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A B S T R A C T

Post-earthquake surveys represent a fundamental tool for managing the emergency phase after
a strong earthquake. In Italy, the evaluation of the post-earthquake functionality of ordinary
buildings is based on the AeDES forms (Agibilitá e Danno nell’Emergenza Sismica, or equivalently,
Rapid Post-Earthquake Damage evaluation forms). This form includes information on the
building and records of the observed damage classified according to type and intensity in 60
subclasses. Based on the observed damage and expert judgment, the buildings are clustered into
six risk classes, from A to F. The assigned class is used to calculate the maximum economic
reimbursement owed for the reconstruction or repair of the building. However, often the
cluster assignment is not entirely objective due to the inherent responsibility associated with
a less conservative assessment. This paper uses the data from the 2009 L’Aquila earthquake
to develop classification models based on multinomial logistic regression (MLR) and artificial
neural networks (ANN) calibrated with data theoretically less influenced by personal biases.
The proposed models, particularly the MLR, are intended to support the decision-making of the
evaluation team in future updates of the AeDES forms. This approach cannot substitute expert
evaluation, which is always necessary for complex scenarios but may mitigate the impact of
subjectivity and can provide an indication of the expected outcome of the survey.

1. Introduction

Post-earthquake surveys are crucial in managing the emergency phase following a strong earthquake. The post-earthquake
surveys have two main objectives: (i) providing information on the functionality of the building and (ii) giving a summary assessment
of the damage, which is then used to calculate the maximum economic reimbursement that the state would provide for the
reconstruction or repair of the building. In Italy, this evaluation is based on the AeDES forms. This form is used for field damage
and safety assessments of buildings in the aftermath of earthquakes [1]. The AeDES forms drive the evaluator to a synthetic class
assignment, from A to F, expressing the risk level associated with the risk state of the building. Nonetheless, the above classification
is not automatic and somewhat subjective because based mainly on expert judgment. The complexity of post-earthquake scenarios
cannot always be pigeonholed into short forms. The emergency phase demands rapid evaluations. Therefore, the AeDES forms,
keeping a simple structure useful for quick assessments, cannot comprehend all scenarios that require the licensed practitioner’s
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evaluation. Nonetheless, leaving room for subjectivity can favour non-uniformity in the evaluations. The reasons that lead to
different, subjective evaluations are mostly the followings:

• Different evaluators could interpret the same damage patterns differently, according to their working experience and
understanding of the structural behaviour of the building.

• The class assignment is directly related to the maximum economic reimbursement provided by the state for the reconstruc-
tion/repair [2]. This economic interest might bias the evaluation towards higher-risk classes in borderline cases.

Despite the possible bias, the data related to Italian earthquakes over the last 50 years, collected and organized on the Da.D.O.
eb-based platform, represent a unique exposure and vulnerability information source that could provide guidance for Disaster
isk Reduction (DRR) and prevention activities. Specifically, empirical damage data collected in post-earthquake surveys represent
valuable source of loss statistics, helpful in predicting the vulnerability of specific classes of assets to ground motion intensities

hat could occur in future events [3]. Additionally, the analyses of these databases are fundamental for defining the taxonomy
f evaluation forms [4,5] and understanding the vulnerability of existing buildings in seismic-prone areas highlighting specific
amage clusters [6,7]. For these reasons, most papers mining into these databases attempts to relate the typological characteristics
nformation to the observed damage.

The first studies on empirical damage data led to the definition of damage probability matrices (DPMs) [4], describing the
onditional probability of reaching a certain damage level due to a ground motion. This taxonomy was first applied by Braga et al. [5]
fter the 1980 Irpinia earthquake. Dolce et al. [8] added a new vulnerability class to consider improvements in the seismic behaviour
f buildings retrofitted or designed according to recent seismic design codes; Di Pasquale et al. [9] introduced a different parameter
o measure ground motion intensity. Several studies, based on the L’Aquila [10–15], Emilia [16–18], Centre Italy [19–21] and
schia [22,23] earthquakes, exploited the databases related to such earthquakes for empirical large-scale vulnerability assessments
nd, more recently to derive the Global Seismic Risk Maps [24]. However, such vulnerability assessments are highly heterogeneous
ecause they use several intensity measures to characterize the seismic intensity [25–28] and because the quality of the used loss
r damage databases is highly variable [29–35].

Despite the significant effort in understanding the vulnerability of Italian buildings from the enormous amount of post-earthquake
amage data collected after the seismic events, fewer studies attempted to understand the limits of the AeEDES forms, investigating
he uncertainty and subjectivity in the synthetic risk class assignment. Nicodemo at al. [36] attempted to mitigate the impact of
ubjective, expert-based judgment in the class assignment and provided a solid characterization of the underlying uncertainties using
fuzzy formulation. Specifically, they presented a methodology based on the fuzzy compatibility score to assign a risk-oriented

lass to each surveyed building, using the EMS-98 typologies as reference classification. Despite the high value of such research, the
uthors deem such a methodology challenging to apply in post-earthquake scenarios, where a rapid and straightforward evaluation
s needed. Human judgment cannot be entirely replaced by algorithmic approaches based on damage matrices due to the intrinsic
omplexity of damage patterns, which are difficult to express in a synthetic form. According to the authors, the extensive databases
f post-earthquake damage should be used to understand the limitations of the current clustering approach, trying to limit the
ubjectivity without substituting the human-based decision based on the damage matrices. The AeDES forms proved to be an efficient
ool in the post-earthquake phase.

This paper uses a database of 878 school buildings damaged by the 2009 L’Aquila earthquake to predict the synthetic class
ssignment provided by the evaluator, from A to E, using the damage information recorded in the AeDES form. The use of the sole
ata coming from the AeDES forms filled out for school buildings is based on the assumption that, being compiled by academic
xperts, such forms are less affected by personal biases.

The database is used for the following purposes:

• Calibration and validation of multinomial logistic regression (MLR) and artificial neural network (ANN) models to predict the
risk class assignment from the filled damage matrix data;

• Use of the developed models to investigate the possible issues behind the proposed class assignment and the proposal of
possible improvements, such as the reduction of the number of risk classes;

• Proposal of enhancing the current risk classes in the AeDES forms, providing the coefficients for MLR to support the evaluator’s
decision process. The calibrated model might be considered in future digital updates of the AeDES forms since it can be easily
implemented in spreadsheets to be filled on-site.

As anticipated, among the several possibilities available in the literature, two possible approaches are used in this paper to
evelop classification models. One approach is based on linear models or semi-linear models such as MLR [37], which have been
idely used to study engineering problems [38,39]. These models have their strength in their high explainability, which can lead to

dentifying the main drivers of the phenomenon being studied and application speed. For this case, specifically, using such models
ntails identifying the critical drivers of the classification process of the AeDES form that would be needed to propose a possible
implification of such form. However, linear approaches require manual feature engineering, a good understanding of the modelled
henomenon, and the choice of predictors that are linearly related to quantity to be predicted, which may be difficult to find.
he second approach is considering a deep learning method such as an ANN. Although such models are less explainable, their
ersatility allows them to cope with classification or regression tasks, and many ground-breaking variants have been developed
n the last decades. Additionally, depending on the number of output layers, ANNs are highly adaptable in working with binary
2

nd multinomial classification tasks. The architecture of the ANN determines the model complexity, the accuracy rate, and the
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Fig. 1. Illustration of the damage matrix in the AeDES form.

inclination to underfitting or overfitting issues. Therefore the ANN architecture should be carefully evaluated [40]. Nowadays,
within engineering research, the adoption of machine learning and pattern recognition techniques such as the ANN is continuously
growing, providing, also in civil engineering, new research perspectives [41–43]. In the current study, a multi-layer perceptron (MLP)
ANN with an optimized architecture is employed and compared to the before-mentioned MLR for analysing the class assignment in
the AeDES form.

The paper is organized as follows. After the general introduction to the problem and the mathematical background of MLR and
ANN, the authors provide insights into the considered database. The last sections present the class predictions’ results with the
proposed models. The discussion of the results led to the proposal of a class condensation discussed in the last section.

2. Problem background

This section first describes the most relevant sections of the AeDES form, then it introduces the characteristics of the
post-earthquake survey.

2.1. The AeDES form

The AeDES form consists of nine sections organized into three pages, with an additional fourth page that includes explanatory
notes. Specifically, Section 1 - BUILDING IDENTIFICATION contains information on the survey identification and building. Section 2
- BUILDING DESCRIPTION synthetically describes the structure (i.e., the total number of storeys including basements, the number of
basements, the average storey height and the average storey surface), the age of construction and the use of the building. Section 3
- TYPOLOGY details the characteristics of the structure, with a particular focus on masonry buildings. Section 4 - DAMAGE TO
STRUCTURAL ELEMENTS contains information on the observed damage, organized by damage location and intensity. Section 5 -
DAMAGE TO NON-STRUCTURAL ELEMENTS contains information on the observed damage on non-structural elements, organized by
damage location and intensity. Section 6 - OUTSIDE DANGER indicates possible danger induced by other buildings, networks, slopes
and emergency measures performed. Section 7 - SOIL AND FOUNDATIONS details the site’s morphology and possible instability of
the foundations. Section 8 - RISK CLASS indicates the assigned risk class. Section 9 - OTHER REMARKS contains a blank page to be
filled with possible additional notes of the evaluator.

Section 4 - DAMAGE TO STRUCTURAL ELEMENTS contains the information relevant to this study. The damage levels used in
such section of the AeDES form are discrete (EMS-98) and range from 𝐷0 (no damage) to 𝐷5 (total collapse); see Fig. 1. If a building
falls in damage class 𝐷1, the earthquake did not affect the capacity of the building nor the safety of the occupants due to failures
of non-structural components. The damage levels 𝐷2 −𝐷3 correspond to a significant capacity reduction, although the building did
not approach the collapse limit state. The damage classes 𝐷4 −𝐷5 correspond to a manifest capacity reduction, where the building
approached the collapse limit state.

Each damage class is divided into three subsections of the damage regarded as more than 2/3, the range 2/3-1/3, or less than 1/3
of the building extent. Since the evaluations are based on visual inspections, the damage matrix only accounts for visible damage.
According to the damage matrix, i.e., according to the type and extent of damage found in the building, it is possible to classify the
building as follows:

• A: Building accessible;
• B: Building temporarily unusable or useable only following emergency interventions;
• C: Partially Unusable building
• D: Temporarily unusable building to be re-examined;
• E: Unusable building;
3



International Journal of Disaster Risk Reduction 96 (2023) 103959A. Aloisio et al.

f
i
e
d
B
n
t
d

f
r
f
o
e

2

e
I
V
t
c
l
a
7

m
t
a
f
c

b
a

a
n
a
b

o
a
c
F
l

3

3

I
a
(

p

• F: Unusable building due to external risk only.

It is essential to note that while classes A, B, C, and E are directly related to the level of damage, indicating an increasing severity
rom A to E, classes D and F do not directly represent damage levels. Class D signifies that a repeated survey is required, making
t irrelevant to predict this outcome based solely on the damage matrix, as it depends on other circumstances. Class F represents
xternal risk, which means that this outcome is not directly related to the observed damage of the building itself but rather to the
amage to nearby buildings that may influence the safety of the surveyed building. As a result, the damage-related classes are A,
, C, and E. These classes will be predicted based on the information provided by the damage matrix. It is worth mentioning that
o analytical expression exists that directly relates the entries in the matrix to the final evaluation outcome. This paper calibrates
wo algorithms, MLR and ANN, which can predict whether the outcome will be A, B, C, or E based on the information filled in the
amage matrix by the engineer.

The risk classes, derived as the output of the AeDES form, are indeed related to the maximum reimbursement the state provides
or the reconstruction or repair of buildings, as previously mentioned. However, it is essential to acknowledge that this direct
elationship between the AeDES outcome and funding only occurred for the L’Aquila earthquake. The funding process differed
or subsequent earthquakes like Emilia, Centre Italy, and Ischia. In these later earthquakes, an additional parameter known as the
perational level, which considers the levels of damage and vulnerability, drives the conventional parametric cost assessment within
ach risk class provided by the AeDES forms.

.2. The post-earthquake survey

On April 6, 2009, a magnitude Mw = 6.3 earthquake struck central Italy in the proximity of L’Aquila [44]. The seismic
vent was recorded by the digital strong-motion stations operated by the Italian Strong Motion Network (RAN), managed by the
talian Department of Civil Protection (DPC) and by the broadband stations of the Italian National Institute of Geophysics and
olcanology (Istituto Nazionale di Geofisica e Vulcanologia, INGV) [45,46]. Visual surveys performed by experts immediately after

he earthquake [47] led to identifying the perimeter of the seismic crater, including 316 municipalities. The buildings in the seismic
rater, exhibiting macroseismic intensities greater than VI on the MCS scale, were inspected to assess their safety and functionality
evel. The AeDES form [1,48] is the first-level survey form for such post-earthquake assessment. Such a form is meant to provide
trade-off between the accuracy and rapidity of the evaluation. After the L’Aquila earthquake, the AeDES form was filled out for

4.254 buildings following in situ inspections.
Of the 74,254 buildings in the dataset, 80% are reinforced concrete (RC) or masonry buildings (12,223 RC buildings and 47,077

asonry buildings), and the remaining part corresponds to other structural types. In Section 3 of the AeDES form, there is a provision
o identify various structural typologies for buildings. For masonry structures, multiple options are available for different horizontal
nd vertical bearing structures, including isolated columns and mixed and reinforced masonry. On the other hand, the form offers
our options for non-masonry structures: reinforced concrete (RC) frames, RC walls, steel frames, and timber frames/walls. In this
ontext, when referring to ‘‘other structures’’, the authors are combining the categories of steel frames and timber frame/walls.

As highlighted in the introduction and seldom evidenced in past research, the accuracy of the AeDES forms filled out for such
uildings is heterogeneous because the AeDES forms are especially prone to subjectivity when they are filled for private buildings
nd in the case of minor damage, the consequences and economic impact of the damage are more difficult to evaluate.

Unlike the Central Italy earthquake, in the L’Aquila earthquake, the assessment of strategic buildings like the schools, which
re the focus of the dataset used in this research, was performed by academics who allegedly are more qualified to provide a
early-objective evaluation. Thus, in this investigation, the authors will only consider the AeDES forms related to schools that are
significant part of the public facilities in the seismic crater. This choice is considered prudential and intended to avoid using data
ased on biased classifications resulting from excessively conservative assessments.

Fig. 2(a) shows a bubble plot of the AeDES forms filled out for the schools falling within the seismic crater. The total number
f schools is 878, where more than 30% belong to the municipality of L’Aquila, see the seismic crater in Fig. 3(a). Fig. 2(b) shows
pie chart of the evaluation results. More than 50% of the schools had no damage and fell in class A. Two other largely populated

lasses are B and E, comprising 26% and 15% of the dataset. A few buildings fell into the intermediate risk classes, i.e., C and D.
ig. 3(b) displays a geo-referenced scatter plot of the evaluated buildings and the outcomes of the AeDES forms according to the
egend.

. Classification models used for the damage class prediction

This section briefly overviews the MLR and ANN models used for damage classification.

.1. Multinomial logistic regression

As remarked in the introduction, MLR is a well-established and interpretable algorithm for multiclass classification problems.
t can handle categorical dependent variables, making it suitable for the damage classification task with multiple classes. MLR
lso provides coefficients that allow understanding the relationship between the predictors (damage regressors) and the outcome
damage classes).

In this paper, both nested and non-nested MLR models are developed using the damage data. MLR is used for classification
4

roblems when the dependent variable is categorical [37], as occurring in the specific case where the outcome of an inspection
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Fig. 2. (a) Bubble chart of the AeDES forms filled for schools falling in the seismic crater; (b) Pie chart of the evaluation results.

Fig. 3. Geo-referenced scatter plot of the evaluated buildings and the outcomes of the AeDES form according to the legend. The yellow contour delimits the
seimic crater. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

can be classified from class A to class F. The model assumes the independence of irrelevant alternatives, which can be considered
generally satisfied in this application. Such assumptions entail that the odds of preferring one damage class over another do not
depend on the presence or absence of other ‘‘irrelevant’’ alternatives. Since the response variable 𝑌 is categorical and has 𝑟 possible
outcomes, 𝑌 = {𝑦1,… , 𝑦𝑟}, ordered for increasing level of damage, a generalized logit model handles the 𝑟 categorical outcomes.
Accordingly, 𝑟 − 1 logits for the response variable are compared with a baseline category, i.e., 𝑟 − 1 independent binary logistic
regression models are calibrated, where one outcome is chosen as a pivot, and the other 𝑟 − 1 outcomes are separately regressed
against the pivot outcome. For simplicity and coherence, the pivot outcome is herein chosen as the one related to the highest damage
class 𝑦𝑟. The outcomes, initially six, are reduced to four (i.e., 𝑟 = 4) ordered from 1 to 4 and corresponding to the damage classes
A, B, C, and E, respectively. Classes D and F are removed since they do not represent damage levels. Specifically, D denotes an
incomplete survey, which demands further inspections, whereas F indicates an external risk to the building occupants (e.g., the
collapse of a nearby building). Accordingly, the data corresponding with classes D and F are eliminated from the database, resulting
in 844 remaining outcomes.

The vector of the regressors 𝐗, corresponding to the damage data, consists of six categorical variables (i.e., damage levels
of Bearing structure, Floor, Stairs, Roof, Infill, and pre-existing damage) with ten categories each (see Fig. 1). To simplify the
implementation, the six variables are transformed into a vector of 60 corresponding dummy variables 𝐱 with binary outcomes to
indicate the absence or presence of specific categorical information, i.e., the presence of a given damage characteristic. The 𝑟 − 1
regression equations for a generic outcome 𝑦𝑗 are written as

ln
Pr(𝑌𝑖 = 𝑦𝑗 ) = 𝜷𝑗 ⋅ 𝐱𝑖 , 𝑗 < 𝑟, (1)
5

Pr(𝑌𝑖 = 𝑦𝑟)
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Fig. 4. Workflow of the (a) NM1 and (b) NM2 nested MLR.

where 𝜷𝑗 is the coefficient vector for the 𝑗th category of the response variable and 𝐱𝑖 is the 𝑖th realization of the variables used as
regressors. Generally, in an MLR model, the generic 𝑘th element of 𝜷𝑗 can be interpreted as the increase in log-odds of falling into
category 𝑗 versus category 𝑟, resulting from a one-unit increase in the 𝑘th regressor while holding the other regressors constant. In
this specific case, the 𝑘th element of 𝜷𝑗 is the increase in log-odds due to the presence of the 𝑘th damage characteristic. Any category
could be chosen as the baseline, and the model will have the same fitting accuracy. However, the values and the interpretation of
the coefficients in 𝜷𝑗 would change. Following from Eq. (1), the probability of falling into non-baseline categories can be calculated
as follows:

Pr(𝑌𝑖 = 𝑗) = 𝑒𝜷𝑗 ⋅𝐱𝑖

1 +
∑𝑟−1

𝑗=1 𝑒
𝜷𝑗 ⋅𝐱𝑖

, 𝑗 < 𝑟, (2)

whereas the baseline category

Pr(𝑌𝑖 = 𝑟) = 1
1 +

∑𝑟−1
𝑗=1 𝑒

𝜷𝑗 ⋅𝐱𝑖
. (3)

The calibration of the presented model is based on the maximization of the log-likelihood that is performed following the
procedure for calibrating distributional regression models presented in [49]. Such a procedure is among the most efficient methods
for models that have a concave log-likelihood function as the one at hand because it is based on the Newton–Raphson method. After
the model calibration, the predicted class 𝑌𝑖 can be chosen as the one associated with the highest probability of occurrence among
the 𝑟 categorical alternatives

𝑗𝑖 = argmax
𝑗

[

Pr(𝑌𝑖 = 𝑦𝑗 )
]

, 𝑗 ∈ [1, 𝑟] (4)

where 𝑗𝑖 is the order of the predicted class corresponding to the 𝑖th set of values of the regressors 𝐱𝑖.
Using this formulation, an initial MLR model (NN in the following, meaning Non-Nested) is developed to predict the odds of a

specific case falling in the A, B, C and E classes. The authors also implemented two nested MLR models; such models are called NM1
(Nested Model No. 1) and NM2 (Nested Model No. 2) in the following. Their conceptual schemes based on two layers of logistic or
multilinear logistic regressions are illustrated in Fig. 4.

Both NM1 and NM2 provide two-step predictions, one for each layer of the models. In the first layer, logistic regressions (LR)
are used to classify between two groups of damage classes, whereas the second prediction defines the specific damage class. The
two models, NM1 and NM2, differ in how the damage classes are grouped in the first layer: in NM1, Fig. 4(a), two groups include
the damage classes G1 = {A,B} and G2 = {C,D}, respectively; in NM2, Fig. 4(b), the first group only contains class A (i.e., G3 =
{A}), whereas the second group contains the three remaining damage classes (i.e., G4 = {B,C,D}).

In the case of the nested models, the probability of a given outcome can be straightforwardly obtained by applying the rules of
conditional probability as a consequence of the procedure used to calibrate the nested models. For example, by using the nested
models NM1, the probability of classification in CLASS A can be found as P(𝑌 = 𝐴) = P(𝑌 = 𝐴|𝑌 ∈ 𝐴 ∪ 𝐵)P(𝑌 ∈ 𝐴 ∪ 𝐵) where the
first logistic regression LR provides P(𝑌 ∈ 𝐴 ∪ 𝐵) (i.e., P(𝑌 ∈ 𝐺 )) and LR is used to get P(𝑌 = 𝐴|𝑌 ∈ 𝐴 ∪ 𝐵).
6
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3.2. Artificial neural networks

An ANN model is developed for two reasons. Firstly, the ANN model helps to assess the accuracy and effectiveness of the ANN in
apturing complex relationships in the data compared to the more traditional MLR. Secondly, the ANN model can detect nonlinear
nteractions among the regressors that could lead to potential improvements in damage classification. By evaluating the ANN’s
erformance, the authors can determine whether it could offer advantages over MLR in predictive accuracy.

The authors implemented a feed-forward fully-connected multi-layer perceptron architecture [50–52]. This acknowledged
idespread model can be described as a computational graph whose building blocks are represented by perceptron units [51].

A perceptron unit is the building block of a neural network. A perceptron unit takes multiple input signals, each with an associated
eight, and computes the weighted sum of these inputs. The weighted sum is then passed through an activation function, which

ntroduces non-linearity to the model. Mathematically, for a single perceptron unit with inputs 𝑥1, 𝑥2,… , 𝑥𝑛 and corresponding
weights 𝑤1, 𝑤2,… , 𝑤𝑛, the output ℎ is computed as follows:

ℎ = 𝑤1 ⋅ 𝑥1 +𝑤2 ⋅ 𝑥2 +⋯ +𝑤𝑛 ⋅ 𝑥𝑛 (5)

The output ℎ is then passed through the activation function 𝛷(⋅) to obtain the final output of the perceptron unit. The activation
function determines whether a neuron should be ‘‘activated’’ or ‘‘fired’’ based on its input. For example, some activation functions
like the sigmoid or tanh function map the input values to a range between 0 and 1 or −1 and 1, respectively, making the neurons
produce binary-like outputs. Common activation functions include:

• Sigmoid function: 𝜎(𝑥) = 1
1+𝑒−𝑥

• Tanh function: tanh(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥

• ReLU (Rectified Linear Unit): ReLU(𝑥) = max(0, 𝑥)
• Softmax function: softmax(𝑥𝑖) =

𝑒𝑥𝑖
∑𝑛

𝑗=1 𝑒
𝑥𝑗

Perceptron units can be arranged in layers with weight parameters to form the network’s architecture. These networks can then
be trained using various optimization algorithms to learn patterns and relationships in the input data, enabling them to perform
classification, regression, and pattern recognition tasks.

In this paper, the model architecture is composed of an input layer, an output layer and a user-defined number of hidden layers
[50–52]. The hidden layers fulfil the role of providing recursive non-linear transformations of the input feature vector, in this case,
represented by the 60 dummy binary variables 𝐱 for each of the 844 school data. The output of the first hidden layer is the result of
softmax activation function 𝛷(⋅) applied to the linear combination of the input feature vector 𝐱 and a weight matrix 𝐖𝑇

1 of learnable
arameters:

𝒉1 = 𝛷(𝐖𝑇
1 𝐱) (6)

he hidden state 𝒉1 is subsequently fed to the next hidden layer or a final output layer. In this study, the dimensions of the weight
atrix 𝑊1 is 61 × 𝑛1, being, respectively, the number of input features increased by one for accounting for the bias term, and the
umber of hidden units 𝑛1. The bias term is an additional neural network parameter allowing the model to make predictions even
hen all the input features are zero. Mathematically, the bias term is added to the weighted sum of inputs and acts as a constant

erm in the activation function.
Implicitly, this kind of implementation employs the same activation for each building block lying in the same hidden layer [52].

he input layer has no weights because it is assumed to only transmit the data to every neuron of the next hidden layer (fully
onnected). For the last 𝑘th hidden layer before the output layer, the hidden state is given by

𝒉𝑘 = 𝛷(𝐖𝑇
𝑘 𝒉𝑘−1) (7)

In the current study, since the ANN is demanded to perform a multinomial classification task, the output layer is structured with
our units, respectively, for the four damage classes A, B, C, and E. In this last layer, the activation function is a softmax function
𝑠(⋅), which provides probabilities of each feature vector 𝐱 belonging to a specific output class.

𝒐 = 𝛷𝑠(𝐖𝑇
𝑘+1𝒉𝑘) (8)

o train the ANN and thus define the weight matrices, the stochastic gradient descendent back-propagation algorithm was adopted
o minimize the categorical cross-entropy loss function [52].

The stochastic gradient descent (SGD) is an optimization algorithm used to update the neural network weights during the
raining process. Instead of computing the gradients of the entire dataset, SGD uses random subsets, called mini-batches, of the
ata to estimate the gradients, making it computationally more efficient and suitable for large datasets. It iteratively updates the
eights, aiming to find the optimal set of weights that minimizes the error between the model’s predictions and the actual data.
he gradients are obtained from the backpropagation method, a technique used in neural networks to compute the gradients of the

oss function with respect to the model’s parameters (weights). The authors used the categorical cross-entropy loss as the objective
unction, commonly used in multi-class classification problems. This objective function compares the model’s predicted probability
istribution (output) with the true encoded labels (ground truth) for each data point. In this paper, the authors used the Adam
Adaptive Moment Estimation) implementation for solving the optimization algorithm, which is an extension of the SGD. It adapts
7

he learning rate for each weight based on the average of the past gradients and their squared gradients [52].
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The architecture of the ANN should be carefully evaluated since it strongly affects the model complexity, the classification
ccuracy rate, and the model’s tendency to underfitting or overfitting issues [40,52].

Underfitting occurs when a model is too simple to capture the underlying patterns in the training data. Thus, the model cannot
earn from the data and fails to generalize well to new, unseen data. Conversely, overfitting occurs when a model is too complex
nd captures noise or random fluctuations in the training data rather than the true underlying patterns. In this case, the model
erforms extremely well on the training data but poorly on the validation or test data.

Therefore, to minimize the likelihood of overfitting issues, it is advisable to reduce the number of learnable parameters
ompared to the number of limited data at the disposal while simultaneously attempting to avoid underfitting issues. Various
ttempts have been made in the literature to define an optimal architecture for ANN as a single-objective optimization problem
40,53–57]. Therefore, to define an optimal ANN architecture in a more systematic and structured way, the authors implemented
n unconstrained multi-objective optimization problem. The two opposing goals are maximizing the classification accuracy 𝑎[%]

(defined as the percentage of correct predictions) on one side and minimizing the total number of hidden units ∑𝑘
𝑗=1 𝑛𝑗 on the

other side, i.e. reducing the model complexity to an acceptable level attempting to avoid both overfitting and underfitting issues.
To formulate the optimization problem as a double minimization problem, the maximization of accuracy was rephrased as the
minimization of the classification error, assumed as the complement value of the accuracy to the ideal level of 100%.

{

min𝜽 𝑓1 = 100 − 𝑎[%]
min𝜽 𝑓2 =

∑𝑘
𝑗=1 𝜃𝑗 =

∑𝑘
𝑗=1 𝑛𝑗

(9)

here 𝜃𝑗 is the 𝑗th element of the design vector 𝜽 of the multi-objective problem. To effectively solve the aforementioned multi-
bjective optimization problem, the authors adopted the well-acknowledged meta-heuristic algorithm non-dominated sorting genetic
lgorithm (NSGA-II) provided in the Python implementation of [58]. In the NSGA-II, similarly to the other genetic-algorithm-based
ersions, a population of candidate solutions is iteratively improved toward the optimum according to the Darwinian theory of
iological evolution [59]. In the genetic algorithm jargon, the iterations are named generations.

The design parameters considered in the problem (9) are initially encoded as in [40]. The parameter vector length accounts for
he number of hidden layers, and each vector component is an integer value that establishes the number of units within that hidden
ayer. Additionally, the last component is an integer 𝑝 from one to three, which selects different activation functions, specifically
he Rectified Linear Unit (ReLU), the hyperbolic tangent function (tanh), and the sigmoid function, respectively [52]. The same
ctivation function is applied to all the hidden layers.

𝜽 = [𝑛1,

No. units
⏞⏞⏞
𝑛2 ,… , 𝑛𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
No. hidden layers

,

Act. fn.
⏞⏞⏞

𝑝 ]𝑇 (10)

owever, as shown by a preliminary analysis and expected by the authors, the tanh activation function is preferable in dealing with
uch multinomial classification tasks due to its more accessible training properties, e.g., the sigmoid function. The tanh represents
stretched and re-scaled version of the sigmoid function, thus providing more significant gradients [60]. Furthermore, it is regular,

nd its derivative is smooth everywhere without any discontinuities compared to the ReLU. Several numerical preliminary tests
onfirmed that the algorithm almost always prefers the tanh function. Therefore, the design parameter definition in Eq. (10) can be
implified by dropping the activation function term and posing the tanh for every hidden neuron.

𝜽 = [𝑛1,

No. units
⏞⏞⏞
𝑛2 ,… , 𝑛𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
No. hidden layers

]𝑇 (11)

nce a population of candidate design parameters is heuristically generated from the NSGA-II procedure, every individual was
rained with cross-entropy loss [50,60], optimized with the Adam algorithm [50,60], posing a maximum number of 100 epochs and
batch size of 256.

In the ML lexicon, one epoch means the model has seen and learned from all the training samples once. During each epoch, the
odel updates its weights and biases based on the training data to improve its performance on the given task. Training for multiple

pochs allows the model to iteratively refine its parameters and learn from the data more effectively.
For every individual, five models are trained in the cross-validation fashion with 𝑘 = 5 fold.
Specifically, the process involves dividing the dataset into five equal parts, known as folds. For each cross-validation iteration,

ne of these folds is set aside as the test set, while the remaining four folds are used as the training set. The model is then trained
n the training set and evaluated on the test set to measure its accuracy. This process is repeated five times, with each fold as
he test set once. The reason for doing this is to ensure that a specific set of data does not bias the model’s performance, and it
rovides a more robust assessment of how well the model can generalize to unseen data. The results from all five iterations are
veraged to compute the average accuracy. The data in each fold is randomly shuffled before training the model to ensure that the
ross-validation process is unbiased. This means that the order of the data points in the test set is different for each cross-validation
teration. The random shuffling helps prevent patterns or biases in the original data.

When the stopping criteria of the maximum allowable number of generations are reached, the multi-objective optimization
rocedure is interrupted, and the final Pareto front of the non-dominated founded solutions is obtained. Non-dominated solutions
8
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Fig. 5. Workflow of the optimal ANN architecture.

Fig. 6. (a) Histogram plots of the number of buildings as a function of the distance from the epicentre; (b) Scatter plot of the outcome of the evaluation as a
function of the distance from the epicentre.

represent all the admissible, efficient, and feasible solutions found by the algorithm that do not present any apparent relationship
among them besides belonging to the Pareto optimal set, and thus composing the frontier of the Pareto decisional front [61].

A schematic view of the current ANN application is illustrated in Fig. 5.
Fig. 5 presents a visualization of the ANN architecture and the flowchart of the optimization algorithm. On the left side, the

architecture of the ANN is depicted, consisting of three layers: the input layer, hidden layers, and the output layer, with four
categorical outputs representing the different damage classes. Each circle in the architecture represents a neuron, with the top one
being the bias term.

The right side of the figure displays the flowchart of the optimization algorithm employed to optimize the ANN’s architec-
ture, based on the NSGA-II (Non-dominated Sorting Genetic Algorithm II). NSGA-II is a well-known evolutionary algorithm for
multi-objective optimization, as mentioned before [62]. The flowchart consists of several sequential steps:
9
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Fig. 7. (a) Histogram plot of the building typology and (b) of the regularity features.

• Define input parameters: This step specifies the parameters required for the optimization process, such as the population size
and the number of generations.

• Initialize random population: The algorithm starts by creating a population of random candidate solutions (chromosomes)
representing different ANN architectures.

• Non-dominated sorting: NSGA-II performs a sorting process to identify non-dominated solutions that are not outperformed by
any other solution in the population.

• Stopping criterion: The algorithm checks if the termination condition is met.

Within the while loop, the following four steps are executed repeatedly until the stopping criterion is satisfied:

• Tournament selection: A tournament selection process is performed to choose parent chromosomes based on their fitness
values.

• Genetic operators: These are the crossover and mutation operators applied to the selected parents to create new offspring.
Crossover involves exchanging information between two parent chromosomes to produce new child chromosomes, while
mutation introduces small random changes to the offspring. The repair operator ensures that the generated offspring conforms
to the architectural constraints.

• Non-dominated sorting: The newly generated offspring and the current population are sorted again based on non-dominated
criteria.

• Replace chromosomes: The least fit solutions from the current population are replaced by the new offspring.

The algorithm then loops back to the stopping criterion, repeating the steps above until the termination condition is met. The final
output of the NSGA-II algorithm is the Pareto front, which represents a set of non-dominated solutions, where each solution is
optimal for one or more of the objectives while not being dominated by any other solution in the set. The Pareto front provides a
range of trade-off solutions, allowing the selection of the most appropriate ANN architecture based on different evaluation criteria.

4. Analysis of the dataset

This section presents the analysis of the considered database that includes data from the AeDES forms compiled after the 2009
earthquake in L’Aquila for the school buildings. The initial number of the considered forms is 878; however, after removing the
data associated with the damage classes F and D, as discussed in the previous section, the total number of the forms reduces to
844. The Department of Civil Protection of the Abruzzo Region only shared selected data from the original database related to the
geometric-typological data and the observed damage.

Right after the earthquake, teams of engineers were set up to conduct site inspections on public and private buildings. The goal of
assigning this task to high-qualified teams, especially for public and strategic buildings, aimed at reducing the sources of uncertainty
in the evaluation. Nonetheless, as explained before, the need for objectivity classes goes against the complexity of the evaluation
only based on visual inspections and the direct relationship between the outcome of the assessment and economic reimbursement
for the damage. Thus, the assessment is unavoidably slightly biased by the sensitivity of the evaluator. The analysis in this section
highlights the existence of this personal bias and its influence on the classification of similar classes: A and B.

The selected database comprises buildings inside and outside the seismic crater; see Fig. 3. As a result, there is an unbalance
between the no-damaged and damaged cases and more than 50% of the database corresponded to buildings classified as A. Fig. 6
plots the number of buildings as a function of the distance from the epicentre. Most of the buildings belong to the range of 10–20 km.
However, as highlighted in Fig. 6(b), there is no evident relationship between the damage class and the distance from the epicentre.
10
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Table 1
Input matrix for defining the features of a masonry building.
Horizontal structure Vertical structure

Not identified Irregular masonry Regular masonry

Without curbs With curbs Without curbs With curbs

Not identified A1 B1 C1 D1 E1
Vaults without steel chain A2 B2 C2 D2 E2
Vaults with steel chain A3 B3 C3 D3 E3
Beams with deformable floor A4 B4 C4 D4 E4
Beams with semi-deformable floor A5 B5 C5 D5 E5
Beams with rigid floor A6 B6 C6 D6 E6

Fig. 8. Histogram plot of the features of masonry buildings, following the nomenclature in Table 1.

Fig. 9. Histogram plots of the observed damages to the structure, floor, stairs, infill and roof in terms of (a) absolute and (b) relative number buildings.

eavily damaged school buildings can be found significantly far from the epicentre (>50 km), and conversely, undamaged school
uildings can be found in their relative proximity.

However, if we look at each damage class, we can see that the number of school buildings classified in the heavier damage classes,
.e., classes C and E, decreases farther from the epicentre. Most school buildings are made of reinforced concrete (see Fig. 7(a)), a
esser number are built with masonry, and a few are steel structures. There is a substantial balance between regular and non-regular
uildings in height and plane (see Fig. 7(a)). The AeDES forms include a few options for the typological classification of RC buildings.
t the same time, a significant number of alternatives are provided for masonry buildings due to their wider typological variety, as
hown in Table 1.

Fig. 8 shows the histogram plots of the masonry buildings falling in the categories described in Table 1. Except in a few cases
here the visual inspection did not allow identifying the floor or bearing structures (i.e., those classified as A1-A6), the school
uildings mostly exhibit a regular masonry structure.

Looking at the damage records, generally, floors, stairs, and roofs did not manifest significant damage, with almost 80% of the
uildings with no damage to these sub-structures, see Fig. 9. Consequently, most inspected buildings were classified as A. Conversely,
ost damages were concentrated in the bearing structure and infill. Table 2 summarizes the information illustrated in the histogram
lots in Fig. 9.
11
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Table 2
Percentages of the buildings exhibiting the damage typologies identified in Fig. 1.
Location Null Low Medium High

Structure 58.59% 17.97% 12.76% 10.68%
Floor 78.91% 13.28% 5.47% 2.34%
Stairs 86.72% 7.81% 2.08% 3.39%
Infill 3.91% 47.92% 27.86% 20.31%
Roof 88.28% 7.81% 2.08% 1.82%

5. Results

The results are organized into two subsections, showing the results of the MLR and ANN models.

.1. Multinomial logistic regressions

This section presents and compares the results obtained with the following models:

• NN model (Not-nested model): This model is calibrated with all available data and provides in a single step the predicted
damage class among all the considered damage classes: A, B, C, and E.

• NM1 model (Nested model No 1): This model (see Fig. 4) predicts the damage class in two steps. In the first step, an LR (LR1)
finds the probability of the damage matrix being associated with a no/lower damage (A and B) or higher damage class (C and
E). In the second step, two MLRs classify the damage between classes A and B and C or E, respectively. Therefore, three MLRs
are separately calibrated to predict the final damage class.

• NM2 model (Nested model No 2): The second nested model is similar to the first except for defining the intermediate damage
classes. In this case, the no-damage class comprises the sole class A, while the higher-damage class include classes B, C, and E.
Therefore, in the first layer, an LR predicts whether the damage to the school building is negligible. In contrast, in the second
layer, an MLR predicts the level of non-negligible damage among classes B, C, and E. This model requires the calibration of
two MLR models.

The three models have a similar performance in capturing the variability of the damage classification in the AeDES forms.
pecifically, the NN and NM2 models have an almost identical prediction accuracy, nearly equal to 84%. In comparison, NM1
erforms poorly with an 82% prediction accuracy. The analysis of the prediction accuracy of the presented models shown through
onfusion matrices can provide insights into possible issues related to the current classification approach of the AeDES forms.

Confusion matrices summarize the model’s predictions and the actual ground truth for each class. The diagonal elements (top-left
o bottom-right) represent the number of correct predictions for each class. The off-diagonal elements show the misclassifications,
here predictions did not match the true class labels. In the depicted confusion matrices, there are additional metrics reported:

ecall, precision and accuracy. The right column, filled in grey, shows the recall, also known as sensitivity or true positive rate,
hich measures the model’s ability to correctly identify positive instances for each class. The bottom row, filled in grey, displays the
recision, representing the proportion of true positive predictions out of all predicted positive instances for each class. Furthermore,
he bottom-left cell in the matrix shows the model’s overall accuracy, which measures the proportion of correctly classified instances
ut of the total predictions. Accuracy provides a general overview of the model’s overall performance.

In particular, the comparison between the confusion matrices of the NN and the first layer of the NM1 models (Fig. 10) clarifies
he reasons behind the limits in the accuracy of the models. While the accuracy of the NN model in classifying the damage is
4% (Fig. 10(a)), in the first layer of the NM1 model, the LR performs excellently in classifying between no-damage vs. damage
lasses, with an accuracy higher than 97% (Fig. 10(b)). This evidence proves that the loss in accuracy in the final classification of
he NM1 model depends on the performance of the LRs in the second layer of the model, i.e., on the difficulty in distinguishing
etween similar damage classes, classes A-B (Fig. 11(a)) and classes C-E (Fig. 11(b)), where the green and red percentages indicate
he correct and incorrect classification percentages, respectively.

The confusion matrices of the LRs in the second layer of NM1 show that the classification between A and B is less accurate (82%
ccuracy) than the classification between C and E (98% accuracy). Therefore, the accuracy loss in the final classification of NM1
and the 20% of wrong predictions) can be reasonably attributed to the logistic regression LR1𝑎 (in Fig. 4) and to the classification
etween class A and class B.

The conceptual reason behind this issue is the difficulty in understanding whether minor damages require some actions or
hether the structure can be considered fully operational. For this reason, in some cases, similar damage patterns might have

ed to the selection of different damage classes. In addition to the ‘‘complexity’’ of the choice between classes A and B, a further
ssue is the responsibility of the choice. It must be remarked that choosing between classes A and B involves more responsibility
han choosing between classes C and E. In the case of the choice of class A, the investigation team states that the building is fully
perational and requires no intervention. Likely, the complexity of the case-by-case circumstance makes an automatic classification
etween classes A and B difficult and always demands the expert’s judgment. Additionally, this responsibility grows in the presence
f private buildings. A less conservative classification can lead to an appeal by the owner, who might require further investigations
o confirm the results of the first assessment. This can lead to lengthening the administrative procedures in an emergency phase.
12
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Fig. 10. Confusion matrices of the non-nested model and the nested No one regarding damage/no-damage outputs. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Confusion matrices of the nested no.1 model in teams of (a) A–B, and (b) C–E predictions. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

So, in the case of private buildings, the expert’s judgment can be more conservative to avoid dialectics that could compromise the
speed of the procedure. This further justifies the reasons for selecting the sample of only public buildings to calibrate the models in
this paper. In this case, the expert’s judgment is less conditioned by a possible debate with the owner.

The comparison among the nested models in Fig. 12 proves that binning classes B, C and E in a damage macro-class leads to
a better performance than binning classes A and B in a no-damage/light damage class since the two nested models yield 82% and
84% accuracy, respectively. Given the substantial similarity between the three MLR models’ performance, the authors selected the
first no-nested model, due to its simplicity of implementation, as an MLR model for the AeDES form enhancement.

The coefficient matrix, reported in Table 3, can be used to explicitly write the model and predict the expected damage class
given a damaged matrix. The MLR model provides the probability of falling in classes A, B, C and E, thus driving the examiner
towards a more objective evaluation consistent with the observed damage. Although using this model will not substitute the personal
responsibility of the expert team, which will make the final decision about the damage class, it can still be used to support the
decision-making process towards a more coherent and informed assessment.

In MLR, the 𝛽 coefficients (also known as logit coefficients) in Table 3 represent the relationship between the independent
variables (predictors) and the log-odds of the different categories (classes) of the dependent variable. To assess the significance
13
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Fig. 12. Confusion matrices of the two nested models.

of a regressor and compare its influence relative to other regressors, the authors examined the magnitude of the coefficient and
its statistical significance. Larger magnitudes indicate a more substantial impact on the odds, while smaller magnitudes suggest a
weaker influence. Additionally, the authors performed a t-test to determine whether the coefficient significantly deviates from zero.
A coefficient with a 𝑝-value below a chosen significance level (assumed equal to 0.05) is considered statistically significant. Table 4
provides an overview of the absolute values of all 𝛽s coefficients for the NN model and their corresponding p-values. The colour
formatting used in the table highlights the magnitudes of the betas on a red scale and identifies p-values below 0.05. This combined
approach allows a visually intuitive understanding of the most relevant damage regressors.

The most impactful predictors for classification are those associated with A versus E baseline and B versus E baseline.
Interestingly, there is statistical significance for high preexisting damage, particularly in the less than 1/3 category for B versus
E, implying that for B outcomes with preexisting damage, the earthquake has potentially exacerbated the existing damage. The
colour formatting predominantly emphasizes the damages to structures, floors, roofs, infill, and pre-existing damages, excluding
stairs. However, the statistical significance of the coefficients is mainly limited to the higher damage levels, high and medium. The
coefficients for stairs do not appear as strong regressors, indicating that although they may have affected seismic performance, the
damage to stairs itself may not have driven the final assessment. Structural damage classification is paramount among the mentioned
damage locations, with all coefficients for high and medium classes averaging higher than 10. Some classes exhibit higher effects,
possibly due to an unbalanced dataset where specific options were preferred more than others during compilation. Furthermore, it
should be noted that assessing the extent of damage in a fractional way (e.g., 2/3, 1/3) can be challenging in rapid assessments.
Higher coefficients for certain classes might reflect the impact of missing or underrepresented data in the form compilation process.
This can result in an overestimation of the significance and effect of these predictors on the classification process. The observed
good match between p-values lower than 0.05 and higher 𝛽 values indicates that statistically significant predictors generally have
larger effects on the classification process.

The confusion matrix for the selected NN model in Fig. 10(a) is also important to address challenges posed by subjective
evaluations, where different evaluators might interpret damage patterns differently based on their experience. In an unbalanced
dataset, accuracy, good for model comparisons, may not be suitable for evaluation, as it can be misleading when the majority class
dominates predictions. Therefore, focusing on recall becomes crucial. High recall indicates the model’s ability to correctly identify
instances of the minority class, such as severe damage, which is of greater interest or concern. Precision, on the other hand, measures
the model’s ability to avoid false positives. To strike a balance between capturing true positives and avoiding false positives, the
F1-score is also calculated, accounting for both recall and precision.

Table 5 resumes the recall, precision and F1-score for the four classes based on the NN model.

• Class A: Approximately 83.13% of instances that truly belong to class A are correctly identified by the model as class A. This
indicates the model’s effective ability to capture most instances of class A. When the model predicts an instance as class A, it
is correct about 94.91% of the time, demonstrating high precision for class A predictions. To determine the higher tendency
between classifying A as B or vice versa, the authors compared the false positive rates (FP rates) for each class. The False
Positive Rate (FP Rate) is calculated as FP/(FP + TN), where FP represents the number of instances classified as B but truly
belonging to class A (instances incorrectly classified as B), and TN is the number of instances correctly classified as not B
(instances truly belonging to class B and accurately identified). Comparing the FP rates, it is evident that the false positive
14
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Table 3
Coefficient matrix of the NN model.
Damage regressors Coefficient vectors 𝜷𝑗

Location Intensity Extension 𝜷1 (A/E) 𝜷2 (B/E) 𝜷3 (C/E)

Intercept 3.326 3.623 1.285

Structure

High
>2/3 −10.349 −14.176 0.226
1/3-2/3 −11.878 −20.925 −11.570
<1/3 −10.375 −14.872 −2.646

Medium
>2/3 −12.835 −5.569 −15.850
1/3-2/3 −5.934 −5.422 −6.112
<1/3 −28.410 −3.422 −1.439

Low
>2/3 −10.457 1.436 −2.057
1/3-2/3 −2.202 −0.817 −20.158
<1/3 −0.757 0.126 −3.506

Null 0.439 0.732 −2.943

Floor

High
>2/3 7.075 0.620 3.888
1/3-2/3 6.181 −2.743 −6.052
<1/3 12.939 3.326 −3.034

Medium
>2/3 −27.881 −19.400 2.544
1/3-2/3 −8.264 −7.432 −5.841
<1/3 −10.419 1.258 −0.735

Low
>2/3 −2.612 5.396 −8.346
1/3-2/3 1.371 −0.311 −3.800
<1/3 2.875 2.128 −1.609
Null 3.956 2.686 −0.666

Stairs

High
>2/3 −16.746 16.597 −0.842
1/3-2/3 −3.230 3.105 0.221
<1/3 −4.247 0.699 4.276

Medium
>2/3 −0.090 3.238 3.428
1/3-2/3 −0.521 −1.392 0.593
<1/3 −4.101 −11.579 2.990

Low
>2/3 −1.213 −21.374 10.417
1/3-2/3 −0.064 −1.012 0.137
<1/3 −0.338 0.263 0.265
Null 0.600 0.302 3.438

Roof

High
>2/3 −19.229 −8.115 −6.440
1/3-2/3 −15.763 −11.252 2.032
<1/3 9.388 15.728 5.900

Medium
>2/3 −0.499 −8.800 −14.813
1/3-2/3 −9.602 −2.450 3.178
<1/3 −0.017 2.050 6.099

Low
>2/3 5.781 1.428 −3.460
1/3-2/3 −12.432 −6.255 −7.577
<1/3 −4.618 −2.738 −1.453

Null −3.773 −2.833 0.008

Infill

High
>2/3 −22.820 −13.903 −14.184
1/3-2/3 −19.906 −3.748 −2.747
<1/3 −15.604 −1.196 −0.394

Medium
>2/3 −10.837 −3.102 −8.721
1/3-2/3 −21.658 −2.470 −1.820
<1/3 −4.549 −0.231 −1.370

Low
>2/3 −1.293 12.415 9.269
1/3-2/3 −0.866 −0.193 1.070
<1/3 −1.113 −2.097 −1.464

Null −0.953 −3.143 −2.134

Existing

High
>2/3 −12.646 −13.549 −8.127
1/3-2/3 −16.160 −8.776 −7.407
<1/3 14.831 −44.331 −13.555

Medium
>2/3 18.847 −7.357 4.117
1/3-2/3 −0.153 1.342 3.214
<1/3 1.944 −1.295 −0.344

Low
>2/3 0.620 9.191 −0.932
1/3-2/3 20.697 10.861 −0.635
<1/3 3.592 3.490 −0.877

Null 1.523 0.944 0.511

rate for class A (13.77%) is higher than that for class B (0.83%). This suggests a higher tendency for the model to incorrectly

classify instances of class A as class B (false positives) compared to misclassifying instances of class B as class A. Such a tendency
15
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Table 4
Absolute values of the coefficient matrix of the NN model and the corresponding p-values.
Damage regressors Absolute coefficients and p-values

Location Intensity Extension (A/E) (B/E) (C/E)

|𝛽1| p-value |𝛽2| p-value |𝛽3| p-value

Intercept 3.326 0.001872 3.623 5.34E−05 1.285 0.281539

Structure

High
2/3; 10.349 0.035814 14.176 0.00414 0.226 0.9634
2/3-1/3 11.878 2.32E−05 20.925 2.93E−08 11.570 0.003116
1/3; 10.375 6.07E−06 14.872 2.58E−06 2.646 0.052101

Medium
2/3; 12.835 1.79E−05 5.569 0.000203 15.850 2.02E−06
2/3-1/3 5.934 1.61E−05 5.422 2.42E−06 6.112 0.004402
1/3; 28.410 2.98E-74 3.422 0.000161 1.439 0.197066

Low
2/3; 10.457 0.152756 1.436 0.865938 2.057 0.819942
2/3-1/3 2.202 0.23146 0.817 0.545018 20.158 3.75E−07
1/3; 0.757 0.438765 0.126 0.877155 3.506 0.004286

Null 0.439 0.680526 0.732 0.426139 2.943 0.017756

Floor

High
2/3; 7.075 0.600748 0.620 0.958371 3.888 0.720005
2/3-1/3 6.181 0.312353 2.743 0.653393 6.052 0.395285
1/3; 12.939 0.07167 3.326 0.520208 3.034 0.716158

Medium
2/3; 27.881 2.42E−06 19.400 2.52E−06 2.544 0.745782
2/3-1/3 8.264 0.013288 7.432 0.037185 5.841 0.245792
1/3; 10.419 0.000153 1.258 0.278991 0.735 0.641975

Low
2/3; 2.612 0.748328 5.396 0.013049 8.346 0.262031
2/3-1/3 1.371 0.466672 0.311 0.856715 3.800 0.554553
1/3; 2.875 0.005809 2.128 0.018396 1.609 0.309061
Null 3.956 7.77E−05 2.686 0.002972 0.666 0.627519

Stairs

High
2/3; 16.746 0.006398 16.597 6.37E−05 0.842 0.890451
2/3-1/3 3.230 0.5503 3.105 0.434638 0.221 0.971274
1/3; 4.247 0.78302 0.699 0.964 4.276 0.782906

Medium
2/3; 0.090 0.987298 3.238 0.052768 3.428 0.661572
2/3-1/3 0.521 0.897963 1.392 0.540831 0.593 0.900087
1/3; 4.101 0.246003 11.579 0.000315 2.990 0.141546

Low
2/3; 1.213 0.942209 21.374 0.141442 10.417 0.527939
2/3-1/3 0.064 0.9906 1.012 0.576595 0.137 0.980206
1/3; 0.338 0.747643 0.263 0.772587 0.265 0.866955
Null 0.600 0.440833 0.302 0.674907 3.438 0.005467

Roof

High
2/3; 19.229 0.04222 8.115 0.359846 6.440 0.474771
2/3-1/4 15.763 0.00116 11.252 0.009851 2.032 0.383073
1/3; 9.388 0.625792 15.728 0.393906 5.900 0.755741

Medium
2/3; 0.499 0.97566 8.800 0.242258 14.813 0.153974
2/3-1/4 9.602 0.006787 2.450 0.15446 3.178 0.122806
1/3; 0.017 0.997304 2.050 0.685131 6.099 0.215695

Low
2/3; 5.781 0.632387 1.428 0.847563 3.460 0.791735
2/3-1/4 12.432 0.096326 6.255 0.00089 7.577 0.207939
1/3; 4.618 0.000105 2.738 0.007599 1.453 0.377175

Null 3.773 0.00018 2.833 0.001719 0.008 0.995221

Infill

High
2/3; 22.820 1.52E-12 13.903 3.79E−05 14.184 0.006092
2/3-1/5 19.906 2.87E-20 3.748 9.42E−05 2.747 0.06001
1/3; 15.604 4.91E-19 1.196 0.104649 0.394 0.698559

Medium
2/3; 10.837 5.49E−05 3.102 0.003252 8.721 0.002994
2/3-1/5 21.658 9.69E-33 2.470 0.000768 1.820 0.118567
1/3; 4.549 1.39E−06 0.231 0.722671 1.370 0.169275

Low
2/3; 1.293 0.881872 12.415 0.107499 9.269 0.197345
2/3-1/5 0.866 0.497478 0.193 0.859318 1.070 0.462089
1/3; 1.113 0.188236 2.097 0.001451 1.464 0.116159

Null 0.953 0.335728 3.143 0.000211 2.134 0.059545

Existing

High
2/3; 12.646 0.031412 13.549 3.37E−05 8.127 0.018939
2/3-1/6 16.160 0.00016 8.776 0.081803 7.407 0.208178
1/3; 14.831 0.387194 44.331 0.008119 13.555 0.422011

Medium
2/3; 18.847 0.20109 7.357 0.638014 4.117 0.805649
2/3-1/6 0.153 0.938515 1.342 0.48004 3.214 0.119378
1/3; 1.944 0.091662 1.295 0.13719 0.344 0.717103

Low
2/3; 0.620 0.941695 9.191 0.021612 0.932 0.912669
2/3-1/6 20.697 2.46E-11 10.861 1.61E−05 0.635 0.910935
1/3; 3.592 4.23E−05 3.490 4.37E−05 0.877 0.487135

Null 1.523 0.001963 0.944 0.049087 0.511 0.452422
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Table 5
Recall, precision and F1-score for the NN model.
Class Recall Precision F1-score

A 0.83 0.95 0.89
B 0.84 0.63 0.72
C 0.88 0.63 0.73
E 0.93 0.87 0.90

could lead to the overestimation of damage in ambiguous circumstances. The F1-score for class A is approximately 0.8866,
indicating a balanced performance between recall and precision. The model demonstrates good accuracy in classifying class
A instances, achieving a reasonable trade-off between false positives and false negatives.

• Class B: The model correctly identifies approximately 84.40% of instances belonging to class B, demonstrating a reasonable
ability to capture class B instances. However, when the model predicts an instance as class B, it is accurate only about 63.39%
of the time. The lower precision indicates a higher rate of false positives for class B predictions. The F1-score for class B is
around 0.7231, reflecting a balanced evaluation of recall and precision. While the model shows decent recall for class B, it
also exhibits a notable number of false positives.

• Class C: The model performs well for class C, correctly identifying about 88.24% of instances that belong to class C. When the
model predicts an instance as class C, it is accurate approximately 62.50% of the time. Similar to class B, class C also exhibits
a lower precision. The F1-score for class C is approximately 0.7297, indicating a balanced performance between recall and
precision. The model effectively captures most class C instances but has some false positives.

• Class E: The model shows a high recall of about 93.08% for class E, indicating that it correctly identifies most instances that
belong to class E. When the model predicts an instance as class E, it is accurate approximately 86.54% of the time. This high
precision suggests that the model has a low false positive rate. The F1-score for class E is around 0.8965, demonstrating a
balanced recall and precision evaluation. The model performs well in classifying class E instances, with relatively few false
positives.

The model performs well in capturing instances of each class, with relatively high recall values for all classes. However, the
recision values show some variability. Class A and E have higher precision, indicating lower false positive rates, while classes B
nd C have lower precision, suggesting higher false positives in their predictions.

The authors provided a small demonstration of the model’s performance in predicting the outcome of a classification, considering
hree scenarios illustrated in Table 6.

• Case No. 1 corresponds to a scenario with high damage to the bearing structures and no damage to other elements.
• Case No. 2 simulates significant damage to the structure, along with damage to the floor, roof, and stairs.
• Case No. 3 simulates the case of low damage to the structure, floor, and infill, along with medium pre-existing damage.

Table 7 reports the probabilities of the four outcomes associated with each scenario. In Case No. 1, where there is significant
amage to the structure but not accompanied by other damages, the algorithm selects option C, which is generally neglected. On the
ther hand, in Case No. 2, when extensive damage occurs to the structure along with damage to other elements, the classification
nambiguously selects option E. Finally, in Case No. 3, when moderate damage occurs, the algorithm selects option B as the most
ppropriate classification. The authors have provided a supplementary Excel spreadsheet containing the demonstrations found in
able 7.

.2. Artificial neural networks

As mentioned in Section 3.2, to better govern the model’s growing complexity in terms of hidden layers, the authors solved a
wo-step optimization problem. The authors imposed a single hidden layer with a theoretically maximum number of units equal
o 100. The Pareto front of the non-dominated solutions for this first case is reported in blue in Fig. 13. From a visual inspection,
he Pareto front demonstrated that despite the reduced number of generations, the algorithm delivered a quite dense Pareto front.
mong the competing solution, the one in the knee of the Pareto front is chosen since it provides the best trade-off between accuracy
nd complexity, thus determining the number of hidden units equal to 𝑛1 = 16.

From Fig. 13, it is evident that the further increase in the number of units does not correspond to a significant increase in
ccuracy. After fixing the optimal number of units for the first hidden layer to 𝑛1 = 16, a second optimization is performed to
ind the optimal number of units of a second hidden layer. The Pareto front of the non-dominated solutions for this second case is
eported in orange in Fig. 13; the solution at the knee point considers 𝑛2 = 7 hidden units for the second layer. However, the addition
f a second layer produces an increase in model complexity without any substantial increase in average accuracy. Therefore, it is not
dvisable to consider a further hidden layer. Moreover, as stated in [52], an ANN with a single hidden layer is directly comparable
o tan MLR models. Therefore, the model with a single hidden layer is with 𝑛1 = 16 optimal units is preferred.

Fig. 14 shows the confusion matrix of such a model. The confusion matrix in Fig. 14 illustrates the average classification
erformances from the 𝑘 = 5 folds cross-validation procedure of the optimized single hidden layer ANN model. The ANN global
lassification accuracy is comparable to the MLR model, standing at about 80%. For this model, the most problematic class to predict
17
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Table 6
Damage matrices of the three considered scenarios.
Damage regressors Damage matrices

Location Intensity Extension Case No. 1 Case No. 2 Case No. 3

Intercept

Structure

High
2/3; 1 1 0
2/3-1/3 0 0 0
1/3; 0 0 0

Medium
2/3; 0 0 0
2/3-1/3 0 0 0
1/3; 0 0 0

Low
2/3; 0 0 1
2/3-1/3 0 0 0
1/3; 0 0 0

Null 0 0 0

Floor

High
2/3; 0 0 0
2/3-1/3 0 0 0
1/3; 0 1 0

Medium
2/3; 0 0 0
2/3-1/3 0 0 0
1/3; 0 0 0

Low
2/3; 0 0 1
2/3-1/3 0 0 0
1/3; 0 0 0
Null 0 0 0

Stairs

High
2/3; 0 0 0
2/3-1/3 0 0 0
1/3; 0 0 0

Medium
2/3; 0 1 0
2/3-1/3 0 0 0
1/3; 0 0 0

Low
2/3; 0 0 0
2/3-1/3 0 0 0
1/3; 0 0 0
Null 0 0 0

Roof

High
2/3; 0 1 0
2/3-1/4 0 0 0
1/3; 0 0 0

Medium
2/3; 0 0 0
2/3-1/4 0 0 0
1/3; 0 0 0

Low
2/3; 0 0 0
2/3-1/4 0 0 0
1/3; 0 0 0

Null 0 0 0

Infill

High
2/3; 0 0 0
2/3-1/5 0 0 0
1/3; 0 0 0

Medium
2/3; 0 0 0
2/3-1/5 0 0 0
1/3; 0 0 0

Low
2/3; 0 0 1
2/3-1/5 0 0 0
1/3; 0 0 0

Null 0 0 0

Existing

High
2/3; 0 0 0
2/3-1/6 0 0 0
1/3; 0 0 0

Medium
2/3; 0 0 1
2/3-1/6 0 0 0
1/3; 0 0 0

Low
2/3; 0 0 0
2/3-1/6 0 0 0
1/3; 0 0 0

Null 0 0 0
18
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Table 7
Probabilities associated with the three considered scenarios.
Probability Case No. 1 Case No. 2 Case No. 3

P(A) 0.0002 0.0000 0.0005
P(B) 0.0000 0.0000 0.9995
P(C) 0.8192 0.0106 0.0000
P(E) 0.1807 0.9894 0.0000

Sum 1 1 1

Fig. 13. Pareto front results of the two-step multi-objective ANN architecture optimization. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 14. Average confusion matrix of the optimal ANN architecture with a single hidden layer and 16 hidden neurons.

is class C. The main reason for the reduced accuracy lies in the unbalance between the number of records in this class C and the
number of records in the other classes, which detrimentally affects the learning ability of the classifier. Furthermore, it is evident
from the confusion matrix how class B tends to be partially confused with class A. Therefore, as already discussed in the comments
to Fig. 10, to improve the classifiers’ learning capabilities, it could be convenient to consider only two major classes, thus binning
19
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Table 8
Comparison between recall, precision and F1-score from the MLR (NN) and the ANN models. The relative difference expresses the difference between the ANN
performance compared to MLR.

Class Recall Precision F1-score

MLR (NN) ANN Rel. Diff. [%] MLR (NN) ANN Rel. Diff. [%] MLR (NN) ANN Rel. Diff. [%]

A 0.83 0.82 −1% 0.95 0.93 −2% 0.89 0.87 −1%
B 0.84 0.57 −32% 0.63 0.74 16% 0.72 0.65 −11%
C 0.88 0.03 −96% 0.63 0.05 −92% 0.73 0.04 −95%
E 0.93 0.79 −15% 0.87 0.73 −15% 0.90 0.76 −15%

classes B, C and E in a unique damage macro-class. However, since this choice may appear quite simplistic from an engineering
point of view, a possible more efficient reformulation of the seismic damage ratings may involve three classes only, i.e. referred to
high structural damage, low structural damage, and no damage.

Table 8 shows the comparison between recall, precision and F1-score from the MLR (NN) and the ANN models. The relative
ifference expresses the difference between the ANN performance compared to MLR.

The ANN model slightly underperforms compared to MLR in terms of recall, precision, and F1-score for class A, but the differences
re relatively small. The ANN model shows a significant decrease in recall for class B (32% decrease) but compensates with higher
recision (16% increase), resulting in a slightly lower F1-score compared to MLR. The ANN model performs slightly worse than
LR for class E, with a 15% decrease in recall, precision, and F1-score.

There could be several reasons why MLR might perform better than an ANN. Firstly, MLR is a linear model that makes fewer
ssumptions and requires fewer parameters to estimate compared to ANN, which is a complex and nonlinear model. In cases where
he relationship between predictors and outcomes is relatively simple, a simpler model like MLR might be sufficient and perform well.
dditionally, if the relationships between predictors and outcomes are mostly linear, MLR can effectively capture these relationships.
n the other hand, ANN excels in modelling complex nonlinear relationships and might not perform as well when the relationships
re predominantly linear. Moreover, if the features in the dataset have little or no interactions with each other, MLR can adequately
apture the individual contributions of each predictor to the outcome. The relationships between predictors and outcomes are likely
inear in the present case, with minor interactions among regressors. Thus, the MLR, despite being simpler, is recommended due to
ts simplicity and accuracy.

. Conclusions

This paper discusses the risk classification of the AeDES forms compiled following the earthquake in L’Aquila. The AeDES form
s a first-level form for post-earthquake damage and functionality assessment. The inspection team can choose among six categorical
isk classes from A to F based on the observed damage and the status of the nearby buildings, which might compromise the safety
f the building under investigation. The risk class is related to the sum provided by the government for the reconstruction or repair
f the building.

The authors developed two models, a multinomial logistic regression (MLR) and artificial neural networks (ANN), to predict the
ategorical outcome of the evaluation (classes A, B, C, or E), given the recorded damage. Classes D and F were removed since they
o not represent the observed damage in the building. The database used for calibration comprises all school buildings evaluated
fter the earthquake, consisting of 878 buildings. The selected database includes only public buildings to avoid possible classification
ias more likely to occur in private buildings due to the economic relevance of choice.

The MLR model exhibits an average accuracy of 84% in classifying the four categorical outputs and performs excellently when
istinguishing among damage (C and E) and no-damage (A-B) cases, yielding a 97% accuracy. The accuracy loss between the two
ases depends on the difficulty in choosing between class A and class B. The two outcomes, corresponding to null or minor damages,
espectively, involve, in fact, more responsibility than choosing between classes C and A. The choice between classes A and B entails
eciding whether the building needs some interventions or is fully operational. The complexity and responsibility behind this choice
annot be easily expressed by a damaged matrix despite its extent and accuracy.

The ANN model is developed to provide a comparison of the MLR model. Since the architecture of the ANN must be carefully
valuated, a multi-objective optimization problem was solved aiming to maximize the accuracy and minimize the model complexity,
.e. finding the minimum number of hidden neurons. A single hidden layer with 16 units has been found to be as optimal architecture
o provide a fair comparison with the MLR. The ANN model exhibited global average accuracy of 78.4% in classifying the four
ategorical outputs and confirmed the same learning difficulties evidenced by the MLR.

This paper mainly aims to provide an MLR model and an ANN, calibrated on actual data that can be easily implemented in
uture updates of the AeDES forms. The model gives the odds of a given damage pattern falling in a specific damage class (A, B, C,
nd E). This MLR will not replace the personal responsibility of the expert team, which will have the last decision about the damage
20

lass. Still, it supports the decision-making process towards a more coherent and informed assessment.
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