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Strain‑based method for fatigue 
failure prediction of additively 
manufactured lattice structures
Antonio Coluccia * & Giorgio De Pasquale *

Lattice structures find application in numerous technological domains, including aerospace and 
automotive industries for structural components, biomedical sector implants, and heat exchangers. 
In many instances, especially those pertaining to structural applications, fatigue resistance stands as 
a critical and stringent requirement. The objective of this paper is to advance the analysis of fatigue 
failure in additively manufactured lattice structures by introducing a predictive fatigue failure model 
based on the finite element (FE) method and experimentally validating the results. The model utilizes 
linear homogenization to reduce computational effort in FE simulations. By employing a strain-based 
parameter, the most critical lattice cell is identified, enabling the prediction of fatigue crack nucleation 
locations. The Crossland multiaxial fatigue failure criterion is employed to assess the equivalent 
stress, furnishing the fatigue limit threshold essential for predicting component failure. Inconel 625 
specimens are manufactured via the laser-based powder bed fusion of metals additive manufacturing 
process. In order to validate the model, cantilevers comprising octa-truss lattice cells in both uniform 
and graded configurations undergo experimental testing subjected to bending loads within the 
high cycle fatigue regime. The proposed methodology effectively forecasts the location of failure in 
seventeen out of eighteen samples, establishing itself as a valuable tool for lattice fatigue analysis. 
Failure consistently manifests in sections of uniform and graded lattice structures characterized by the 
maximum strain tensor norm. The estimated maximum force required to prevent fatigue failure in the 
samples is 20 N, based on the computed Crossland equivalent stress.

Abbreviations
[C]	� Stiffness matrix
{σ }	� Average stress vector
{ε}	� Average strain vector
ε
0
i 	� RVE strain components
xi	� Coordinate system axis indicator
ui	� Displacement in the i direction
[S]	� Compliance matrix
Ei	� Young’s Modulus in the i direction
Gij	� Shear modulus in the ij plane
ν12	� Poisson’s ratio ij plane
[ε]	� Strain tensor
ε	� Norm of the strain tensor
τCROSS	� Crossland equivalent stress
J2,a	� Second invariant of the deviatoric stress tensor
σH ,max	� Maximum hydrostatic stress
τf 	� Torsional fatigue limit
σf 	� Fatigue limit
σeq	� Von Mises equivalent stress
Si	� Principal stress in the i direction
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Lattice structures have garnered significant attention in various engineering sectors, including aerospace, bio-
medical, and general mechanics, over the past few decades. These structures, considered a subset of cellular 
solids, have gained recognition for their exceptional mechanical properties1,2, functionality3, and lightweight 
nature. Lattices exhibit typical characteristics of cellular solids, manifesting as reticulated, truss, or shell struc-
tures comprised of repeating unit cells. In the context of such structures, and composite materials sharing similar 
multi-phase compositions, an essential topological concept is the representative volume element (RVE). The 
RVE represents a defined volume capable of encapsulating a single (or multiple) repeating unit cells, providing 
a reasonably accurate depiction of macroscale material properties. The employment of lattice structures offers 
significant advantages in design activities driven by specific requirements4,5. The topology and distribution of 
cells can be effectively managed using optimization algorithms or process-driven controls. Optimization, as 
extensively explored in scientific literature6,7, plays a crucial role in enhancing lattice structures.

The design process is inherently constrained by the chosen fabrication method, particularly additive manu-
facturing (AM) processes. While AM enables the generation of highly intricate geometries, challenges related 
to part resolution may arise, particularly in serial production with statistical deviations impacting performance. 
These deviations can have adverse effects on the reliability of lattice structures, stemming from dimensional 
uncertainty, surface roughness, porosity, lack of fusion, stress intensification at corners, and impractical mechani-
cal treatment of surfaces. Consequently, lattice structure characterization assumes critical importance8 across 
different mechanics disciplines, enabling the investigation of defects’ impact on mechanical properties and 
methods for mitigating them.

Lattices are utilized not only for their structural properties but also as components for heat management 
in various scenarios. Honeycomb lattices enhancing the heat transportation of nanoparticles have been inves-
tigated showing good results9. A predictive model for heat flow around a C/SiC composite pyramidal lattice 
structure is proposed by Wang et al.10. Furthermore, effect of lattice presence in tubes on fluid flow and heat 
transfer enhancement, particularly with supercritical CO2, have been explored by Shi et al.11. Additively manu-
factured periodic structures have been explored within the domain of energy generation12, and three-dimensional 
bio-inspired nanostructures have been utilized to enhance the performance of catalysis engineering reactors13. 
Biomedical engineering is an important domain where lattice structures find extensive application, owing to 
their exceptional osteointegration properties. The mechanical interactions between bone and metal lattice have 
been examined 14,15, elucidating the control of lattice anisotropy in bone implant design. Lattice structures have 
also garnered attention in the aerospace field for structural purposes. Lattice cylindrical panels are employed 
as shear web attachments16,17 in spacecraft primary structures. The feasibility of shell lattice-like structures for 
spacecraft shielding18 have been investigated and compared to traditional shields.  Lattices are also examined 
for aeronautical structural applications. Their potential is harnessed for anti-icing wing systems19, leveraging 
their heat management and energy absorption properties. Notably, the modeling and computational analysis of 
energy absorption phenomena in lattice structures is an essential topic, considering their exceptional volumetric 
and specific energy absorption properties20,21. Additively manufactured structures with periodic pattern similar 
to lattice have also been investigated for enhancing properties of CFRP-metal joints22.

Due to the increasing interest in utilizing lattices for structural purposes, there is a need to investigate various 
reliability properties associated with these materials. Fatigue, particularly in regulated fields such as aeronautics 
and biomedicine, can significantly impact structural reliability. The fatigue properties of lattices have already 
been studied, either by characterizing the fatigue behavior of parent materials or by applying traditional fatigue 
analysis methods to different lattice topologies23–36. Additionally, computational models have been proposed to 
analyze fatigue in lattices. In an investigation by Alaimo et al.37, an immersed boundary method was used to 
define the fatigue life of as-built lattices. The finite element (FE) method has been employed as a computational 
tool to predict fatigue life in lattices38,39. Homogenization40 has been proposed as an additional tool for this type 
of analysis, in conjunction with FE models. New numerical models have also been formulated: an example can 
be found in the study from Burr et al.41 where a numerical framework based on a damage accumulation law 
and progressive failure of lattices is presented. Furthermore, studies have examined how lattice features at the 
topological or manufacturing levels can affect their fatigue properties. Geometrical and topological singularities, 
such as thread radius, morphological defects, or surface roughness, can have a significant impact on macro-scale 
mechanical properties, including fatigue, as demonstrated in literature42–44. Other factors affecting fatigue per-
formance have also been investigated, such as load direction45, printing direction46,47, the presence of coatings48, 
and temperature49. For the purpose of comparing the various methodologies proposed in this state of the art, a 
tabular summary can be found in Table 1.

Taking into account the unresolved issues that still affect the understanding and prediction of fatigue strength 
in lattice structures, this study introduces a fatigue failure model that yields results substantiated by experimental 
validation in terms of fatigue limit prediction and failure localization within the lattice region. In contrast to 
other methods, the proposed approach is founded upon the evaluation of homogenized stresses at a large scale 
and the computation of real three-dimensional stresses at a local scale. This characteristic enables computational 
efficiency and facilitates the identification of fatigue failure initiation points. The de-homogenization process 
is employed to access the effective stress distribution at the critical point of the structure. Overall, the model 
encompasses a few key steps: firstly, the lattice structure is homogenized at the level of each cell, accounting for 
different sizes and shapes. Secondly, a strain-based formulation is utilized to determine the location of the most 
heavily loaded cell within the structure, which corresponds to the fracture nucleation point. Finally, the de-
homogenization process is applied solely to the critical cell, allowing the retrieval of the real three-dimensional 
stress distribution at each point within the discretized volume of this cell. Subsequently, a multi-axial fatigue 
failure criterion is applied to this stress distribution. The model is validated through an experimental campaign 
involving lattice samples with a cantilever configuration subjected to cyclic bending loads produced through 
laser-based powder bed fusion of metals (PBF-LB/M).
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Model
The most notable advantage of the proposed method lies in its capacity to determine whether the lattice struc-
ture experiences fatigue failure under a given load by analyzing a single critical cell. Through this approach, 
the method can discern, in relation to a computed fatigue limit value, the survival or failure of the entire lattice 
structure under fatigue conditions. The proposed model employs various techniques for its implementation, 
and an overview of the procedural steps, organized according to the utilized technique, is presented in Fig. 1. 
Subsequently, the model has been applied to a case involving an Inconel 625 cantilever beam composed of octet-
truss lattice cells subjected to cyclic bending loads.

Inconel 625 exhibits favorable mechanical properties and finds extensive application in demanding environ-
ments, notably within gas turbine applications50 and general engine contexts. Employing Inconel 625 lattice 
structures in such environments has the potential to enhance efficiency and contribute to emissions reduction 
efforts. The choice of octet-truss cell geometry is motivated by the technological challenges associated with the 
various orientations of the struts. In this regard, the dominant behavior of the struts is characterized by stretching, 
a property that imparts greater stiffness to the overall lattice when compared to alternative cell geometries, con-
sequently resulting in an improved strength-to-mass ratio. For the purposes of this study, fully reversed fatigue 
loading (R = − 1) is adopted, as it affords symmetrical loading conditions and fatigue-induced damage mecha-
nisms for the lattice samples, thereby eliminating result variability stemming from the structure’s orientation.

Table 1.   comparison of the current state of the art about lattice structure subject to fatigue loading conditions.

References Phenomenon investigated Methodology used
23 Static and fatigue properties of lattice and cellular structures Experimental investigation
24 Compressive fatigue properties of octet-truss lattice structures Experimental investigation
25 Static compressive and fatigue properties of graded lattice X-ray CT reconstruction and experimental investigation
26 Fatigue behavior and biocompatibility of bioactive tantalum graded lattice structures Experimental investigation
27 Effect of different factors on the fatigue behavior of lattice structures FEM and experimental data comparison
28 Fatigue life prediction of triangular lattice structures Analytical method and experimental investigation
29 Compressive fatigue strength of lattice structures CT reconstruction, FEM and experimental data comparison
30 Fatigue crack propagation of octet-truss lattices for different orientations FEM and experimental data comparison
31 Fatigue properties of novel isosurface strut-based lattice structures FEM and homogenization
32 Fatigue behavior of shell lattice structures Experimental investigation

33 Constant amplitude and random fatigue of schwarz triply periodic minimal surface lattice 
structures FEM and experimental investigation

34 Fatigue damage in micro-lattice materials CT-based FEM and experimental data comparison
35 Static and fatigue properties of graded lattice FEM and experimental data comparison
36 Fatigue properties of gyroid lattice structures with laterial loading CT reconstruction and experimental investigation
37 Fatigue life estimation of lattice structures FEM
38 Fatigue life estimation of lattice structures FEM
39 Damage modeling of lattice structures subject to LCF FEM and experimental data comparison
40 Fatigue analysis of lattice structures in LCF condition FEM and homogenization
41 Fatigue life estimation of lattice structures FEM and experimental data comparison

42 Influence of node fillet, unit cell size and strut orientation on the fatigue behavior of lattice 
structures FEM and experimental data comparison

43 Influence of geometrical imperfections and defects on the fatigue behavior of lattice structures FEM and experimental data comparison
44 Optimization of lattice structures for superior fatigue performances Topological optimization, FEM and experimental data comparison
45 Influence of load direction on the fatigue behavior of lattice structures Analytical method and experimental data comparison
46 Influence of node and building orientation on the fatigue behavior of lattice structures Experimental investigation
47 Optimization of lattice structures for superior fatigue performances Topological optimization, FEM and experimental data comparison
48 Influence of coating on the fatigue behavior of lattice structures Experimental investigation
49 Thermal and strain analysis of lattice structures subject to LCF Experimental investigation

Figure 1.   fundamental steps of the model proposed.
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Homogenization
The analytical formulation of the model pertains to a generic lattice cell type. The initial step entails the homog-
enization process, which is commonly employed in micromechanics to derive equivalent material properties of 
a continuum solid with multiple phases and periodic repetition of a RVE. This technique has been extensively 
utilized for composite materials and lattices alike. A single lattice cell can be regarded as the RVE, whereby the 
stiffness matrix associated with the RVE is computed and utilized to define the mechanical properties of the 
orthotropic equivalent material.

Six static simulations are conducted to assess the components of the stiffness matrix [C] as indicated in Eq. (1), 
where {σ } and {ε} represent the average stress and average strain vectors, respectively. 

The assumption of constant strain energy remains valid as both the actual lattice cell and the homogenized 
cell experience an equivalent amount of strain energy during deformation. Each of the six simulations to be 
conducted should exhibit one of the six unitary average strains in the vector {ε} . Hence, it can be asserted that 
the average strain vector components correspond to the RVE strain component (denoted as ε0

β
 ), utilized in the 

simulations (2). By performing these simulations, it becomes possible to evaluate the six components of the 
stiffness matrix based on Eq. (3).

Periodic boundary conditions are essential in each simulation, accompanied by the imposition of specific 
displacements to achieve an RVE strain of 1. The applied displacements on each face of the RVE are outlined in 
Table 2, where a1, a2, and a3 denote the half edge lengths of the RVE along the x1, x2, and x3 axes of the coordinate 
system located at the cell’s center.

The strain components of the RVE, as defined in Table 2, can also be described by Eqs. (4).

The edges require their own set of conditions since each edge belongs to two faces of the RVE simultaneously. 
Their respective equations are defined in (5).
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(3)Cαβ = σα = ∫V σα(x1, x2, x3)dV whereε
0
β
= 1 forα,β = 1, . . . , 6

(4)
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u1(a1, x2, x3)− u1(−a1, x2, x3) = 2a1ε
0
11

u2(a1, x2, x3)− u2(−a1, x2, x3) = 2a1ε
0
21

u3(a1, x2, x3)− u3(−a1, x2, x3) = 2a1ε
0
31







u1(x1, a2, x3)− u1(x1,−a2, x3) = 2a2ε
0
12

u2(x1, a2, x3)− u2(x1,−a2, x3) = 2a2ε
0
22

u3(x1, a2, x3)− u3(x1,−a2, x3) = 2a2ε
0
32







u1(x1, x2, a3)− u1(x1, x2,−a3) = 2a3ε
0
13

u2(x, x2, a3)− u2(x1, x2,−a3) = 2a3ε
0
23

u3(x1, x2, a3)− u3(x1, x2,−a3) = 2a3ε
0
33

Table 2.   summary of boundary conditions applied to the RVE for the homogenization process: Ui terms 
represent the degrees of freedom (DOF) of displacement for the RVE nodes in the (x1, x2, x3) coordinate system 
"0" denotes constrained DOF, "/" denotes free DOF.

RVE face

1st analysis 2nd analysis 3rd analysis 4th analysis 5th analysis 6th analysis

ε1 = 1 ε2 = 1 ε3 = 1 γ4 = 1 γ5 = 1 γ6 = 1

U1 U2 U3 U1 U2 U3 U1 U2 U3 U1 U2 U3 U1 U2 U3 U1 U2 U3

x1 = −a1 −a1 / / 0 / / 0 / / 0 / / / 0 −a1 / −a1 0

x1 = a1 a1 / / 0 / / 0 / / 0 / / / 0 a1 / a1 0

x2 = −a2 / 0 / / −a2 / / 0 / 0 / −a2 / 0 / −a2 / 0

x2 = a2 / 0 / / a2 / / 0 / 0 / a2 / 0 / a2 / 0

x3 = −a3 / / 0 / / 0 / / −a3 0 −a3 / −a3 0 / / / 0

x3 = a3 / / 0 / / 0 / / a3 0 a3 / a3 0 / / / 0
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Similar considerations apply to the corners of the RVE, for which a specific set of constraints has also been 
defined (6).

Once the stiffness matrix is defined using Eq. (3), the compliance matrix is calculated using Eq. (7). Finally, 
Eqs. (8), (9), and (10) outline the procedure for evaluating the equivalent orthotropic mechanical properties of 
the material.

Critical cell identification
By utilizing these properties, the lattice section of the analyzed sample or component can be modeled as a bulk 
equivalent material, resulting in a computationally efficient and streamlined FEM model.

To conduct the fatigue analysis, the mean load and alternate load are separated and treated as static loads in a 
FEM simulation. The primary output of these simulations is the norm of the strain tensor, as defined in Eq. (11), 
which is evaluated for each element of the equivalent material representing the lattice. Each element corresponds 
to a single lattice cell. The components of the strain tensor, outlined in Eq. (12), are saved as they will be utilized 
in the subsequent de-homogenization process.

The most heavily loaded (or critical) cell within the homogenized material is determined based on the maxi-
mum ‖ε‖ value. Assuming this cell represents the most loaded region of the lattice structure, it is presumed to 
possess the lowest fatigue life compared to other cells. Consequently, the fracture nucleation is expected to initi-
ate from this specific location. Consequently, the subsequent calculations concentrate solely on this critical cell.

De‑homogenization and fatigue limit estimation
The subsequent step in the method involves the de-homogenization of the critical cell. The stored strain tensor 
containing the strain components of the critical cell is utilized. A physically accurate static model of the RVE 
with the actual lattice shape is constructed, and the aforementioned strain field (12) is applied to retrieve the 
actual stress distribution within the lattice cell as the primary output.

Subsequently, the most heavily loaded point of the structure is identified, and the multi-axial stress com-
ponents of the critical cell are computed based on the nominal mean and alternate external load components, 
respectively. At this stage, one of the multi-axial fatigue methods can be employed to estimate the fatigue life 
of the structure by analyzing its critical point. The Crossland criterion51 is one such method suitable for this 
investigation and is subsequently applied. However, it may be challenging to determine the fatigue limit neces-
sary for the application of the Crossland method for certain materials. Additionally, this criterion has limitations 
regarding the representation of actual load combinations, as discussed by Navarro et al.52. For instance, it does not 
account for the mixed effects of static and alternate loads. Nevertheless, the primary advantage of the Crossland 
criterion lies in its simplicity of application and calculation.
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The application of the Crossland multi-axial fatigue criterion is predicated on the assessment of an equivalent 
stress (13), derived from the principal stresses along the three axes. Apart from its simplicity for computational 
analysis across various loading scenarios, such as bending and torsion, the Crossland criterion is also a conven-
tional approach applicable to high cycle fatigue (HCF)53. Furthermore, numerous instances of the Crossland cri-
terion’s application to nickel-based superalloy samples can be found in the literature. Notably, examples wherein 
this criterion was employed for the fatigue failure analysis of Inconel 718 samples and gas turbine blades can 
be found in literature54,55. In order to ensure infinite life, the Crossland equivalent stress must be lower than the 
fatigue torsional limit τf .

The Crossland stress is computed using the fatigue limits for shear and bending ( σf  ), the second invariant 
of the deviatoric stress tensor J2,a as defined in (14), and the maximum hydrostatic stress σH ,max obtained from 
expression (15).

Within expressions (14) and (15), σeq represents the Von Mises equivalent stress, while S1 , S2 , and S3 denote 
the principal stresses along the three principal directions. A viable alternative, often employed as a multi-axial 
criterion in such cases, is the Sines criterion56, wherein the maximum hydrostatic stress is replaced by the mean 
stress while maintaining the formulation of Eq. (13) unchanged.

Modeling of cantilever lattice beam with bending load
The previously introduced model is implemented for a cantilever beam subjected to cyclic bending load. The octa-
cell lattice cell, as shown in Fig. 2, is employed in this analysis. Both uniform and graded lattice cell configurations 
are considered for the samples. Referring to the labels in the accompanying figure, the nominal dimensions of 
the lattice cell are l = 2 mm, θ = φ = 45°.

The strut diameter is 0.5 mm, while the relationships between the cell edge dimensions are given by 
a1 = a3 = l/2 and a2 = l • sinθ . These cell dimensions apply to both the uniform lattice and the graded lat-
tice, with the only variation being the strut radius. In the case of graded lattices, the strut diameters range from 
0.5 mm (uniform) to 1.1 mm (graded).

The sample has overall dimensions of 90 mm in length, 30 mm in width, and 4 mm in thickness. The lattice 
region has a length of 36.7 mm (Fig. 3a, left), while the bulk region serves the purpose of securing the sample to 
the testing system. In the case of the graded sample version (Fig. 3a, right), cell grading is implemented in the 
lower half of the lattice region. A mesh sensitivity analysis, relying on equivalent stress, was conducted on the 
lattice RVE prior to implementing the homogenization process. This analysis determined an optimal mesh size 
of 0.04 mm. Following the homogenization process, the material’s equivalent properties are differentiated based 
on the qualitative distribution depicted in Fig. 3b. The graded region of the lattice is designed to ensure structural 
continuity among rows of cells. This is achieved through the cell configuration illustrated in Fig. 3c, where the 
strut diameter varies at the central node between the lower and upper parts of the cell. The graded region consists 
of seven rows of cells (Fig. 3c) identified by two different diameter values (lower and upper parts). The seventh 
row of cells is repeated uniformly until the end of the lattice region. For simulations involving the homogenized 

(13)τCROSS =
√

J2,a +
(

3τf

σf
−

√
3

)

σH ,max ≤ τf

(14)
√

J2,a =
σeq√
3

(15)σH ,max =
S1 + S2 + S3

3

Figure 2.   octa-truss lattice cell geometry and dimensions.
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material, the mesh size was set at 2 mm for both the thickness and transversal dimensions. Additionally, a mesh 
seed was placed within the lattice region along the longitudinal dimension. These dimensions were chosen to 
ensure alignment between the volumes of the RVE and the homogenized element.

The lattice and bulk material used in this study is Inconel-625, characterized by a Young’s modulus of E = 250 
GPa, a Poisson’s ratio of υ = 0.308, and a shear modulus of G = 78.364 GPa. The fatigue limit of this material, 
calculated with the Crossland criterion, are obtained from a previous investigation57:

The sample is subjected to cyclic loading, where the static component is zero, meaning no applied preload. The 
variable load follows a sinusoidal pattern with a constant amplitude (R = σmin/σmax = − 1). For modeling purposes, 
only the information about the maximum (or minimum) applied load is required, which has been determined 
as 100 N. In the homogenized FEM model, a 100 N load is distributed among all the nodes at one end of the 
sample, while the other end is completely fixed.

Experimental validation
The described experimental campaign aims to validate the fatigue failure predicted by the model. Samples are 
produced using the AM process called laser-based powder bed fusion of metals (PBF-LB/M), employing Inconel 
625 material with identical geometrical properties and dimensions as the structures analyzed in the model. 
The actual sample dimensions, including process tolerances, are taken into account. The Renishaw AM 500 M 
machine was employed for the manufacturing of the samples. These samples were fabricated in the vertical direc-
tion, eliminating the necessity for supports and consequently avoiding issues associated with support removal. 
They have not undergone any thermal or mechanical processing and are tested in their as-built condition.

For the testing, the Baldwin SF-01-U vibrating system is utilized. This machine enables the application of 
static load by adjusting the lower head, while the alternate load is generated through the excitation of an eccentric 
electric rotor. The machine works at constant frequency of 30 Hz. Special grips, as depicted in Fig. 4, have been 
designed to ensure pure bending load for the samples. The left end of the sample is fully secured within the grips 
connected to the moving head of the machine. The right end is constrained along the vertical load direction, 
allowing rotation of the transverse section of the sample through single-point contacts. Furthermore, these grips 
facilitate bending in both directions, enabling a loading condition with R = −1 . A total of nine samples, compris-
ing uniform and graded configurations (Fig. 5), have been manufactured and subjected to testing under various 
load amplitudes ranging from 50 to 200 N, with no preload (static load equal to zero). The sample’s particular 
geometry and lattice cell topology feature a large thermal exchange surface, facilitating efficient thermal dissipa-
tion into the surrounding air. As a result, the samples do not undergo self-heating during the tests.

Results and discussions
Numerical results
In this section, we present the comparison between the results obtained from the model and the experimental 
tests conducted on the cantilever samples.

The homogenization process is applied to both the uniform and graded lattice cells. Referring to the cell 
grading illustrated in Fig. 3, the calculated equivalent properties of the RVEs are presented in Table 3. The cells 
are numbered in the same manner as in Fig. 3b, and the respective strut diameter values for the upper and lower 

σf = 240 MPa τf = 0, 577 · σf = 138.48 MPa

Figure 3.   samples geometry with uniform and graded lattice (a). Homogenized models where colors different 
from light blue (that is bulk material) represent homogenized materials; for the graded sample (right), colors 
ranging from purple (bottom) to pink (top) represent cells where the diameter decreases from 1.1 mm on row 1 
to 0.5 mm on row 7 (b). Example of a single cell for the graded sample, where the diameter switch occurs in the 
middle of the cell to ensure continuity at the nodes (c).
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Figure 4.   experimental test with the schematization of the fixtures used. On the left side, the sample was 
clamped into the moving head of the machine, permitting only vertical translation. Conversely, at the opposite 
end, the sample was secured in place using screws, enabling rotation while preventing translations.

Figure 5.   uniform (left) and graded (right) lattice samples produced via additive manufacturing with L-PBF.

Table 3.   equivalent mechanical properties of the lattice cells after the homogenization process.

RVE Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 and beyond

Upper/lower diameter [mm] 0.5/0.5 (uniform) 0.5/0.6 0.6/0.7 0.7/0.8 0.8/0.9 0.9/1 1/1.1

E1 [GPa] 11.092 16.631 26.226 39.968 58.643 82.057 108.527

E2 [GPa] 11.946 16.257 26.344 40.575 59.344 82.304 108.025

E3 [GPa] 11.092 16.627 26.209 39.943 58.607 82.163 108.514

G12 [GPa] 8.343 10.178 14.935 20.874 27.912 35.962 44.800

G13 [GPa] 5.283 7.165 11.344 17.102 24.639 33.853 43.913

G23 [GPa] 8.343 10.178 14.947 20.862 27.929 35.979 44.603

ν12 0.404 0.385 0.352 0.324 0.300 0.284 0.277

ν13 0.103 0.120 0.144 0.167 0.192 0.219 0.248

ν23 0.435 0.376 0.354 0.329 0.304 0.285 0.276
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parts of each cell are provided. The values of Young’s modulus (Ei) and shear modulus (Gi) demonstrate the rela-
tionship between the strut diameters (or cell density) and the mechanical strength. This distribution of structural 
properties within the sample plays a crucial role in the failure localization, as described in the subsequent analysis.

The homogenization process is applied to both samples using the aforementioned calculations. In this step, 
the lattice structures are replaced with equivalent bulk materials that possess the properties listed in Table 3. 
Subsequently, the norm of the strain tensor is computed for all the equivalent elements, resulting in the plotted 
results shown in Fig. 6 left (uniform lattice sample) and right (graded lattice sample) when subjected to an alter-
nate bending force of 100 N. As per the methodology’s assumption, the region where the initial fracture of the 
sample is expected to originate is characterized by higher values of the strain tensor norm. In both sample types, 
this region is highlighted in red. For the uniform lattice sample, the initiation of fracture is near the clamped end 
where rotation is constrained. However, in the graded lattice sample, the potential region for failure initiation 
shifts towards the opposite end (where rotation is unrestricted) due to the varying density of cells. Consequently, 
the lattice grading alters the strain distribution among cells and the location of the failure region.

As previously indicated, the methodology is designed to forecast whether the lattice structure fails when 
subjected to a specified fatigue load by focusing exclusively on the most critical cell. In essence, to predict fatigue 
failure, it suffices to examine the stress distribution within the critical region where the norm of the strain tensor 
is at its maximum. Thus, there is no necessity for conducting extensive and computationally expensive calcula-
tions across the entire lattice.

For this purpose, in accordance with the schematic representation in Fig. 1, following the de-homogenization 
process of the most critical cell, its original shape is recovered, preserving the actual stress distribution within 
the volume of the struts. Typically, this stress distribution is three-dimensional, and a conventional method for 
estimating uniaxial equivalent stress can be applied. Various methods are available to achieve this objective, and 
in the present analysis, the Crossland method is employed for the reasons expounded in Sect. "Model". Moreover, 
it proves to be more dependable when dealing with fully reversed loads (R = − 1) compared to other methods 
that rely on the mean stress value, which is zero in this particular case.

The application of the Crossland criterion to the critical cell yields equivalent stress distribution diagrams, as 
illustrated in Fig. 6 for the uniform lattice sample (right) and the graded lattice sample (left). In both instances, 
the maximum stress is situated in close proximity to the central node of the cell. Subsequently, the maximum 
value of the equivalent Crossland stress is compared with the material’s fatigue limit to assess the potential 
occurrence of fatigue failure.

For a more comprehensive insight, the computation of the equivalent Crossland stress is reiterated on a single 
cell from each row within both the uniform and graded lattice specimens (Fig. 7). Each row comprises cells with 
distinct strut diameters and varying levels of local bending moments as represented in Fig. 8. The maximum 
values of equivalent Crossland stress, computed for each cell row, are also illustrated in Fig. 8.

In the uniform lattice sample, as anticipated, the cell row with the highest Crossland stress is row number 
1, positioned near the clamped end where the bending moment reaches its maximum. Given the absence of 
geometric variations among cells, the disparity in equivalent stress among the rows is solely attributable to local 
loading conditions. The maximum equivalent stress computed in row 1 is τmax

cross,uniform = 595.7 MPa . A compara-
tive evaluation against the fatigue limit ( τf = 138.48MPa ) reveals that τmax

cross,uniform > τf  , thereby prognosticating 
fatigue failure of the lattice structure under the applied load.

A similar procedure can be applied to the graded lattice sample, where the equivalent stress 
τ
row1
cross,graded = 92.4 MPa has been identified in row number 1. This value is significantly lower than the fatigue 

limit, indicating that the influence of cell geometry mitigates the risk of fatigue failure at this specific loca-
tion within the sample. In row number 1, the higher cell density contributes to a reduction in local stress, and 
a similar effect is observed in the other rows within the graded region of the sample. Cell density and local 

Figure 6.   strain tensor norm for the uniform (left) and graded (right) samples after static analysis under the 
alternate load component (100 N).
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loading exert opposing effects on fatigue failure: as we move away from the constrained end, a decrease in cell 
density favors failure, while a decrease in loading hinders it. Consequently, it is essential to determine whether 
the combined conditions lead to fatigue failure at a specific point and, if so, pinpoint the location of this failure. 
Figure 8 illustrates that, in the graded sample, rows 1 through 6 exhibit equivalent stresses lower than those in 
the corresponding rows of the uniform sample. This outcome is attributed to the thicker struts present in these 
cells within the graded version. Moving from row number 7 towards the opposite end, the equivalent stresses in 
both sample types become comparable, with minor variations stemming solely from differences in lattice stiff-
ness, resulting in localized strain variations. The highest value of Crossland equivalent stress is observed in cells 
within row 7, with τmax

cross,graded = 396.3 MPa.
In accordance with the model’s predictions, fatigue failure is anticipated for both the uniform and lattice 

samples. The former is projected to fail at row number 1, while the latter is expected to experience failure at 
row number 7. These locations correspond to the points of maximum equivalent stress and maximum strain 
tensor norm.

Figure 7.   Crossland equivalent stress contour of the most critical cell for the uniform (left) and graded (right) 
samples, under an applied force of 100 N.

Figure 8.   maximum equivalent Crossland stress for the central cell of each row in the uniform and graded 
lattice samples under an applied force of 100 N and bending moment diagram. The numbers from 1 to 7 
indicate the row of cells in the graded lattice sample, with reference to Fig. 3b.
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Experimental results
The uniform and lattice samples were subjected to testing in the previously described configuration under a 
fatigue force of 100 N with R = − 1. The regions of fatigue fracture in all tested samples are depicted in Fig. 9. 
Notably, the location of the fatigue fracture aligns with the model’s predictions. Specifically, the uniform lattice 
samples exhibit fatigue fractures near row number 1, close to the clamped end, while the graded lattice samples 
display fractures near row number 7. The highest Crossland stress value in the uniform samples, as depicted in 
Fig. 8, is situated within the central cell of row 1. Nevertheless, the average stress value across the entire row is 
greater in row 2. Consequently, the observed experimental fracture location exhibits a slight deviation from the 
lattice border. Only one out of eighteen samples did not exhibit fatigue failure. The experimental results validate 
the predicted failure locations by the model, affirming that fractures occur at the cell (or cells within the row, in 
the case of the current samples) characterized by the maximum strain tensor norm.

The experimental results, specifically the load and the number of cycles to failure (S–N curve), are presented in 
Fig. 10 and Table 4. These findings do not reveal significant disparities in terms of the fatigue lifetime between the 
two sample typologies. This lack of distinction can likely be attributed to the small difference in the applied load 
between rows 1 and 7 within this specific sample configuration, which theoretically amounts to approximately 
22% in terms of bending moment, as illustrated in Fig. 8. The methodology excels in predicting the position of 
fatigue fracture, which is contingent upon the maximum strain tensor norm and influenced by cell geometry. 
These same properties contribute to the limited differences in the actual local stress applied. Additionally, the 
presence of experimental uncertainties associated with fatigue results necessitates a larger sample population 
for the construction of S–N curves. In summary, the experimental results do not corroborate the anticipated 
variation in fatigue lifetime between the sample types.

Discussions about fatigue behavior
The method proposed, as detailed in Sect. "Numerical results", demonstrates a high degree of reliability in pre-
dicting the occurrence of fatigue failure and accurately localizing the fatigue fracture. Consequently, it becomes 
feasible to compute the variation in maximum equivalent stress within the critical cell under varying loads. This, 
in turn, enables us to determine the maximum load that can be applied to the entire lattice structure without 
inducing fatigue failure. In the case of both uniform and graded samples, the maximum value of the Crossland 
stress within the critical cell (i.e., the cell with the highest strain tensor norm) is computed under different applied 
loads. Figure 11 illustrates that a force of 20 N represents the maximum allowable value to maintain local stress 
below the fatigue limit threshold for the samples considered.

The estimation of lattice fatigue lifetime necessitates reference to a database of fatigue results derived from 
experimental campaigns conducted on bulk materials. These results may require corrections to accommodate 
the aspect ratio of lattice struts (characterized by their elongated and slender nature), the presence of notch 
effects, and the surface roughness typical of additive manufacturing processes. With this information available, 
alternative methods can be employed to estimate the equivalent stress within the critical cell, previously iden-
tified using the strain tensor norm method described in this paper. One such alternative method is the Sines 

Figure 9.   uniform lattice samples (a) and graded lattice samples (b) after the fatigue tests with evidence of 
fracture region.
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criterion56, which facilitates the calculation of equivalent mean and alternating stresses within the critical cell. 
Subsequently, these two stresses can serve as coordinates for plotting a loading point within a Haigh diagram 
specifically constructed for a given number of cycles (N). This diagram is a function of the fatigue failure load 
at N cycles (potentially adjusted for the aforementioned factors), static yield, and ultimate stress. By examining 
the threshold curve on the Haigh diagram at N cycles, it becomes possible to assess the lattice’s endurance at that 
specific cycle count. This process can be reiterated using additional Haigh diagrams corresponding to different 
cycle counts (Ni) until convergence with a threshold curve is achieved. This convergence point provides an esti-
mation of fatigue lifetime. A visual representation of the described procedure is presented in Fig. 12, and it should 
be noted that the procedure relies on a comprehensive dataset of material properties for accurate application.

Conclusions
The proposed modeling method aims to predict the occurrence of fatigue failure in lattice structures. Unlike 
traditional methods, this prediction relies on a limited number of cells, specifically those with the maximum 
strain norm resulting from the homogenization process. By focusing computations on this small group of cells, 
or even a single cell in many cases, the actual three-axial stress distribution within the cell becomes significant 
and is converted to uni-axial equivalent stress to be compared with fatigue limit of Crossland criterion. This 
approach significantly reduces the computational effort required for determining the fatigue failure mode of large 
lattice structures. The method has undergone experimental validation using bending lattice samples featuring 
uniform and graded cell distributions. Remarkably, it accurately predicted fracture occurrence and location for 
seventeen out of eighteen samples. The strain parameter, the foundation of this model, has proven capable of 
accounting for the synergistic influences of external loads and cell geometry, effectively identifying the potential 

Figure 10.   relationship between force amplitude and number of cycles to failure for experimental tests in 
logarithmic scale.

Table 4.   number of cycles to failure and relative alternate bending load for tested samples.

Uniform lattice samples Graded lattice samples

Number of cycles to failure
Alternate bending load
[N] Number of cycles to failure

Alternate bending load
[N]

10,537 200 45,881 200

29,875 100 40,085 100

30,941 100 22,277 100

20,965 100 26,740 100

140,414 80 121,221 80

72,036 80 209,159 80

114,402 80 185,480 80

459,770 80 209,238 80

294,000 50 (not failed) 50
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fracture region. Additionally, we present an approach to broaden the model’s utility, enabling the estimation of 
the maximum applicable load without inducing failure and facilitating the prediction of service lifetime in terms 
of the number of cycles.

Figure 11.   maximum Crossland equivalent stress as function of the alternate load; the two curves refers to the 
failure section of uniform and graded samples; horizontal line defines the Crossland fatigue limit.

Figure 12.   estimation of lattice fatigue lifetime through High diagrams referred to different number of cycles to 
failure (Ni). In this context, distinct threshold curves are presented, each associated with varying fatigue failure 
loads (possibly corrected for lattice-specific characteristics). The working point identifies the threshold curve at 
Nn cycles, thereby determining the estimated fatigue lifetime. To generate the aforementioned High diagrams, it 
is imperative to have access to a database containing experimental values of σ(Ni). 
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Data availability
Experimental results, numerical results and models are available upon request to the authors, by contacting the 
corresponding author at the mail address giorgio.depasquale@polito.it.
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