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Abstract. Probabilistic Logic Programming combines uncertainty and
logic-based languages. Liftable Probabilistic Logic Programs have been
recently proposed to perform inference in a lifted way. LIFTCOVER is
an algorithm used to perform parameter and structure learning of liftable
probabilistic logic programs. In particular, it performs parameter learn-
ing via Expectation Maximization and LBFGS. In this paper, we present
an updated version of LIFTCOVER, called LIFTCOVER+, in which reg-
ularization was added to improve the quality of the solutions and LBFGS
was replaced by gradient descent. We tested LIFTCOVER+ on the same
12 datasets on which LIFTCOVER was tested and compared the perfor-
mances in terms of AUC-ROC, AUC-PR, and execution times. Results
show that in most cases Expectation Maximization with regularization
improves the quality of the solutions.

Keywords: Probabilistic Inductive Logic Programming ·
Regularization · Statistical Relational Artificial Intelligence

1 Introduction

Probabilistic Logic Programming (PLP) combines uncertainty and logic-based
languages [17]. Given its expressiveness, in the last decades PLP, and in par-
ticular PLP under the distribution semantics [21], has been widely adopted in
domains characterized by uncertainty [5,11,12,19,20]. A probabilistic logic pro-
gram without function symbols under the distribution semantics defines a prob-
ability distribution over normal logic programs, also called instances or worlds.
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The distribution is extended to a joint distribution over worlds and interpre-
tations (or queries) and the probability of a query can be obtained from this
distribution [17]. Logic Programs with Annotated Disjunctions (LPADs) [26]
are a PLP language under the distribution semantics. In LPADs without func-
tion symbols, heads of clauses are disjunctions in which each atom is anno-
tated with a probability. Since learning probabilistic logic programs is expen-
sive, various approaches have been proposed to overcome this problem. Lifted
inference [15] was introduced to improve the performances of reasoning in proba-
bilistic relational models by taking into consideration populations of individuals
instead of considering each individual separately. Liftable Probabilistic Logic
Programs have been recently proposed to perform inference in a lifted way.
LIFTCOVER [13] is an algorithm that performs structure and parameter learn-
ing (via Expectation-Maximization (LIFTCOVER-EM) or Limited-memory
BFGS (LIFTCOVER-LBFGS)) of liftable probabilistic logic programs. Previous
results [13] showed that LIFTCOVER-EM often outperformed LIFTCOVER-
LBFGS and other systems at the state of the art. In this paper, we present LIFT-
COVER+, an algorithm that extends LIFTCOVER with regularization and gra-
dient descent for parameter learning to improve the quality of the solutions
and prevent overfitting. We test LIFTCOVER+ on 12 real-world datasets and
compare the results with LIFTCOVER-EM. Empirical results show that LIFT-
COVER+ with the regularized Expectation-Maximization algorithm allows to
obtain slightly better results than the original LIFTCOVER-EM.

The paper is organized as follows: Sect. 2 presents background on PLP; Sect. 3
introduces LIFTCOVER+; Sect. 4 shows the results of the experiments; in Sect. 5
we discuss related work; and in Sect. 6 we draw the conclusions.

2 Background

We consider the liftable PLP language [13], a restriction of probabilistic logic
programs so that inference can be performed in a lifted way. Such programs
contain clauses with a single annotated atom in the head and the predicate of
this atom is the same for all clauses, i.e., clauses of the form:

Ci = hi : Πi :− bi1, . . . , biui

where the single atom in the head is built over predicate target/a, with a the
arity. The bodies of the clauses contain other predicates than target/a and their
facts and rules have a single atom in the head with probability 1 (they are
certain). The predicate target/a is the target of learning and the other predicates
are input predicates. In other words, in the liftable PLP language uncertainty
appears only in the rules. The goal is to compute the probability of a ground
instantiation (or query) q of target/a. To do so, we find the number of ground
instantiations of clauses for target/a such that the body is true and the head is
equal to q. Let {θi1, ..., θimi

} be the mi instantiations for clause Ci, i = 1, ..., n.
Every instantiation θij corresponds to a random variable Xij that is equal to
1 (0) with probability Πi (1 − Πi). The query q is true if at least one random
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variable for a rule is true, i.e., takes value 1. Equivalently, the query q is false
only if none of the random variables is true. Since all the random variables
are mutually independent the probability that q is true can be computed as
P (q) = 1 − ∏n

i=1(1 − Πi)mi . The fact that the random variables associated to
the rules are mutually independent does not limit the capability to represent
probability distributions, as shown in [17].

LIFTCOVER [13], shown in Algorithm 1, learns the structure of liftable
probabilistic logic programs. Given a set E+ = {e1, . . . , eQ} of positive examples,
a set E− = {eQ+1, . . . , eR} of negative examples, and a background knowledge
B (possibly a normal logic program defining the input predicates), the goal of
structure learning is to find a liftable probabilistic logic program T such that
the likelihood

L =
Q∏

q=1

P (eq)
R∏

r=Q+1

P (¬er)

is maximized. LIFTCOVER solves this problem by first identifying good clauses
guided by the log-likelihood (LL) of the data, with a top-down beam search. The
refinement operator adds a literal taken from a bottom clause to the body of
the current clause. The beam search is repeated a user-defined number of times
or until the beam is empty. Then, parameter learning is performed on the full
set of clauses found, which is considered as a single theory. LIFTCOVER can
use either Expectation-Maximization (EM) or Limited-memory BFGS (LBFGS).
LBFGS is used to find the values of the parameters that optimize the likelihood
by exploiting the gradient of the log-likelihood with respect to the parameters.
The likelihood can be unfolded to

L =
n∏

l=1

(1 − Πl)ml−
Q∏

q=1

(

1 −
n∏

l=1

(1 − Πl)mlq

)

where miq (mir) is the number of instantiations of Ci whose head is eq (er) and
whose body is true, and ml− =

∑R
r=Q+1 mlr. Its gradient can be computed as:

∂L

∂Πi
=

L

1 − Πi

(
Q∑

q=1

miq

(
1

P (eq)
− 1

)

− mi−

)

(1)

Because the equation ∂L
∂Πi

= 0 does not admit a closed-form solution, optimiza-
tion is needed to find the maximum of L. The clauses with a probability below
a user-defined threshold are discarded.

In models in which the variables are hidden, the EM algorithm [7] must be
used to find the maximum likelihood estimates of parameters. In the Expec-
tation step, the distribution of the unseen variables in each instance is com-
puted given the observed data and the current value of the parameters. In the
Maximization step, the new parameters are computed so that the expected
likelihood is maximized. The alternation between the Expectation and the
Maximization steps continues until the likelihood does not improve anymore.
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To use the EM algorithm, the distribution of the hidden variables given the
observed ones, P (Xij = 1|e) and P (Xij = 1|¬e) has to be computed. Given
that P (Xij = 1, e) = P (e|Xij = 1) · P (Xij = 1) = P (Xij = 1) = Πi and
P (e|Xij = 1) = 1,

P (Xij = 1|e) =
P (Xij = 1, e)

P (e)
=

Πi

1 − ∏n
i=1(1 − Πi)mi

(2)

P (Xij = 0|e) = 1 − Πi

1 − ∏n
i=1(1 − Πi)mi

(3)

Since P (Xij = 1,¬e) = P (¬e|Xij = 1) ·P (Xij = 1) = 0 and P (¬e|Xij = 1) = 0,

P (Xij = 1|¬e) = 0 (4)

P (Xij = 0|¬e) = 1 (5)

3 LIFTCOVER+

LIFTCOVER can learn very large sets of clauses that may overfit the data. For
this reason, we introduce LIFTCOVER+, a modified version of LIFTCOVER
that adds regularization to perform parameter learning and uses gradient descent
instead of LBFGS to optimize the likelihood.

Regularization is a well-known technique to prevent overfitting, in which a
penalty term is added to the loss function to penalize large weights. In this way,
we aim to obtain few clauses with large weights. Clauses with small weights
have little influence on the probability of the query and can be removed, thus
simplifying the theory. Regularization is usually performed in gradient-based
algorithms, but it can be performed in EM as well in the Maximization phase,
where the parameters that maximized the LL are found. For EM, regularization
can be Bayesian, L1, or L2.

In Bayesian regularization, the parameters are updated assuming a prior dis-
tribution that takes the form of a Dirichlet probability density with parameters
[a, b]. It has the same effect as having observed a extra occurrences of Xij = 1
and b extra occurrences of Xij = 0. If b is much larger than a, this has the
effect to shrink the parameters. L1 and L2 differ in how they penalize the loss
function: L1 adds the sum of the absolute value of the parameters to the loss
function while L2 adds the sum of their squares.

The L1 objective function [14] is:

J1(θ) = N1 · logθ + N0 · log(1 − θ) − γθ (6)

where θ = πi, N0 and N1 are the expected occurrences of Xij = 0 and Xij = 1
computed in the Expectation step, and γ is the regularization coefficient. The
value of θ that maximizes J1 is computed in the Maximization step by solving
the equation ∂J(θ)

∂θ = 0 [14]. J1(θ) is maximum at

θ1 =
4N1

2(γ + N0 + N1 +
√

(N0 + N1)2 + γ2 + 2γ(N0 − N1))
(7)
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The L2 objective function [14] is:

J2(θ) = N1 · logθ + N0 · log(1 − θ) − γ

2
θ2 (8)

and value of θ that maximizes J2, is:

θ2 =

2
√

3N0+3N1+γ
γ cos

⎛

⎜
⎝

arccos

(√
γ

3N0+3N1+γ ( 9N0
2 −9N1+γ)

3N0+3N1+γ

)

3 − 2π
3

⎞

⎟
⎠

3
+

1
3

(9)

In LIFTCOVER+, LBFGS is replaced by regularized gradient descent. The
objective function is the sum of cross entropy errors erri for all the examples:

err =
Q+R∑

i=1

(−yi log P (ei) − (1 − yi) log(1 − P (ei))) (10)

where Q+R is the total number of examples, ei is an example, and yi is its sign,
thus yi equals to 1 (0) if the example is positive (negative). L1 regularization
can then be applied to minimize the loss function [14]:

errL1 =
Q+R∑

i=1

−yi · logP (ei) − (1 − yi) · log(1 − P (ei)) + γ

k∑

i=1

|πi| (11)

where k is the number of parameters and the πis are the probabilities of the
clauses. After learning the parameters, all the clauses with a probability below
a fixed threshold are removed.

4 Experiments

The main goal of the experiments is to assess whether adding regularization
to LIFTCOVER+ improves the quality of the solution. All experiments were
conducted on a GNU/Linux machine with an Intel Core i3-10320 Quad Core
3.80 GHz CPU.

We tested LIFTCOVER+ on 12 real-world datasets: UW-CSE [10] (a dataset
that describes the Computer Science Department of the University of Washing-
ton, used to predict the fact that a student is advised by a professor), Mon-
dial [22] (a dataset containing information regarding geographical regions of the
world, such as population size, political system, and the country border rela-
tionship), Carcinogenesis [23] (a classic ILP benchmark dataset for Quantitative
Structure-Activity Relationship (QSAR), i.e., predicting the biological activity
of chemicals from their physicochemical properties or molecular structure. The
goal is to predict the carcinogenicity of compounds from their chemical struc-
ture), Mutagenesis [24] (a classic ILP benchmark dataset for QSAR in which
the goal is to predict the mutagenicity (a property correlated with carcinogenic-
ity) of compounds from their chemical structure), Bupa (for diagnosing patients
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Algorithm 1. Function LIFTCOVER
1: function LIFTCOVER(NB,NI ,NInt,NS ,NA,NV )
2: Beam =InitialBeam(NInt,NS ,NA) � Bottom clauses building
3: CC ← ∅
4: Steps ← 1
5: NewBeam ← []
6: repeat
7: Remove the first couple ((Cl, Literals), LL) from Beam � Remove the first clause
8: Refs ←ClauseRefinements((Cl, Literals,NV )) � Find all refinements Refs of

(Cl, Literals)
9: for all (Cl′, Literals′) ∈ Refs do
10: (LL′′, {Cl′′}) ←LearnWeights(I, {Cl′})
11: NewBeam ←Insert((Cl′′, Literals′), LL′′, NewBeam,NB) � The refinement

is inserted in the beam in order of likelihood, possibly removing the last clause if the size of the
beam NB is exceeded

12: CC ← CC ∪ {Cl′}
13: end for
14: Beam ← NewBeam
15: Steps ← Steps + 1
16: until Steps > NI or Beam is empty
17: (LL, Th) ←LearnWeights(CC)
18: Remove from Th the clauses with a weight smaller than WMin
19: return Th
20: end function

with liver disorders), Nba (for predicting the results of NBA basketball games),
Pyrimidine and Triazine1 (QSAR datasets for predicting the inhibition of dihy-
drofolate reductase by pyrimidines and triazines, respectively), Financial (for
predicting the success of loan applications by clients of a bank), Sisya and Sisyb
(datasets regarding insurance business clients, used to classify households and
persons in relation to private life insurance), and Yeast (for predicting if a yeast
gene codes for a protein involved in metabolism) from [25]2. Table 1 shows the
characteristics of the datasets.

Four different configurations of LIFTCOVER+ were compared: EM with
Bayesian regularization (EM-Bayes), EM with L1 regularization (EM-L1), EM
with L2 regularization (EM-L2), and gradient descent with fixed learning rate
η = 0.0001 and L1 regularization (GD). Hyper-parameters for Bayesian regular-
ization were set as a = 0 and b equal to 15% of the total number of examples in
the dataset. We set γ = 50 for L1 and L2 in EM, and γ = 10 for L1 in gradient
descent. The parameters controlling structure learning are the following: NInt is
the number of mega-examples on which to build the bottom clauses, NA is the
number of bottom clauses to be built for each mega-example, NS is the number
of saturation steps (for building the bottom clauses), NI is the maximum number
of clause search iterations, the size NB of the beam, NV is the maximum number
of variables in a rule, and WMin is the minimum probability under which the
rule is removed. Their values are listed in Table 2.

All the configurations were evaluated in terms of Area Under the Precision-
Recall Curve (AUC-PR) and Area Under the Receiver Operating Characteristics

1 https://relational.fit.cvut.cz/.
2 https://dtai.cs.kuleuven.be/ACE/doc/.

https://relational.fit.cvut.cz/
https://dtai.cs.kuleuven.be/ACE/doc/
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Curve (AUC-ROC). Both were computed with the methods reported in [4,8].
LIFTOCOVER+ was compared with LIFTCOVER-EM from [13].

Table 1. Characteristics of the datasets for the experiments: number of predicates
(P), of tuples (T) (i.e., ground atoms), of positive (PEx) and negative (NEx) examples
for target predicate(s), of folds (F). The number of tuples includes the target positive
examples.

Dataset P T PEx NEx F

Financial 9 92658 34 223 10

Bupa 12 2781 145 200 5

Mondial 11 10985 572 616 5

Mutagen 20 15249 125 126 10

Sisyb 9 354507 3705 9229 10

Sisya 9 358839 10723 6544 10

Pyrimidine 29 2037 20 20 4

Yeast 12 53988 1299 5456 10

Nba 4 1218 15 15 5

Triazine 62 10079 20 20 4

UW-CSE 15 2673 113 20680 5

Carcinogen 36 24533 182 155 1

Tables 3, 4, and 5 show the performances of the different configurations in
terms of average over the folds of AUC-ROC, AUC-PR, and the execution times,
respectively. The results of LIFTCOVER-EM were taken from [13]. Execution
time for LIFTCOVER+ was scaled (i.e., multiplied by 3.8/2.4) in order to
compare them with those of LIFTCOVER-EM in [13] that were executed on
a machine with Intel Xeon Haswell E5-2630 v3 (2.40GHz) CPU. Figures 1, 2,
and 3 show the histograms of the above-mentioned data.

LIFTCOVER+ performs slightly better than LIFTCOVER-EM in terms of
AUC-PR on 6 datasets out of 12 with EM-BAYES and EM-L1, on 7 datasets
with EM-L2, and on 3 datasets with GD. As a matter of fact, the average
AUC-PR over all datasets is higher for LIFTCOVER+ with EM and L2 reg-
ularization, followed closely by Bayesian regularization. Results obtained with
LIFTCOVER+ and GD were considerably worse on the Pyramidine and Yeast
datasets and were lower in almost all other cases. In particular, LIFTCOVER+
was able to significantly improve the performance on the Nba dataset achieving
an AUC-PR of 0.7 against 0.5 reached by LIFTCOVER-EM. Despite that, the
Sisyb dataset seems to remain a challenge for LIFTCOVER+ (both with EM
and GD). Regarding AUC-ROC, LIFTCOVER+ beats LIFTCOVER-EM on 4
datasets out of 12 with EM-Bayes and EM-L1, on 3 datasets with EM-L2, and
on 2 datasets with GD. In general, GD led to a deterioration of the solution in
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Table 2. Parameters controlling structure search for LIFTCOVER+.

Dataset NB NI NInt NS NA NV WMin

Financial 100 20 16 1 1 4 1e-4

Bupa 100 20 4 1 1 4 1e-4

Mondial 1000 10 1 2 6 5 1e-4

Mutagen 100 10 4 1 1 4 1e-4

Sisyb 100 20 10 1 1 50 1e-4

Sisya 100 20 4 1 1 4 1e-4

Pyrimidine 100 20 4 1 1 100 1e-4

Yeast 100 20 12 1 1 4 1e-4

Nba 100 20 4 1 1 100 1e-4

Triazine 100 20 4 1 1 4 1e-4

UW-CSE 100 60 4 1 4 4 1e-4

Carcinogen 100 60 16 2 1 3 1e-4

most cases, probably because the loss function is highly non-convex and GD ends
up in local minima, while EM seems more capable of escaping local minima. In
terms of execution times, LIFTCOVER+ is comparable to LIFTCOVER-EM,
although it was slower in some cases. This is especially true for GD, which on
some datasets (Bupa, Mondial, Mutagenesis, Pyramidine, Yeast, Triazine, Car-
cinogenesis) turns out to be slower by one or more orders of magnitude. How-
ever, it must be noted that the scaling approach we have used is only a rough
approximation, as the architecture of the two processors is different and thus
differences in caches and pipelining may have an effect. In the future, we plan
to repeat the LIFTCOVER+ experiments on a machine more similar to the one
of LIFTCOVER-EM.

5 Related Work

Lifted inference for PLP under the distribution semantics has been surveyed
in [18], in which the authors describe and evaluate three different approaches,
namely Lifted Probabilistic Logic Programming (LP 2), lifted inference with
aggregation parfactors, and Weighted First Order Model Counting (WFOMC).
The authors of [9], instead, focused their survey on lifted graphical models.

LIFTCOVER (and thus LIFTCOVER+) derives from SLIPCOVER [3], an
algorithm for learning general PLP by performing a search in the space of clauses
and then refining it by greedily adding refined clauses into the theory. Aside
from the simplified structure search, LIFTCOVER and LIFTCOVER+ differ
from SLIPCOVER also in the approach used for parameter learning. While
SLIPCOVER uses EMBLEM [2] to learn the parameters of a probabilistic logic
program by applying EM over Binary Decision Diagrams [1], LIFTCOVER and
LIFTCOVER+ use EM, LBFGS, and gradient descent.
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Table 3. Average AUC-ROC over the datasets for each configuration: EM with Bayes
regularization (EM-Bayes), EM with L1 regularization (EM-L1), EM with L2 regular-
ization (EM-L2), and gradient descent (GD). For each row, the best result is highlighted
in bold.

Dataset EM-Bayes EM-L1 EM-L2 GD LIFTCOVER-EM

Financial 0.521 0.459 0.528 0.389 0.432

Bupa 1.000 1.000 1.000 1.000 1.000

Mondial 0.586 0.547 0.572 0.528 0.663

Mutagen 0.934 0.918 0.939 0.594 0.931

Sisyb 0.500 0.500 0.500 0.500 0.500

Sisya 0.720 0.720 0.720 0.720 0.372

Pyrimidine 0.975 0.880 0.910 0.160 1.000

Yeast 0.785 0.783 0.785 0.530 0.786

Nba 0.725 0.725 0.725 0.675 0.531

Triazine 0.425 0.390 0.430 0.580 0.713

UW-CSE 0.976 0.977 0.975 0.951 0.977

Carcinogen 0.720 0.692 0.687 0.500 0.766

Average 0.739 0.716 0.731 0.594 0.723

Table 4. Average AUC-PR over the datasets for each configuration: EM with Bayes
regularization (EM-Bayes), EM with L1 regularization (EM-L1), EM with L2 regular-
ization (EM-L2), and gradient descent (GD). For each row, the best result is highlighted
in bold.

Dataset EM-Bayes EM-L1 EM-L2 GD LIFTCOVER-EM

Financial 0.155 0.127 0.169 0.124 0.126

Bupa 1.000 1.000 1.000 1.000 1.000

Mondial 0.717 0.739 0.743 0.712 0.763

Mutagen 0.966 0.964 0.971 0.759 0.971

Sisyb 0.286 0.286 0.286 0.286 0.286

Sisya 0.708 0.708 0.708 0.708 0.706

Pyrimidine 0.988 0.913 0.947 0.378 1.000

Yeast 0.499 0.486 0.497 0.242 0.502

Nba 0.789 0.789 0.789 0.743 0.550

Triazine 0.452 0.430 0.463 0.617 0.734

UW-CSE 0.341 0.358 0.339 0.158 0.220

Carcinogen 0.687 0.691 0.722 0.513 0.672

Average 0.632 0.624 0.636 0.520 0.628
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Table 5. Average time in seconds over the datasets for each configuration: EM with
Bayes regularization (EM-Bayes), EM with L1 regularization (EM-L1), EM with L2
regularization (EM-L2), and gradient descent (GD). For each row, the best result is
highlighted in bold.

Dataset EM-Bayes EM-L1 EM-L2 GD LIFTCOVER-EM

Financial 0.280 0.275 0.278 2.360 0.235

Bupa 0.246 0.244 0.244 510.206 0.243

Mondial 6.480 4.841 5.149 299.875 5.911

Mutagen 15.073 10.796 15.653 266.196 12.770

Sisyb 0.232 0.231 0.233 0.490 0.226

Sisya 1.117 1.108 1.111 0.656 0.932

Pyrimidine 44.712 23.408 25.766 266.310 54.990

Yeast 60.143 52.503 54.288 994.811 0.502

Nba 0.658 0.705 0.624 0.913 0.599

Triazine 33.648 23.871 30.305 276.304 56.690

UW-CSE 74.163 72.961 74.456 75.656 8.054

Carcinogen 14.483 16.826 13.458 778.596 7.850

Average 20.936 17.314 18.464 289.364 12.417

Fig. 1. Histograms of average AUC-ROC over the datasets for each configuration: EM
with Bayes regularization (EM-Bayes), EM with L1 regularization (EM-L1), EM with
L2 regularization (EM-L2), and gradient descent (GD).
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Fig. 2. Histograms of average AUC-PR over the datasets for each configuration: EM
with Bayes regularization (EM-Bayes), EM with L1 regularization (EM-L1), EM with
L2 regularization (EM-L2), and gradient descent (GD).

Fig. 3. Histograms of average time in seconds over the datasets for each configuration:
EM with Bayes regularization (EM-Bayes), EM with L1 regularization (EM-L1), EM
with L2 regularization (EM-L2), and gradient descent (GD). The scale of the X axis is
logarithmic.
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Hierarchical PLP (HPLP) [14] is a restriction of the general PLP language
in which clauses and predicates are hierarchically organized. HPLPs can be effi-
ciently converted into arithmetic circuits (ACs) or deep neural networks so that
inference is much cheaper than for general PLP. Liftable PLP can be seen as a
restriction of HPLP. For this reason, LIFTCOVER+ is related to Liftable PLP
tools such as PHIL and SLEAHP [14]. PHIL performs parameter learning of
hierarchical probabilistic logic programs using gradient descent (DPHIL) or EM
(EMPHIL). First, it converts the program into a set of ACs sharing parameters.
Then, it applies gradient descent or EM over the ACs, evaluating them bottom-
up. On the other hand, SLEAHP learns both the structure and the parameters
of HPLPs from data. It generates a large hierarchical logic program from an
initial set of bottom clauses generated from a language bias [3]. Then, it applies
a regularized version of PHIL to prune the initial large program by removing
irrelevant rules, i.e., those for which the parameters are close to 0.

LIFTCOVER+ is related also to PROBFOIL+ [16], an algorithm used to
perform parameter and structure learning of ProbLog [6] programs with a hill
climbing search in the space of programs, consisting of a covering loop that adds
one rule to the theory at each iteration and stops when a condition based on
a global scoring function is satisfied. The rule to add is obtained from a clause
search loop that builds the rule by iteratively adding literals to the body using
a local scoring function as the heuristic.

6 Conclusions

In this paper, we have presented LIFTCOVER+, an updated version of LIFT-
COVER that performs parameter learning using the EM algorithm or gradient
descent with regularization to penalize large weights and prevent overfitting.
Experiments were conducted on 12 real-world datasets and results were com-
pared with LIFTCOVER-EM. In summary, we found that using gradient descent
does not bring much benefit, having AUC-PR and AUC-ROC comparable to
LIFTCOVER-EM, and execution times often much higher. On the other hand,
using EM with regularization (and with L2 or Bayesian regularization especially)
we obtain a higher AUC-PR on several datasets with roughly equal execution
times. Furthermore, when there are no improvements, there is not a significant
degradation in the quality of the solutions either. In conclusion, the present find-
ings confirm that adding regularization can help improve the solution in terms
of AUC-PR, although some datasets remain hard for LIFTCOVER+.

As future work, we plan to employ LIFTCOVER+ to learn theories from
Knowledge Graphs (KG) to perform KG completion and triple classification.
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