seem to
yield significant improvements and, furthermore, it quickly becomes computationally
intractable (in addition to reporting computation errors). Therefore, based on the
conducted experiments, it seems that the DECT Suite performs (significantly) better
than the NIST-STS suite on the considered LCG.

6.6.2 Larger LCGs

To complete the analysis, we applied the DECT Suite to sequences produced by
LCGs with parameters significantly larger than the Microsoft LCG of §6.6.1. We

24Here by “failure” we mean that the application of the suite to a given sequence leads to conclude
that the sequence does not support the null hypothesis. Conversely, by“success” we mean that it does,
that is, the suite does not detect a statistical anomaly in the generation process.

25Strictly speaking, the probability of encountering such an index, under the null hypothesis of
uniformity, slightly increases with the length of the analysed sequence, since the number of λ values
considered (and thus of DECT-Q Tests and DECT-Q Tests) increases as well. However, since the
choice of index 6 as cut-off p-value is subjective, we don’t care about this minor uncertainty.
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F i l e ’MS−LCG−16 ’ o f s i z e 2^16 b i t s

λ |======== W =========|======== Q =========|
| | |

7 | 0 .1478 | 0 .5433 |
8 | 0 .0981 W1 | 0 .6407 |
9 | 0 .5893 | 0 .5269 |

10 | 0 .4786 | 0 .6898 |
11 | 0 .7424 | 0 .2018 |

(a) L = 216

F i l e ’MS−LCG−19 ’ o f s i z e 2^19 b i t s

λ |======== W =========|======== Q =========|
| | |

7 | 0 .9791 | 0 .0757 Q1 |
8 | 0 .1433 | 0 .0944 Q1 |
9 | 0 .7640 | 0 .5951 |

10 | 0 .0455 W1 | 0 .9941 |
11 | 0 .0036 W2 | 0 .9999 |
12 | 0 .0259 W1 | 0 .9625 |
13 | 0 .0002 W3 | 0 .0678 Q1 |
14 | 0 .0000 W9 | 0 .0010 Q3 |

(b) L = 219

F i l e ’MS−LCG−22 ’ o f s i z e 2^22 b i t s

λ |======== W =========|======== Q =========|
| | |

7 | 0 .0157 W1 | 0 .8674 |
8 | 0 .7705 | 0 .3343 |
9 | 0 .9034 | 0 .0237 Q1 |

10 | 0 .0008 W3 | 0 .0002 Q3 |
11 | 0 .0000 W9 | 0 .0000 Q7 |
12 | 0 .0000 W9 | 0 .0000 Q9 |
13 | 0 .0000 W9 | 0 .0000 Q9 |
14 | 0 .0000 W9 | 0 .0000 Q9 |
15 | 0 .0000 W9 | 0 .0000 Q9 |
16 | 0 .0000 W9 | 0 .0000 Q9 |
17 | 0 .0000 W9 | 0 .0000 Q7 |

(c) L = 222

Fig. 6.9 DECT Suite on LCG, m = 231
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RESULTS FOR THE UNIFORMITY OF P−VALUES AND THE PROPORTION OF PASSING SEQUENCES
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

g e n e r a t o r i s <MS−LCG−100Mb>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P−VALUE PROPORTION STATISTICAL TEST
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 9 7 7 11 7 11 9 16 13 0 .574903 98 /100 Frequency
11 7 7 7 8 13 12 22 8 5 0 .009535 100/100 BlockFrequency
15 4 8 7 13 8 12 11 11 11 0 .401199 98 /100 Cumulat iveSums

7 15 9 9 9 7 14 9 15 6 0 .319084 98 /100 Cumulat iveSums
15 9 16 10 10 10 10 3 11 6 0 .171867 99 /100 Runs

5 7 11 12 8 16 9 13 10 9 0 .437274 99 /100 LongestRun
9 10 11 11 15 9 7 9 12 7 0 .816537 97 /100 Rank

15 14 9 7 13 7 14 5 8 8 0 .224821 100/100 FFT
10 9 11 9 9 11 9 8 11 13 0 .991468 98 /100 NonOver lapp ingTempla te
12 13 7 8 8 13 8 11 11 9 0 .867692 99 /100 NonOver lapp ingTempla te
12 17 9 7 6 8 6 11 13 11 0 .275709 98 /100 NonOver lapp ingTempla te
10 8 17 13 12 5 11 3 7 14 0 .055361 99 /100 NonOver lapp ingTempla te

[ . . . ]

3 11 14 13 7 11 11 11 14 5 0 .171867 100/100 NonOver lapp ingTempla te
6 13 7 10 15 13 14 10 6 6 0 .236810 100/100 NonOver lapp ingTempla te

10 8 8 7 12 10 12 11 12 10 0 .964295 100/100 NonOver lapp ingTempla te
13 9 6 9 11 7 4 9 18 14 0 .080519 99 /100 O v e r l a p p i n g T e m p l a t e
12 12 9 9 10 6 10 15 11 6 0 .657933 100/100 U n i v e r s a l
15 9 13 11 8 7 13 7 9 8 0 .616305 100/100 Approx ima teEn t ropy
10 5 5 7 5 5 5 4 7 5 0 .657933 56 /58 RandomExcurs ions

5 5 7 8 7 3 6 5 5 7 0 .816537 58 /58 RandomExcurs ions
7 4 11 3 4 3 4 9 9 4 0 .051942 57 /58 RandomExcurs ions
8 4 11 4 8 7 3 9 2 2 0 .020548 58 /58 RandomExcurs ions
6 6 4 7 4 6 9 5 4 7 0 .739918 57 /58 RandomExcurs ions
5 8 4 5 3 4 7 9 3 10 0 .171867 58 /58 RandomExcurs ions
6 5 3 6 5 5 9 5 4 10 0 .383827 58 /58 RandomExcurs ions
6 4 4 4 7 7 6 10 3 7 0 .419021 56 /58 RandomExcurs ions
6 8 7 5 6 5 4 3 6 8 0 .739918 58 /58 RandomExcur s ionsVar i an t
8 5 7 2 6 7 4 6 7 6 0 .657933 58 /58 RandomExcur s ionsVar i an t
6 5 11 3 1 6 6 6 9 5 0 .085587 57 /58 RandomExcur s ionsVar i an t
8 3 5 8 3 5 5 8 5 8 0 .455937 55 /58 RandomExcur s ionsVar i an t
8 6 2 5 8 5 5 6 5 8 0 .574903 57 /58 RandomExcur s ionsVar i an t
7 3 6 8 9 5 5 4 6 5 0 .616305 57 /58 RandomExcur s ionsVar i an t
8 4 4 7 11 1 3 9 9 2 0 .007694 57 /58 RandomExcur s ionsVar i an t
6 8 4 5 6 7 4 6 5 7 0 .883171 57 /58 RandomExcur s ionsVar i an t
4 5 9 5 5 6 5 6 6 7 0 .851383 57 /58 RandomExcur s ionsVar i an t
8 6 6 3 9 5 6 8 4 3 0 .419021 57 /58 RandomExcur s ionsVar i an t
7 2 6 11 4 6 6 5 7 4 0 .236810 57 /58 RandomExcur s ionsVar i an t
7 5 2 7 5 13 6 4 8 1 0 .010237 57 /58 RandomExcur s ionsVar i an t
7 4 5 10 2 9 4 6 4 7 0 .191687 57 /58 RandomExcur s ionsVar i an t
3 5 4 6 12 9 5 5 4 5 0 .108791 58 /58 RandomExcur s ionsVar i an t
4 3 4 6 7 8 11 6 7 2 0 .122325 58 /58 RandomExcur s ionsVar i an t
4 3 4 6 10 3 8 6 10 4 0 .108791 57 /58 RandomExcur s ionsVar i an t
5 3 9 3 6 7 7 4 4 10 0 .213309 58 /58 RandomExcur s ionsVar i an t
6 7 5 6 3 6 5 9 7 4 0 .699313 58 /58 RandomExcur s ionsVar i an t

15 8 8 10 6 7 13 15 8 10 0 .383827 99 /100 S e r i a l
7 16 8 8 7 8 12 12 14 8 0 .401199 97 /100 S e r i a l

13 11 10 10 9 11 11 10 10 5 0 .924076 100/100 L i n e a r C o m p l e x i t y

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
The minimum p a s s r a t e f o r each s t a t i s t i c a l t e s t w i th t h e e x c e p t i o n o f t h e
random e x c u r s i o n ( v a r i a n t ) t e s t i s a p p r o x i m a t e l y = 96 f o r a
sample s i z e = 100 b i n a r y s e q u e n c e s .

The minimum p a s s r a t e f o r t h e random e x c u r s i o n ( v a r i a n t ) t e s t
i s a p p r o x i m a t e l y = 55 f o r a sample s i z e = 58 b i n a r y s e q u e n c e s .

For f u r t h e r g u i d e l i n e s c o n s t r u c t a p r o b a b i l i t y t a b l e u s i n g t h e MAPLE program
p r o v i d e d i n t h e addendum s e c t i o n o f t h e d o c u m e n t a t i o n .
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

Fig. 6.10 NIST-STS on LCG, m = 231
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considered several LCGs with increasing module size (power of 2) and randomly
chosen (multiplicative and additive) constants, satisfying the constraints expressed
in §A.8 to guarantee the maximum period.

Moreover, in addition to the DECT Suite, we selected other suites in order to
compare their performances with those of the DECT Suite on the extended set of
LCGs. In particular, among those mentioned in §5.1, we excluded Knuth’s suite due
to its current limited usage and Diehard since it is included in Dieharder. Instead, we
opted to retain PractRand, gjrand, TestU01, and Dieharder as they are widely used
or strongly emerging tools in the cryptographic community.

With regard to the NIST-STS suite, we were not able to include it in our broader
analysis. As expected, we observed that in general the use of larger LCG modulus
values results in a substantial increase in file sizes for the input sequences in order to
make biases detectable. Unfortunately this rendered the NIST-STS suite impractical
due to the associated computational complexity and the increased probability of
calculation errors. Thus, we had to exclude the NIST-STS from analysis involving
sequences significantly longer than those considered in §6.6.1, that is, 100,000,000
bits.

The comparison between the suites was conducted as follows. For each suite and
each LCG, a sequence was generated by iteratively evolving the generator internal
state, which was initially seeded with an arbitrary value. At each step, the block
made of the 16 most significant bits of the resulting internal state were extracted
and appended to the previous block, gradually extending the length of the sequence.
During the generation process, at each doubling of the sequence length, the suite was
applied to the obtained sequence. If a statistical anomaly was detected, according
to the (arbitrary) criterion that at least one p-value produced by the suite on the
sequence was less than 10−6, the generation was stopped and the sequence was
deemed to be non-random. Alternatively, the process ended when the length of the
sequence reached 8Tb without any statistical bias being detected, and the sequence
was considered random.

We were interested in observing whether the suite was capable of detecting the
statistical anomaly of the selected LCG and, if so, how long the considered sequence
needed to be. In Table 6.10 a summary of the obtained results is provided. Among
the generator parameters, only the modulus is reported (first column) because in our
experiments we observed that results are largely independent of the multiplicative and
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Minimum size for failure (base-2 logarithm)
Modulus size DECT Suite PractRand gjrand TestU01 Dieharder

32 18 22 27 30 41
40 21 28 27 30 not found
48 24 28 27 30 not found
56 25 30 27 30 not found
64 26 33 30 40 not found
72 28 35 33 not found not found
80 30 38 37 not found not found
96 31 43 not found not found not found
112 33 not found not found not found not found

Table 6.10 Test suites comparison on LCGs

additive constants (when properly chosen, according to the conditions for maximum
period given in §A.8)26. Then, in the following columns, we report the results of
DECT Suite, PractRand, gjrand, TestU01 and Dieharder. For each combination of
suite and modulus, the minimum length of the sequence for which the suite was able
to detect a statistical irregularity is reported, expressed for simplicity through its
base-2 logarithm27. The label “not found” in red, instead, indicates that the suite
failed to recognize the imperfect randomness of the sequence (within a sequence
length limit, set to 243 bits), despite the sequence being produced by a non-ideally
random generator (namely, a LCG).

From the preliminary results reported in Table 6.10 it appears that, in the specific
case of the LCGs, the DECT Suite performs significantly better than the other
considered suites, that is, it needs (much) shorter sequences to detect the statistical
anomaly of the random generator. The exact reasons behind the reported results are
currently under examination and, in fact, a possible future direction of work could
be to gain a better understanding of the relation between the DECT Suite and the
LCGs structure.

26For each set of parameters, we conducted multiple experiments with different seeds. Obviously,
results vary from experiment to experiment, but we observed that the average values (reported here)
do not seem to be significantly affected by the choice of parameters, for a given modulus.

27For the sake of completeness, we note that gjrand, TestU01 and Dieharder can only perform
analyses on pre-defined sizes of input sequences. Specifically, gjrand handles only the following
lengths: 27, 30, 33, 37, 40, 42, while TestU01 exclusively allows the following lengths: 30, 40, 43
and, finally, Dieharder only 41 (lengths are still expressed in bits through their base-2 logarithm).



170 A new hypothesis test suite

6.7 DECT Suite open points

While the definition of the suite is complete (§6.3), appears well validated (§6.5),
and also yields concrete results (§6.6), several points have emerged during the
development of the chapter that would benefit from further exploration. A short list
of possible objectives for future works follows.

• To fully understand why the DECT Suite is (so) effective on the LCGs we
have tested;

• to adapt the DECT Suite to LCGs whose modulus is not power of 2;

• to investigate the relation among the outputs corresponding to different values
of λ for the DECT-W Test and the DECT-Q Test;

• to analyse more in depth the behaviour of the DECT-W Test and the DECT-Q
Test on the border cases, both of λ and of the p-value, checking if the employed
approximations work as accurately as expected;

• to increment the maximum size of Table 6.10. At the moment, we had to
stop at 112 as maximum modulus size, due to the computational complexity
required, since the current DECT Suite implementation is not able to deal with
sequences longer than 234 bits. However, it is conceivable that by working on
the implementation of the suite, we may achieve better results (the first target
being obviously 128, which seems to be within reach observing Table 6.10);

• to study whether, for a fixed modulus size, the effectiveness of the DECT Suite
can be influenced by the choice of the parameters of the LCG. Preliminary
experiments seem to reject this hypothesis, in that even the parameters pro-
posed in [56], which show higher quality in certain regards, do not appear to
yield different results compared to randomly generated ones. However, a more
in-depth analysis could certainly provide different insights;

• to apply the DECT Suite to the Lehmer generators, a specific and interesting
case of LCG introduced in §A.8.



Chapter 7

Conclusions

The purpose of this dissertation is to further investigate the use of hypothesis testing
applied to the validation of random number generators, with a specific focus on
cryptography.

The field of cryptography is indeed highly demanding in terms of the quality
of randomness involved, as it directly impacts the generation of encryption keys
and other relevant parameters. It is no coincidence that a significant number of
cryptographic system failures can be attributed to poor utilization of randomness. In
Chapter 1, we provide a brief list of well-known randomness-related failure examples
along with other fundamental concepts, like TRNGs and PRNGs.

It is therefore essential to have reliable tools for verifying the quality of random
number generators. One commonly used tool is hypothesis testing and the related
concept of p-value, which allows for an assessment of a certain null hypothesis about
the random generator (typically assuming that the produced sequences are uniformly
distributed and independent). Usually, the probability distribution underlying the null
hypothesis is continuous or assumed to be well approximated by a continuous distri-
bution (often chosen from a limited set of common and well-studied distributions),
making the analysis more manageable. These tools are described in Chapter 2.

From Chapter 3 to Chapter 6, the original contribution of this dissertation is
presented, approaching the topic from different yet complementary perspectives: a
detailed analysis of the distribution of p-values in the discrete case (Chapter 3), an
abstract generalization of the concept of hypothesis testing (Chapter 4), an examina-



172 Conclusions

tion of the NIST standard test suite (Chapter 5), and finally, a concrete proposal of a
hypothesis test and validation methodology (Chapter 6).

In particular, in Chapter 3 it is initially observed that in the case of random
number generators, the null hypothesis is based on an underlying discrete probability
distribution. Consequently, the common approximations with continuous distribu-
tions, while highly effective in many other contexts, are here not entirely precise.
Throughout the chapter, we derive general results on the distribution of p-values for a
given test, based on the underlying data distribution (i.e., the probability distribution
of the input samples to the test). We investigate three cases, progressively refining
the definitions: the first case considers no constraint on the data distribution, the
second case assumes an arbitrary but fixed data distribution, and finally, the third case
focuses on a uniform data distribution. The latter case holds particular significance
for us as it encompasses random number generators that follow a uniform probability
distribution. Based on this analysis, we also explore the possibility (suggested by
NIST) of utilizing the alleged uniformity of the p-value distribution for an arbitrary
test to construct an analysis procedure for multiple samples. In this regard, we note
that the mentioned uniformity holds in the continuous case but only approximately in
the discrete case. We present counterexamples and derive conditions for (cautiously)
applying it to the discrete case.

In Chapter 4, we construct a more abstract and general model of hypothesis
testing compared to its conventional description. Essentially, we identify a hypothesis
test with a partition of the sample space into two subsets: one corresponding to all
the samples that support the null hypothesis and the other corresponding to all
the samples that reject it. Subsequently, we characterize various properties of the
described model and we elaborate on the interpretation of concretely implementable
tests as specific instances of the general framework.

Later, building upon the results of the previous chapters, in Chapter 5 we thor-
oughly analyze specific aspects of the statistical test suite proposed by NIST, demon-
strating that certain strategies, suggested for analyzing sequences produced by ran-
dom number generators, are not entirely accurate. This is primarily due to the
reliance on assumptions regarding the continuity of the data distribution, which are
only approximately valid in the discrete setting.

Finally, in Chapter 6, we construct a simple hypothesis test suite for random
generators, named DECT Suite, providing a detailed analysis of the resulting distribu-
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tions of p-values and establishing a methodology for verifying the correct definition
and implementation of the suite. Additionally, we observe that the DECT Suite,
despite its simplicity, proves to be surprisingly effective against a well-known and
widely used class of PRNG, namely the LCGs (not recommended for cryptographic
purposes). Remarkably, in this specific case, the DECT Suite appears to be even
more effective than the most used test suites.



Appendix A

Useful concepts

This appendix contains basic notions about some concepts used throughout the
previous chapters, with the only purpose to provide a quick high-level reference to the
relevant topics. In particular, the addressed elements are from the fields of Probability
Theory (from §A.1 to §A.5), Information Theory (§A.6) and Cryptography (§A.7
and §A.8).

A.1 Random variables

Given a random experiment, let S be its sample space, that is, the set of all possible
outcomes. A random variable X is a function mapping the sample space to a real
number.

X : S → R

A random variable can be discrete, if X(S) (that is, the set of possible values of X) is
finite or countably infinite, or continuous, if it is uncountably infinite.

Given a random variable denoted by X , we typically indicate by x its realization,
that is the observed value of X in a specific experiment.

See [12] and [57] for a more in-depth introduction to the topic.



A.2 Probability distribution 175

A.2 Probability distribution

A probability distribution is associated to the random variable X . It describes the
set of all possible values of the variable and their associated probabilities, providing
a complete representation of how likely each value is to occur. A probability
distribution is said discrete or continuous according to the nature of the associated
random variable.

For a detailed and comprehensive treatment of the topics of this section (§A.2),
see [12] and [57].

A.2.1 Cumulative Distribution Function (CDF)

A way to describe the distribution of a random variable X , both for discrete and
continuous case, is through its CDF, defining the probability that it takes values less
than or equal to any given value.

Definition 15. Given a random variable X, its CDF FX(x) is defined as

FX(x) = Pr(X ≤ x)

A.2.2 Probability Mass Function (PMF)

Equivalently, in the discrete case, the probability distribution of X can be given by
its PMF, defining the probabilities of occurrence of all the possible outcomes.

Definition 16. Given a discrete random variable X, whose set of possible outcomes
is X(S) = {x1,x2, . . .}, its PMF fX is defined for a given xi as

fX(xi) = Pr(X = xi)

that is, the probability that the random variable X takes the value xi.

CDF and PMF for a discrete random variable are linked by the following relation:

FX(x) = ∑
xi≤x

fX(xi)
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A.2.3 Probability Density Function (PDF)

For the continuous case, however, a different approach is required, since continuous
random variables are not defined at specific values. Instead, they are defined over
intervals of values (and the probability of observing a specific value is 0), and can be
described by their probability density function.

Definition 17. Given a continuous random variable X, its PDF fX(x) is defined as

fX(x) =
d
dx

FX(x)

The above relation can be inverted as

FX(x) =
x∫

−∞

fx(t)dt

Thus, given two arbitrary a and b, we have the following useful relation:

Pr(a ≤ X ≤ b) =
b∫

a

fX(x)dx

We observe that the same notation fX is used both for the PMF and the PDF, because
the meaning of the two functions is similar. However no confusion arises, because
they refer to two distinct contexts (discrete and continuous variables).

A.3 Statistical measures

Many statistical measures can be associated with a random variable. The three most
commonly used are mean, variance and standard deviation. All of them play a crucial
role in characterizing probability distributions and understanding the behavior of
random variables.

For a detailed introduction to the concepts of this section (§A.3) refer to [12] and
[57].
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A.3.1 Mean

The mean (or expected) value of a random variable X , denoted by µX , serves as a
measure of its central tendency, indicating where the average value of the variable is
located. If X is a discrete random variable, then

µX = E(X) = ∑
xi∈X(S)

fX(xi)xi

If X is a continuous random variable, then X(S) coincides with the real axis and

µX = E(X) =
∫

∞

−∞

x fX(x)dx

A.3.2 Variance

The variance of a random variable X , denoted by σ2
X , quantifies the spread or

dispersion of a random variable’s probability distribution, providing information
about how the values of the variable deviate from their mean or expected value.
variance is defined as

Var(X) = σ
2
X = E((X −µX)

2)

In the discrete setting this means

Var(X) = ∑
xi∈X(S)

(xi −µX)
2 fX(xi)

while in the continuous setting we have

Var(X) =

∞∫
−∞

(x−µx)
2 f (x)dx

A.3.3 Standard Deviation

The standard deviation of a random variable X , denoted by σX , is calculated as the
square root of the variance.

σX =
√

Var(X)
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It provides a measure of the average distance between each value of X and the mean
µX , indicating how much the values globally deviate from the average. With respect
to the variance, the standard deviation allows for a more intuitive interpretation of the
spread of a distribution, as it is expressed in the same units as the random variable
itself, resulting more user-friendly and easier to interpret.

A.4 Relevant distributions

Here we briefly consider the probability distributions referred to in the previous
chapters. In fact, all of them belong to more general distributions families, which
can be specified through the use of one or more distribution parameters, as shown
below. For each family of distributions, we report the distribution parameters, the
support (that is, the set of all possible values for which the probability of occurrence
is positive) and the most relevant statistical measures, namely mean, variance, PMF
or PDF, and CDF.

For a thorough analysis of the distributions considered in this section (§A.4) see
[12] and [57] and, specifically for §A.4.4, also [55].

A.4.1 Discrete Uniform Distribution

The discrete Uniform Distribution U describes the setting where a finite number
of values from a given interval ([a,b]) can be observed with equal probability. It is
typically indicated as U(a,b).
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• Parameters: a,b ∈ N, with a ≤ b; n = b−a+1;

• support: k ∈ [a,b]⊂ N;

• mean:
a+b

2
;

• variance:
n2 −1

12
;

• PMF:
1
n

, for any k;

• CDF:
k−a+1

n
, for any k.

Table A.1 Discrete Uniform Distribution

A.4.2 Binomial Distribution

The binomial distribution is a discrete probability distribution that models the number
of successes in a fixed number (n) of independent Bernoulli trials, where each trial
has the same probability of success (p). It is typically indicated as B(n, p).
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• Parameters: n ∈ N, p ∈ [0,1]⊆ R;

• auxiliary parameter: q = 1− p;

• support: k ∈ {0,1, . . . ,n}= number of successes;

• mean: np;

• variance: npq;

• PMF:
(n

k

)
pkqn−k;

• CDF:Iq(n− k,1+ k), where Iq is the regularized beta function.

Table A.2 Binomial Distribution

A.4.3 Normal Distribution

The normal distribution, also known as the Gaussian distribution or bell curve, is a
continuous probability distribution that is symmetric and characterized by its mean
(µ) and variance (σ2). It is typically indicated as N (µ,σ2).

• Parameters: µ ∈ R, σ2 ∈ R+;

• support: x ∈ R;

• mean: µ;

• variance: σ2;

• PDF:
1

σ
√

2π
e−

1
2 (

x−µ

σ
)2

;

• CDF:
1
2

[
1+ er f

(
x−µ

σ
√

2

)]
, where er f is the error function.

Table A.3 Normal Distribution
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Among many useful facts about the Normal Distribution, the following two are
especially relevant and have been used through the dissertation.

A.4.3.1 Normal Distribution approximation to the Binomial Distribution

Under certain conditions, the Normal Distribution provides a good approximation
to the Binomial Distribution. More precisely, given B(n, p), with q = 1− p, the
following approximation holds:

B(n, p)∼ N (np,npq)

provided that
np ≥ 10,nq ≥ 10 (A.1)

as a rule of thumb1.

A.4.3.2 Standard Normal Transformation

The Standard Normal Transformation converts a normally distributed random vari-
able to the Normal Standard Distribution, which is easier to manage, since it has
well-known properties and established tables.

Given a normally distributed random variable X ∼ N (µ,σ2), the Standard
Normal Transformation determines a new variable Z as follows:

Z =
X −µ

σ

Z is centered at µZ = 0 and has variance σ2
Z = 1, that is, Z ∼ N (0,1).

A.4.4 Gumbel Distribution

The Gumbel distribution, also known as the Type I Extreme Value distribution, is
a continuous probability distribution commonly used, under certain conditions, to
model the maximum value in a set of random variables. The Gumbel distribution has

1In literature it is often suggested the alternative condition np ≥ 5,nq ≥ 5. We prefer the form
given in Equation (A.1), as more conservative.
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an asymmetric, right-skewed, single-peaked shape with a long tail extending to the
right. It is characterized by two parameters, namely the location (µ) and the scale
(β ), and is typically indicated as G(µ,β ).

• Parameters: µ ∈ R, β ∈ R+;

• auxiliary constant: γ ≈ 0.57721, the Euler-Mascheroni constant;

• support: x ∈ R;

• mean: µ +βγ;

• variance:
π2β 2

6
;

• PDF:
1
β

e−( x−µ

β
+e

− x−µ

β );

• CDF: e−e
− x−µ

β .

Table A.4 Gumbel Distribution

In [55], pp. 3− 9, it is proven, in particular, that the Gumbel distribution is
a good approximation for the maximum of a set of n independent variables with
identical CDF F . In this setting, it is also estimated the value of the distribution
parameters, as:

µ = F−1
(

1− 1
n

)
,β = F−1

(
1− 1

ne

)
−µ

A.5 χ2 Goodness of Fit Test

A goodness-of-fit test [25], [26], [27] is an hypothesis test used to determine how
well a sample of observed data fits a specific theoretical distribution. It assesses
whether the observed data significantly deviate from the expected distribution. One
commonly used goodness-of-fit test is the chi-square test.
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The chi-square (χ2) test compares the observed frequencies in a finite number of
different categories with the expected frequencies based on a theoretical distribution.
It produces a p-value which measures the discrepancy between the observed and
expected frequencies.

The test works as follows. Given k possible outcomes (categories) and the
corresponding probabilities pi, i = 1,2, . . . ,k, hypothesized according to the null
hypothesis, the vector (Ei = npi, i = 1,2, . . . ,k) represents the expected counts for
n observed samples. Moreover, let (Oi, i = 1,2, . . . ,k) the vector of the observed
values. Then the χ2 statistics can be computed as follows:

χ
2 =

k

∑
i=1

(Ei −Oi)
2

Ei

Then a p-value can be associated to the obtained χ2 statistics. The p-value is a
function of the χ2 value and of another parameter r (the number of degrees of
freedom), which in our setting is simply r = k − 1. Here it is not of interest to
delve into the details, which can be found for instance in [12], p. 760, and on most
statistical books. We just mention that the computation of the p-value is available on
most specialized software tools and on various online resources.

A commonly accepted criterion for the application of a χ2 test is that each
expected value (Ei in Equation (A.5)) is at least 5:

Ei ≥ 5, i = 1,2, . . . ,k

A.6 Entropy

In the context of information theory, entropy is a fundamental concept that mea-
sures the uncertainty or information content of a random variable or a probability
distribution. Measuring the uncertainty (that is, the randomness) is a quite subtle
task, due to the elusive nature of the randomness. Thus, not surprisingly, many
different definitions of entropy are in use, the most commonly used being probably
the Shannon Entropy, which is typically defined for discrete random variables2.

2Extension of the Shannon Entropy to the continuous case is possible, but it requires appropriate
mathematical and interpretive treatment and is not useful in this context.
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Definition 18. Given a discrete random variable X, the Shannon Entropy H(X) is
defined as:

H(X) =− ∑
xi∈X(S)

fX(xi) log2 fX(xi)

where fX is the PMF defined on the set of possible outcomes {x1,x2, . . .}.

Refer to [58] and [59] for an in-depth analysis of the concept of entropy.

A.7 AES

AES is a widely used symmetric encryption algorithm that provides a high level
of security for protecting sensitive information, specified by NIST in [60]. More
precisely, AES is a block cipher, that is, it transforms plaintext data into ciphertext
data, operating on fixed-size (128 bits) blocks of data and employing a (secret) key
(128,192 or 256 bits) to perform the encryption and decryption processes. Despite
being block-oriented, there are many ways a block cipher can be converted into a
PRNG (see §1.3.2), able to produce (virtually) endless pseudo-random sequences.
Among them, a commonly used method, mentioned in the previous chapters, is the
Galois Counter Mode (GCM) defined in [61]. When used in combination with AES,
it is referred to as AES-GCM. Depending on the key3 and on another random value
(referred to as nonce), AES-GCM produces sequences (also known as keystreams)
which are believed to be (for any practical purpose) indistinguishable from random
data. We observe that these sequences do not depend on the plaintext data but only
on the key and the nonce4. Moreover, AES-GCM ensures that, given two different
(key, nonce) pairs, the corresponding sequences are considered (for any practical
purpose) independent of each other.

A good introduction to cryptography, and in particular to AES, can be found in
[62] and [31].

3We note that for cryptographic application it is assumed that the key is kept secret. However,
when AES is used as a building block to produce a (strong but not crypto-oriented) PRNG, this
requirement can be relaxed.

4In practice, when AES-GCM is used to encrypt/decrypt data, the output keystream is bitwise
xor-ed with the plaintext to produce the ciphertext. Vice versa, in order to decrypt the ciphertext, it is
bitwise xor-ed with the keystream to produce back the plaintext.
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A.8 Linear Congruential Generators

LCGs are class of PRNG which produce random-looking sequences of numbers
based on a linear recurrence relation. More precisely, given an initial seed, they
repeatedly multiply a previous number by a constant, add another constant, divide
by a modulus and take (some selected bits of) the remainder as output.

Formally, a LCG is then defined by three integer constants:

• a modulus m, with 0 < m;

• a multiplicative constant a, with 0 < a < m;

• an additive constant c, with 0 ≤ c < m;

Given a seed X0, the internal state Xi evolves according to the following linear
recurrence:

Xi+1 = (aXi + c) mod m

LCGs are widely used in scenarios where efficiency and simplicity are prioritized
over advanced statistical properties (for instance, they are often used in Monte Carlo
simulations [33], [34]). In fact, they exhibit some statistical weaknesses that make
them unsuitable for direct use in cryptography, but they can be found as components
in more complex cryptographic systems.

Careful consideration should then be given to selecting appropriate constants
values, since they can impact on the quality of the generated sequence in terms
of randomness and statistical properties. In particular, it is well known that the
maximum period (m) is obtained for c ̸= 0 if and only if the following three conditions
hold:

• m and c are coprime;

• all prime factors of m divide a−1;

• if 4 divides m then 4 divides a−1.

LCGs have been proposed with many set of constants. Three among the most
commonly used are given in Table A.5, where the fourth column contains the number
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of (most significant) bits of the internal state taken as output at each step. All the
listed LCGs satisfy the above requirements for maximum period (231).

Generator m (modulus) a (multiplier) c (increment) n (output size)
Microsoft Visual C++ 231 214013 2531011 15

Borland C 231 22695477 1 15 or 31
ANSI 231 1103515245 12345 15

Table A.5 Some common LCGs

In the specific case where the additive constant is zero, c = 0, the resulting
generator is called Lehmer generator [63], also known as Park–Miller generator [64].

The Lehmer generator is attractive because simpler to implement, but it requires
more attention in choosing the parameters. Specifically, the maximum period (m-1)
is achieved when m is prime, a is a primitive root modulo m, and finally, the seed X0

is coprime with m.
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