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Abstract
We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for
robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a
form of supervised learning that enables learning models to operate on output spaces with complex structures. Through
the lens of structured prediction, we show how robots can learn to imitate trajectories belonging to not only Euclidean
spaces but also Riemannian manifolds. Exploiting ideas from information theory, we propose a class of loss functions
based on the f -divergence to measure the information loss between the demonstrated and reproduced probabilistic
trajectories. Different types of f -divergence will result in different policies, which we call imitation modes. Furthermore,
our approach enables the incorporation of spatial and temporal trajectory modulation, which is necessary for robots
to be adaptive to the change in working conditions. We benchmark our algorithm against state-of-the-art methods in
terms of trajectory reproduction and adaptation. The quantitative evaluation shows that our approach outperforms other
algorithms regarding both accuracy and efficiency. We also report real-world experimental results on learning manifold
trajectories in a polishing task with a KUKA LWR robot arm, illustrating the effectiveness of our algorithmic framework.

Keywords
Imitation learning, structured prediction, learning and adaptive systems, kernel methods, Riemannian manifolds

1 Introduction

The general notion of imitation is widely exploited in
robotics as it can bring multiple benefits (Osa et al. 2018).
For example, imitation learning has been proven to be an
effective approach to facilitate the acquisition of motor skills
for complex high-dimensional humanoid robots (Schaal
1999; Yang et al. 2018). Also, imitation learning can be
employed for robots to achieve tasks whose rewards are
intricate to manually specify, such as aerobatic maneuvers
for helicopter flight (Abbeel et al. 2010) and dynamic flips
and spins (Peng et al. 2018). Besides, by improving policies
initialized by imitation learning, reinforcement learning can
converge faster than optimizing a policy from scratch (Kober
and Peters 2014; Cheng et al. 2018).

Briefly, there are two major paradigms for implementing
imitation given expert demonstrations. The first is centered
around the policy, where a policy is directly learned by
applying a supervised learning algorithm to find a mapping
from input states and context factors to output actions
(Billard et al. 2008). The second is centered around the
reward, where an unknown reward function is recovered
through inverse reinforcement learning or inverse optimal
control (Abbeel and Ng 2004; Ratliff et al. 2009).

In this paper, we focus on policy-centered imitation
learning. Particularly, we consider the scenario where
policy representation is instantiated with a trajectory-level
abstraction. In this context, imitation learning is also known
as programming by demonstration, where a learner’s motion
skills are usually acquired by penalizing deviation from the
demonstrated trajectory.

Notably, movement primitives remain a central research
topic in trajectory imitation with the goal of encoding
motor skills from demonstrated trajectories for subsequent
usage (Ravichandar et al. 2020). To this end, various
supervised learning algorithms have been leveraged (Stulp
and Sigaud 2015). More specifically, regression techniques,
either parametric or non-parametric, constitute a significant
contribution to the development of movement primitives. In
the following, we briefly cover relevant works highlighting
their strengths and limitations.

Dynamic Movement Primitives (DMP) is one of the
pioneering imitation learning algorithms to mimic the
expert’s trajectory (Ijspeert et al. 2013). It has been gaining
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Table 1. Comparison of features with respect to state-of-the-art methods.

Probabilistic
Trajectory
modulation

Manifold
output

Manifold
modulation

Multiple
imitation modes

Multi-dim
input

Multiple
output types

DMP (Ijspeert et al. 2013) - ✓ - - - - -
ProMP (Paraschos et al. 2013) ✓ ✓ - - - - -
LAT (Reiner et al. 2014) ✓ - - - - - -
GMM (Zeestraten et al. 2017b) ✓ - ✓ - - ✓ -
LGP (Schneider and Ertel 2010) ✓ - - - - - -
TLGC (Ahmadzadeh and Chernova 2018) - - ✓ - - - -
KMP (Huang et al. 2019) ✓ ✓ - - - ✓ -
LPV-DS (Figueroa and Billard 2018) - ✓ ✓ ✓ - ✓ -
Our Approach ✓ ✓ ✓ ✓ ✓ ✓ ✓

popularity, as evidenced by its large number of derivatives,
such as sequenced DMP (Kulvicius et al. 2011), generalized
DMP (Zhou and Asfour 2017), constrained DMP (Duan
et al. 2018), etc. Recent advances in DMP such as Neural
Dynamic Policies (NDPs) integrate deep learning to handle
high-dimensional inputs like visual data (Bahl et al. 2020).
The conception of DMP is based on the spring-damper
dynamic system, whose acceleration profile is fitted with a
set of manually defined basis functions to capture the shape
of a demonstrated trajectory. DMP supports goal adaptation,
yet it cannot handle via-point constraints and multiple
demonstrations. To overcome the limitations, Probabilistic
Movement Primitives (ProMP) was developed to learn a
distribution over trajectories (Paraschos et al. 2013). Besides,
ProMP can execute via-point trajectory adaptation, achieved
by Gaussian conditioning.

In contrast to DMP and ProMP, motion imitation can
also be realized from a non-parametric angle. For example,
Kernelized Movement Primitives (KMP) leverages the
kernel trick for movement representation (Huang et al.
2019). Due to the kernel formulation, it is straightforward
for KMP to handle multi-dimensional inputs, which could
be exploited in human-robot collaboration or task synergy
retrieval (Zeestraten et al. 2017a). Other non-parametric
methods built upon Gaussian processes, such as Local
Gaussian process regression (LGP) (Schneider and Ertel
2010) and Gaussian process Models (GPM) (Arduengo et al.
2021), can learn the demonstrated trajectory as well.

Moreover, autonomous dynamical systems are also
powerful tools for imitation learning. For example, Stable
Estimator of Dynamical Systems (SEDS) (Khansari-Zadeh
and Billard 2011) or Linear Parameter-Varying Dynamical
System (LPV-DS) (Figueroa and Billard 2018) drops explicit
time dependency and can ensure global stability while being
robust to external disturbances. Dynamical systems can be
extended to control forces at the contact level (Amanhoud
et al. 2019). Learning approaches can be used to model both
the motion and force profile (Khoramshahi et al. 2020) and
adapt to a prescribed surface.

Despite the aforementioned advancements, so far only
the imitation of trajectories in Euclidean spaces has been
investigated, leaving the issue of learning trajectories with
manifold constraints relatively under-explored. Arguably,
many imitation objectives in robotics involve the analysis of
geometry-structured training data, such as rotation matrices
(Traversaro et al. 2016), stiffness ellipsoids (Ajoudani et al.
2018), etc. More importantly, it can be safety-critical to avoid
breaking manifold-imposed constraints in some applications

(Ahmadzadeh and Chernova 2018; Duan et al. 2022). Driven
by theoretical questions and practical gains, it is thus crucial
to develop imitation learning algorithms that are applicable
to Riemannian manifolds.

In this paper, we present a persistent algorithmic frame-
work for probabilistic imitation learning. The key novelty in
our approach is to adopt a structured prediction formulation
for robot imitation learning. Structured prediction enables
complex outputs and can deal with trajectories on manifolds.
Our proposed approach can handle the imitation of trajecto-
ries lying in either Euclidean space or a manifold, whilst also
preserving the essential functionalities for movement primi-
tives. Thanks to the inherent kernel method, our approach
admits a non-parametric formalism and can learn trajectories
driven by multi-dimensional inputs.

When carrying out probabilistic trajectory imitation,
it is necessary to specify a suitable loss function that
measures the discrepancy between the demonstrated and
reproduced probabilistic trajectories. Following Ke et al.
(2021) and Ghasemipour et al. (2020), we exploit tools from
information theory and consider defining loss functions with
f -divergences. Noticeably, a number of existing imitation
learning algorithms, developed in the context of sequential
decision-making or programming by demonstration, can
be seen as the minimization of some f -divergence. For
example, behavior cloning minimizes the Kullback-Leibler
(KL) divergence (Pomerleau 1989), KMP minimizes the
reverse KL divergence (Huang et al. 2019), and GAIL
minimizes the Jensen-Shannon (JS) divergence (Ho and
Ermon 2016). We adopt these ideas in the structured
prediction framework and show that by using different
divergences as loss functions, it is possible to obtain
different imitation strategies, that we call imitation modes.
Different imitation modes determine different coupling
effects between the mean and the covariance of the obtained
probabilistic trajectory policy.

A comparison between our approach and state-of-the-
art algorithms is shown in Table 1. To summarize, our
contribution is the development of a structured prediction
framework for robot motion imitation that enables:

(i) Prediction of outputs of a variety of types, including
Euclidean and manifold-structured trajectories;

(ii) Imitation of expert demonstrations with multiple
imitation modes by means of different f -divergences;

(iii) Modulation of trajectories to adapt the learned motion
skills to novel working settings.
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The rest of the paper is organized as follows. In
Section 2, we present the proposed algorithmic framework,
casting imitation learning as a structured prediction problem
and constructing loss functions based on f -divergences.
Also, strategies for trajectory modulation are provided.
Within the proposed framework, we introduce its practical
implementation in Section 3, where both Euclidean and
manifold-valued outputs are considered. The experimental
results, including a comparison against previous algorithms
and real-world tasks, are reported in Section 4 to show
the effectiveness of the proposed approach. We review
related work and discuss the limitations and future work in
Section 5. Finally, we conclude the paper in Section 6.

2 A Structured Prediction Approach to
Probabilistic Imitation Learning

In this section, we first briefly review the background of
probabilistic imitation learning and present our problem
formulation (Section 2.1). We then present our algorithmic
framework that reveals a structured approach to probabilistic
imitation learning (Section 2.2), followed by trajectory
modulation strategies (Section 2.3).

2.1 Background and Problem Setting
Probabilistic approaches are very popular in robot imitation
learning (Billard et al. 2008). Compared to deterministic
techniques, they can provide more information (such as
variability and correlation) to a robot learner. To perform
probabilistic imitation, a human teacher usually presents
multiple demonstrations for a single task. Assume that the
raw data collected from M demonstrations of fixed length N
is formatted as {{xm

n ,ym
n }Nn=1}Mm=1, where xm

n ∈ X is the
input and ym

n ∈ Y denotes the output.
The data types of the input and the output spaces in robot

imitation learning can vary in different application scenarios.
For instance, in a common scenario where the robot needs to
learn a time-indexed trajectory, we have X = R. In a more
complex task such as human-robot collaboration, the robot
could be required to react to the human’s position. As a
result, the input that the robot takes is a vector rather than
a scalar, i.e., X = RI with I > 1 being the dimensionality.
The output space Y is usually considered to have a Euclidean
structure RO with O being the dimensionality. Additionally,
often there are problems where manifold-type constraints are
enforced on the output value, i.e.,Y =M, whereM denotes
a manifold.

To exploit the probabilistic properties from raw demon-
stration datasets, suitable statistical learning tools such as
mixture models (Billard et al. 2008) and their various exten-
sions (Zeestraten et al. 2017b; Simo-Serra et al. 2017) can be
employed. More precisely, we can have

{{xm
n ,ym

n }Nn=1}Mm=1
data

=====⇒
processing

D = {xn, ỹn}Nn=1, (1)

where the output ỹ in the dataset D lies in a probability
space as a result of multiple demonstrations and can be
approximated by some Gaussian-like distribution P(Y). An
illustrative example of data processing is shown in Figure 1.

In the context of robot movement imitation, a central
topic is how to generate a trajectory so that a robot can

Figure 1. An illustrative example of data processing for
probabilistic imitation learning. The left figure plots multiple
demonstrations and the right figure plots the obtained
probabilistic trajectory. The solid line represents the mean and
the shallow area represents the covariance.

mimic a demonstrator as closely as possible. To achieve
this goal, the robot should behave as the demonstrator in
response to a query input. It is then critical to find a suitable
mapping between the input and output values based on the
collected demonstrations (Zahra et al. 2022). This classical
view on imitation learning is reminiscent of the objective of
supervised learning: To find an input/output function given
input/output pairs.

Focusing on probabilistic imitation learning, our goal is
to address the motion imitation problem by learning the
mapping rule s : X → P(Y) given the dataset D. Formally,
the problem formulation can be described as

find s : X → P(Y) given {xn, ỹn}Nn=1, (2)

where we are looking for a mapping rule with outputs being
probability distributions.

2.2 A Structured Prediction Perspective on
Motion Imitation

Before addressing our concerned problem (2), we first recall
the standard supervised learning setting

find s : X → Y given {xn,yn}Nn=1. (3)

In particular, following (Ciliberto et al. 2016), we call (3) a
structured prediction problem whenever the space Y does not
have a linear structure, e.g., when Y is manifold.

2.2.1 Structured Prediction via Surrogate Approach Due
to the lack of linearity in the output space, structured
prediction is a very challenging problem. Here, we resort to a
surrogate solution that is common in classification (Mroueh
et al. 2012) and apply it to the structured prediction problem
as shown in (Ciliberto et al. 2016) by leveraging results for
vector-valued kernel learning (Álvarez et al. 2012).

The key steps of the surrogate approach are sketched as
follows:

1. Encoding. Design an encoding c : Y → H to map the
structured output space Y into a vector spaceH.

2. Surrogate learning. Solve the learning problem
in the surrogate space. This is achieved by first
choosing a surrogate loss L : H×H → R and then
finding g : X → H which minimizes the sum of
errors L(c(yn),g(xn)) given the surrogate dataset
{xn, c(yn)}Nn=1.

Prepared using sagej.cls
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Input space  Output space
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Structured prediction
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Figure 2. Schematic illustration of the surrogate approach to
structured prediction.

3. Decoding. Recover s with a suitable decoding rule
c−1 : H → Y , i.e., s = c−1 ◦ g : X → Y .

A pictorial illustration of structured prediction by the
surrogate framework is shown in Figure 2. Next, we discuss
how the encoding steps can be performed implicitly for a
wide spectrum of loss functions.

2.2.2 Implicit Encoding Framework As discussed in
(Ciliberto et al. 2020), the embedding can be applied
implicitly for the case of Structure Encoding Loss Functions
(SELF) ∆ : Y × Y → R for which there exists a separable
Hilbert space HY with inner product ⟨·, ·⟩HY , a continuous
feature map c : Y → HY , and a continuous linear operator
V : HY → HY such that for all y, y′ ∈ Y we have

∆(y,y′) = ⟨c(y), V c(y′)⟩HY . (4)

To address the surrogate learning problem, we consider the
following linearly parameterized model

g(x) = Wφ(x) ∈ RM , (5)

where φ : X → RP denotes a feature map and W ∈ RM×P

denotes learnable parameters. The estimation of W can be
determined by addressing the following multi-variate ridge
regression problem:

min
W

1

N

N∑
n=1

∥Wφ(xn)− c(yn)∥2HY
+ λ∥W∥2F . (6)

The solution to (6) can be shown to be

Ŵ = C(Φ⊤Φ+NλIN )−1Φ⊤, (7)

where we denote C =
[
c(y1), . . . , c(yN )

]
∈ RM×N and

Φ =
[
φ(x1), . . . ,φ(xN )

]
∈ RP×N . Also, λ > 0 is a reg-

ularization parameter and IN ∈ RN×N denotes the iden-
tity matrix of size N . Besides, ∥ · ∥2F denotes the squared
Frobenius norm of a matrix, i.e., the sum of all its squared
elements.

By substituting (7) into (5), the solution to the surrogate
learning problem is given by

ĝ(x) = Ŵφ(x) =

N∑
n=1

αn(x)c(yn), (8)

where αn(x) is the n-th entry of α(x) ∈ RN :

α(x) = (Φ⊤Φ+NλIN )−1Φ⊤φ(x) (9)

= (K+NλIN )−1kx, (10)

where the kernel trick is invoked to obtain (10) from (9).
More precisely, given a kernel k : X × X → R, we have
k(x,x′) = ⟨φ(x),φ(x′)⟩. The empirical kernel matrix K ∈
RN×N is constructed as Ki,j = k(xi,xj) and kx ∈ RN is
the vector defined by kx =

[
k(x,x1), . . . , k(x,xN )

]⊤
.

By exploiting the property of SELF, the decoder is
designed such that the predictor has the form

s(x) = argmin
y∈Y

⟨c(y), V g(x)⟩HY
. (11)

Finally, by plugging (8) into (11), we have

ŝ(x) = argmin
y∈Y

〈
c(y), V

(
N∑

n=1

αn(x)c(yn)

)〉
HY

(12)

= argmin
y∈Y

N∑
n=1

αn(x)∆(y,yn), (13)

where we used the linearity property of the inner product and
the definition of (4) to obtain (13) from (12).

In summary, when applying the implicit embedding
framework to solve the structured prediction problem (3), the
procedure consists of two steps:

1. Surrogate learning: Calculate the input-dependent
weights α.

2. Decoding: Optimize the α-weighted linear combina-
tion of losses ∆(y,yn).

The key insight is that the encoding rule c and the surrogate
space HY are no longer explicitly needed and in this sense
the encoding is implicit.

On the basis of the implicit encoding framework (Ciliberto
et al. 2020), in the following we present the development of
the proposed imitation learning algorithm. We first outline
the main idea of performing probabilistic trajectory imitation
via structured prediction (Section 2.2.3). Afterwards, we
show the strategies for trajectory modulation, which
is essential for robots to reproduce motion skills in
environments different from the one experienced during
the demonstrations (Section 2.3). Then, we illustrate
motion imitation in the case of Euclidean and Riemannian
probabilistic trajectories (Section 3).

2.2.3 Loss Function Design by f -Divergence We now
consider addressing problem (2) where the outputs are
trajectory distributions in a probability space P . Given
an input x, an immediate application of the solution to
structured prediction (13) becomes

ŝ(x) = argmin
ỹ∈P

N∑
n=1

αn(x)∆(ỹ, ỹn), (14)

where a suitable loss function needs to be designed to quan-
tify the discrepancy between two probability distributions
ỹ and ỹn in P . We propose to leverage tools from an
information-theoretic perspective and choose the family of
f -divergences provided the f -divergences generalize sim-
ilarity measures between probability distributions. Such a
choice is also in alignment with the findings from sequential
decision-making that imitation learning can be treated as

Prepared using sagej.cls
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the divergence minimization between expert and learner
trajectory distributions (Ke et al. 2021).

The expression for the f -divergence is given as*

Df

(
ỹn(x), ỹ(x)

)
≜ Eỹ(x)

[
f

(
dỹn(x)

dỹ(x)

)]
, (15)

where f : R+ → R represents a convex function with
f(1) = 0. By choosing different functions f , a broad class of
divergences can be defined. Common examples include the
KL divergence, the reverse KL divergence, and the Jensen-
Shannon divergence (see Pardo (2018) for a full list). Given
that different types of f -divergence will result in different
imitation policies, we then refer to these different imitation
policies as imitation modes.

Finally, by substituting (15) into (14), the estimator for
probabilistic trajectory prediction is obtained as

ŝ(x) = argmin
ỹ∈P

N∑
n=1

αn(x)Eỹ(x)

[
f

(
dỹn(x)

dỹ(x)

)]
. (16)

2.3 Trajectory Modulation
As the demonstration and reproduction environments can
differ, robots should be able to adapt the learned motor skills
during reproduction. To this aim, it is essential to endow
robots with adaptability to the arising requirements through
spatial or temporal trajectory modulation.

For example, trajectory modulation for desired via-points
can be used for reaching a region of interest or avoiding
collisions. Also, the capability of setting off from a new
start point or converging to a different end point can make
robots more flexible in tasks like pushing or pick-and-place.
Our approach guarantees that movements can be adapted
on the fly during the execution of Euclidean trajectories.
Moreover, to generate more complex behaviors, multiple
movement trajectories can be co-activated simultaneously
(Duan et al. 2019). Such concurrent co-activation of different
trajectories is also known as trajectory superposition, which
can significantly improve motion expressiveness.

Besides spatial modulation, temporal modulation is also
a necessary capability for tasks that are sensitive to correct
timing. By speeding up or slowing down the robot’s
movement, trajectories can then be temporally adapted for
striking-based manipulation or walking speed adjustment in
locomotion. Temporal modulation can also be used to avoid
time-dependent collisions.

2.3.1 Spatial Modulation We consider the issue of passing
through additional desired via-points. Assume that there are
J new desired points stored in the dataset Dv = {xj , ỹj}Jj=1

with each one repeating wj > 1 times. To take these new
requirements into account, we concatenate the new desired
dataset to the original demonstrated one. Consequently,
the updated dataset to train our estimator now becomes
D ∪ Dv with a total number of points N ′ = N +

∑J
j wj .

Afterwards, (14) should be applied to the new dataset.
It is noteworthy that the size of the kernel matrix

now increases to RN ′×N ′
. Owing to the computational

burden incurred by matrix inversion, it will be favorable
to reduce the size of the kernel matrix. To this end, we
examine surrogate learning in the deterministic setting. The

Algorithm 1: Imitation Learning by Structured
Prediction

Initialization:
1 Retrieve dataset D from demonstrations;
2 Define kernel k and hyperparameter λ;
3 Choose imitation mode f ;

Trajectory modulation:
4 Specify desired points in Dv;
5 Prioritize trajectories in Ds;
6 Aggregate dataset as D ∪ Dv ∪ Ds ;

Motion generation:
7 Input: query point x;
8 Calculate weights α′(x);
9 Output: estimated value ŝ(x);

optimization problem (6) incorporating weighted terms is
now formulated as

min
W

1

N ′

N+J∑
n=1

wn∥Wφ(xn)− c(yn)∥2HY
+ λ∥W∥2F (17)

where each weight wn is defined as

wn =

{
wj xn ∈ Dv,

1 otherwise.
(18)

The estimator for trajectory adaptation can still be expressed
similarly to (14), except that the size of the kernel matrix
is reduced to R(N+J)×(N+J), which will yield faster
computation speed when carrying out matrix inversion.
Furthermore, the coefficients are written as

α′(x) = (K′ +N ′λIN+J)
−1k′

x, (19)

where K′ and k′
x are obtained by weighing the rows of K

and kx that involve xj by wj .
As for trajectory superposition, the robot is expected

to follow H prioritized trajectories. We denote the related
dataset by Ds = {wh, {xh

n, ỹ
h
n}Nn=1}Hh=1 with priorities nor-

malized, i.e.,
∑H

h=1 wh = 1. Given the assigned priorities,
we construct the loss function by weighing the individual
loss evaluations as:

∆(ỹ, ỹn) =

H∑
h=1

whDf (ỹ
h
n, ỹ), (20)

which results in the estimator as

ŝ(x) = argmin
ỹ∈P

N∑
n=1

αn(x)

H∑
h=1

whDf (ỹ
h
n, ỹ). (21)

The algorithmic framework of the proposed imitation
learning approach incorporating spatial trajectory modula-
tion is summarized in Algorithm 1.

∗We put ”true” distribution first to comply with forward KL divergence.

Prepared using sagej.cls



6 Journal Title XX(X)

2.3.2 Temporal Modulation When dealing with temporal
modulation, a phase variable z can be introduced to decouple
the dependence from time (Ijspeert et al. 2013). The choice
of phase z(t) can be any monotonic increasing function with
respect to the time stamp t. By making the movement depend
on the phase rather than time, a faster or slower execution
of the movement is then permitted. Therefore, the desired
temporal evolution of the movement can be achieved by
tuning the rate of the phase variable. A common choice of the
monotonic function is first-order linear dynamics (Ijspeert
et al. 2013).

3 Practical Implementation of the
Algorithm

We begin by noting that Algorithm 1 is a meta-algorithm
since it requires solving an optimization problem over the
probability space. In this section, we will illustrate how
to practically deploy the algorithm. Towards this end, we
make a specific choice that each output distribution satisfies
a Gaussian ỹn ∼ Nα(µn,Σn) (on a Euclidean N or a
manifold NM (Zeestraten et al. 2017b)) with mean µn and
covariance Σn. As a result, the dataset has a format of
DN = {xn, (µn,Σn)}Nn=1.

Our intention here is to find separate estimators sm
and sc to predict mean µ and covariance Σ, respectively.
Particularly, given a query point x, the corresponding
output becomes ỹ(x) ∼ Nα(sm(x), sc(x)). To find these
estimators, we instantiate the template of problem (16) by
choosing a specific f -divergence function and restricting the
type of probabilistic trajectories to Gaussian distributions.
Consequently, problem (16) becomes

ŝ(x) = argmin
(µ,Σ)∈Y×Y2

N∑
n=1

αn(x)Df (Nα(µn,Σn),Nα(µ,Σ)).

(22)
The optimization problem (22) can be solved by taking the
derivatives with respect to the design variables µ and Σ,
respectively, and then setting the obtained derivatives to zero.
Therefore, we need to calculate

N∑
n=1

αn(x)
∂Df (µn,Σn,µ,Σ)

∂µ
= 0, (23)

N∑
n=1

αn(x)
∂Df (µn,Σn,µ,Σ)

∂Σ
= 0. (24)

When calculating the partial derivatives as required by (23)
and (24), the cost terms containing µ and Σ shall be singled
out, separately. The estimators of mean ŝm and covariance ŝc
will then appear as

ŝm(x) = argmin
µ∈Y

N∑
n=1

αn(x)∆m(µ,Σ), (25)

ŝc(x) = argmin
Σ∈Y2

N∑
n=1

αn(x)∆c(µ,Σ), (26)

where ∆m groups all the terms containing µ for mean
prediction and ∆c groups all the terms containing Σ for
covariance prediction. We drop the dependence of the cost

terms on n without ambiguity. In addition, when predicting
the covariance matrix, the result needs to be restricted to the
cone of symmetric positive semi-definite matrices.

Next, we discuss the realization of different imitation
modes by choosing different f -divergences in Section 3.1.
We show in Section 3.2 how to deal with manifold-valued
probabilistic trajectories.

3.1 Imitation with Euclidean-Valued Output
As discussed in Section 2.2.3, different choices of f can
result in different imitation strategies ỹ ∼ N (µ,Σ) to
imitate the expert policy ỹn ∼ N (µn,Σn) in response to a
query input x. We called these strategies imitation modes.
Here we consider the case where the trajectory mean lies
in a Euclidean space. Specifically, we show how different
imitation learning algorithms can be obtained by exploiting
two common f -divergences, namely the KL divergence and
the reverse KL divergence.

3.1.1 KL divergence We start with the well-known KL-
divergence to illustrate the motivation for the cost functions
design. The KL divergence is obtained by taking f(u) =
u log(u). Using the properties of the KL divergence between
two multivariate Gaussian distributions, the corresponding
loss function is given by

DKL(ỹn, ỹ) = Eỹ

[
dỹn

dỹ
log

(
dỹn

dỹ

)]
=
1

2

(
(µ− µn)

⊤Σ−1(µ− µn)︸ ︷︷ ︸
∆m

+ log |Σ|+ Tr(Σ−1Σn)

︸ ︷︷ ︸
∆c

− log |Σn| − dim(Y)
)
, (27)

where | · | denotes the determinant of a matrix, Tr(·)
denotes the trace of a matrix, and dim(Y) indicates the
dimensionality of the output space.

Grouping the terms that include µ and Σ, respectively,
we can acquire the expressions for the optimization cost
functions ∆m and ∆c from (27). Then we can plug these
expressions in (25) and (26) so that the estimators with the
KL-divergence imitation mode are given by

ŝm(x) = argmin
µ∈Y

N∑
n=1

αn(x)
(
(µ− µn)

⊤Σ−1(µ− µn)
)
,

(28)

ŝc(x) = argmin
Σ∈Y2

N∑
n=1

αn(x)
(
(µ− µn)

⊤Σ−1(µ− µn)

+ log |Σ|+ Tr(Σ−1Σn)
)
. (29)

To compute the optimal mean and covariance predictions, we
set to zero the derivatives of (28) and (29) with respect to µ
and Σ, which yields

µ =

∑N
n=1 αn(x)µn∑N
n=1 αn(x)

, (30)
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Table 2. List of imitation modes based on different divergences

Kullback-Leibler divergence Reverse Kullback-Leibler divergence

f(u) u log(u) − log(u)

∆m(µ,Σ) (µ− µn)
⊤Σ−1(µ− µn) (µ− µn)

⊤Σ−1
n (µ− µn)

ŝm(x)

∑N
n=1 αn(x)µn∑N
n=1 αn(x)

(∑N
n=1 αn(x)Σ

−1
n

)−1∑N
n=1 αn(x)Σ

−1
n µn

∆c(µ,Σ) (µ− µn)
⊤Σ−1(µ− µn) + log |Σ|+ Tr(Σ−1Σn) − log |Σ|+ Tr(Σ−1

n Σ)

ŝc(x)

∑N
n=1 αn(x)

(
(µ− µn)(µ− µn)

⊤ +Σn

)∑N
n=1 αn(x)

(∑N
n=1 αn(x)Σ

−1
n∑N

n=1 αn(x)

)−1

Σ =

∑N
n=1 αn(x)

(
(µ− µn)(µ− µn)

⊤ +Σn

)∑N
n=1 αn(x)

(31)

≈
∑N

n=1 αn(x)Σn∑N
n=1 αn(x)

. (32)

We note that the prediction of the covariance matrix
according to (31) is dependent on the predicted mean
value given by (30). By contrast, the prediction of the
mean value is only dependent on the training output mean
µn. Therefore, we should predict the mean first before
computing the covariance prediction. In addition, if we
would like to alleviate the interference from the mean
value on the covariance prediction, it can be considered to
approximate (31) by omitting the term (µ− µn)(µ− µn)

⊤

as in (32).

3.1.2 Reverse KL divergence Besides the KL divergence,
there are plenty of other divergences that can be used to
construct loss functions. For example, we here consider the
reverse KL divergence, which reflects the asymmetry of the
KL divergence. The reverse KL divergence is defined by
f(u) = − log(u), which gives rise to the associated loss
function as

DRKL(ỹn, ỹ) = Eỹ

[
log

(
dỹ

dỹn

)]
=
1

2

(
(µ− µn)

⊤Σ−1
n (µ− µn)︸ ︷︷ ︸

∆m

− log |Σ|+ Tr(Σ−1
n Σ)︸ ︷︷ ︸

∆c

+ log |Σn| − dim(Y)
)
. (33)

Similarly to Section 3.1.1, we collect all the terms
involving µ to specify the cost function ∆m for mean
prediction and collect all the terms involving Σ to specify the
cost function ∆c for covariance prediction. By plugging the
cost functions given by (33) into (25) and (26), the reverse-
KL imitation mode estimators can be expressed as

ŝm(x) = argmin
µ∈Y

N∑
n=1

αn(x)
(
(µ− µn)

⊤Σ−1
n (µ− µn)

)
,

(34)

ŝc(x) = argmin
Σ∈Y2

N∑
n=1

αn(x)
(
− log |Σ|+ Tr(Σ−1

n Σ)
)
.

(35)

The solutions are also calculated by setting the derivatives
of (34) and (35) with respect to the design variables µ and Σ

equal to zero, respectively. Therefore, the optimal predictions
for mean and covariance are given by

µ =

(
N∑

n=1

αn(x)Σ
−1
n

)−1 N∑
n=1

αn(x)Σ
−1
n µn, (36)

Σ =

(∑N
n=1 αn(x)Σ

−1
n∑N

n=1 αn(x)

)−1

. (37)

It can be seen that the prediction of the mean value by (36)
relies on both the training output covariance Σn and mean
µn. By contrast, the prediction of the covariance matrix
in (37) only depends on the training output covariance. As
a side note, the predicted covariance matrix given by (37)
can be utilized for mean prediction to avoid repetitive
computation of the term (

∑N
n=1 αn(x)Σ

−1
n )−1.

As a sanity check, it can be seen that the predicted
covariance matrix in (31) and (37) is indeed symmetric
positive semi-definite if the training covariance matrices are
symmetric positive definite since (i) the outer product of
a vector, (ii) the inverse of a symmetric positive definite
matrix, and (iii) the sum of the symmetric positive semi-
definite matrices are all symmetric positive semi-definite
matrices. While the weight αn(x) can be non-positive for
some terms, in practice, its score at the proximity to the input
query point is positive and will usually dominate other terms.
For other possible choices of f , the constraint for Σ being a
symmetric positive semi-definite matrix should be taken into
account explicitly.

It should be noted that the optimization problem (22) is
derived on the basis of the implicit embedding framework.
Therefore, to make the formulation valid, it is important for
the divergence-inspired loss functions DKL (27) and DRKL

(33) to be SELF. In fact, it is possible to show these are the
cases. We provide a proof sketch in Appendix A.

Our main results are summarized in Table 2 and the
algorithm for imitation of Euclidean-valued probabilistic
trajectories is written in Algorithm 2.

3.1.3 Learning the Velocity Profile of Temporal Trajec-
tories In tasks such as throwing and catching, robots need
to exhibit dynamic behavior, which requires learning motor
skills involving not only position but also velocity or even
higher-order derivatives. However, a direct application of
the structured prediction method developed so far could
be infeasible, since both mean prediction strategies given
by (30) and (36) are not aware of the constraint on the
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Algorithm 2: Imitation with Euclidean-Valued
Output

1 Collect trajectories from multiple demonstrations;
/* Assumption of Gaussian output */

2 Process raw data for DN = {xn, (µn,Σn)}Nn=1;
3 Define the kernel k and parameter λ;
4 Choose imitation mode f ;
5 switch imitation mode f do
6 for x = xStart, . . . ,xEnd do
7 Input: a query point x;
8 Calculate the weights α(x);
9 case f(u) = u log(u) do

/* Predict with the KL
divergence mode */

10 Output: mean µ as per (30);
11 Output: covariance Σ as per (31);

12 case f(u) = − log(u) do
/* Predict with the reverse

KL divergence mode */
13 Output: mean µ as per (36);
14 Output: covariance Σ as per (37);

15 otherwise do
16 Formulate ∆m and ∆c motivated by (22);
17 Output: mean µ by optimizing (25);
18 Output: covariance Σ by optimizing (26);

// s.t. Σ = Σ⊤ and Σ ⪰ 0

derivative relationship between position and velocity out-
puts. Therefore, we need to explicitly cope with the issue of
learning temporal trajectories. We denote the output value y
composed of both position µ and velocity µ̇ as

y(t) =

[
µ(t)
µ̇(t)

]
. (38)

Recall that we used the least-squares estimator (6) to solve
the surrogate problem. As this treatment can not take the
underlying temporal constraint of output values into account,
a derivative constraint-aware estimator g is needed such that
it can capture the temporal relationship.

We motivate our design for the estimation value ĝ
by referring to an analytic insight of the feature map.
Specifically, to complement (5) for velocity learning, we
employ the following parametric form

g(t) =

[
W⊤φ(t)
W⊤φ̇(t)

]
(39)

where the same weight matrix W is used for both velocity
and position feature maps so that the time derivative
constraint can be respected. The feature maps for velocity
learning are expressed by

φ̇(t) = lim
δ→0

φ(t+ δ)−φ(t− δ)

2δ
. (40)

The estimated value for W can be obtained by solving the
following optimization problem

min
W

1

N

N∑
n=1

∥∥∥∥[φ⊤
n

φ̇⊤
n

]
W −

[
µ⊤

n

µ̇⊤
n

]∥∥∥∥2
F

+ λ∥W∥2F . (41)

By setting the derivative of (41) with respect to W to zero,
we then obtain

Ŵ = Φ(Φ⊤Φ+NλI)−1Y, (42)

where we represent Φ =
[
φ1, φ̇1, . . . ,φN , φ̇N

]
and Y =[

µ1, µ̇1, . . . ,µN , µ̇N

]⊤
. Consequently, by substituting (42)

into (39), we have the predicted values at time step t as

ĝ(t) =

[
Y⊤(K+NλI)−1kp

Y⊤(K+NλI)−1kv

]
(43)

where the vectors kp and kv are given by

kp
i =

{
φ⊤

i φ(t)

φ̇⊤
i φ(t)

kv
i =

{
φ⊤

i φ̇(t) i = 2n− 1,

φ̇⊤
i φ̇(t) i = 2n.

(44)

The kernel matrix K is constructed as

Ki,j =


φ⊤

i φj i = 2n− 1, j = 2n′ − 1,

φ⊤
i φ̇j i = 2n− 1, j = 2n′,

φ̇⊤
i φj i = 2n, j = 2n′ − 1,

φ̇⊤
i φ̇j i = 2n, j = 2n′,

(45)

where n and n′ = 1, 2, 3, . . . , N . After substituting φ̇ with
its definition (40) into (45), we apply the kernel trick for the
matrix as also shown by (Huang et al. 2019). In summary,
the definition for the kernel matrix is given in Table 3, where
t± ≜ t± δ. Also, the kernelized version for (44) can be
derived similarly.

Table 3. Definition for kernel matrix K.

Ki,j i = 2n− 1 i = 2n

j = 2n′ − 1 k(ti, tj) (k(t+i , tj)− k(t−i , tj))/2δ

j = 2n′ (k(ti, t
+
j )−

k(ti, t
−
j ))/2δ

(k(t+i , t
+
j )− k(t+i , t

−
j )−

k(t−i , t
+
j ) + k(t−i , t

−
j ))/4δ

2

It should be noted that despite the presence of the time
derivative constraint in (38), it still admits the Euclidean
metric for such output values. Hence, there is no need for
an encoding rule, as evident by (41) where the temporal
trajectory outputs are directly used as the learning objectives
instead of their embedding values. With the collapse of the
surrogate space, the structured prediction estimator ŝ(t) thus
coincides with the mapping of surrogate learning (43).

Furthermore, to align with the formation of (30), we re-
write the solution to our temporal estimator ŝ(t) towards the
formalism of a weighted sum of output values:

ŝ(t) =

N∑
n=1

αnyn. (46)

The weight matrix αn is defined as

αn =

[
αp

2n−1I αp
2nI

αv
2n−1I αv

2nI

]
(47)

where we have

αp = (K+ λI)−1kp and αv = (K+ λI)−1kv. (48)

To modulate the temporal trajectory such that it can pass
through some desired via-point and/or via-velocity, K, kp,
and kv need to be modified similarly to (19), i.e., the rows
that involve desired adaptive behavior need to be weighed
accordingly.
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3.2 Imitation with Manifold-Valued Output
In this section, we present our algorithmic framework in
the context of manifold structured prediction, i.e., when the
output space Y is a manifold M. Differently from Section
3.1, the learner’s and the expert’s probabilistic trajectories
are now constrained to lie on a Riemannian manifold†. In this
case, we consider the Riemannian GaussianNM to represent
the policy, which is usually approximated as (see e.g., Simo-
Serra et al. (2017); Zeestraten et al. (2017b)):

NM(y;µ,Σ) =
1√

(2π)d|Σ|
e−

1
2 Logµ(y)⊤Σ−1Logµ(y) (49)

where µ ∈M is the Riemannian mean and Σ is the
covariance matrix defined in the tangent space TµM.

To construct the corresponding loss function, we
also propose to compute the f -divergence between the
learner policy ỹ ∼ NM(µ,Σ) and the expert policy ỹn ∼
NM(µn,Σn). Here, we take the KL divergence as an
example, so that the loss function is

DKL(ỹn, ỹ) =
1

2

∫ (
log
|Σ|
|Σn|

− Logµn
(y)Σ−1

n Logµn
(y)

+ Logµ(y)Σ
−1Logµ(y)

)
ỹn dy. (50)

To ease the computation of (50), we make use of the
following approximation

Logµ(y) ≈ Logµ(µn) + Logµn
(y). (51)

As a result, (50) can be approximated as

1

2

(
Logµ(µn)

⊤Σ−1Logµ(µn)︸ ︷︷ ︸
∆m

+ log |Σ|+ Tr(Σ−1Σn)

︸ ︷︷ ︸
∆c

− log |Σn| − dim(Y)
)
. (52)

In view of the complex form of ∆m, we propose to ease
the computations by omitting the weight Σ upon observing
that it plays no role in the Euclidean case (30). Therefore, the
cost function for mean prediction ∆m now becomes

∆m = Logµ(µn)
⊤Logµ(µn) ≈ dist2(µn,µ), (53)

where dist(·, ·) denotes the geodesic distance between two
manifold points. Finally, our estimator for mean prediction is
given by

ŝm(x) = argmin
µ∈M

N∑
n=1

αn(x) dist
2(µn,µ). (54)

We note that the loss function used in (54) is the squared
geodesic distance, which is SELF as shown by Rudi et al.
(2018). To perform the estimation at a new test point x,
geometric optimization is required. In particular, we consider
the Riemannian gradient descent, which extends the usual
gradient descent method to manifolds with the guarantee that
the computed value is still an element of the manifold.

By denoting the minimization objective of (54) as F(µ),
the iterative optimization process takes the form

µi+1 = Expµi
(ηi∇MF(µi)) , (55)

Algorithm 3: Imitation with Manifold Output

1 Collect multiple Riemannian trajectories;
2 Process raw data for DM = {xn, (µn,Σn)}Nn=1;
3 Eigen-decomposition of covariance as per (59);
4 Initialize kernel k, regularization λ, and step size η;
5 for x = xStart, . . . ,xEnd do
6 Input: a query point x;
7 Calculate the weights α(x);
8 repeat
9 v = ∇M

∑N
n=1 αn(x) dist

2(µn,µ);
10 µ← Rµ(η v);
11 until convergence;
12 Output: mean µ;
13 Compute the parallel transport covariance Σ∥n as

per (58);
14 Output: covariance Σ as per (56);

where ∇M is the Riemannian gradient operator and ηi ∈ R
is a step size. Since the exponential map Exp could be
difficult to compute, a computationally cheaper alternative
is the retraction map Rµ : TµM→M, which is a first-
order approximation to the exponential map. In addition
to faster computation, the retraction map also guarantees
convergence.

Apart from the Riemannian gradient descent, in some
simple cases it is also possible to perform Riemannian
optimization by optimizing in the Euclidean space first and
then projecting the results onto the manifold. However,
for complex manifolds, the projection operation can be
very expensive to compute. By contrast, our employed
Riemannian gradient descent provides a principled way for
Riemannian optimization by making use of the intrinsic
geometry of manifolds.

The procedure for the covariance matrix prediction can be
achieved similarly to (31):

Σ =

∑N
n=1 αn(x)

(
Logµ(µn)Logµ(µn)

⊤ +Σ∥n
)∑N

n=1 αn(x)
, (56)

≈
∑N

n=1 αn(x)Σ∥n∑N
n=1 αn(x)

, (57)

where a parallel transported covariance matrix Σ∥n is used
in place of Σn. Parallel transport is necessary here as it
can transfer the information from one point to another by
considering the rotation of the coordinate systems along the
geodesic curve. The transported covariance matrix can be
computed as

Σ∥n =

d∑
j=1

Γµn→µ(uj)Γµn→µ(uj)
⊤, (58)

where uj is obtained through an eigendecomposition:

Σn =

d∑
j=1

uju
⊤
j . (59)

†Basic notions and nomenclatures on Riemannian manifolds are recalled in
Appendix B.
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Table 4. List of operations of common Riemannian manifolds considered in this paper.

Sphere with radius r: S2(r) Circular generalized cylinder: R2 × S1

Distance metric
dist(µn,µ)

r arccos

(
µ⊤

nµ

r2

) √
∥µR

n − µR∥2 + arccos
(
µS

n
⊤µS

)2

Minimization objective
F(µ)

∑N
n=1 αnr

2 arccos

(
µ⊤

nµ

r2

)2 ∑N
n=1 αn

(∥∥µR
n − µR∥∥2

+ arccos
(
µS

n

⊤
µS

)2
)

Riemannian gradient
∇MF(µ)

2
∑N

n=1 αn

(
µµ⊤

r2
− I

) arccos

(
µ⊤

nµ

r2

)
√

1−
(
µ⊤

nµ

r2

)2
µn

2
∑N

n=1 αn

[ [
µR − µR

n

]⊤ arccos
(
µS

n

⊤
µS

)
√

1−
(
µS

n
⊤µS

)2

×
[
(µSµS⊤ − I)µS

n

]⊤ ]⊤

Retraction Rµ(p) r
µ+ p

∥µ+ p∥

[[
µR + pR

]⊤ [
µS + pS

∥µS + pS∥

]⊤
]⊤

Logarithmic map Logµn
(µ) dist(µn,µ)

r2µ− µ⊤
nµµn

∥r2µ− µ⊤
nµµn∥

[[
µR − µR

n

]⊤
dist(µS

n ,µ
S)

µS⊤− µ⊤
nµµ

S
n

⊤

∥µS − µ⊤
nµµ

S
n∥

]⊤

Parallel transport
Γµn→µ(u)

u−
Logµn

(µ)⊤u

dist2(µn,µ)

(
Logµn

µ+Logµµn

) [
uR

⊤
uS

⊤−
LogµS

n
(µS)⊤uS

dist2(µS
n ,µ

S)

[
LogµS

n
µS+LogµSµ

S
n

]⊤]⊤

Similarly to the Euclidean setting, manifold-adaptive
behavior, such as passing through some desired via-point, is
realized by modifying the weight α according to (19).

Table 4 provides the manifold operations required for two
problems of interest considered in this paper: The sphere
S2(r) with radius r and the circular generalized cylinder
R2 × S. An algorithm for imitation with manifold-valued
output is summarized in Algorithm 3.

4 Experimental Evaluations
In this section, we evaluate the effectiveness of our proposed
approach with both simulations and real experiments. Specif-
ically, we conduct simulations on trajectory reproductions in
Section 4.1, where the resulting imitation fidelity is reported.
We then test the performance of our algorithm in the case of
adaptive behavior including both position and velocity via-
points in Section 4.2. For manifold trajectory learning, we
study the problem of reproducing and adapting trajectory on
a sphere and a generalized cylinder as in Section 4.3. Finally,
in Section 4.4 we report the experimental results on a real
KUKA robot arm. A video of the real-world experiments is
available in the supplementary material.

4.1 Trajectory Reproduction
We first evaluate the effectiveness of our algorithm for
trajectory reproduction. Our goal is to compare with state-of-
the-art algorithms in terms of imitation fidelity by learning
the trajectories of four illustrative letters, namely ’N’, ’S’,
’W’, and ’P’, with time as the input. It should be noted that
trajectory covariance learning is usually not considered by
autonomous approaches like LPV-DS as they focus more on
global stability and robustness to disturbances.

The collected data from multiple demonstrations for the
letter trajectories are first processed with Gaussian mixture
models (GMM). Subsequently, a probabilistic reference
trajectory is extracted by Gaussian mixture regression

(GMR) (Billard et al. 2008), serving as the baseline for
different imitation algorithms to compare against.

The learning results are shown in Figure 3. In the same
row, the same multiple demonstrations for one letter are fed
to different imitation learning algorithms in order to learn
the mean and the covariance of a probabilistic trajectory.
The first column in yellow represents ProMP. ProMP is
based on a parametric method, so a set of basis functions
is needed to fit the demonstration trajectories. We employ
30 Gaussian radial basis functions (RBF) for learning
reference trajectories. The second column in blue represents
KMP, whose hyperparameters, such as the regularization
coefficients, are selected according to Huang et al. (2019).
The third column in red denotes LPV-DS. In order for
LPV-DS to generate a trajectory, an initial point needs to
be manually selected. Here, we set it to coincide with the
reference trajectory’s initial point. The last two columns in
green represent our approach. Wherein, the fourth column
denotes the KL divergence imitation mode and the fifth
column denotes the reverse KL divergence imitation mode.
To apply our algorithm, we choose the Gaussian kernel,
which is defined by

k(xi,xj) = exp(−κ ∥ xi − xj ∥2) (60)

where we set hyper-parameter κ = 6 when training the input-
dependent weights α.

In general, all imitation learning algorithms can correctly
reproduce the originally demonstrated trajectories. Both
learned trajectory mean and covariance coincide with the
reference probabilistic trajectory to some extent. In Figure
3, it can be observed that our proposed methods most closely
reproduce the original demonstrations. Especially, when it
comes to abrupt turns, as in the case of the letter ’W’,
our algorithm can still imitate the demonstrated trajectory
closely, while other methods exhibit a larger mismatch.

To quantitatively compare the reproduction performances
of each algorithm, we report the cumulative error for
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Figure 3. Imitation fidelity comparison among ProMP (yellow), KMP (blue), LPV-DS (red) and our approach (green, with the fourth
column KL imitation mode and the fifth column reverse KL imitation mode) for reproducing the trajectories of different letters. Solid
curves and shallow areas are used to represent trajectory mean and standard deviation, respectively. The reference baseline used
here is the probabilistic trajectory retrieved by GMR (gray).

Table 5. Performance comparison of different imitation learning algorithms

’N’ ’S’ ’W’ ’P’
Cm Ccov Time (s) Cm Ccov Time (s) Cm Ccov Time (s) Cm Ccov Time (s)

ProMP 17.5 16.5 0.01 15.8 19.4 0.02 14.2 17.7 0.02 14.6 14.1 0.01
KMP 40.3 19.3 1.84 30.6 17.5 1.83 35.2 18.4 1.88 29.2 18.8 2.10
LPV-DS 60.8 N/A 12.9 65.3 N/A 11.1 61.0 N/A 13.5 56.9 N/A 9.5
Ours (KL) 7.4 5.7 0.11 8.9 6.5 0.09 7.8 6.0 0.11 5.9 5.4 0.09
Ours (RKL) 7.3 6.4 1.47 9.3 5.7 1.51 8.9 6.2 1.55 5.0 5.1 1.52

trajectory mean and covariance, as well as the training
time. For evaluating the trajectory mean imitation, we
choose the Root Mean Square Error (RMSE) between
the estimated value and the demonstrated one: Cm =√∑N

n=1 ∥ ŝm(xn)− µn ∥2. Likewise, for the evaluation
of trajectory covariance imitation, we choose the error

as Ccov =

√∑N
n=1 ∥ log(Σ

− 1
2

n ŝc(xn)Σ
− 1

2
n ) ∥2F , where the

notation of geodesic distance of positive definite matrices
is utilized. Concerning computational complexity, ProMP is
expected to be more efficient since it grows as O(m3d3),
where m is the dimension of the basis function and d is
the dimension of output value. KMP and our algorithm
both have a O(n3) time complexity, where n denotes the
number of trajectory data points. LPV-DS is expected to
be the most computationally expensive since a non-linear
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Figure 4. Comparison of imitation performances by the KL
(blue) and RKL (red) imitation modes, where the dashed lines
represent the reference mean and the shallow areas represent
the trajectory covariance.

constrained optimization problem has to be solved. The
obtained numerical results are summarized in Table 5, where
training time is averaged over five trials. To conclude, our
algorithm shows significant performance improvements with
respect to the selected state-of-the-art methods on a diverse
set of target trajectories, in terms of both trajectory mean and
covariance imitation quality.

In addition, we would like to further clarify the difference
in the imitation behaviors exhibited by the KL and RKL
imitation modes. In particular, we present the individual
performance in terms of mean prediction given a C-shape
probabilistic trajectory, as shown in Figure 4. It can be
observed that when imitating in the KL mode, the reproduced
trajectory closely follows the demonstrated trajectory mean
as it is only dependent on the demonstrated trajectory mean.
On the contrary, the reproduced trajectory using the RKL
mode is not only dependent on the demonstrated trajectory
mean but also on the demonstrated trajectory covariance, as
evidenced by the larger deviation in the region with larger
covariance. Different imitation modes will allow for more
flexibility in probabilistic imitation learning. For example,
trajectory covariance can be exploited to prioritize trajectory
mean prediction to balance task importance.

4.2 Trajectory Adaptation
In this experiment, we study the problem of trajectory
adaptation considering two scenarios: Position only and
both position and velocity. In position adaptation, three
cases are studied, namely start-point, mid-way-point, and
end-point adaptation. Similarly to Section 4.1, ProMP and
KMP are employed for comparison purposes. LPV-DS is
not considered here as it does not provide a straightforward
manner for trajectory adaptation. We use the KL divergence
imitation mode for our approach.

For position adaptation, we consider modulating a C-
shape trajectory to go through variously positioned via-
points with time as the input. We first evaluate start-point
adaptation. We set a desired point at [5 6]⊤cm at time step
t = 0 s. Next, we move the desired point to [−5 0]⊤cm
at time step t = 0.5 s to study mid-way-point adaptation.
Finally, the issue of end-point adaptation is studied by setting
the desired point at [10 − 9]⊤cm at time step t = 1.0 s.
Different trajectory position adaptation cases are illustrated
in Figure 5. It shall be observed that all algorithms are
capable of respecting the additional via-point constraint
with high accuracy while the trajectory generated by our
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(c) end-point adaptation

Figure 5. Comparison of position adaptation among ProMP
(yellow), KMP (blue), and our approach (green) for a C-shape
trajectory with time as the input. The desired points to go
through are marked with red stars.
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Figure 6. Comparison of both position and velocity adaptation
among ProMP (yellow), KMP (blue), and our approach (green)
for a J-shape trajectory (dashed gray) with time as the input.
The desired position points to go through are marked with red
stars and the desired velocity is depicted with a dashed red line.

algorithm tends to converge to the original demonstrated
trajectory closer compared with other methods.

In the next experiment, we study the performance of
adapting both the position and the velocity of an imitated
trajectory. We consider modulating a J-shape trajectory that
has a total duration of 2 s. For ProMP, additional first-
order derivatives of basis functions are needed to encode
the dynamics of the motion. By contrast, non-parametric
methods like KMP and our approach do not require basis
functions. To adapt the trajectory, at time step t = 1 s we set
a desired location at [5 − 12]⊤cm associated with a desired
velocity [−25 − 30]⊤cm/s. The obtained results are shown
in Figure 6, where all the algorithms successfully generate
trajectories that can pass through the desired position and
desired velocity. The adaptation errors at the via point are
negligible. It can be observed that the trajectory generated
by our algorithm is affected the least by the additional
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(a) Trajectory imitation on a sphere

(b) Trajectory imitation on a generalized cylinder

Figure 7. Illustration of trajectory reproduction and adaptation on a manifold where multiple demonstrations are depicted in gray,
trajectories generated by our algorithm are plotted in green and the desired via-point is marked with a red star.

adaptation requirements, while the other algorithms end up
with larger imitation errors due to larger deviations.

4.3 Manifold Trajectory Learning
In this experiment, we demonstrate a unique feature of
our approach, namely, learning and adapting trajectories
lying on manifolds. To show the effectiveness of our
approach, we study the problem of imitation on two common
manifolds, namely a sphere (S2) and a circular generalized
cylinder (R2 × S). The performance of both reproduction
from multiple demonstrations as well as the adaptation
towards a via point is evaluated. Since adapting trajectories
on manifolds has rarely been addressed before in robot
imitation learning, we hereby only report the experimental
results of our approach.

For learning on a sphere, we first draw four U-shaped
trajectories on a sphere, each having time duration t =
1 s, as shown in the first column of Figure 7a. The
radius of the sphere is 1 cm and the center is located at
the origin of the coordinate system. The base point for
conducting exponential and logarithmic mappings is chosen
as [0 0 1]⊤cm. Likewise, the collected demonstration data
is processed using GMM and a reference probabilistic
trajectory is subsequently extracted by GMR. As the
collected data is defined on a Riemannian manifold,
therefore, extended versions of GMM and GMR for
Riemannian manifolds are employed for data processing
(Zeestraten et al. 2017b).

To show the adaptability on the manifold, a via-point at
[−0.199 − 0.98 0]⊤cm is set on the surface of the sphere for
the trajectory to pass through at tv = 0.35 s. The second and
third columns of Figure 7a show reproduction and adaptation
trajectories from our algorithm, respectively. During each
point prediction, the step size of Algorithm 3 is set to
η = 0.01. We can observe that our algorithm is capable of

accurately meeting the requirement of via-point (marked
with a red star) adaptation while preserving the shape of the
original demonstrated trajectory.

The other experiment we carry out is trajectory imitation
on a circular generalized cylinder, which has a smoothly
varying circular cross-section. We use the cylindrical
coordinate system to express a data point (r, z, φ), where r
is the radial distance from the z-axis, z denotes height, and
φ is the azimuth. Since a data point lying on a generalized
cylinder consists of a two-dimensional Euclidean component
and a circular component, we formulate its Riemannian
representation with the help of the Cartesian product: R2 ×
S1. The center of the bottom of the cylinder is positioned
at the origin of the cylindrical coordinate system and the
cylinder center line is aligned with the z-axis.

We first draw four demonstrations along the cylinder’s
central line, each one of 1 cm length and duration t = 1 s,
as shown in the first column of Figure 7b. The second
column of Figure 7b compares the reference retrieved by
GMR and reproduction trajectory by our approach with
step size again set to η = 0.01. It can be observed that
our algorithm is able to reproduce the reference trajectories
with high imitation fidelity. At time step tv = 0.5 s, the
trajectory is required to adapt towards a via-point located at
(1.51 cm, 0.5 cm, 0.863 rad). The learning results are shown
in the third column of Figure 7b, where the adapted trajectory
exactly passes through the via-point (marked with a red star).

4.4 Polishing Task
The real-world experiment for evaluation of the proposed
method is conducted via a polishing task. The purpose of
the polishing task is to teach a robot by kinesthetic guidance
so that it learns how to polish on the surface of a sphere
manifold. Once reproduction of the skill is achieved, the
robot is later required to polish a user-defined via-point
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Robot

Trajectory
planner

Figure 8. Block illustration of the employed passive controller.
The algorithm is composed of a velocity-based control law and
a gravity-compensation term.

on the surface to exhibit adaptive behavior enabled by our
approach.

4.4.1 Experimental setup The robot used for accomplish-
ing the polishing task is the KUKA LWR IV+, a 7-DoF
robotic arm. With the joint torque sensors mounted at the
actuators, it can be torque-controlled and the torque com-
mands are sent to KUKA using the Fast Research Interface
(FRI) at 500Hz. There is also a 6-axis force-torque sensor
installed on the end-effector. We choose to attach a 3D-
printed finger tool to the robot as our end-effector. In addi-
tion, a burst-resistant exercise ball is used as the sphere that
the robot will polish on.

To transfer polishing skills from the human to the
robot, we demonstrate the same task four times. During
the demonstration, the robot is switched to the gravity
compensation mode to make the robot light to be interacted
with. The Cartesian trajectory of the robot end-effector is
recorded to train our algorithm.

4.4.2 Robot control Tracking time-indexed position pro-
files usually poses a challenge for robots to achieve fast
reactivity in response to external disturbances. To this end,
we employ a passive controller developed by Kronander and
Billard (2015) to enhance the robot’s robustness to large real-
time disturbances. We consider the control of the robot’s end
effector in Cartesian space as in (Amanhoud et al. 2019); the
corresponding translational control force Fc takes the form

Fc = D(ξ)(ξ̇d − ξ̇) = d1ξ̇d −D(ξ)ξ̇, (61)

where ξ represents the end-effector position and D(ξ) is
a state-varying damping matrix with the first eigenvector
d1 > 0 aligned with the desired velocity ξ̇d. For our time-
invariant task representation, we design the desired velocity
profile as

ξ̇d = h(ξd − ξ), (62)

where h > 0 weighs the tracking deviation.
In our experiment, the passive controller is only applied to

the translational direction. For orientation control, a control
moment is computed by setting the end-effector roughly
pointing towards the center of the ball using spherical linear
interpolation with a PD control law. Finally, the control
commands are computed by mapping the control wrench,
consisting of control moment and force, to joint torques
using the corresponding robot Jacobian matrix. Figure 8
presents a block representation of our proposed controller.

4.4.3 Results and analysis An illustration of the kines-
thetic demonstration procedure as well as skill reproduction
is shown in Figure 9. A teacher demonstrates the polishing

Figure 9. Snapshots of demonstration (top row) and
reproduction (bottom row) of the polishing task with KUKA LWR
IV+ robot arm.

task multiple times to the robot on a sphere whose radius
is 0.3m and the center position is identified as [−0.7631 −
0.0271 0.0698]⊤m in a least-squares sense. We then evaluate
the reproduction capabilities of our approach on the robot.
It shall be observed that the robot is able to reproduce the
demonstrated task along the surface of the sphere.

In another reproduction experiment, we apply external
perturbations to the robot to test its working robustness.
By lifting the robot arm, the robot is still able to recover
the originally planned trajectory. The satisfactory compliant
behavior makes it safe for the robot to interact with a
human user. To evaluate the adaptation capability of our
approach, we set different via points for the robot end-
effector to pass through. Figure 10 shows that the robot end-
effector movement is modulated to respect the constraint
incurred by different additional desired via-points. The
real robot trajectories are plotted in Figure 11, where the
relative position between the trajectories and the ball as
well as the zoomed-in trajectories are provided for clarity.
Reproduction and adaptation performances are also reported
in the supplementary video.

Though, in theory, the trajectory generated by our
approach should exactly lie on the manifold, sometimes there
is small interference or deviation observed between the end-
effector and the ball. This could be a result of the measuring
error of the sphere information as well as the tracking error
between the sent reference trajectory and the real robot end-
effector position. In the future, this issue could be resolved
by introducing contact perception signals at the level of the
control architecture design.

5 Discussions
In this section, we first cover and compare with previous
related work and analyze the connections (Section 5.1).
Then, we consider possible extensions to complement our
proposed method and envisage future works (Section 5.2).

5.1 Related Work and Connections
The algorithmic foundations of robot imitation learning
notably include regression techniques (see Table 1) such
as linear regression with basis functions (e.g., DMP and
ProMP), kernel ridge regression (e.g., KMP), Gaussian
mixture regression (e.g., SEDS), and Gaussian process
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Figure 10. Snapshots of the trajectory adaptation on a sphere with KUKA LWR IV+, in terms of a new desired start point((a)-(c)), a
new mid-way point ((d)-(f)), a new desired endpoint ((g)-(i)) as well as multiple via-points((j)-(l)). The start points and the end points
of the original demonstration trajectories and new desired points are marked with squares, triangles, and circles.

Figure 11. Plot of the robot end-effector adaptive trajectories in
the task of polishing on the sphere, where the yellow, red, black,
and blue curves represent start-point, mid-way-point, end-point,
and multi-via-point adaptation, respectively.

regression (e.g., LGP and GPM), just to name a few.
Although it is possible to bypass the regression step by
calculating the arithmetic mean as done by Learning from
demonstration by Averaging Trajectories (LAT), the practical
functionality of LAT can be severely limited due to the lack
of trajectory adaptation.

Our method also follows the supervised learning
paradigm. Remarkably, by leveraging structured prediction
it achieves two main goals: The capability of prediction
in structured output spaces and the flexibility of selecting
different loss functions.

It is essential to investigate the most relevant types
of output data for robot imitation learning, since their
correct processing is crucial for successful task execution.
Such output spaces usually possesses some geometric
structure (Calinon 2020), e.g., when transferring skills from
human experts to robots. Compared with most movement
primitives approaches that capture motion patterns by
processing demonstrated data under the Euclidean metric,

our approach distinguishes itself by the capability of
prediction in structured output spaces such as Riemannian
manifolds, which recently attracted growing interest in
robotics (Zeestraten et al. 2017b; Beik-Mohammadi et al.
2021). Besides manifold-structured data, our framework
preserves the potential to handle also other output types (e.g.,
histograms, graphs, time series, etc.) thanks to the generality
of the structured prediction paradigm.

It is also important to determine the similarity metric
between the expert’s and the learner’s behavior. Given the
very same demonstrated dataset, different loss functions
usually result in different imitation policies (Duan et al.
2020). Unlike conventional movement primitives that
quadratically penalize deviation from the demonstrated
trajectory, our approach permits a wide spectrum of loss
functions thanks to the adopted implicit encoding framework
for structured prediction. To construct a proper loss function
for probabilistic trajectory imitation, we take the novel point
of view that imitation learning in sequential decision-making
can be viewed as f -divergence minimization between learner
and expert policy, as indicated by recent studies (Ke et al.
2021; Ghasemipour et al. 2020).

Being a common measure of the difference between
two probability distributions, f -divergence also emerges
as a popular tool in other robot learning settings. In
reinforcement learning algorithms such as Relative Entropy
Policy Search (REPS) (Peters et al. 2010) and Trust Region
Policy Optimization (TRPO) (Schulman et al. 2015), a
KL-divergence constraint is imposed between successive
parameterized policies to prevent too large policy updates
leading to unknown regions of the state space. Instead, in
our approach the role of the f -divergence is to determine
the coupling between the trajectory mean and covariance.
For example, when using the KL imitation mode for
trajectory mean prediction, trajectory covariance is not
involved. By contrast, when using the RKL imitation mode
for trajectory mean prediction, trajectory covariance is also
employed. This can provide an interface to incorporate the
relative importance of demonstrations, i.e., small covariance
represents high importance and will weigh more in trajectory
generation (Huang et al. 2019). The different imitation
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modes as a result of different f -divergence functions thus
enable multiple coupling modalities between trajectory
mean and covariance in the case of probabilistic trajectory
imitation.

Another related field is imitation for sequential decision-
making, where a learner makes decisions by mimicking
an expert given the demonstrated dataset of state-action
pairs. Notably, one of the fundamental issues in behavior
cloning are the so-called compounding errors as formalized
by DAgger (Ross et al. 2011). To alleviate the issue, DAgger
iteratively appends training data to the dataset, yielding an
interactive procedure for imitation. Focusing on the form of
the policy, implicit behavior cloning (IBC) casts imitation
as a conditional energy-based modeling problem by using
implicit models, leading to improvement in visuomotor tasks
(Florence et al. 2022). Aiming at providing a unifying
framework for imitation, a game-theoretic perspective to
imitation is proposed in (Swamy et al. 2021) to minimize
the worst-case divergence, and performance bounds for each
imitation setting are analyzed. Though sharing the same
spirit of imitation, our approach directly concentrates on
imitating robot trajectories, which gives rise to trajectory
generation programmed by expert demonstrations.

Distilling the underlying reward, which is typically
assumed to be linear in the features, is also a notable
paradigm for imitation. Based on the principle of maximum
entropy, Maximum Entropy Inverse Reinforcement Learning
(MaxEntIRL) recovers a reward by resolving the ambiguity
in the matching of feature counts (Ziebart et al. 2008). Note
that when using MaxEntIRL to generate robot trajectories a
subsequent motion planning module is necessary (Ruan et al.
2023). Geometric trajectory generation requires dedicated
motion planning methods, such as (Bonalli et al. 2019)
and (Kingston et al. 2019), which might complicate the
procedure compared to our approach.

5.2 Limitations and Future Work
For the sake of completeness, let us mention some current
limitations in our proposed approach and potential future
improvements. As a memory-based approach, our algorithm
may encounter difficulties when dealing with large-scale
datasets (like other kernel methods). Nevertheless, such
a limitation may be alleviated by adopting sub-sampling
techniques to reduce the kernel memory footprint (Rudi et al.
2015). Besides, the requirement of performing Riemannian
gradient descent for geometric trajectory imitation prevents
the usage of our method on the fly. Therefore, it may
be beneficial to investigate more efficient Riemannian
optimization strategies. In addition, when directly applying
our method for making sequential decisions, it may suffer
from compounding errors at test time.

For different imitation modes, we considered two
representative f -divergence functions for the design of the
loss function, namely the KL and the RKL divergences. With
these two loss functions being SELF, it will be interesting
to examine if other f -divergence functions also satisfy the
SELF condition. At a first glance, it can be readily shown that
the loss function is SELF when using the Jeffreys divergence
given by f(u) = (u− 1) log(u) (e.g., see (Pardo 2018)),
which is composed of the summation of the KL and the RKL
divergences: DJD(ỹn, ỹ) = DKL(ỹn, ỹ) +DRKL(ỹn, ỹ). For

future work, we would like to investigate other types of
f -divergence functions for the loss design. In terms of
applications, we conceive that our approach could be applied
in a variety of robotic applications that require human-like
trajectory generation such as whole-body teleoperation for
humanoid robots (Darvish et al. 2023).

6 Conclusions
In this paper, we present a novel robot imitation algorithm
for probabilistic trajectory imitation. Specifically, an implicit
embedding framework for structured prediction is employed,
which endows our developed movement primitives with the
capability of prediction with structured output space and the
flexibility of choosing different loss functions. Specifically,
the loss functions used in the structured prediction are
constructed by leveraging a novel point of view for imitation
learning, i.e., minimization of the f -divergence between an
expert’s and a learner’s policy. By choosing different types
of f -divergences, we are able to learn demonstrated policies
with different imitation modes.

We illustrate the effectiveness of our proposed approach
by comparing it with state-of-the-art methods. Our results
demonstrate that our approach can increase imitation fidelity
to a considerable extent in terms of both trajectory mean
and covariance prediction while preserving merits such as
multi-dimensional inputs and spatial and temporal trajectory
modulations. Furthermore, our algorithm can be extended to
learning and adapting trajectories on Riemannian manifolds,
which distinguishes our approach from traditional methods.
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Appendix

A Proof Sketch for SELF
Here we provide sketch proof that the KL and the reverse
KL divergence-based loss functions are SELF. Our proof is
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done by construction, i.e., we show that the loss functions
can be expressed in the form of (4). The central idea is to
explicitly determine the feature map c and the linear operator
V . For convenience, we show that the mean and covariance
cost functions can be constituted in a SELF fashion, which
can readily lead to the loss functions being SELF.

A.1 KL divergence Consider the following formulation
for the cost function when making the mean prediction:

(µ− µn)
⊤Σ−1(µ− µn)

=

µ⊤Σ−1µ
µ
1


︸ ︷︷ ︸

c(µ)

⊤
blkadiag(1,

−2Σ−1, 1)︸ ︷︷ ︸
V

µ⊤
nΣ

−1µn

µn

1


︸ ︷︷ ︸

c(µn)

(63)

where blkadiag(·) denotes the block anti-diagonal matrix.

Consider the following formulation for the cost function
when making covariance prediction:

(µ−µn)
⊤Σ−1(µ−µn) + log |Σ|+ Tr(Σ−1Σn)

=
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log |Σn|
vec(Σn)

1
ϕ1(µn)
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
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c(Σn)

(64)

where 0 is the zeros matrix with proper dimension. The
features ϕ1(·) and ϕ2(·) are designed such that we have
ϕ2(Σ

− 1
2 )⊤ϕ1(µn) = µnΣ

−1µn. Also, we have vec(Σ) =[
vecr(Σ)⊤ vecr(Σ−1)⊤ vecc(Σ)⊤ vecc(Σ−1)⊤

]⊤
,

where vecr(·) and vecc(·) denote the row- and column-
major order vectorization operation for a matrix.

A.2 Reverse KL divergence Similarly, the cost functions
used in the reverse KL divergence can be expressed in the
form of SELF. For the cost function of mean prediction,
consider the following formulation:

(µ− µn)
⊤Σ−1

n (µ− µn)

=
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(65)

For covariance prediction, consider the following formu-
lation for the cost function:

− log |Σ|+ Tr(Σ−1
n Σ)

=

 log |Σ|
vec(Σ)

1


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c(Σ)

⊤ 0
blkadiag(
−1, Id2)

0 0


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V

 log |Σn|
vec(Σn)

1
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c(Σn)

(66)

B Definitions for Riemannian manifold
Here we provide basic notions and corresponding notations
on Riemannian statistics that are used throughout this
paper. We refer interested readers to Absil et al. (2009)
for more details on manifolds. Informally, a d-dimensional
Riemannian manifold (M, g) is a topological space that
locally behaves like the Euclidean space Rd. Every point
p ∈M has a tangent space TpM where an inner product
g is defined. When M is a submanifold of Rd+1, the
inner product can inherit from the standard Euclidean
inner product in a natural way. The minimum distance
between two points p1 and p2 on a Riemannian manifold
is called geodesic distance dist(p1,p2), which generalizes
the concept of straight lines in Euclidean spaces. The
exponential map Expp : TpM→M maps a point in the
tangent space to the manifold with the distance and direction
preserved. A retraction map Rp : TpM→M is a first
order approximation of the exponential map. The inverse
mapping of the exponential map is called the logarithm
map Logp :M→ TpM. The logarithmic map is defined
except for the cut locus of the base, which is the set of
points that are connected by more than one geodesic curve
with the base. Parallel transport Γp1→p2(u) : Tp1M→
Tp2M moves vectors between tangent spaces such that
the angles between the vectors and the geodesic curve
connecting the bases are conserved. This operation is
necessary to transport information available in one tangent
space to another. The Cartesian product of two Riemannian
manifolds M1 ×M2 is still a Riemannian manifold and
the corresponding manifold operations mentioned above can
be obtained by concatenating the individual operations. A
pictorial illustration is shown in Figure 12.
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