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ABSTRACT13

The present paper deals with the optimal design of non-prismatic beams, i.e. beams with14

variable cross-section. To set the optimisation problem, Euler-Bernoulli unshearable beam theory15

is considered and the elastica equation expressing the transverse displacement as a function of16

the applied loads is reformulated into a system of four differential equations involving kinematic17

components and internal forces. The optimal solution (in terms of volume) must satisfy two18

constraints: the maximum Von Mises equivalent stress must not exceed an (ideal) strength and19

the maximum vertical displacement is limited to a fraction of beam length. To evaluate the20

maximum equivalent stress in the beam, normal and shear stresses have been considered. The21

former evaluated through Navier formula, the latter through a formula derived from Jourawsky and22

holding for straight and untwisted beams with bi-symmetric variable cross-sections. The optimal23
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solutions as function of material unit weight, maximum strength and applied load are presented24

and discussed. It is shown that the binding constraint is usually represented by the maximum stress25

in the beam, and that applied load and strength affect the solution more than material unit weight.26

To maintain the generality of the solution, the nondimensionalisation according to Buckingham27

Π-theorem is implemented and a design abacus is proposed.28

INTRODUCTION29

In the last decades, non-prismatic beams have been widely adopted in the structural engineering30

field for civil, aerospace, and mechanical applications (El-Mezaini et al. 1991; Ascione et al. 2017;31

Vilar et al. 2022; Cucuzza et al. 2021; Sardone et al. 2020; Marano and Quaranta 2010; De Biagi32

et al. 2020; Magnucki et al. 2021). This type of beam is characterised by variable cross-section33

along its centroidal axis (Gere and Timoshenko 1997), bestowing it a strong interconnection among34

structural form, functionality, aesthetic and architectural requirements (Mercuri et al. 2020a). These35

features determined their everlasting success over the centuries, referring e.g. to monumental and36

historical architectures like Roman aqueducts andmasonry arch structures. Non-prismatic elements37

have been extensively adopted even for infrastructures, e.g. for bridges and viaducts (Kozy and38

Tunstall 2007; Kaveh et al. 2022; Fiore et al. 2016; Muteb and Shaker 2017; Kaveh et al. 2020b;39

Zhou et al. 2019; Balduzzi et al. 2017), and buildings, such as double-tapered roof beams for40

industrial structures (Vilar et al. 2022; Bournas et al. 2014; McKinstray et al. 2016).41

When dealing with prismatic beams, the classical Euler-Bernoulli beam theory holds, which42

neglects the shear deformation contribution and assumes the Navier hypothesis (Carpinteri 2013).43

Nonetheless, a more advanced theory is required to deal with non-prismatic beams, able to ac-44

curately and reliably capture the actual structural response. Therefore, in this research work, the45

Euler-Bernoulli unshearable beam theory was considered (Bertolini et al. 2019; Timoshenko and46

Goodier 1934). Recently, in the scientific literature, various mechanical models were proposed47

for non-prismatic beams. In (Medwadowski 1984), the authors proposed a solution of the differ-48

ential equations for non-prismatic beams, denoted in that work as shear beams, considering the49

effect of shear deformations. In (Bulte 1992) the differential equation formulation of the deflec-50
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tion curve was presented as a multi-point boundary value problem. In (Romano 1996) analytical51

closed-form solutions were proposed for bending beams accounting for the shear deformation with52

non-prismatic parabolic profiles with both varying width and depth. In (Katsikadelis and Tsiatas53

2003), the nonlinear large deflection analysis was conducted on the Euler-Bernoulli beam with54

variable stiffness with the analog equation method due to variable coefficients in the governing55

differential equations. In (Balduzzi et al. 2016), the authors analyse the compatibility and equi-56

librium of non-prismatic beams with a Timoshenko-like beam model, formulated as a system of57

six coupled ordinary differential equations (ODE). Cazzani et al. (Cazzani et al. 2016) proposed a58

Timoshenko beam model and a non-uniform rational B-splines (NURBS) interpolation to analyse59

curved beams with the isogeometric analysis (Hughes et al. 2005). In (Bertolini et al. 2019),60

the authors analysed the stress distribution in untwisted, straight, thin-walled beams with constant61

taper with rectangular and circular cross-section shapes. Most of the analytical approaches for62

non-prismatic beams proposed in the literature have been finally solved with the finite differences63

methods, even considering non-homogeneous conditions (Al-Azzawi and Emad 2020; Tuominen64

and Jaako 1992).65

The non-prismatic geometry ensures great versatility for optimising specific structural aspects66

of interest (Rath et al. 1999; Sarma and Adeli 1998; Colin and MacRae 1984; Mercuri et al. 2020a;67

Kaveh et al. 2021), for instance, minimum material consumption, optimising structural perfor-68

mances, etc. In addition, the material used, e.g. concrete, steel, or wood (Maki and Kuenzi 1965),69

plays a crucial role in the shape and topology optimisation process due to distinct constitutive laws70

and possible changing behaviour in tension and compression. Furthermore, nowadays new mate-71

rials and technologies such as additive manufacturing are opening new possibilities and promising72

research paths (Mercuri et al. 2020a). The problem of optimal design of non-prismatic beams has73

been studied quite extensively, implementing both gradient-based (Rao 2019) and gradient-free74

meta-heuristic algorithms (Resende et al. 2017; Plevris 2009), such as genetic algorithm (Cucuzza75

et al. 2021; Cucuzza et al. 2022; Biswal et al. 2017) or particle swarm optimisation algorithm76

(Rosso et al. 2022; Rosso et al. 2021). In (Luévanos-Rojas et al. 2020), the optimal design of77
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reinforced concrete rectangular cross-section beams with straight haunches was analysed with the78

aim of reaching the minimum constitutive materials cost. In (Veenendaal et al. 2011), the optimal79

form-finding problem has been studied for the design of non-prismatic fabric-formed beams. The80

technical difficulties of traditional casting methods for these non-conventional variable curvature81

structures are nowadays partially overcome by leveraging innovative production technologies such82

as 3D printing and additive manufacturing (Asprone et al. 2018; Mercuri 2018; Costa et al. 2020).83

This latter aspect further nourishes the current relevance and contemporary of the present study on84

optimal variable-curvature non-prismatic solutions. In (Kaveh et al. 2020a; Kaveh et al. 2020b),85

the optimal seismic design of three-dimensional steel frames were carried on with the response86

spectrum analysis method. The same authors in a later study (Kaveh et al. 2021) analysed op-87

timal performance-based reinforced concrete frames with objective function based on both cost88

and sustainability, expressed in terms of carbon dioxide emissions. Similarly, (Yavari et al. 2017)89

optimised environmental sustainability of non-prismatic slab frames bridge geometries. Recently,90

(Wang et al. 2021) proposed an innovation from a computational point of view for sequentially91

solving shape and topology optimization of beam structures, introducing the concept of 2.5D beam92

model than traditional 3D modeling. Basically, standard 1D beam elements are interconnected93

longitudinally,and, in every finite node, the section properties are retrieved from an additional bidi-94

mensional section model. The shape of the beam has been parametrically defined by non-uniform95

rational B-splines (NURBS) (Piegl and Tiller 1996).96

In comparison to the literature previous studies, in the present work, the authors proposed97

an optimal design criterion for homogeneous constant width non-prismatic beams based on the98

elastica equation with a dimensionless perspective, eventually providing a design abacus. The99

main findings of the present work are summarised below:100

• the minimum weight, or proportionally the minimum volume, optimisation problem was101

stated based on a dimensionless form of the elastica equation according to Buckhingam102

Π-theorem;103

• the stress distributions considered Euler-Bernoulli unshearable beam theory (Bertolini et al.104
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2019);105

• the constraints of the optimisation problem are expressed as Von Mises equivalent stress106

limitation and maximum limit vertical deflection limited to a fraction of beam length;107

• the optimal solutions as a function of material unit weight, maximum strength, and applied108

load are presented in a design abacus graph form.109

The current document is organised as follows. In Section 2, the analytical formulation of110

the elastica governing ODEs is presented, even illustrating the dimensionless procedure and the111

assumed stress distributions. The minimum volume (weight) optimisation problem statement is112

described in Section 3, showing that the non-prismatic variable beam depth profile is defined113

through an emptying sinusoidal function. Eventually, in Section 4 the optimal solutions as a114

function of material unit weight, maximum strength, and applied load are presented and discussed,115

finally delivering a useful design abacus encompassing the wide spectrum of design parameters116

analysed.117

BEAM MODEL118

A beam of length 𝐿, straight centerline and a variable cross-section is considered (Figure 1).119

A Cartesian coordinate system (𝑂𝑥𝑦𝑧) is introduced, setting: the origin 𝑂 in the centroid of one120

of the end cross-sections; the 𝑥- and 𝑦-axes as the principal central axes of inertia of the cross-121

section; the 𝑧-axis along the beam centerline. We assume plane bending in the 𝑦𝑧-plane, where the122

beam is subjected to distributed transverse load 𝑞(𝑧) and its deflection is described by transverse123

displacement 𝑣(𝑧). The constituting material is assumed to be homogeneous, isotropic and linear124

elastic with Young’s modulus 𝐸 .125

Elastica equation126

The beam is supposed of solid doubly-symmetric cross-section with variable depth ℎ(𝑧). Based127

on the Euler-Bernoulli theory, beam deflection is governed by a fourth-order ODE, the elastica128
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equation, which reads, for a variable cross-section beam,129

d
d𝑧2

[
𝐸𝐽 (𝑧) d2𝑣(𝑧)

d𝑧2

]
= 𝑞(𝑧), (1)130

where 𝐽 (𝑧) = 𝐽𝑥 (𝑍) is the area moment of inertia of the cross-section. By solving for differentiation131

and dividing both members by 𝐸𝐽 (𝑧), the equation of the deflection curve reads132

d4𝑣(𝑧)
d𝑧4 + 2

d3𝑣(𝑧)
d𝑧3

d𝐽 (𝑧)
d𝑧

1
𝐽 (𝑧) +

d2𝑣(𝑧)
d𝑧2

d2𝐽 (𝑧)
d𝑧2

1
𝐽 (𝑧) =

𝑞(𝑧)
𝐸𝐽 (𝑧) . (2)133

To give a more general description of the beam model, Buckingham Π-theorem is adopted (Baren-134

blatt 1987) and a suitable nondimensionalisation is introduced by rescaling lengths by the beam135

span 𝐿 and forces by 𝐸𝐿2. Nondimensional variables 𝑧 = 𝑧/𝐿 (with 𝑧 ∈ [0, 1]), 𝑣̃ = 𝑣/𝐿 and136

functions 𝐽 = 𝐽/𝐿4 and 𝑞 = 𝑞/𝐸𝐿 are thus defined, while the derivative with respect to dimensional137

variable 𝑧 is expressed as138

d
d𝑧

=
d
d𝑧

d𝑧
d𝑧

=
1
𝐿

d
d𝑧

. (3)139

Accordingly, Equation (2) can be rewritten as140

𝑣̃ 𝐼𝑉 (𝑧) + 2𝑣̃′′′(𝑧) 𝐽
′(𝑧)
𝐽 (𝑧)

+ 𝑣̃′′(𝑧) 𝐽
′′(𝑧)
𝐽 (𝑧)

=
𝑞(𝑧)
𝐽 (𝑧)

(4)141

where the notation (·)′ denotes the derivative with respect to nondimensional variable 𝑧.142
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First-order ODEs143

Alternative to the elastica equation, Eqn. (1), the shear-bending problem of the variable cross-144

section beam can be formulated as a system of four first-order ODEs (Bulte 1992)145



𝑑𝑣

𝑑𝑧
= −𝜙(𝑧),

𝑑𝜙

𝑑𝑧
=

𝑀 (𝑧)
𝐸𝐽 (𝑧) ,

𝑑𝑀

𝑑𝑧
= 𝑉 (𝑧),

𝑑𝑉

𝑑𝑧
= −𝑞(𝑧),

(5)146

Thanks to the functional f, Eqn. (5) can be rewritten in vectorial notation as147

w′(𝑧) = f (𝑧,w), (6)148

where vector w has components w1 = 𝑣(𝑧), w2 = 𝜙(𝑧), w3 = 𝑀 (𝑧) and w4 = 𝑉 (𝑧), with 𝜙 the149

rotation of the cross-section (Figure 1). In this way, the variability of the cross-section is taken150

implicitly into account only by 𝐽 (𝑧) and, due to the fact that all the equation are coupled, this is taken151

into account in the entire system avoiding to explicitly solve the fourth order equation depending152

by the derivative of the inertia. Moreover, in this way the solutions of the system directly represent153

shear, moment, rotation and deflection curves.154

The distributed load 𝑞(𝑧) includes two contributions: (i) the beam self weight per unit length,155

equal to the product of the material unit weight 𝛾 by the cross-sectional area 𝐴(𝑧); (ii) the applied156

force per unit length 𝑞0, assumed to be constant along the beam. It can thus be expressed as157

𝑞(𝑧) = 𝑞0(𝑧) + 𝛾𝐴(𝑧). (7)158

7 De Biagi, August 17, 2023



According to Buckhingam Π-theorem, it is possible to rewrite the system of Eqn. (5) as159



𝑑𝑣̃

𝑑𝑧
= −𝜙(𝑧),

𝑑𝜙

𝑑𝑧
=

𝑀̃ (𝑧)
𝐽 (𝑧)

,

𝑑𝑀̃

𝑑𝑧
= 𝑉̃ (𝑧),

𝑑𝑉̃

𝑑𝑧
= −𝑞(𝑧),

(8)160

where

𝑀̃ (𝑧) = 𝑀 (𝑧)
𝐸𝐿2 , (9)

𝑉̃ (𝑧) = 𝑉 (𝑧)
𝐸𝐿3 . (10)

Accordingly, Eqn. (6), turns into161

w̃′(𝑧) = f (𝑧, w̃). (11)162

As previously illustrated, the normalized distributed load 𝑞(𝑧) can be divided in two components163

as164

𝑞(𝑧) = 𝜓̃𝑞 (𝑧) + 𝜓̃𝛾 𝐴̃(𝑧), (12)165

where

𝜓̃𝑞 (𝑧) =
𝑞0(𝑧)
𝐸𝐿

, (13)

𝜓̃𝛾 =
𝛾𝐿

𝐸
, (14)

and 𝐴̃(𝑧) = 𝐴(𝑧)/𝐿2. Considering a constant distributed applied force, Eqn. (12), turns into166

𝑞(𝑧) = 𝜓̃𝑞 + 𝜓̃𝛾 𝐴̃(𝑧). (15)167
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Stress distributions168

Beams with variable cross-section exhibit non-trivial stress distributions which differ from169

those predicted by the classical formulae of prismatic beam theory, in particular regarding shear170

stresses (Timoshenko 1956b; Oden 1981; Bruhns 2003). Under the assumption of plane bending,171

the beam is in a plane state of stress with 𝜎𝑥 = 𝜏𝑥𝑦 = 𝜏𝑧𝑥 = 0. Transverse normal stress 𝜎𝑦, although172

non vanishing by equilibrium in non-prismatic beams, is generally small and can be neglected173

without appreciable error (Balduzzi et al. 2016). Distributions of normal stresses 𝜎 := 𝜎𝑧 and174

shear stresses 𝜏 := 𝜏𝑧𝑦 acting on the cross-section are given as follows.175

The distribution of normal stresses 𝜎 can be recovered by using the Navier flexure formula176

𝜎(𝑦, 𝑧) = 𝑀 (𝑧)
𝐽𝑥 (𝑧)

𝑦 (16)177

which holds with a good approximation for non-prismatic beams, provided the variation of the178

cross-section is not too rapid (Timoshenko 1956b; Boley 1963).179

Conversely, the distribution of shear stresses 𝜏 is considerably altered compared to prismatic180

beams. In non-prismatic beams, shear stresses 𝜏 are dependent not only upon the internal shear force181

𝑉 , but also upon the internal axial force 𝑁 and bending moment 𝑀 , as well as on the changing rate182

of height and width of the beam (Bruhns 2003). This result follows from the equilibrium boundary183

condition on the beam’s lateral surface, which requires the shear stress 𝜏 to be proportional to the184

normal stress 𝜎 due to the taper angle (Auricchio et al. 2015). Jourawsky’s theory (Timoshenko185

1956a) is consequently ineffective in predicting the actual shear stress distribution because (i)186

it violates the boundary equilibrium, (ii) cannot reproduce the correct distribution shape and187

magnitude and (iii) fails to identify the position and value of themaximumshear stress (Bruhns 2003;188

Paglietti and Carta 2009; Beltempo et al. 2015; Balduzzi et al. 2017; Mercuri et al. 2020b). In view189

of these considerations, we calculate the distribution of shear stresses by using the shear formula190

derived by Bertolini et al. (Bertolini et al. 2019, Equation 5), an extension of the Jourawsky formula191

holding for straight and untwisted beams with bi-symmetric variable cross-sections. Assuming null192
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distributed couples applied to the beam and null internal axial force, the extended shear formula193

simplifies to194

𝜏(𝑦, 𝑧) = 1
𝑐(𝑦, 𝑧)

[
𝑉 (𝑧) 𝑆

∗(𝑦, 𝑧)
𝐽 (𝑧) + 𝑀 (𝑧) d

d𝑧

(
𝑆∗(𝑦, 𝑧)
𝐽 (𝑧)

)]
, (17)195

where 𝑐(𝑦, 𝑧) is the cross-sectional width at the arbitrary level 𝑦where the shear stress 𝜏 is evaluated;196

𝑆∗(𝑦, 𝑧) := 𝑆∗𝑥 (𝑦, 𝑧) is the first moment of area, with respect to the bending neutral axis 𝑥, of the197

cross-sectional region below the arbitrary level 𝑦. Specifically, for the rectangular cross-section,198

with constant width 𝑏 and variable height ℎ(𝑧), it holds199

𝑐(𝑦, 𝑧) = 𝑏, 𝑆∗(𝑦, 𝑧) = 𝑏

2

(
ℎ2(𝑧)

4
− 𝑦2

)
, 𝐽 (𝑧) = 1

12
𝑏ℎ3(𝑧), (18)200

and Eqn. (17) reads201

𝜏(𝑦, 𝑧) = 3
2

1
𝑏ℎ

[
𝑉 (𝑧)

(
1 − 4

𝑦2

ℎ2

)
+ 𝑀 (𝑧) dℎ

d𝑧

(
− 1
ℎ
+ 12

𝑦2

ℎ3

)]
. (19)202

OPTIMISATION PROBLEM203

The optimisation problem tries to define the minimum volume which determines the minimum204

weight directly linked to the minimum usage of material respecting stress and deflection constraints205

(Cucuzza et al. 2021), which evaluations derive from structural analysis conducted with the sys-206

tem, Eqn. (8). Despite the minimization of the self-weight may not comprehensively cover all207

the numerous aspects for a general minimum cost design problem (Adeli and Sarma 2006), as a208

first approximation, and in the absence of precise requirements and prescription, it may be suc-209

cessfully employed as an indirect indicator of the cost, directly related to the minimum material210

consumption (Rao 2019; Cucuzza et al. 2021; Spillers and MacBain 2009). The minimization of211

self-weight also provides benefits for earthquake design situations (Plevris 2012; Rao 2019), for212

shells design loading (Adriaenssens et al. 2014), and also accounting for transportation and installa-213

tion aspects especially involving precast elements solutions (Veenendaal 2008). In the dimensional214
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problem, the stress constraints are treated in a simplified way adopting Von Mises criterion,215

𝜎2(𝑧) + 3𝜏2(𝑧) ≤ 𝜎2
𝑖𝑑 . (20)216

where the ideal stress 𝜎𝑖𝑑 is assumed to be the yielding stress for an ideal material (same behaviour217

both in tension and in compression). Considering the above Von Mises stress constraint, Eqn. (20),218

and the specific forms for normal and shear stresses, Eqns. (16) and (19), respectively, it is possible219

to look for a dimensionless form to make consistency with the dimensionless system of Eqn. (8).220

In order to obtain a dimensionless stress it is sufficient to divide it by the elastic modulus 𝐸 , and221

after some mathematical elaborations, it is possible to prove that222

𝜎̃2(𝑧) + 3𝜏2(𝑧) ≤ 𝜓̃2
𝜎, (21)223

in which a new dimensionless parameter is introduced, 𝜓̃𝜎 = 𝜎𝑖𝑑/𝐸 . It is also possible to express224

the deflection constraint in a dimensionless form. Assuming a limit value of 𝑣𝑙𝑖𝑚 = 𝐿/250, the225

dimensionless deflection constraint is defined as226

𝑣̃(𝑧) ≤ 1
250

. (22)227

The above deflection limit value may be retrieved by general deformability requirements un-228

der service conditions contained in current structural codes regulations, e.g. the Eurocodes229

(EN1990 2002).230

For evaluating the above-mentioned constraints of the optimisation problem herein investigated,231

various structural analyses have been conducted in order to account for possible multiple load cases232

conditions (Spillers and MacBain 2009; Cucuzza et al. 2022; Rao 2019). According to the basic233

principles of structural design (EN1990 2002), every structure has to be designed and assessed for234

the toughest loading conditions likely occurring in its lifespan. Therefore, it implies considering235

the envelope of the maximum actions’ effects coming from different load combinations. For the236
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sake of simplicity, in the current study, two different load conditions have been considered. The first237

load configuration accounts for the uniformly distributed load, as described in Eqn. (15), applied238

over the entire span length. The second load condition accounts for an asymmetric live load239

applied over the half-span length only. This latter configuration is usually more burdensome than240

the first load case for non-prismatic geometries, especially due to potential instability phenomena241

(Bazzucchi et al. 2017; Virgin et al. 2014). Since we are dealing with beam structures that may be242

employed, at different scales, both for buildings or bridges under uncertain locations of live loads243

(EN1990 2002), the asymmetric load condition must be applied on both the half-spans alternatively244

for accounting all the possible loading cases. In this sense, it should be expected that the optimal245

beam solution will still present a symmetric shape along the longitudinal axis. This optimal246

solution is expected stiffer profile than the one loaded with the first load case only, thus with a247

greater cross-section in general, but able to withstand both symmetric and asymmetric loading248

conditions.249

Beam geometry definition250

The previous constraints are applied to a doubly end-fixed beam having cross-section height that251

varies along the 𝑧-coordinate by way of an emptying function 𝜂(𝑧), given as a linear combination252

of sines253

ℎ(𝑧) = ℎ0 − 𝜂(𝑧) = ℎ0 −
𝑁∑︁

𝑖=1,3,5...
Δℎ𝑖 sin

(
𝑖
𝜋

𝐿
𝑧

)
, (23)254

where ℎ0 is the height of the end cross-sections, 𝑁 is the number of harmonics combined in the255

emptying function and Δℎ𝑖 is the amplitude of the 𝑖-th harmonic. A sketch of the beam is reported256

in Figure 2. The structural design principles and the load cases remarks mentioned in the previous257

section justify the authors’ choice to focus only on the even sinusoidal harmonics in Eq.(23),258

thus delivering symmetrical beam profiles solutions. In this work, depending on the number of259

harmonics considered, we denote the beam with 𝑁 = 1 as one-lobe solution, the one with 𝑁 = 3260

as three-lobes solution, and so forth. As an example, the height profile of the solution with three261
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lobes is262

ℎ(𝑧) = ℎ0 −
[
Δℎ1 sin

( 𝜋
𝐿
𝑧

)
+ Δℎ3 sin

(
3
𝜋

𝐿
𝑧

)]
. (24)263

In general, the volume of the emptied beam with sine emptying functions is equal to264

𝑉 =

∫ 𝐿

0
𝐴(𝑧)𝑑𝑧 with 𝐴(𝑧) = 𝑓 (ℎ(𝑧)), (25)265

and therfore, the dimensionelss volume definition may be expressed as266

𝑉̃ =
𝑉

𝐿3 (26)267

For instance, detailing the above-mentioned Eqn. (25) for a rectrangular bysimmetrical cross-268

section it holds:269

𝑉 = 𝑏

[ ∫ 𝐿

0
ℎ(𝑧)𝑑𝑧

]
= 𝑏𝐿

[
ℎ0 −

𝑁∑︁
𝑖=1

Δℎ𝑖
2
𝑖𝜋

]
. (27)270

According to the nondimensionalisation introduced in Section 2, it results271

ℎ̃(𝑧) = ℎ̃0 − 𝜂(𝑧) = ℎ̃0 −
𝑁∑︁
𝑖=1

Δℎ̃𝑖 sin (𝑖𝜋𝑧) (28)272

and273

𝑉̃ =
𝑉

𝐿3 = 𝑏̃

[
ℎ̃0 −

𝑁∑︁
𝑖=1

Δℎ̃𝑖
2
𝑖𝜋

]
. (29)274

Design vector and problem statement275

Considering that the height of the beam must always be a positive number, i.e. ℎ̃(𝑧) > 0, we276

defined the dimensionless height of the end cross-section ℎ̃0 as the sum of a minimum height ℎ̃𝑚𝑖𝑛,277

to be strictly positive, and the maximum emptying function, resulting in278

ℎ̃0 = ℎ̃𝑚𝑖𝑛 + max
𝑧∈[0,1]

𝜂(𝑧) (30)279

The design vectorD collects the dimensionless values of theminimumheight and the amplitudes280
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coefficients of the sine function Δℎ̃𝑖. The optimization problem can be formulated in the following281

way282

Find D = {ℎ̃𝑚𝑖𝑛;Δℎ̃𝑖}𝑖=1,3,5... such that

min 𝑉̃ (D)

s.t. 𝜎̃2(𝑧) + 3𝜏2(𝑧) ≤ 𝜓̃2
𝜎,

𝑣̃(𝑧) ≤ 1
250

(31)283

Thanks to the procedure previously described and implemented in Matlab, the optimal geom-284

etry of beams with different combinations of parameters 𝜓𝑞, 𝜓𝛾 and 𝜓𝜎 was investigated. The285

dimensionless form allows covering all the possible situations for the specific problem parameters286

values such as the span length, geometric and material properties included in the aforementioned287

parameters.288

For the sake of better controlling the optimization process, limiting the mathematical topology289

complexity of the search space, and in order to avoid an excessive over-parametrization of the290

beam’s shape longitudinal profile, the authors studied the optimization process using the number291

of sine-emptying lobes as a fixed parameter rather than a design variable. Specifically, the authors292

provided a detailed comparison and discussion of four different structural configurations, i.e. from293

one-lobe to seven-lobes. For a number of lobes greater than seven-lobes, the authors observed that294

the influence of higher lobes was practically negligible compared to the increase of the beam’s295

shape profile complexity.296

RESULTS AND DISCUSSION297

In this section, the results of optimization analyses for a beam with rectangular cross-section298

are presented. The structural analyses have been conducted under two different load conditions.299

The first load configuration accounts for the uniformly distributed load, as described in Eqn. (15),300

applied over the entire span length. The second load condition accounts for an asymmetric live load301

applied over the half-span length only. This latter configuration is usually more burdensome than302

the first load case for non-prismatic geometries, especially due to potential instability phenomena303
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(Bazzucchi et al. 2017; Virgin et al. 2014). Furthermore, in the current study, point loads have not304

been explicitly considered since they are properly representative of specific design situations, see305

e.g. (Yang et al. 2022). Nonetheless, the current methodology may account for point loads as well306

by implementing equivalent distributed loads over a short finite length, simulating its actual load307

footprint.308

Several analyses were carried to determine the influence of the number of lobes on the optimal309

beam solution and to highlight the effects of the maximum allowable stress level and material310

unit weight. A design abacus is proposed to summarise the results. The optimisation problem311

was implemented in a Matlab code and solved with the fmincon function provided within the312

Optimization Toolbox package (MATLAB Optimization Toolbox ). The input parameters of the313

fmincon function are the objective function defined in Eqn. (29) and the non-linear constraints314

defined in Eqs. (21)-(22), both summarized in the optimisation problem statement in Eqn. (31). The315

solver algorithm option has been set to the well-acknowledged and efficient nonlinear programming316

method named sequential quadratic programming (SQP) (Schittkowski 1986). This gradient-317

based iterative method is based on quasi-Newton approximation of the Hessian of the Lagrangian318

function for constrained optimization problems (Rao 2019), which translates in the resolution of319

quadratic programming subproblems forming an active set strategy for a line search procedure320

(Biggs 1975; Han 1977; Powell 2006; Powell 1978). Since the current implementation requires321

strict feasibility with respect to constraints, it implements an automatic adaptation of the finite322

difference gradient step along the line search, and due to the quasi-Netwon approximation of the323

Hessian, any second-order eigenvalue sensitivity is not strictly necessary (Li et al. 2016).324

Influence of the number of lobes325

Figure 3 shows the optimal solutions (in grey) considering the material and geometric properties326

reported in Table 1. Four different configurations were compared, from one-lobe to seven-lobes,327

i.e. considering 𝑁 = 1, 3, 5, 7. For each case, the components of vector w̃, i.e. nondimensional328

displacement 𝑣̃, rotation 𝜙, bending moment 𝑀̃ and shear 𝑉̃ are reported in the top subplots. The329

displacement plot (top left) includes a horizontal red line denoting the limit value, i.e. 1/250. The330
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bottom plot refers to the maximum Von Mises stress along the beam and includes (in red) the331

threshold 𝜓𝜎.332

For all the examined cases, the maximum stress in the beam represents the most strict (binding)333

constraint. Table 2 reports the values of the components of the design vector D. Comparing the334

various solutions, it results that increasing the number of lobes reduces the volume of the optimal335

beam. The presence of two parts with limited height, which emerges for 𝑁 = 3 and is further336

highlighted for 𝑁 = 5, 7, implies larger rotations and, by consequence, increased displacements.337

The number of lobes in the solution affects Von Mises equivalent stress. For 𝑁 = 1, the maximum338

stresses are observed at beam ends and at midspan, where heights ℎ0 and ℎ𝑚𝑖𝑛 can be optimised.339

A different trend is noted for 𝑁 = 3, where the maximum stress occurs at 1/6 and 5/6 of beam340

length, roughly. Considering the area below the stress curve as an ideal measure of the material341

exploitation rate, it results that the best use is obtained when the stress level tends to the threshold342

value in any section of the beam. Comparing the solutions with different number of lobes, it clearly343

emerges that the larger the number of lobes, the better the exploitation rate. Five- and seven-lobes344

solutions produce similar maximum vertical displacements, but different material exploitation, in345

particular in the first and last sixth of the beam. In detail, 𝑁 = 7 solution exhibits a stress plateau346

in the first and last part of the beam. The similarity in five- and seven-lobes solutions emerges in347

analysing the components of the design vector reported in Table 2. Checking the 𝑉̃ column, i.e.348

the values of the objective function, it results that the reduction in the optimal volume (target of the349

optimisation) is more evident up to 𝑁 = 5, while for 𝑁 = 7, the resulting 𝑉̃ is close to the five-lobes350

solution. As a conclusion, three-lobes and five-lobes represent feasible solutions for fixed-fixed351

beams with uniformly distributed load.352

For the sake of completeness, other boundary conditions should be analysed in future studies353

since the herein-presented double fixed condition is mainly representative of concrete structures.354

Indeed, the authors preliminary tested the current optimization procedure considering other beam355

boundary conditions, in particular the double-hinged one. However, the obtained optimal results ap-356

pear not relevant for the scope of the current study, and they have not been herein reported. Nonethe-357
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less, it is worth reminding that for other structural materials, such as steel or timber, the semi-rigid358

restraints condition is the actual one. A proper embedding of these aspects is out of the scope of the359

current manuscript and may require future deeper investigations. Indeed, special attention should360

be paid to the specific technical choice adopted for the restrain joints, which affects their rotational361

stiffness capacity on the moment rotation plane (Daniūnas and Urbonas 2008; Du et al. 2022).362

Influence of the maximum stress363

Three-lobes solutionwas adopted for assessing the effect ofmaximumstress on the optimal beam364

height profile. The optimisation problem of Eqn. (31) was solved considering geometric and load365

parameters reported in Table 3. To highlight the dependency of the optimal solution on the value of366

the stress parameter 𝜓𝜎, three different values were considered, i.e. 𝜓𝜎 = 3.33× 10−4, 6.66× 10−4,367

and 1 × 10−3. These correspond to ideal stresses 𝜎𝑖𝑑 of 10, 20 and 30 MPa. Figure 4 shows the368

optimal solutions for the three stress levels and Table 4 details the amplitudes of the sine functions369

and the value of the objective function. Comparing stress and displacement curves of the three370

solutions it emerges that different trends emerge. For low stress levels, say 𝜓𝜎 = 3.33 × 10−4, the371

relevant constraint for the optimal solution is represented by the maximum allowable stress itself.372

For high stresses, 𝜓𝜎 = 1 × 10−3, the maximum displacement is the binding term. For medium373

stresses, 𝜓𝜎 = 6.66 × 10−4, both constraints are relevant for the optimal solution.374

As a matter of evidence, the optimal solution would benefit in terms of volume of material if the375

maximum allowable stress level increases. To measure such benefit, Table 4 reports in the values376

of the nondimensional volume 𝑉̃ . The change of 𝜓𝜎 affects the value of the objective function in377

a nonlinear manner, with no direct relationship between the value of 𝜓𝜎 and 𝑉̃ . To address such378

issue, a parametric analysis was performed to highlight the specific binding constraint and study379

the value of the objective function. Figure 5 details the results in term of 𝑉̃ (contour lines) and380

relevant constraint in the optimisation (coloured bullets) for 𝑁 = 3, 𝜓𝛾 = 8.33×10−6 and 𝑏̃ = 0.05.381

The load parameter 𝜓𝑞 varies in the range from 3.33 × 10−8 to 1.67 × 10−7 that corresponds to a382

distributed load between 10 and 100 kN/m (the remaining variables are those reported in Table 3).383

The stress parameter 𝜓𝜎 varies in the range from 3.33 × 10−4 to 1 × 10−3. It is shown that, for the384
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larges part of the investigated cases, the binding constraint is represented by the maximum stress385

in the beam (similarly to what shown in Figure 4.a). For large maximum stresses, the relevant386

condition is the maximum displacement, highlighted with blue bullets. The transition between the387

two limit conditions depends on the value of the distributed load, in particular for 𝜓𝜎 > 6 × 10−4.388

Observing the trends of 𝑉̃ in the black contour plot, it is seen that for high 𝜓𝜎, the optimal volume389

depends on the external load, only, as the beam shape is constrained by the maximum displacement.390

For high values of 𝜓𝑞, the maximum stress controls the optimal volume.391

Influence of material unit weight392

To study the influence of the unit weight of the material constituting the beam, three scenarios393

were considered and compared. The solution reported in Figure 4.c obtained for 𝜓𝛾 = 8.33 ×394

10−6, 𝜓𝑞 = 3.33 × 10−8 and 𝜓𝜎 = 1 × 10−3 is considered as reference for the analysis. Two395

additional cases were considered, keeping fixed all the parameters except 𝜓𝛾 which is halved and396

doubled. The results of the optimisation are reported in Table 5. It is found that the modification of397

𝜓𝛾 affects in a limited way the values of the amplitudes of the optimal solution, nor the volume of the398

beam, that is, its weight. To understand the reason of such trend, it is necessary to consider the total399

weight of the beam, namely 𝐺, computed as 𝐺 = 𝛾𝑉 , which can be expressed in nondimensional400

form as401

𝐺̃ = 𝜓𝛾𝑉̃ . (32)402

The total applied load 𝑄 is computed as 𝑄 = 𝑞0𝐿, which can be further expressed as403

𝑄̃ = 𝜓𝑞 . (33)404

For all the analysed cases, the result of Eqn. (32) (reported in the seventh column of Table 5), is405

smaller than 𝜓𝑞 (3.33 × 10−8), showing that the dead load is not relevant in the solution.406

Design abacus407

The analyses performed highlighted that three- and five-lobes solutions provide good results for408

the minization of the objective function. Considering the parameters describing material weight,409
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load and maximum allowable stress, it was shown that 𝜓𝑞 and 𝜓𝜎 play a relevant role in the optimal410

solution, while the parameter associated to the unit weight 𝜓𝛾 has a secondary importance since411

it slightly affects the optimal design. To let the solution the more general as possible, various412

combination of real construction materials, geometries and loads were considered. A summary of413

these is reported in Table 6; among all the cases, 𝜓𝛾 varies between 3.71×10−7 and 8.33×10−6, 𝜓𝜎414

varies between 1.00 × 10−3 and 3.75 × 10−3, and 𝜓𝑞 varies between 9.52 × 10−10 and 6.25 × 10−6.415

The design abacus, which would serve for defining the optimal height profile of the beam, was416

formulated for a fixed value of 𝜓𝛾 = 1×10−6, 𝜓𝜎 in the range 0.5×10−3 to 1.5×10−3 (3 values) and417

𝜓𝑞 in the range 4 × 10−8 to 4 × 10−6 (in 7 logaritmically equally spaced values), trying to represent418

the possible materials, beam lengths and loads configurations. The nondimensional beam width is419

𝑏̃ = 0.05.420

Table 7 reports the optimal values of the design vector and the corresponding 𝑉̃ . It results that421

𝑉̃ is in the range 0.001 to 0.0085, roughly. In general, the values of ℎ𝑚𝑖𝑛 and the absolute values422

of the amplitudes of the sine function Δℎ̃1, Δℎ̃3 and Δℎ̃5 increase for increasing 𝜓𝑞. Besides, the423

increase of 𝜓𝜎 causes a reduction of the terms. These trends reflect the findings of the specific424

studies reported in the previous sections.425

Figure 6 shows the height profiles of the optimal beams. The scale in Y-axes are kept constant426

in all the plots for a better understanding of the effects of the parameters on the optimal solution.427

The results of Table 7 can be used for the design of real beams: the design values, i.e., the minimum428

height and the sine amplitudes can be determined by interpolation for a given 𝜓𝜎 and 𝜓𝑞.429

CONCLUSIONS430

The present paper deals with the optimal design of beams with variable cross-section. To this431

aim, Euler-Bernoulli beam theory has been adopted. The fourth order elastica equation has been432

rewritten according to the formulation proposed by Bulte as a system of four differential equations.433

According to Buckinham Π-theorem, a nondimensionalisation has been done to let the solution434

as general as possible. The loads acting of the beam are the self weight and a distributed line435

load. The minimum volume (weight) solution must satisfy two constraints: the maximum Von436
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Mises equivalent stress must not exceed an (ideal) strength and the maximum vertical displacement437

is limited to a fraction (1/250) of beam length. To evaluate the maximum equivalent stress438

in the beam, normal and shear stresses have been considered. The former evaluated through439

Navier formula, the latter through a formula derived from Jourawsky and holding for straight and440

untwisted beams with bi-symmetric variable cross-sections. The optimisation problem has focused441

on a beam with fixed-fixed ends subjected to a uniformly distributed load. To create the variable442

height profile, an emptying function resulting as a combination of sine functions with different443

amplitudes has been introduced. For the sake of completeness, other boundary conditions should444

be analysed in future studies. The double fixed condition is mainly representative of concrete445

structures, whereas for e.g. steel or timber structures, the semi-rigid condition is the actual one.446

However, considering these aspects may require future investigations accounting for the specific447

technical choice adopted for the restrain joints, thus affecting their rotational stiffness capacity448

(Daniūnas and Urbonas 2008; Du et al. 2022).449

The parametric analyses showed that:450

• the choice of the number of sines in the emptying function that describes the shape of the451

beam, is relevant up to 𝑁 = 5, i.e., a five-lobes solution. For finer solution, for examples,452

seven-lobes solution, there is not an improvement in the optimal solution in terms of453

minimum weight;454

• the maximum stress in the material influences the binding constraint. In general, it has been455

noted that the stress constraint is relevant for the optimal solution for the large majority456

of cases. The displacement constraint affects the solution for low external loads and high457

strength;458

• material unit weight does not affect the optimal solution as the total weight of the beam is459

smaller that the total applied load. For this reason, the variability of the material can be460

avoided in a preliminary design of a beam.461

A design abacus with a profiles plot encompassing the wide spectrum of design parameters has462
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been proposed to help in the design of an optimal five-lobes solution. The findings of the present463

paper would serve for the design of beams optimised with respect to weight. It should be em-464

phasized that the current optimization problem statement in Eqn. (31) may be further refined,465

e.g. peculiarly referring to more detailed constraints derived from actual structural codes based466

on the specific constitutive materials adopted (NTC 2018; EN1990 2002). Furthermore, tradi-467

tional casting methods for concrete non-prismatic beams with variable curvature profiles are still468

challenging (Veenendaal et al. 2011), especially for rebar placing operations, and often lead to469

more expensive solutions than classical alternatives. Nevertheless, in the novel panorama of ad-470

ditive manufacturing and 3D printing (Costa et al. 2020; Mercuri 2018), the herein-studied struc-471

tural solution is already becoming more feasible, revolutionizing the current construction indus-472

try. Therefore, future research efforts will concern the numerous aspects related to promising473

3D printing casting solutions, e.g. involving innovative and printing-technologically compat-474

ible materials, life cycle assessment, and non-prismatic beams industrialization among others475

(Costa et al. 2020; Gregori et al. 2019; Fiore et al. 2014; Asprone et al. 2018).476
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TABLE 1. Material and geometric properties for the analysis related to the number of lobes.

𝛾 25 kN/m3

𝐸 30 GPa
𝐿 10 m
𝑞0 20 kN/m
𝜎𝑖𝑑 20 MPa

𝑏̃ 0.05
𝜓𝛾 8.33 × 10−6

𝜓𝑞 6.66 × 10−8

𝜓𝜎 6.66 × 10−4
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TABLE 2. Optimal design values related to the cases of Figure 3.

N ℎ̃𝑚𝑖𝑛 Δℎ̃1 Δℎ̃3 Δℎ̃5 Δℎ̃7 𝑉̃

1 0.0151 0.0231 1.17×10−3

3 0.0157 0.0301 0.0055 1.07×10−3

5 0.0119 0.0262 0.0040 -0.0026 9.93×10−4

7 0.0122 0.0262 0.0040 -0.0026 0.00028 9.95×10−4
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TABLE 3. Material and geometric properties for the analysis related to the effect of maximum
material stress.

𝛾 25 kN/m3

𝐸 30 GPa
𝐿 10 m
𝑞0 10 kN/m

𝑏̃ 0.05
𝜓𝛾 8.33 × 10−6

𝜓𝑞 3.33 × 10−8
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TABLE 4. Optimal design values related to the cases of Figure 4.

N 𝜓𝜎 ℎ̃𝑚𝑖𝑛 Δℎ̃1 Δℎ̃3 𝑉̃

3 3.33 × 10−4 0.0165 0.0317 0.0058 1.13×10−3

3 6.66 × 10−4 0.0112 0.0233 0.0062 8.01×10−4

3 1 × 10−3 0.0099 0.0229 0.0087 7.95×10−4

34 De Biagi, August 17, 2023



TABLE 5. Optimal design values related to the cases of Figure 4.

N 𝜓𝛾 ℎ̃𝑚𝑖𝑛 Δℎ̃1 Δℎ̃3 𝑉̃ 𝜓𝛾𝑉̃

3 4.17 × 10−6 0.0096 0.0217 0.0086 7.73 × 10−4 3.22 × 10−9

3 8.33 × 10−6 0.0099 0.0229 0.0087 7.95 × 10−4 6.62 × 10−9

3 1.66 × 10−5 0.0106 0.0257 0.0088 8.37 × 10−4 1.39 × 10−8
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TABLE 6. Combination of structural and load configurations to be considered for determining the
range of parameters of the design abaci.

𝐸 𝛾 𝜎𝑖𝑑 𝐿 𝑞0 𝜓𝛾 𝜓𝜎 𝜓𝑞

GPa kN/m3 MPa m kN/m

Concrete
30 25 30 1 2 8.33 × 10−7 1.00 × 10−3 6.67 × 10−8

30 25 30 10 2 8.33 × 10−6 1.00 × 10−3 6.67 × 10−9

30 25 30 1 50 8.33 × 10−7 1.00 × 10−3 1.67 × 10−6

30 25 30 10 50 8.33 × 10−6 1.00 × 10−3 1.67 × 10−7

Timber
8 5 30 1 2 5.63 × 10−7 3.75 × 10−3 2.50 × 10−7

8 5 30 10 2 5.63 × 10−6 3.75 × 10−3 2.50 × 10−8

8 5 30 1 50 5.63 × 10−7 3.75 × 10−3 6.25 × 10−6

8 5 30 10 50 5.63 × 10−6 3.75 × 10−3 6.25 × 10−7

Alluminium
69 27 100 1 2 3.91 × 10−7 1.46 × 10−3 2.92 × 10−8

69 27 100 10 2 3.91 × 10−6 1.46 × 10−3 2.92 × 10−9

69 27 100 1 50 3.91 × 10−7 1.46 × 10−3 7.30 × 10−7

69 27 100 10 50 3.91 × 10−6 1.46 × 10−3 7.30 × 10−8

Steel
210 78 250 1 2 3.71 × 10−7 1.19 × 10−3 9.52 × 10−9

210 78 250 10 2 3.71 × 10−6 1.19 × 10−3 9.52 × 10−10

210 78 250 1 50 3.71 × 10−7 1.19 × 10−3 2.38 × 10−7

210 78 250 10 50 3.71 × 10−6 1.19 × 10−3 2.38 × 10−8

36 De Biagi, August 17, 2023



TABLE 7. Combination of structural and load configurations to be considered for determining the
range of parameters of the design abacus.

𝜓𝜎 𝜓𝑞 ℎ𝑚𝑖𝑛 Δℎ̃1 Δℎ̃3 Δℎ̃5 𝑉̃

0.5 × 10−3 4.0 × 10−8 0.0101 0.0223 0.0037 -0.0025 0.000858
8.6 × 10−8 0.0129 0.0341 0.0022 -0.0056 0.001290
1.8 × 10−7 0.0221 0.0482 0.0073 -0.0048 0.001838
4.0 × 10−7 0.0325 0.0705 0.0107 -0.0071 0.002695
8.6 × 10−7 0.0478 0.1032 0.0158 -0.0103 0.003955
1.8 × 10−6 0.0708 0.1508 0.0234 -0.0148 0.005810
4.0 × 10−6 0.1057 0.2192 0.0351 -0.0209 0.008551

1.0 × 10−3 4.0 × 10−8 0.0077 0.0163 0.0044 -0.0041 0.000781
8.6 × 10−8 0.0099 0.0209 0.0057 -0.0053 0.001006
1.8 × 10−7 0.0152 0.0321 0.0070 -0.0042 0.001311
4.0 × 10−7 0.0229 0.0499 0.0075 -0.0050 0.001904
8.6 × 10−7 0.0337 0.0731 0.0111 -0.0073 0.002794
1.8 × 10−6 0.0496 0.1070 0.0164 -0.0107 0.004102
4.0 × 10−6 0.0750 0.1567 0.0233 -0.0140 0.006033

1.5 × 10−3 4.0 × 10−8 0.0077 0.0163 0.0044 -0.0041 0.000781
8.6 × 10−8 0.0099 0.0209 0.0057 -0.0053 0.001006
1.8 × 10−7 0.0128 0.0269 0.0074 -0.0069 0.001298
4.0 × 10−7 0.0167 0.0350 0.0095 -0.0086 0.001675
8.6 × 10−7 0.0275 0.0597 0.0090 -0.0060 0.002280
1.8 × 10−6 0.0404 0.0875 0.0133 -0.0088 0.003347
4.0 × 10−6 0.0597 0.1279 0.0197 -0.0127 0.004917
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Fig. 1. Beam with variable cross-section: coordinate system, load, displacements, internal forces.
The displacement field is denoted with components 𝑣, 𝑤, 𝜙. The internal forces are 𝑁 (axial), 𝑉
(shear) and 𝑀 (bending moment).
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Fig. 2. Beam with variable cross-section generated with the emptying function of Eqn. (23).
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(a) One-lobe solution, 𝑁 = 1
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(b) Three-lobes solution, 𝑁 = 3
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(c) Five-lobes solution, 𝑁 = 5
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(d) Seven-lobes solution, 𝑁 = 7

Fig. 3. Comparison of optimal beam solutions with variable cross-section considering different
number of lobes. The parameters related to the weight per unit mass, the load and the maximum
allowable stress are reported in Table 2.
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(a) 𝜓𝜎 = 3.33 × 10−4
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(b) 𝜓𝜎 = 6.66 × 10−4
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(c) 𝜓𝜎 = 1 × 10−3

Fig. 4. Comparison of optimal beam solutions of three-lobes variable cross-section considering
different maximum stress levels, i.e. the value of parameter 𝜓𝜎. The parameters related to the
weight per unit mass, the load and the maximum allowable stress, as well as the optimal solution
are reported in Table 4.
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Fig. 5. Value of the dimensionless volume of the beam 𝑉̃ and binding solution constraints for
different 𝜓𝜎 and 𝜓𝑞. The bullets indicate whether the relevant solution constraint is the maximum
stress (green), Eqn. (21), the maximum displacement (blue), Eqn. (22), or both (red).
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Fig. 6. Beam height profiles of the beams for various 𝜓𝜎 and 𝜓𝑞. The values of the design vector
are reported in Table 7.
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