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Abstract. The effect of vehicle braking can significantly amplify a bridge
deflection compared to that induced by a vehicle moving at a constant
speed. However, the magnitude of this amplification depends on vehicle
bridge interaction (VBI) phenomena activated by the road roughness.
The road roughness triggers the vehicle dynamics, thus magnifying the
interaction between the vehicle and the bridge. This paper proposes a
probabilistic model for the amplification factor. The amplification fac-
tor is associated with the vehicle’s hard braking by the mid-span of the
bridge under different road roughness classes. The amplification factor,
defined as the ratio between the maximum deflections corresponding to
a vehicle braking and moving at a constant speed, is estimated as a
function of the mass, velocity, natural frequency and damping of the
vehicle. The VBI model is obtained by discretizing the coupled govern-
ing equations using the finite difference method. The vehicle is modelled
as a two-degrees of freedom system corresponding to the bouncing and
pitching motions. The computational efficiency of this model supported
an expensive set of analyses, where the parameter values were selected
using the Latin Hypercube sampling scheme. The model outputs have
been validated against a middle-span bridge’s measured experimental
displacement response under different scenarios.

Keywords: Bouncing · Braking · Bridge · Fragility curve · Genetic pro-
gramming · Machine learning · Moving load · Neural network · Pitching
· Roughness · Surrogate model · Vehicle-bridge interaction.

1 Introduction

The displacement impact factor IF is commonly considered in order to quantify
the effects of braking on bridge dynamics under traffic loads. It is defined as
follows:

IF =
wb,braking

wb,constant
, (1)
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where wb,braking and wb,constant are the maximum bridge deflection under brak-
ing conditions and the value corresponding to a vehicle that moves at a constant
speed, respectively.

Although the realistic analysis of the vehicle-bridge dynamic interaction
should account for all these factors, several studies are based on fairly similar,
simplified models. The lack of comparative studies among different modeling
approaches, in turn, prevents to understand to what extent all assumptions and
parameters involved in braking are important for estimating its effects on bridge
dynamics. The critical examination of alternative modeling approaches taking
into account their complexity and accuracy as well as the associated computa-
tional cost is also important towards practical applications, such as sensitivity
and reliability analyses. Hence, two classes of modeling approaches are herein
considered to investigate the dynamics of the vehicle-bridge interaction in brak-
ing conditions. The first class of approaches encompasses physics-based models
(i.e., models ruled by the dynamic laws). Specifically, six models characterized
by different levels of complexity and accuracy are considered. They are listed in
Tab 1 together with the corresponding assumptions. Since these physics-based

Table 1. Considered physics-based models of the vehicle-bridge interaction in braking
conditions.

Model assumptions
Model label IF label Roughness Vehicle model Inertial effects Braking friction

1dof-hb-st IF1,hb,st Stationary 1 degree-of-freedom No No
1dof-hb-st IF1,bl,st Stationary 1 degree-of-freedom No Yes
1dof-sb-nst IF1,bl,nst Nonstationary 1 degree-of-freedom No Yes
2dof-hb-st IF2,hb,st Stationary 2 degrees-of-freedom Yes No
2dof-sb-st IF2,bl,st Stationary 2 degrees-of-freedom Yes Yes
2dof-sb-nst IF2,bl,nst Nonstationary 2 degrees-of-freedom Yes Yes

models are ruled by differential equations, their use can require a large compu-
tational effort if they must be solved a large number of times. Surrogate models
(also known as metamodels) can provide a convenient way to cope with the
computational burden required by these applications. In this context, the basic
idea is to develop a data-driven approximation of the vehicle-bridge interaction
in breaking conditions that is more efficient to execute, so as to obtain a di-
rect estimate of the desired output (i.e., the bridge response in terms of IF or
wb,braking) starting from a set of relevant parameters. The development of surro-
gate models requires both the discovery of the correct function that fits the data
and the appropriate numeric coefficients of the function. Machine learning tech-
niques have proven especially suitable to deal with this task in several scientific
fields. Therefore, their feasibility in approximating the dynamics of the vehicle-
bridge interaction under braking conditions is here investigated. Specifically, the
following two supervised machine learning techniques are considered.



Physics-based and machine-learning models for braking impact factors 3

– Neural network. The elaboration of the data-driven model for the vehicle-
bridge dynamic interaction leverages on the well known capability of neural
networks as universal function approximators.

– Genetic programming. Evolutionary computing is exploited to look for a
proper model function, in symbolic form, which approximates as best as
possible the desired output.

2 Methods

2.1 Road roughness model

The randomness of the road surface roughness can be represented by means of a
periodic modulated random process. Within the ISO 8608 specifications [1], the
road surface roughness depends on the vehicle speed through a formulation that
relates the velocity power spectral density (PSD) and the displacement PSD.
The general expression for the displacement PSD of the road surface roughness
Sd is the following:

Sd(n) = Sd(n0) ·
(

n

n0

)−a

, (2)

where n is the spatial frequency (cycles/m), n0 = 0.1 cycles/m is the reference
value of the spatial frequency, and a is a suitable exponent. Equation 2 gives an
estimate of the actual road roughness level Sd(n) as function of the correspond-
ing reference value Sd(n0). Note that the classification of the road roughness
according to the ISO 8608 specifications is based on a constant vehicle velocity
PSD by taking a = 2.

The road roughness r can be generated as function of the spatial coordinate
x through the following equation:

r(x) =

Q∑
p=1

dp cos (npx+ φp), (3)

where np is the pth spatial frequency and φp is the pth random phase angle,
being Q the total number of harmonics assumed to generate the road roughness
profile. Moreover, dp is the pth amplitude, which is computed as follows:

dp =
√
2Sd(n)∆n, (4)

where ∆n denotes the sampling interval of the spatial frequency.
The nonstationary road roughess has been defined based on the paper by

Yin et al. [2].

2.2 Vehicle-bridge interaction model

Translation and rotational dynamic equilibrium equations of the vehicle mass
can be written as follows:

mv

[
ẅv +

(
r̈(xr) + r̈(xf )

2

)
+

(
ẅb(xr, t) + ẅb(xf , t)

2

)]
+ 2cvẇv + 2kvwv = 0,

(5)
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Iv

[
θ̈v +

(
r̈(xr)− r̈(xf )

B

)
+

(
ẅb(xr, t)− ẅb(xf , t)

B

)]
+mvhẍv+

B2

2
cv θ̇v+

B2

2
kvθv = 0,

(6)
where mv, Iv, cv, kv are mass, inertia, damping coefficient and sprung stiffness
of the vehicle, respectively. Moreover, h is the height of the vehicle centre of
mass distance from the road surface and B is the distance between the contact
points of the two wheels. The absolute vertical displacement of the vehicle mass
is given by three terms, namely wv (i.e., relative displacement between the road
surface and the center of gravity of the vehicle mass), r (i.e., road roughness,
that is the distance between the road surface and the averaged road surface),
and wb (i.e., deflection measured from the line axis of the bridge). Similarly, the
absolute rotation of the vehicle is given by three contributions, namely θv (i.e.,
relative rotation between the vehicle and road surface), r, and wb. The coupling
between the bridge and the vehicle is due to the inertial terms in Eq. 5 and Eq. 6,
whereas damping and elastic term are only affected by the relative displacement
between the vehicle and the road surface.

The contact force of the rear wheel fc,r can be derived from the equilibrium
equation:

mw [r̈(xr) + ẅb(xr, t)] + fc,r − cv

(
ẇv + θ̇v

B

2

)
− kv

(
wv + θv

B

2

)
= 0, (7)

where mw is the mass of the wheel. So doing, it is obtained:

fc,r = −mw [r̈(xr) + ẅb(xr, t)] + cv

(
ẇv + θ̇v

B

2

)
+ kv

(
wv + θv

B

2

)
. (8)

Similarly, the contact force for the front wheel fc,f is:

fc,f = −mw [r̈(xf ) + ẅb(xf , t)] + cv

(
ẇv − θ̇v

B

2

)
+ kv

(
wv − θv

B

2

)
. (9)

The contact force due to the vehicle oscillation does not include the weight of
the sprung-mass system mwg +mvg.

Horizontal friction forces arise between the tyres and the bridge surface dur-
ing braking. If the width of the contact area between the tyre and the bridge is
T , then the bending moment induced by the friction forces is:

m(x) =
µmvys

T

[
H

(
xr − ẋvt−

T

2

)
−H

(
xr − ẋvt+

T

2

)]
+

+
µmvys

T

[
H

(
xf − ẋvt−

T

2

)
−H

(
xf − ẋvt+

T

2

)]
≈

≈ µmvys
B

[
H

(
xv − ẋvt−

B

2

)
−H

(
xv − ẋvt+

B

2

)]
,

(10)

where ys is the distance between the beam center of mass and the road surface
while H is the Heaviside step function. Equation 10 approximates the two dis-
tributed bending moments induced by friction forces corresponding to the two
tyres with a single distributed bending moment that extends over the wheelbase.
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The partial derivative of the approximated expression for the distributed
bending moment can be written as:

∂m(x)

∂x
=

µmvys
B

[
δr

(
xv − ẋvt−

B

2

)
− δf

(
xv − ẋvt+

B

2

)]
=

= F

[
δr

(
xv − ẋvt−

B

2

)
− δf

(
xv − ẋvt+

B

2

)]
,

(11)

where δr and δf are the Dirac delta corresponding to the rear and front wheels,
respectively.

The bridge is modeled as linear elastic Euler–Bernoulli beam with constant
mass per unit length ρA (where ρ is the specific mass and A is the cross-section
area of the beam) and constant bending stiffness EJ (where E is the elastic
modulus and J the cross-section inertia of the beam). The continuous vertical
displacement wb(x, t) of the bridge is governed by the following partial differential
equation [3]:

ρAẅb(x, t) + EJwr,xxxx(x, t) = δr(xr − ẋvt)

(
fc,r +mwg +

1

2
mvg

)
+

δf (xf − ẋvt)

(
fc,f +mwg +

1

2
mvg

)
+

∂m(x)

∂x
,

(12)

The following boundary conditions apply on the left and on the right for a
pinned-pinned beam:

wb(0, t) = 0, wb,xx(0, t) = 0, (13)

wb(L, t) = 0, wb,xx(L, t) = 0, (14)

respectively.

2.3 Machine-learning

A multi-layer feed-forward artificial neural network is used in this paper. The
optimization of the artificial neural network layout is critical in maximizing its
accuracy level as well as its predictive capability against new data. Among the
different strategies that have been proposed to optimize the artificial neural net-
work layout [4], a genetic-algorithm-based approach has been adopted in the
present work [5]. A computer program is a predictive model that provides (in
symbolic form) the instructions for combining relevant variables, constants and
operators. Starting from an initial (random) collection of candidates, these com-
puter programs are then manipulated through a sequence of genetic operators
until a stopping criterion is not fulfilled. Out of the available approaches to cope
with bloat in genetic programming [4], the strategy implemented in the present
work assumes model accuracy and model complexity as conflicting criteria fol-
lowing Ekart and Nemeth [6].
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3 Results

The considered case study is a simply supported pre-stressed concrete girder
bridge belonging to the Italian motorway network [7–9]. The cross-section has
trapezoidal shape and is 2.3 m high, with two cantilevered wings 3.85 m wide,
which are pre-stressed by bonded post-tensioned tendons. A pair of piers, whose
centre distance is about 40 m, sustains each bridge span. The Montecarlo simula-
tions shows that the effect of braking mostly depends on the road roughness and
initial velocity of the vehicle [10]. Fig.1 plots the IF as a function of the initial
velocity, based on the experimental data, physics-based and surrogate models.

Fig. 1. Variation of the IF as a function of the vehicle velocity: confidence bounds
estimated using the physics-based model, nominal values carried out through surrogate
modelling, and experimental data.

The symbolic form of the final surrogate models for IF and wb,braking obtained
via genetic programming is the following:

IF =θIF1 + θIF2fv,ph
2 + θIF3Bẋ2

v0 + θIF4Bfv,ph+

1

mv

(
θIF5ẋ

2
v0fv,ph+ θIF6Bfv,ph+ θIF7B

2h
)
,

(15)

wb,braking =θwb1 + θwb2B + θwb3ẋv0 +
θwb4h+ θwb5mv

fv,b
+

θwb6fv,p + θwb7h+ θwb8mv

Bθwb9
(in [m]) ,

(16)

respectively. The involved sets of coefficients, ΘIF and Θwb
, are listed in Tab. 2.

These surrogate models for IF and wb,braking involve the same parameters except
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Table 2. Coefficients of the genetic programming-derived surrogate models for IF and
wbraking in Eq. 15 and Eq. 16, respectively.

IF (ΘIF ) wbraking (Θwb)

θIF1 = 1.009 θwb1 = 2.8268E-04
θIF2 = 0.0024 θwb2 = 9.9309E-06
θIF3 = −1.6712E-07 θwb3 = −2.4731E-06
θIF4 = −0.0013 θwb4 = −4.9481E-07
θIF5 = 2.0845E-05 θwb5 = −7.2693E-06
θIF6 = −0.0042 θwb6 = −8.9722E-05
θIF7 = −6.7429E-04 θwb7 = −6.7173E-05

θwb8 = −2.1517E-04
θwb9 = 0.0833

for fv,b, which is missing within the symbolic expression for IF. The results
demonstrate that genetic programming is also able to produce good surrogate
models. Considering the compact form of the final symbolic expressions, the
accuracy of the genetic programming is still deemed satisfactory. However, the
surrogate model for the IF carried out via genetic programming is slightly less
accurate than those produced via artificial neural networks, being R2 between
80% and 85%. The surrogate models for wb,braking obtained by means of genetic
programming and artificial neural networks display almost the same accuracy
level, being R2 around 99% for both machine learning techniques.

4 Conclusions

The main findings of the present paper are the followings:

– Hard braking is the most severe dynamic loading condition, since it yields
IF values equal to or larger than one on average. The use of an accurate
vehicle model (i.e., two degree-of-freedom vehicle model) is needed in order
to obtain the most conservative estimates of the bridge response in such
braking condition.

– While a two degrees-of-freedom vehicle model yields larger values of the IF
in case of hard braking, an opposite trend is observed on average in case of
soft braking. In this case, a single degree-of-freedom vehicle model turns out
to produce more conservative estimates of the bridge displacements.

– The effects of a soft braking on the bridge response depend on the road
roughness model. In this case, a nonstationary road roughness model yields
IF values higher than those obtained from a stationary road roughness model
on average. However, such influence of the road roughness model on the
bridge response reduces when the road roughness level increases. If a hard
braking condition is considered, then the higher the road roughness level,
the lower the mean IF value.
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– The dispersion of the IF values basically depends on braking conditions and
vehicle model. The dispersion of the IF values is especially high in case of soft
braking condition and two degrees-of-freedom vehicle model. The dispersion
of the IF values also depends, to some extent, on the roughness level in case
of hard braking condition: in such case, the lower is the road roughness level,
the larger is the dispersion of the IF values.
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