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ABSTRACT

This paper focuses on the tactical planning problem faced by a shipper which seeks to secure trans-
portation and warehousing capacity, such as containers, vehicles or space in a warehouse, of different
sizes, costs, and characteristics, from a carrier or logistics provider, while facing different sources of un-
certainty. The uncertainty can be related to the loads to be transported or stored, the cost and availability
of ad-hoc capacity on the spot market in the future, and the availability of the contracted capacity in the
future when the shipper needs it. This last source of uncertainty on the capacity loss on the contracted
capacity is particularly important in both long-haul transportation and urban distribution applications,
but no optimization methodology has been proposed so far. We introduce the Stochastic Variable Cost
and Size Bin Packing with Capacity Loss problem and model that directly address this issue, together
with a metaheuristic to efficiently address it. We perform a set of extensive numerical experiments on
instances related to long-haul transportation and urban distribution contexts and derive managerial in-
sights on how such capacity planning should be performed.

© 2023 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Ensuring the reliability and flexibility of supply chains is a great
challenge for managers, who are involved in various collabora-
tions with several supply-chain partners and must perform com-
plex planning processes on different decision levels, e.g., opera-
tional, tactical, and strategic. Logistics capacity planning constitutes
an important component of those processes.

For the sake of simplicity of exposition but without loss of gen-
erality, we refer to the shipper as a retail firm, a producer or a sup-
plier of goods, which requires capacity of various types in terms
of size and cost, e.g., containers, ship or train slots, motor carrier
trailers, or spaces in vans, rail cars or storage facilities, to store or
transport its goods, e.g., raw materials, intermediate or final prod-
ucts packed in loads of various sizes, to respond to the demands
of its customers. We refer to the carrier as an external service
provider (which could be a third-party logistics company) of trans-
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portation and warehousing services. Considering the regularity of
the operations often conducted in supply chains and their cost-
efficiency goals, the shipper often negotiates in advance a tactical
plan-contract to secure the needed capacity to perform recurring
activities (e.g., weekly or monthly) over a given planning horizon
(e.g., one season or year). This tactical plan is beneficial for both
sides, as the shipper benefits from a contract providing the es-
timated required capacity for the length of the planning horizon,
and the carrier is guaranteed a regular volume of business.

The shipper faces significant uncertainty when negotiating,
however. Indeed, not only the number and sizes of the loads the
shipper will need to handle vary at each operation occurrence
during the planning horizon, but the availability of the contracted
capacity at operation time is also uncertain, as is the availability
and characteristics, size and cost, of the additional, ad-hoc capacity
the shipper would need to secure during operations to respond to
the observed demand increase and loss of contracted capacity. The
challenge is to account for these sources of uncertainty when se-
lecting the units of capacity, of given types, to include in the con-
tract, in order to minimize the total cost of the contracted capacity,
plus the possible repetitive costs of handling the loss of capacity
and securing the ad-hoc capacity every time the contract is to be
used during operations.

0377-2217/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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This paper aims to introduce the decision-support method
addressing these issues and challenges, analyze the possible
implications of contractual policies, and evaluate the effects of
considering these sources of uncertainty explicitly in capacity
planning. In doing so, we address this topic from three points of
view: from the transportation perspective, from a methodological
point of view, and finally from a managerial one.

From a transportation perspective, the tactical capacity planning
problem we address is relevant in many contexts characterizing
the new generation of multi-stakeholder systems, e.g., synchro-
modal (Giusti, Manerba, Bruno, & Tadei, 2019; Giusti, Manerba,
Perboli, Tadei, & Yuan, 2018; Perboli, Musso, Rosano, Tadei, &
Godel, 2017; Qu, Rezaei, Maknoon, & Tavasszy, 2019) and physical-
internet-based (Ballot, Montreuil, & Meller, 2014) inter-urban
freight transport, data-based 3/4PL activities (Saglietto, 2013;
Skender, Mircovi¢, & Prudky, 2017), and city logistics (Crainic &
Montreuil, 2016; Crainic, Perboli, & Ricciardi, 2021b). These recent
paradigms in logistics and transportation require a continuously
increasing amount of effort to coordinate stakeholders and provide
more flexibility and better synchronization of operations (Ambra,
Caris, & Macharis, 2019). Moreover, these contexts are affected
by new business models and worldwide economic phenomena
(e.g., growth of e-commerce, globalization of production and trade,
and opening of broad free-trade economic zones). These trends
result in contract logistics, which relies on service integrators and
logistics service providers offering a wide range of modal and
intermodal services as intermediaries between many and diverse
shippers and carriers. These orchestrators coordinate stakeholders
for increased efficiency and profitability for all, as illustrated by
intermodal transport and logistics which combines the advantages
of different transportation modes (Crainic, Giusti, Manerba, &
Tadei, 2021a). Such coordination also brings, however, increased
complexity in planning and management, the orchestrators’ ca-
pability of devising and implementing sophisticated plans being
a critical success factor. Advance contracting of transportation,
distribution, and warehousing capacity is an important piece of
this capability and the methodology we introduce in this paper
aims to support it.

We focus on the capacity-planning problem at the level of
a major terminal (e.g., container port, intermodal facility, city
distribution center, warehouse) or corridor (at the national or
international level), within two complementary facets of freight
transport in this paper, namely, urban distribution and long-haul
transportation. The problem settings come from the rich liter-
ature on these topics synthesized in, e.g., Ambra et al. (2019),
Bektas & Crainic (2008), Bektas, Crainic, & Van Woensel (2017),
Crainic (2003), Crainic & Hewitt (2021), Crainic & Kim (2007),
Crainic et al. (2021b), Crainic & Speranza (2008), Macharis &
Bontekoning (2004), as well as from recent industrial and insti-
tutional collaborations of the authors, including work on 1) urban
distribution in the metropolitan area of Turin, Italy, as part of
the development of the new Logistics and Mobility Plan to be
activated in 2022, through the collaboration of CARS@Polito (Auto-
motive and mobility center of Politecnico di Torino), ICELab@Polito
(ICT Center for City Logistics and Enterprises of Politecnico di
Torino), and the Regional Government of Piedmont (Brotcorne,
Perboli, Rosano, & Wei, 2019; Perboli, Brotcorne, Bruni, & Rosano,
2021); 2) land-based long-haul freight transportation as part of
Synchro-NET, the major European project for synchromodal long-
haul corridor creation and operation (Giusti et al., 2018; Perboli
et al,, 2017; Synchro-NET Consortium, 2017), and 3) intermodal
terminal optimization within long-haul freight transportation, as
part of 5G-LOGINNOV, the European project for optimizing freight
and traffic operations at ports and logistics hubs by 5G-enabled
logistics corridors (5G-LOGINNOV Consortium, 2021; Porelli, Had-
jidimitriou, Rosano, & Musso, 2021; Willenbrock, Basaras, Sterle,
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Hadjidimitriou, & Catana, 2021). The worldwide severe shortage
in maritime containers, particularly damaging on the trade routes
from Asia, constitutes another relevant and timely problem setting
and motivation. Indeed, the shortage of empty containers one
observes currently, a shortage which will not disappear any time
soon, causes companies to wait for weeks to get capacity, skyrock-
ets shipping costs (increases by more than 300% are observed),
disrupts supply chains, and increases prices and delivery-delays
for customers (e.g., CNBC, 2021; La Presse, 2021). This also leads to
the creation of a new container booking service by Cainiao (China
Smart Logistic Network, part of Alibaba Group, Reuters, 2021).

We introduce a methodological perspective to tackle the chal-
lenges of the transportation perspective, developing an operations
research (OR)-based methodology to support decisions in address-
ing these capacity-securing problems. As these problems involve
the numbers and types of capacity units one needs to contract for
transportation or warehousing, the proposed model is based on the
Bin Packing methodology, with bins standing for the units of ca-
pacity, while items represent the freight loads one needs to handle.

The proposed methodology can be particularly useful to com-
panies as support to decisions related to how much capacity to
contract in advance and how much should be negotiated on a
day-to-day basis. When surveying the literature, one observes that
very few studies have addressed capacity planning problems un-
der uncertainty in logistics applications. Furthermore, when this
topic was addressed, the studies focused mainly on operational de-
cisions, with very few exceptions dedicated to strategic and tac-
tical planning applications (Crainic, Gobbato, Perboli, & Rei, 2016;
Crainic et al., 2014). Finally, to the best of our knowledge, no pre-
vious studies addressed jointly, within a single model and method,
the issues discussed above, in particular, the different sources of
uncertainty, which are relevant to contract building in both the
long-haul transportation and the urban distribution contexts. In
particular, the case where there is uncertainty on the availability
of the contracted capacity, in addition to the ad-hoc and demand
uncertainty, at the moment when operations are to be conducted
is completely novel.

Last but not least, we consider the managerial perspective, us-
ing the proposed methodology to bring managerial insights to
the transportation perspective. As already indicated, the logistics
capacity planning problem represents a significant issue in sup-
ply chain management, especially when considering transportation
and warehousing services, due to its impact on the performance of
the firm in terms of service quality and costs (Crainic et al., 2016).
Moreover, ignoring the uncertainty will generally result in decreas-
ing the former while increasing the latter (Lium, Crainic, & Wallace,
2009). Our experimental results provide the means to show that
assessing and controlling the impact of uncertainty in such com-
plex systems, by using appropriate OR-based methods and mod-
els, could support firms to achieve high-performance levels in both
quality of service and economic efficiency and, thus, increase prof-
its and gain competitive advantages in the long-run.

Consequently, this paper aims to:

1. Present an integrated model that considers several uncertainty
issues affecting capacity planning, extending the literature by
considering the possibility that the contracted capacity turns
out to be lower than planned at operations time. We model
the problem as the Stochastic Variable Cost and Size Bin Pack-
ing with Capacity Loss problem, explicitly representing the un-
certainty on the availability and volumes of the contracted ca-
pacity resources, the size and cost of extra capacity one could
secure during operations, and the number of sizes of the loads
one will have to handle.

. Overcome the computational limitations of standard solu-
tion methods, by proposing a particularly adapted progressive
hedging-based metaheuristic.
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3. Conduct an extensive set of computational experiments, using
data that reflects the main issues involved in the problem for
the urban distribution and the long-haul transportation con-
texts, to assess how various sources of uncertainty affect capac-
ity planning (especially the random variability related to con-
tracted capacity).

. Perform a thorough analysis of the computational results and
identify a series of managerial insights with respect to the
structure of the contract choices given various urban distribu-
tion and the long-haul transportation characteristics and the
expected information on the availability of the contracted ca-
pacity during future operations.

The remainder of the paper is organized as follows. We present
the logistics capacity-planning problem we address in Section 2.
We then present the two-stage stochastic formulation of the prob-
lem, and the metaheuristic solution approach to address it, in
Sections 3 and 4, respectively. Section 5 is dedicated to the exper-
imental plan and the analyses of the computational results with a
focus on the benefits of considering uncertainty in the capacity-
planning process. The structure of the capacity plan under vari-
ous problem settings and the derived managerial insights are the
topics of Section 6. Finally, we provide the concluding remarks in
Section 7.

2. Tactical planning to secure capacity of multiple types under
uncertainty

This section introduces the logistics capacity planning prob-
lem addressed in this paper. Capacity planning is a challenging
strategic/tactical decision, which is related to supply chain man-
agement. We consider, in particular, the tactical-planning prob-
lem of a decision-maker who needs to secure capacity, of different
types, to meet its predicted demand over the next medium-term
planning horizon. The decision-maker then negotiates medium-
term contracts with service providers, to book in advance the ca-
pacity which will be used repeatedly to perform its activities for
the duration of the planning horizon. The decision maker is dif-
ferent in different application contexts. We refer, e.g., to a ship-
per or forth/fifth-party logistics service provider securing capacity
contracts with carriers for long-distance, regular shipments (Giusti
et al., 2019), a wholesaler/retailer planning for transportation and
storage capacity to support its procurement and sales processes
(Crainic, Marcotte, Rei, & Takouda, 2013), and the decision-platform
of multi-stakeholder city logistics systems (Crainic et al., 2021b).
Yet, the decision challenge and the general problem setting are
the same in all cases. Consequently, in order to simplify the pre-
sentation but without loss of generality, we describe the problem
within the context of the process of contract procurement between
a shipper and a carrier. Given the time lag that usually exists be-
tween the signing of the tactical-level contracts and the actual
logistics operations, the negotiations are performed under uncer-
tainty, as discussed in the next section.

We first present the problem setting within two different con-
texts: urban distribution and long-haul transportation. We provide a
compact description of the general problem in the third subsec-
tion. We finally enrich the presentation with a brief review of the
literature on capacity planning directly related to the contexts at
hand.

2.1. Urban distribution

Urban distribution refers to the overall process by which freight
is transported both to and from dense urban environments. Such
environments face increasing challenges of congestion and nega-
tive environmental impacts associated with transportation, freight
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transportation in particular. One also observes the continuous
growth of e-commerce together with always higher customer de-
sires to have their purchased goods delivered both fast and cheap.
To answer these challenges and needs, many firms (e.g., the e-
commerce giant platforms Alibaba, 2018; Amazon, 2018) are mov-
ing from a push cost-driven supply model to a time and cost pull-
driven approach, that is, to demand-driven logistics. Simultane-
ously, private and public (e.g., transit authorities) carriers and ser-
vice providers make coalitions for capacity sharing and integrated
decision-making to consolidate freight and reduce the impact of
freight transportation and logistics on the city. Multi-tier smart
urban transportation, or City Logistics, systems are implementing
these approaches (Crainic et al., 2021b; Crainic, Ricciardi, & Storchi,
2009).

The goal of such systems is to reduce the negative impacts (i.e.,
costs, congestion, noise, etc.) associated with the vehicles trans-
porting freight in urban areas by more efficiently using their ca-
pacity (i.e., increasing the average vehicle fill rate and reducing the
number of empty trips that are performed). City logistics is based
on the application of two general principles: 1) the consolidation
of loads originating from different shippers within the same vehi-
cles and 2) the coordination of the distribution operations within
the city. In this case, the use of multiple transportation tiers en-
ables the system to utilize specifically adapted infrastructure and
specialized fleets at each tier to better attain the overall goal that
is pursued. While the first tier is generally the same in all con-
texts, most systems for medium-to-large urban areas involve two
tiers, while three or more are part of the large-to-metropolis size
urban areas.

The first tier includes a set of terminals, generally known as
City Distribution Centers (CDCs), which are usually located on the
outskirts of the city, and whose main function is to serve as the
entry (exit) points and consolidation facilities for the inbound (out-
bound) freight. In the following, in an effort to simplify the ex-
position, we discuss the inbound case only; similar arguments
can be evoked when considering the outbound freight. Long-haul
transportation vehicles of various modes deliver their cargo at the
CDCs, where the delivered loads are sorted and then consolidated
into smaller urban vehicles. The connection between the first and
the lower tiers takes place at transshipment facilities with no or
low warehousing capabilities, called satellites, which are associated
with the second tier of the system. The urban vehicles thus bring
freight to satellites, where it is transshipped to city freighters, ve-
hicles specifically adapted to perform distribution operations in
dense urban zones. The city freighters deliver freight to their fi-
nal destination within the city either directly (two-tier systems) or
through a series of continuously smaller facilities (e.g., mini hubs
and lockers) and lower-capacity vehicles (e.g., drones and bicycles).
Specific access and moving rules constrain activities to limit their
negative impacts (e.g., urban trucks will move along specific paths
that are chosen to efficiently reach satellites while minimizing con-
gestion) and contribute toward the goals of economic, social, and
environmental efficiency. Multi-tier systems are thus able to dis-
tribute freight in urban areas in a more efficient overall way, but
the planning of such systems poses important challenges to man-
agers at all decision levels (strategic, tactical, and operational).

As previously mentioned, the principle of consolidation is cen-
tral to how multi-tier city logistics systems plan and operate. In
all transportation tiers, loads are consolidated into vehicles, urban
vehicles and city freighters, respectively, which are then used to
move the freight within the city. These vehicles can be private or
public (first-tier light rail, for example) but, often, they need to be
contracted in advance, including the capacity of the transit vehicles
whose future availability is uncertain due to variations in people’s
transportation requirements. This justifies the need to plan in
advance the required distribution capacity, while simultaneously
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taking into account the uncertainty of the shipments to be moved
and their volumes, the possible capacity loss at operation time
of the contracted resources, and the characteristics of the ad-hoc
replacement solutions which could be available (Brotcorne et al.,
2019).

Tactical capacity planning aims to ensure that such consolida-
tion can be efficiently performed. Specifically, managers must se-
cure the required numbers of vehicles of various types, which will
be available at each tier to correctly perform the transportation
operations. It should be noted that the number of different vehi-
cle types available for each tier is increasing, as are their char-
acteristics and costs, e.g., various types of electric and, soon, hy-
drogen vans, electric bikes, drones, and lockers, without forget-
ting the autonomous versions of many of these vehicle types and
the capacity offered by individuals under crowdsourcing operating
principles (Crainic et al., 2021b; Perboli, Rosano, Saint-Guillain, &
Rizzo, 2018). These types and characteristics must be considered
when performing capacity planning. The incidents, e.g., accidents
and mechanical failures, which occur regularly but randomly, re-
sult in booked vehicles not being available at the appropriate mo-
ment and thus, disrupted system operations and loads not deliv-
ered on time. Accounting for this uncertainty adds to the complex-
ity of the capacity planning process but contributes to the flexi-
bility and robustness of operations by contracting adequate levels
of resources while accounting for the ad-hoc capacity secured at
operations time to hedge against unexpected variations. The op-
timization model that is proposed in the present paper provides
this planning capability by explicitly integrating the possibility of
a random capacity loss of the contracted resources.

2.2. Long-haul transportation

Long-haul transportation is another context in which securing
capacity for future operations is essential and capacity losses can
randomly occur when this capacity is called upon during opera-
tions.

Globalization and the opening of broad free-trade economic
zones have changed logistic chains dramatically. A higher vol-
ume of long-haul transportation operations is now required to be
planned and performed by organizations everywhere. On the one
hand, such operations have been reorganized around the use of
bigger warehouses, and the movements of goods are now per-
formed over longer distances involving different modes of trans-
portation and larger vehicles (Giusti et al., 2018; Perboli et al.,
2017). On the other hand, the “liberalization” of economies has in-
creased the competition between firms and, in the process, the at-
tention to controlling costs (especially transportation costs). In this
context, Rodrigue & Notteboom (2013) discuss the concept of inter-
mediacy in regional distribution and global logistics when organiz-
ing regular shipping between an origin and a destination at various
market scales. Their study focuses, in particular, on containerized
freight distribution in two major markets, North America and Eu-
rope. The authors point out that companies must take into account
when planning activities, the possibilities and limitations linked to
the capacities of the nodes (e.g., seaports, intermodal terminals)
and links (e.g., corridors) involved, capacities which have a great
impact on the transportation network.

Let us consider the case of a shipper (e.g., manufacturing firm,
wholesaler, or retailer) acquiring resources, or products, from a set
of suppliers located in distant regions, according to their specific
global procurement process. In such a case, the shipper must se-
cure in advance the required number of containers (for maritime
or land-based modes) for the long-haul transport required to de-
liver the resources (or products) to its warehousing and distribu-
tion facilities. This advanced booking process is particularly im-
portant when the industry faces a shortage of resources, which
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is increasingly the case as illustrated by the container shortage
evoked in the Introduction and the shortage of truck drivers in
North America.

Crainic et al. (2013) illustrate such a case, presenting the
specific situation of a North American hardware and home-
improvement wholesale-retail chain, which regularly imports a
large variety of products from a set of suppliers located in South-
East Asia. Consolidation is used in conjunction with intermodal
shipping in this case. The products are first consolidated in con-
tainers, then moved by a liner containership from a port of origin
in South-East Asia to a port of destination in North America, and
then delivered to the firm’s main distribution center by a combina-
tion of rail and motor-carrier services. To secure the regularity and
quality of deliveries for the products it plans to buy over the next
season, the firm must negotiate with a carrier or logistics service
provider the required tactical capacity, i.e., to book the estimated
required quantity and characteristics of containers, as well as of
slots on maritime and rail transportation services. Several random
changes were observed regarding the planned capacity. On the one
hand, variations in the items and quantities purchased required se-
curing additional capacity at often high prices. On the other hand,
when the other customers of the same service provider had large
volumes of freight to move, either the contracted containers were
not all available, or only part of the capacity of some containers
was available as the service provider consolidated freight from sev-
eral customers into the same boxes. Consequently, the stochastic
capacity loss should again have been considered in the planning
process.

2.3. Problem description

The tactical capacity planning problem addressed in this pa-
per concerns a shipper which needs to secure capacity of different
types from a carrier, to meet its uncertain demand. The capacity
types could be transportation modes (e.g., ship or train slots, con-
tainers, space in cargo bikes or vans), specific carriers, or storage
space within given facilities, each type having particular charac-
teristics in terms of unit cost and size. The shipper negotiates this
multi-type capacity in advance, and it will use it to perform its
shipping or storage activities repeatedly, e.g., every day, week, or
month, over a certain planning horizon, e.g., one semester, season,
or year. The output of this negotiation is a medium-term contract,
which includes the quantity, i.e., the number of units, the capacity
of each type (this quantity is zero for non-relevant types given the
demand), and the expected costs to use the contracted capacity, as
well as to react to variations in supply and demand which could
occur during operations. Indeed, given the time lag that usually
exists between the signing of the contract and the logistics oper-
ations, as well as the hazards and risks associated with predicting
future supply and demand levels, several sources of uncertainty are
affecting the contract negotiation.

The first source of uncertainty is the demand, that is, the
number of units, and the size of each unit, the shipper will need
to transport or store at each occurrence of its activities over the
planning horizon. Indeed, even in the most ‘regular” context of
operations, the demand fluctuates in time and what one observes
at any given occurrence of activity is generally different from a
single-value (also called point forecast) prediction of the number
of units to transport or store and the size of each of those units.
This may result in insufficient booked capacity available on the
shipping day, compromising the fulfillment of the contract and
generating additional costs to handle the situation. In this paper,
we thus explicitly address these demand uncertainty issues and
the strategies to secure additional, ad-hoc, capacity when needed.
We also assume, without explicitly modeling, that the shipper
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deploys re-selling strategies of the surplus capacity when the
observed overall demand is lower than estimated.

A second major source of uncertainty is the availability of the
contracted capacity each time the shipper performs its activities
and the contract is applied. In fact, due to unfavorable situations,
e.g., mechanical failures, accidents, and delays, the contracted ca-
pacity may be entirely or partially unavailable at shipping time.
This capacity loss fluctuates in time and, as its precise value cannot
be predicted with certainty for any given moment of the planning
horizon, it has to be assumed stochastic. Such loss of contracted
capacity involves additional costs and decisions. On the one hand,
goods that were supposed to be in the lost capacity need to be re-
assigned to other units of capacity. We assume the associated cost
is proportional to the total lost capacity. On the other hand, one
needs to secure ad-hoc capacity through the spot market in order
to proceed to the adjustment of the capacity-utilization plan by re-
assigning shipments to contracted and ad-hoc capacity units. It is
noteworthy that the number, size, and cost of the various types of
capacity units that will be available in the future are also uncer-
tain.

Capacity planning has been investigated and identified as a ma-
jor challenge in a number of supply-chain management settings,
e.g., production and distribution. Thus, for example, Yuan & Ashay-
eri (2009) state that, insufficient capacity gradually leads to deteri-
orating delivery performance, consequently lowering revenue and
market share. Yoon, Yildiz, & Talluri (2016) highlight that access to
freight transportation capacity has become a complex issue faced
by logistics managers due to capacity shortages. Finally, according
to Monczka, Handfield, Giunipero, Patterson, & Waters (2010), the
planning of logistics capacity affects the distribution and operating
costs of a company.

With a focus on the urban context, Bosona (2020) identifies
in his review the available transport capacity as one of the ma-
jor challenges of urban freight last-mile logistics, in particular re-
lated to the complexity of on-demand delivery platforms. Thus,
e.g., Yildiz & Savelsbergh (2019) introduce service and planning of
crowd-sourced transportation capacity in meal delivery in last-mile
logistics planning.

Capacity expansion and its allocation in the supply chain has
received considerable attention within the capacity planning liter-
ature (e.g., Birge, 2012; Liu & Papageorgiou, 2013; Luss, 1982; Singh
et al., 2012). Singh et al. (2012) and Liu & Papageorgiou (2013) pro-
pose mixed integer programming models for the capacity expan-
sion planning of global supply chains in the process industry. Birge
(2012) considers capacity planning models to decide whether to
install additional capacity at the production plant level. The author
takes into account the limited resources and demands uncertainty.
Finally, Yuan & Ashayeri (2009) present an approach to combine
system dynamics loops and control theory simulations to analyze
the impacts of various factors on capacity expansion strategies.

Most of the research studies which have been conducted on
this subject deal only partially with the requirements of capac-
ity planning. Only a few have thus focused on stochastic capac-
ity planning and the different sources of uncertainty involved. In-
deed, several papers on this topic consider demand variability as
the only source of uncertainty. For example, Pimentel, Mateus, &
Almeida (2013) propose a mathematical model and solution ap-
proach to the Stochastic Capacity Planning and Dynamic Network
Design problem under demand uncertainty. Ahmed, King, & Parija
(2003) present a multi-stage capacity expansion problem with un-
certain demand and cost parameters, while Aghezzaf (2005) dis-
cusses the capacity planning and warehouse location problem in
supply chains operating under uncertainty on demand.

The papers by Crainic et al. (2016, 2014) propose first attempts
to address capacity planning problem settings found in strategic
and tactical applications. In particular, the authors present two

156

European Journal of Operational Research 314 (2024) 152-175

versions of the Stochastic Variable Cost and Size Bin Packing
Problem (SVCSBPP) in the long-haul transportation context. In
these problems, the uncertainty related to the demand (i.e., loads
to be transported) and the capacity availability on the spot market
was explicitly considered. However, to the best of our knowledge,
the uncertainty affecting the availability of booked capacity has
not yet been considered in the literature. Moreover, there are
no studies addressing all the above-presented issues in a single
model, which can be applied and validated in both the long haul
transportation and urban distribution applications.

We aim to fill this gap by 1) formalizing the tactical capacity
planning problem under uncertainty on the loss of contracted ca-
pacity, available ad-hoc capacity, as well as the volume and char-
acteristics of demand, which we identify as the Stochastic Variable
Cost and Size Bin Packing with Capacity Loss (SVCSBP-LS) problem,
and 2) proposing a new optimization model, which takes the form
of a two-stage stochastic programming formulation (Birge & Lou-
veaux, 1997). We formulate the model using the Bin Packing vo-
cabulary and concepts, where capacity units are the bins, of var-
ious types, one has to select in order to load the items, of vari-
ous sizes, representing the freight loads to transport or store. This
model generalizes prior work on the Stochastic Variable Cost and
Size Bin Packing problems (Crainic et al., 2016), which assumes
that all the booked capacity is available at the shipping or storage
date.

The bin packing problem has been extensively studied in a
plethora of papers within heterogeneous contexts. Research ef-
forts have been devoted to planning problems in health care such
as surgery scheduling (Zhang, Denton, & Xie, 2020), and operat-
ing room management (Wang, Li, & Mehrotra, 2021), computer
scheduling (Coffman, Garey, & Johnson, 1978), internet advertising
(Adler, Gibbons, & Matias, 2002), and bandwidth allocation (Perez-
Salazar, Singh, & Toriello, 2020). Zhang et al. (2020) and Wang
et al. (2021), for example, propose two versions of the chance-
constrained stochastic bin packing problem applied to scheduling
in hospitals. The authors assumed that the item sizes are random
variables. The article by Martinovic & Selch (2021) considers a bin
packing problem with stochastic item sizes, particularly relevant
in the context of energy-efficient job-to-server scheduling. Finally,
Perez-Salazar et al. (2020) propose an online adaptive bin pack-
ing problem considering items with random sizes to be packed
into unit-capacity bins. One can note that also in different contexts
than transportation and logistics, the studies consider the uncer-
tainty mainly related to the item sizes only.

3. The tactical planning model formulation

This section is dedicated to the two-stage stochastic program-
ming formulation we propose for tactical capacity planning under
uncertainty, SVCSBP-LS. As indicated above, because the problem
setting is found in many application fields and, thus, the proposed
methodology is relevant in all those fields, we adopt the general
vocabulary of Bin Packing problems. Thus, items represent the
freight loads to be transported or stored, and bins stand for the
capacity units of various transportation modes, e.g., containerships,
rail wagons or container platforms (Bektas & Crainic, 2008; Crainic
& Kim, 2007; Kienzle, Crainic, Frejinger, & Bisaillon, 2021), trucks,
smart and modular containers (Ballot et al., 2014), space in cargo
bikes, vans, or light-rail vehicles (Crainic et al., 2021b) in urban-
distribution, and storage space in warehousing and distribution
facilities.

The first stage concerns the tactical capacity planning decisions,
i.e., the a priori selection of the bins, of various types, sizes, and
fixed costs, to be secured to move or store the items for the
duration of the planning horizon. The second stage refers to the
operational decisions, i.e., the recourse actions one needs to take to
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adjust the plan once the actual demand, the list of items with their
sizes, and the actual available size of the contracted capacity are
observed. The recourse actions concern paying the cost involved in
handling the items which should have gone into the lost capacity,
securing the missing capacity through ad-hoc bins of various sizes
and costs (at spot-market value, i.e., higher than the fares negoti-
ated initially), and assigning the items to the available bins, either
originally contracted, at possibly a smaller capacity, or currently
acquired. These actions are carried out repeatedly over the plan-
ning horizon to cope with the fluctuation of supply and demand,
here defined asrandom events, which affect the result of the first
stage (i.e., booked capacity not sufficient or not available). The
objective is to minimize the total expected cost for the planning
horizon, computed as the sum of the tactical bin selection (first
stage) and the expected cost of adjusting this plan to the observed
information for all the time moments the plan-contract is applied.

Let T be the set of bin types known to be available at the first
stage, defined by the size V! and fixed cost f' of the bins t € T. Let
also ¢ be the cost to pay for the loss of a unit of capacity of a bin
of type t e T selected in the first-stage. This cost is the additional
expense required to react to the reduction of the available volume
of first-stage bins, by rearranging the loads and assigning them to
bins. Let J¢ be the set of available bins of type t, with 7 = |, J%,
the set of available bins at the first stage. Finally, let yﬁ. be the first-
stage capacity selection decision variable, equal to 1 if bin j e J*
is selected, and 0, otherwise.

Let 7 be the set of bin types available at the second stage, with
V7, the nominal volume of a bin of type 7 € 7. Notice that T € T,
meaning that some (e.g., the types of the selected bins) or all types
available at the planning (first) stage are also available in the fu-
ture, albeit with some capacity loss as defined in the following. Let
2 be the sample space of the random event, where w € 2 defines
a particular realization. The vector & contains the stochastic pa-
rameters defined in the model, and & (w) represents a given real-
ization of this random vector. We consider the following stochastic
parameters in & (w):

Items: Z(w), Set of items, with v;(w), the volume of item i e
I(w);

Bins: K (w), Set of available bins of type T € 7 at the second
stage, with K(w) = J, K¥(@);

Bin sizes: V]f. (w), Volume of second-stage bin j e J* of type T
T, with V;(a)) < V7 for the bins selected at the first stage
(JjeTcT)

Bin costs: g* (w), Unit cost of second-stage (spot market) bin of
typet e7T.

The second-stage decision variables are

Bin selection: z; (w) = 1, if bin k € K7 (w) is selected in the sec-
ond stage, 0 otherwise;

Item-to-bin assignment: x;;(w) = 1, if item i € Z(w) is packed in
first-stage bin j € 7, 0 otherwise; x;,(w) = 1 if item i € Z(w)
is packed in second-stage bin k € K(w), O otherwise.

The two-stage SVCSBP-LS model may then be formulated as:

min ) " ffy: + E:[Q(1. £ (@))] (1)
Vet jegt
st Y=Y VteT,j=1,....|7 -1, (2)
¥5e{0,1}, VteT,jeJ" (3)
where
Q@)= min > Y g(w)zf(@)+ Y Y (V' =Vi(w))y]
)X LT o w) teT jegt
(4)
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st. Y xi@+ Y xp(w) =1, VieZ(w), (5)
jeJg kek(w)
> vi@)xij(@) < Vi), VteT. jeJ",  (6)
ieZ(w)
> viw)xp(w) < V7z (w), VieT keK'(w), (7)
icZ(w)
xij(w) € {0, 1}, Viel(w),je J, (8)
xix(w) € {0, 1}, VieI(w), ke Kw), (9)
z; (w) € {0, 1}, VteT, kekK'(w). (10)

The tactical selection of logistics capacity makes up the first
stage (see (1)-(3)). The objective function (1) minimizes the sum
of the total fixed cost of selecting capacity within the tactical ca-
pacity plan and the expected cost of addressing the negative im-
pacts, over the planning horizon, of the non-availability at opera-
tion time of the capacity contracted at negotiation time. This ex-
pected cost is computed over all possible future realizations of the
loss of contracted capacity and the availability, size, and cost of ad-
hoc capacity. It should be noted that the terms cf (V¢ —Vj‘(w))yj.,
in Eq. (4), are used to anticipate the cost of the loss of capacity of
the bins booked in the tactical plan, under the realization w. Given
that these costs, when positive, would increase the costs of using
contracted bins, they could be included as cost adjustments ap-
plied to the bins considered in the tactical planning (i.e., the first
stage), yielding (f* + c* (V' — E¢ (V]? (a)))))ys., Vt €T, j e Jt. That be-
ing said, these fixed cost adjustments alone cannot capture the ac-
tual impact of losing contracted capacity at operation time. Indeed,
the final cost of the capacity loss results from the combination of
the revealed characteristics and numbers of the items one needs
to move, the revealed capacity of the contracted bins, the admin-
istrative cost to address any loss of capacity (i.e., ¢t (V! — ij(w))ys.
under the realization of w), and the cost of the ad-hoc capacity re-
quired. Hence, all of these elements are explicitly included in the
second-stage model (4)-(10).

Furthermore, packing problems usually present a strong sym-
metry in the solution space, and two solutions are considered sym-
metric (and equivalent) if they involve the same set of first-stage
bins in different orders. However, when we consider the available
capacity of first-stage bins as a source of uncertainty, this is no
longer true. Indeed, each bin of type t € T may have a different
volume, and we need to characterize it properly. We thus intro-
duce constraint (2) to break the symmetry and ensure order in the
selection of bins of type t € T, i.e., bin j € 7' can be selected at the
first stage only if bin j — 1 € J¢ has already been selected. Finally,
constraint (3) imposes the integrality requirements on y.

In the second stage, the term Q(y,&(w)) (4) details the ex-
pected cost, over the possible realizations of the random event,
of the second stage of securing ad-hoc capacity and adjusting the
plan, given the tactical capacity plan y and a realization & (w) of
the loss of capacity, the availability of ad-hoc capacity, and the list
of items with their characteristics. Constraint (5) ensures that each
item is packed in a single bin. Constraints (6) and (7) ensure that
the total volume of items packed in each bin does not exceed its
actual volume, for first and second-stage bins, respectively. Finally,
constraints (8) to (10) impose the integrality requirements on all
second-stage variables.
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4. Progressive hedging-based metaheuristic

The SVCSBP-LS is a difficult stochastic combinatorial optimiza-
tion problem to solve. It generalizes the SVCSBPP (Correia, Gouveia,
& Saldanha-da-Gama, 2008; Crainic et al., 2016). To overcome the
computational limitations of standard solution methods, we pro-
pose a Progressive Hedging (PH)-based metaheuristic (Rockafellar
& Wets, 1991), that is tailored for the SVCSBP-LS problem and its
inherent complexity.

The proposed metaheuristic is applied by first defining a dis-
cretization of the sample space associated with the random event.
This leads to the creation of a set of representative scenarios S,
each one providing the values of the considered stochastic param-
eters associated with a possible occurrence of the random event.
The metaheuristic then proceeds by applying a scenario decompo-
sition procedure, which produces |S| subproblems (one for each
scenario included in S). The algorithm then solves the problem
by iteratively executing the following steps: (i) the single sce-
nario subproblems are first heuristically solved to obtain local (or
scenario-specific) solutions; (ii) a reference point, indicating the
level of solution consensus among the subproblems, is obtained
by calculating the weighted average over the local solutions found;
(iii) the values of the fixed costs of the bin types in the objective
function are then adjusted for all scenario subproblems to promote
consensus among them with respect to the reference point (thus
penalizing the dissimilarity observed among the local solutions).

It should be noted that the pH-based metaheuristic proposed
in the present paper is based on the one originally developed
by Crainic et al. (2016) for the simpler SVCSBPP problem variant.
However, the uncertainty of the volume of every single bin makes
the SVCSBP-LS a more complex problem to solve. Specifically, the
uncertainty on the bin volumes may generate a huge number of
bin types in the scenario subproblems (i.e., each bin may have a
different volume, leading to single-bin bin types) that the meta-
heuristic must solve at each iteration performed. As in Crainic et al.
(2016), each deterministic single scenario subproblem is solved us-
ing the heuristic developed by Crainic, Perboli, Rei, & Tadei (2011).
This heuristic relies heavily on the concept of bin types, which are
defined as distinct couples of values, i.e., the fixed cost and the
volume of the bins. Therefore, to obtain an efficient pH method for
the SVCSBP-LS, innovations were required to efficiently deal with
the significant increase in the number of bin types.

A detailed description of the overall solution method is pro-
vided in Appendix A. In this section, we focus on the description
of the different steps that compose the pH metaheuristic, summa-
rized in Algorithm 1, while emphasizing the main contributions
and enhancements that were applied to the original method to ef-
ficiently address the complexity of the problem at hand.

As previously indicated, the first step of the metaheuristic builds
a discretization of the stochastic problem (Algorithm 1, lines 1 and
2). This entails reformulating the SVCSBP-LS two-stage model by
discretizing the value space of the random variables through a set
of representative scenarios S, with ps defining the probability of
scenario s € S. The notation of the previous section is thus updated
to account for the scenario definition. Therefore, ys.s =1if bin je

Jt of type t e T is selected in the first stage under scenario s € S,
and 0 otherwise. For t e T, V! and f* refer to the volume and fixed
cost associated with a bin of type t, respectively. Let ¢! be the unit
capacity-loss cost.

For the second stage, we then have the set of additional bins
defined as K = | J, K5, where K™ is the set of extra bins of type
T € T in scenario s € S, and Z° defines the set of items to pack un-
der scenario s € S. Similarly, g*s is the cost associated with bins
of type T € 7 in scenario s € S, VT is the volume of bins of type
TeT, V]f.s defines the volume of first-stage bin j € J* under sce-
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Algorithm 1 PH-based metaheuristic for the SVCSBP-LS.

1: Step 1: Build discretization of the stochastic problem

: Generate a set of scenarios S;

: Step 2: Apply the Lagrangian-based scenario decomposition

: Decompose the resulting deterministic model (11)-(20) by sce-
nario using augmented Lagrangian relaxation

5: Step 3: Compute the solution to the stochastic model

6: Phase 1

7. v <« 0; )»ESV «~ 0; pb?" <~ fT/10;

8

9

AW N

: while Termination criteria not met do
For all s € S, solve the corresponding VCSBPP subproblem —

y?sv;
10:  Compute temporary global solution
: V' < X psyp™
_ seS B
12: 8%V« Y psbTSY
se§
13:  Penalty adjustment
p_ ey N -
14: }‘Ejv _ )\;581 )+p;(V )(yzsv -7
15: ppY <~ apg(u_])
16:  if consensus is at least oy then
17 Adjust the fixed costs f*5V;
18:  end if
19:  Variable fixing )
20: 85 < mind™ and 87 < max§™’
se§ se§
21: Apply variable fixing;

22: v« v+1

23: end while

24: Phase 2 ) B

25: if consensus not met for a single bin type T’ (8, < 85 then

26: Identify the consensus number of bins § of type T’ by
enumeratings e [Snﬁ/, wa/] (and variable fixing)

27: else

28:  Fix consensus variables in model (11)-(20);

29:  Solve restricted (11)-(20) model using a commercial solver.
30: end if

nario s € S, and v} is the volume of item i e Z° in scenario s € S.
Finally, variable z7* is equal to 1 if and only if extra bin k € K* of
type T € T is selected in scenario s € S, while the binary variables
xfj and xj, are the item-to-bin assignment variables for scenario
ses.

The SVCSBP-LS formulation (1)-(10) can now be approximated

by the following deterministic model:

mind ps| 2D SYPHD] XL gD ) V-V

seS teT jeJt TeT kekTs teT jeJt
(11)

st yE =y, VteT,j=1,....|7-1,seS, (12)

DX+ 2 K=1,

jeg keks

S £S4,tS
DXy = VP
iezs

S T,TS
DV =VTZE,

ieZs

Viel’,seS, (13)
VteT, jeJlses, (14)
VieT keK™,seS, (15)

Y=y, VteT.jeJ'.s.seS.  (16)

y§e{o,1}, VteT, jeJt seS, (17)
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7 {0, 1}, VteT, keK¥ seS, (18)
x;; € {0, 1}, Viel’,je J,s€S, (19)
x5, €1{0,1}, VieZ’ ke K’ seS. (20)

The objective function (11), and the constraints (12)-(15)
and (17)-(20) have the same meaning as their counterparts in
Section 3. One should note that it is the inclusion in (11) of the
term that accounts for the capacity losses for the bins selected a
priori and their related costs in the second stage that may cause
a significant increase in the number of bin types in each scenario
subproblem, once the problem is decomposed by scenario. Addi-
tionally, constraints (16) are the non-anticipativity requirements,
which ensure that the first-stage decisions are not tailored to each
scenario in S. These constraints are necessary to guarantee that
the model yields a single implementable capacity plan. At the
same time, the presence of these constraints prevents the result-
ing model from being scenario separable.

In the second step, we then apply the augmented Lagrangian-
based scenario decomposition scheme, originally proposed by
Rockafellar & Wets (1991), to the resulting multi-scenario deter-
ministic problem (Algorithm 1, lines 3 and 4). This is done by re-
laxing the non-anticipativity constraint (16) using an augmented
Lagrangian strategy with the Lagrangian multipliers being defined
as )»5?, VjeJiVteT, and Vs € S, and ,05 being a penalty ratio as-
sociated with bin j e J* of type t e T. Again, the detailed steps of
the decomposition scheme are presented in Appendix A.

For the resulting subproblems, i.e. Vse S, let BT = 7T UKTS
be the set of available bins of type T € T (where T =7 UT) and
B5 = Uz B be the whole set of bins available in the subproblem.
For bin b € BT, let V[* be the actual volume of the bin (for b € K7,
VS =VT) and let fI* define its associated fixed cost. The related
decision variables then become, y[* = 1 if bin b € B™ of type T € T
is selected, O otherwise. Moreover, x3, is equal to 1 if item i € Z° is
packed in bin b € B5, 0 otherwise. The model (11)-(20) is thus de-
composed into a series of deterministic VCSBPP subproblems (one
for each scenario s € §) with modified fixed costs fbfS and addi-
tional constraints (see Appendix A, constraints (A.28)) that enforce
an order in the selection of bins of each type T € 7. When com-
pared to the complete formulation, the resulting subproblems are
much less complex to solve.

The algorithm then builds a solution to the stochastic model by
performing the two phases as summarized in Algorithm 1, from
line 5 to line 30. For a given iteration v, we define AES" and plf"
as the Lagrangian multiplier and the penalty ratio associated with
bin b € BT for scenario s € S, respectively. Let y[*V, Vb e B™, T € T,
define the local solution associated with subproblem s € S at itera-
tion v. Furthermore, §7 is the total number of bins of type T e T
which can be derived from the capacity plan (i.e., local solution)
for scenario subproblem s e S at iteration v. Using the subprob-
lem solutions, the overall capacity plan (i.e., the reference point) is
calculated thus producing the values )7?. Equivalently, we define

57V to be the expected value, that is obtained from the subprob-
lem solutions, for the total number of bins at the current iteration
v. Let fTV be the fixed cost of bin b € B of type T € T for sce-
nario s € S at iteration v. The terms « and oy are two given con-
stants such that > 1 and 0.5 < 0y < 1. Finally, 87" and 87 are
the lower and upper bounds, that represent the minimum and the
maximum number of bins of type T observed over all the solutions
to the scenario subproblems at iteration v.

At each iteration, the scenario subproblems are solved sepa-
rately to obtain the local solutions (Algorithm 1, line 9). Each
deterministic subproblem is solved using the best first increas-
ing loading heuristic, originally proposed in Crainic et al. (2011).
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As mentioned previously, considering the uncertainty on bin vol-
umes, one can observe a significant increase in the number of bin
types in the scenario subproblems, with several bin types contain-
ing a single bin. Let us recall that the best-first increasing load-
ing heuristic relies on ordering the bins based on a merit function,
which was defined as the ratio between the fixed cost and the
volume of a bin (assuming that a single pair of values is defined
for each bin). In the present problem setting, considering that the
bins available in the first stage may have a different observed vol-
ume in the second stage, then the heuristic proposed in Crainic
et al. (2011) needed to be modified. Therefore, we first introduced
a lookup table enabling the first stage bin types defined in the
scenario subproblems to be quickly identified (i.e., Te T — t € T).
Second, we changed the sorting criterion that is used in the heuris-
tic. Specifically, we apply lexicographic sorting based on two crite-
ria. The first criterion sorts the first-stage bins according to a non-
decreasing ratio of bin cost and bin volume, as expressed by the
bin type to which the bin belongs (i.e., without the stochastic vol-
ume reduction). The second criterion then sorts the bins grouped
by the same first criterion value by non-increasing order of the
observed bin volume (i.e., explicitly considering the volume reduc-
tions). Based on this new ordering, the best first increasing loading
heuristic is then applied as in Crainic et al. (2011).

Step 3 aims to reach the consensus for the first-stage variable
values associated with the solutions obtained for the scenario sub-
problems. The consensus being defined here as the scenario solu-
tions being similar in terms of the first-stage bin-selection deci-
sions. A reference point is thus created through the aggregation of
the subproblem solutions by applying the expected value operator
(Algorithm 1, lines 10-12). This yields a temporary overall capacity
plan, which is then used to identify the bins for which consensus
may be achieved.

To induce consensus among the scenario solutions, the fixed
costs of the bins are adjusted in the objective functions of the sce-
nario subproblems. Two strategies are applied to update the fixed
costs. The first is based on adjusting the Lagrangian multipliers to
penalize the lack of consensus due to the differences in the values
of first-stage variables (see Crainic et al.,, 2016, for details). In par-
ticular, the fixed costs of the bin types in each scenario subproblem
are tuned according to the differences observed between the val-
ues of the bin-selection variables at the current iteration and the
overall capacity plan (Algorithm 1, line 14). Thus, the fixed cost of
a bin type is either increased, or reduced, depending on whether
or not in the current scenario solution the bin type is overused,
or underused when compared to its usage in the overall capacity
plan. These adjustments (Algorithm 1, lines 14 and 15) can be less
effective when the differences observed between the subproblem
solutions and the overall one are small, and thus when the overall
solution is close to consensus. This may result in an unwarranted
number of additional iterations performed to complete the search
for a consensus solution.

To address this issue, we apply a second penalty-adjustment
strategy, based on heuristic principles (Algorithm 1, lines 16-18).
Therefore, when at least o percent of the variables have reached
consensus, we adjust in all the scenario subproblems the fixed cost
f7v (see for details Appendix A (A.37)). In this way, we penalize
the selection costs of bins of type T in scenario s at iteration v
when, at the previous iteration, the total number of bins of that
type was larger than the number of bins of the same type in the
corresponding reference solution. We thus discourage the adoption
of those bins. If the opposite case is observed, then the cost ad-
justments will promote the use of the bins.

The search for consensus also involves the soft variable fixing
scheme defined in Crainic et al. (2016) (Algorithm 1, line 19). As
originally proposed, this scheme fixed part of the selection of the
bins in all the scenario subproblems based on lower and upper
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bound values for the number of used bins of each type that were
observed over all the scenario solutions. The best first increasing
loading heuristic was then applied with these fixed selection de-
cisions being enforced. As previously mentioned, given the uncer-
tainty on the volume of the bins available in the first stage, the
loading heuristic was modified to account for the sharp increase
in the number of bin types in the scenario subproblems (i.e., the
use of the lookup table and the two criteria lexicographic sorting
approach). Thus, the soft variable fixing scheme is also updated to
manage the assignment between the original bin type of every bin
and the bin type in use in the heuristic solution of every single
scenario subproblem. Specifically, the lookup table is again lever-
aged to efficiently identify the first-stage bin types and their asso-
ciated use in the scenario solutions obtained at each iteration v of
the pH-based metaheuristic.

Finally, it is important to note that Phase I can conclude with-
out reaching a consensus solution. Consequently, Phase II is per-
formed to produce an implementable solution to the SVCSBP-LS.
The end of Phase I occurs either when consensus is achieved for
all bin types except one, type T’ for which 5;’ < SE, or when con-
sensus is not achieved within a given maximum number of itera-
tions (200 in our experiments). In the first case (Algorithm 1, line
25), given the efficiency of the item-to-bin heuristic, Phase Il com-
putes the final solution by iteratively examining the possible num-

ber of bins for T/ within the interval [52,53] (see Algorithm 1,

line 26, and Appendix A). Otherwise, the final solution is obtained
by solving exactly (using a commercial solver) a restricted SVCSBP-
LS defined by fixing the first-stage variables for which consensus
was reached (i.e., the same bins that are used in all the scenario
solutions at the end of Phase I) (Algorithm 1, lines 28 and 29).

5. Experimental plan

We performed an extensive set of experiments with a threefold
aim: 1) Analyze the new logistics capacity planning problem in the
contexts of urban distribution and long-haul transportation, in par-
ticular, the relevance and impact of the capacity loss phenomenon
we introduce and the corresponding uncertainty; 2) Measure the
impact of uncertainty and the interest in building a stochastic pro-
gramming model; 3) Study the relationship between the problem
characteristics and parameters and the structure of the capacity
plan, drawing managerial insights.

We begin by presenting the instance sets used to qualify our
model and the solution procedure (Section 5.1). Section 5.2 then
discusses the potential of considering uncertainty in the planning
process, while Section 5.3 studies the issue from the point of view
we introduce in this paper, the explicit consideration of the loss of
capacity on contracted bins. Managerial insights are the object of
Section 6.

5.1. Instance set

In this subsection, we provide a set of instances for the SVCSBP-
LS and we present the instance generation process. Since, to the
best of our knowledge, there is no prior study of the capacity plan-
ning problem with uncertainty on the actual volume of the con-
tracted capacity, we generated new test instances for the SVCSBP-
LS, based on previous work on bin packing problems (Crainic
et al., 2016; Crainic, Perboli, Pezzuto, & Tadei, 2007; Crainic et al.,
2011; Crainic, Tadei, Perboli, & Baldi, 2012; Gobbato, 2015; Monaci,
2002).

Table 1 summarizes the parameters of the instances. Most pa-
rameters are self-explanatory; a few require a bit of explanation.

The bin availability is assumed to be different at the time of the
contract, the first stage, and when repeatedly executing the con-
tract in the future, the second stage. We define the number of bins
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of each type t € T available at the first stage as the minimum num-
ber of bins of volume V! needed to pack all items in the worst-case
scenario. Three availability classes, AV1 - AV3, are defined for the
second stage, representing different levels of variability. The first
presents the largest variability, and its worst-case scenario may in-
volve a limited number of extra bins. On the contrary, all the sce-
narios have the same availability of extra bins in the third class,
equal to the first-stage availability. The second class stands for a
middle-of-the-road situation.

The fixed costs of bins are assumed higher at the second stage
from those at the time of contracting (built based on Correia et al.,
2008), by a multiplying factor. Three values were used representing
continuously increasing variations in the fixed costs.

Three parameters are used to represent the possible capac-
ity loss on the contracted bins, from the global problem level to
the individual bin-type level: 1) the percentage of scenarios af-
fected by capacity loss (SL); 2) the probability that a bin type is
affected by capacity loss (TL); 3) the percentage of the overall ca-
pacity loss for all the bins of a certain type selected in the first-stage
(BL). Each parameter values represent an increasing level of poten-
tial capacity loss. The distributions used to generate these values
are different for the two application cases. A uniform (U) capacity
loss is assumed for long-haul transportation, reflecting the rather
widespread inability to predict correctly the quality of the service
that will be provided by carriers. The situation is different from
urban distribution, and even more when city logistics systems are
involved, as the relations with the service providers are generally
smoother. We identify this type of capacity loss localized (L), i.e.,
only a few randomly-chosen first-stage bins lose their entire ca-
pacity and become unusable, while the others are unaffected. Lo-
calized capacity losses may be caused by mechanical failure of ve-
hicles or other incidents, e.g., undelivered parcels during the pre-
vious operational day that were kept in the vehicle reducing the
capacity for new demand to be loaded.

Finally, the unit additional due to capacity loss is set equal to
the proportion of the overall loss of capacity among all first-stage
bins of type t (BL).

Ten (10) random instances were generated for each combination
of parameters, yielding a total of 51 840 instances. All the instances
incorporate 100 scenarios. The size of the scenario trees to use in
the experiments was tuned by analyzing the in-sample and out-
of-sample stability conditions. Let us recall that in-sample stability
refers to the requirement that the quality of the results obtained
when solving a stochastic model using a fixed size for the scenario
set remains stable for different samples of scenarios. As for out-
of-sample stability, it refers to the requirement that when solving
a stochastic model using a given size for the scenario set, one is
guaranteed to closely approximate the true value of the stochastic
model. According to Kaut, Vladimirou, Wallace, & Zenios (2007),
the stability requirements ensure the reliability and robustness of
the solutions obtained when a different set of scenarios is consid-
ered.

Therefore, we first created a subset of instances for T3 and
T5, based on different combinations of the parameters presented
above to perform the stability testing. Then, we generated ten
scenario trees for each instance, while also varying the cardinal-
ity of the scenario sets |S| = {10, 25, 50, 100, 150, 200}. The meta-
heuristic was then applied to solve all instances obtained. To as-
sess the in-sample stability condition, we evaluated the solutions
based on the scenario samples used to obtain them. Stability was
reached when the standard deviation associated with the solution
values obtained for the instances generated with the same size of
the scenario set was judged to be low enough. As for the out-of-
sample stability condition, it was evaluated on a different sam-
ple than the one that was used to find the solutions, see (Kaut
et al.,, 2007). Thus, the following procedure was applied ten times
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Table 1
Parameters of SVCSBP-LS instances.

European Journal of Operational Research 314 (2024) 152-175

Characteristic

Value - Parameters for all the problem settings

Number of items
Item volume

Uniformly distributed over [100, 500]
Small (S): uniformly distributed over [5, 10]

Medium (M): uniformly distributed over [15, 25]
Big (B): uniformly distributed over [20, 40]

Bin types, with
T is equal set T
Bin availability 1st stage
Bin availability 2nd stage

Set T3: 3 bin types with volumes = 50, 100, 150

Set T5: 5 bin types with volumes = 50, 80, 100, 120, 150
71| equal to[ gr MaXses Yiezs ¥ |

Class 1 (AV1): ||K®|| uniformly distributed over [0, || 7*][]

Class 2 (AV2): ||K®|| uniformly distributed over
772, 170
Class 3 (AV3): || K] equal to ||Jt]|

Bin costs 1st stage
Bin costs 2nd stage
Capacity loss

C=V(1 +yt, yY) uniformly distributed over [-0.3,0.3]
g =ff(1+a), ac{0.3,05,0.7)
SL: % of scenarios = 20%, 40%, 60%, 80%

TL - Probability of a bin type = 0.5,0.75, 1
BL - % of overall loss for all 1st stage bins of a certain
type= 20%, 30%, 40%, 50%, 60%, 70%

Unit capacity-loss cost

ct = ol ft)Vt, same ot a for g¥

Characteristic

Value - Parameters specific to each problem setting

Long-haul transportation

Urban distribution

Capacity loss type Uniform (U)

Localized (L)

for each instance generated: i) we solved a 200-scenario prob-
lem; ii) we solved the instance with the scenario trees of car-
dinality |S| = {10, 25, 50, 100, 150}; iii) we then evaluated each of
the solutions obtained in step ii) within the 200-scenario con-
text (this was done by fixing the first-stage decision variables
and then solving the resulting second stage, the recourse, for the
200 scenarios); iv) we computed the relative gap of the objective-
function value of this solution relative to that of the 200-scenario
problem.

We observed that both the in-sample and out-of-sample stabil-
ity conditions were reached with accurate precision when generat-
ing trees with 100 scenarios. Thus, we used this tree dimension in
the rest of the experiments. We do not report the detailed results,
these were low in terms of both the observed computational times
and the variability, while also being independent of the instance
parameters. In the worst case, we achieved an average computa-
tion time of less than 5 seconds (which is relatively low) and a
variability of under 1% of standard deviation over all the instances.

The instance generator can be accessed at the following Bit-
Bucket repository (Perboli, 2022)

5.2. Assessment of the SVCSBP-LS model

As stated in Section 2, much of the literature does not consider
uncertainty in capacity planning problems. Then, the question we
address is whether modeling uncertainty explicitly, through the
two-stage SVCSBP-LS formulation with recourse, is beneficial com-
pared to solving the deterministic variant of the problem only.
Would the shipper gain by considering uncertainty, by the reduc-
tion in its overall expenses for the transportation and storage ca-
pacity plan? This would be important for the shipping industry
where the marginal revenues are already low.

We use two classical and highly relevant measures in the liter-
ature (Birge, 1982). The Expected Value of Perfect Information (EVPI),
representing the decision maker’s willingness to pay for complete
information about the future, and the Value of the Stochastic So-
lution (VSS) computing the difference between the solutions ob-
tained by solving the deterministic problem with the expected
value of the parameters (the expected value solution - EEV) and
the stochastic SVCSBP-LS problem (RP).
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In other words, the EVPI provides the value of having perfect
information (i.e., the ability to perfectly predict what specific sce-
nario would be observed), thus removing all uncertainty regarding
the parameters that influence capacity planning. As for the VSS,
it measures the expected gain obtained by solving the stochas-
tic model rather than its deterministic counterpart, i.e., where all
random variables are replaced by their mean values (Maggioni &
Wallace, 2012). In the present setting, one can interpret the VSS
as the opportunity loss for the company if it uses a determinis-
tic optimization model to perform capacity planning. It thus shows
the added value of estimating the future via the use of a scenario
set that approximates how the values of the stochastic parameters
may randomly vary and then applies the proposed metaheuristic to
solve the resulting stochastic model and produce the capacity plan.
Tables 2 and 3 display the average and maximum results for the
two measures, respectively, computed as a percentage with respect
to the RP for the two instance sets (Column 1), bin-availability
class (Column 2), and value of the increase in the future bin cost
and capacity loss o (Column 3). Results are displayed for each ap-
plication type (Columns 4 and 5 for urban distribution, Columns
6 and 7 for long-haul transportation). In order to compute these
results, we used two solvers. CPLEX was used as the solver for
all the deterministic problems that needed to be solved to com-
pute both the EVPI and VSS values. Specifically, the optimal solu-
tion for the expected value problem, which is required to compute
the VSS, and the optimal solutions to the scenario-specific prob-
lems that are needed to evaluate the EVPI, were all obtained via
the use of CPLEX. To obtain the solution to the SVCSBP-LS, which
is needed to compute the VSS, we use our pH-based metaheuristic.
To ensure that our pH-based metaheuristic was providing us with
good solutions, we evaluated the optimality gaps associated with
the solutions obtained using the lower bound derived by CPLEX,
when it is used to solve the stochastic model directly (one hour
of computational time was allotted to CPLEX to obtain the lower
bound values). We do not report the optimality gaps and the com-
putational times of our pH method, because the gaps are less than
0.01%, while the computational times are of the order of less than
a second, in line with the results by Crainic et al. (2016).

For the sake of brevity, we discuss the results of these stochas-
tic programming measures at a macro level, analyzing how they
vary in long-haul transportation and urban distribution, depending
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Table 2
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EVPI for SVCSBP-LS with different availability classes, values of «, and types of capacity loss.

Set Availability o Urban distribution Long-haul transportation
EVPI[%] EVPI[%]max EVPI[%) EV PI[%]max
T3 AV1 0.3 13.98 60.76 22.20 77.35
0.5 18.65 48.07 25.47 75.24
0.7 21.97 36.69 26.80 74.27
AV2 0.3 9.05 13.85 10.19 20.23
0.5 15.26 19.12 16.14 29.96
0.7 19.34 23.71 19.82 35.28
AV3 0.3 9.47 14.52 10.11 20.30
0.5 15.79 20.38 16.18 29.43
0.7 19.90 24.61 19.91 35.95
T5 AV1 0.3 12.13 15.71 13.28 54.26
0.5 17.73 21.24 19.16 50.83
0.7 21.44 25.11 22.74 47.86
AV2 0.3 8.09 13.62 9.61 19.27
0.5 15.23 21.60 16.45 31.17
0.7 19.59 25.32 20.40 36.60
AV3 0.3 8.97 13.66 9.48 20.72
0.5 15.84 19.88 16.57 30.17
0.7 20.20 25.57 21.07 37.25
Table 3

VSS for SVCSBP-LS with different availability classes, values of «, and types of capacity loss.

Set Availability o Urban distribution Long-haul transportation
VSS[%] VSS[%]max VSS[%] VSS[%]max
T3 AV1 03 11.29 23.53 13.79 33.85
0.5 8.37 20.04 10.58 31.47
0.7 5.63 15.49 8.47 56.65
AV2 03 15.75 44.49 17.57 55.13
0.5 12.20 30.92 13.95 55.03
0.7 9.41 38.24 12.59 80.40
AV3 03 15.67 43.82 17.02 62.07
0.5 10.34 35.99 13.52 50.98
0.7 8.08 29.52 11.90 80.83
T5 AV1 03 12.00 29.73 14.50 38.40
0.5 7.79 22.61 12.02 49.84
0.7 4.93 16.35 9.88 74.71
AV2 0.3 14.12 45.00 16.17 58.54
0.5 9.95 31.21 12.93 63.77
0.7 6.70 22.28 11.40 88.36
AV3 0.3 14.54 33.51 17.96 57.93
0.5 9.07 34.95 14.67 48.97
0.7 534 27.67 11.48 63.08

on the availability of second-stage bins and the extra cost due to
loss of capacity. The interested reader may refer to Appendix B for
more detailed results and analysis.

The results show high values for using a stochastic formula-
tion in all cases, i.e., high values for additional insight into the fu-
ture. This value increases with the cost of future capacity and the
decrease in the availability of future capacity. The higher uncer-
tainty of long-haul transportation is reflected in the higher infor-
mation values. These results are confirmed by significant VSS val-
ues, double-digit gains in expected costs being obtained in most
cases by using the stochastic SVCSBP-LS model. In both cases, the
look-ahead capability offered by the stochastic formulation would
mitigate the impacts of higher operating costs and missed or late
deliveries due to loss of contracted capacity, and high costs for the
limited availability of ad-hoc capacity.

It should be further noted that trends can be more easily ob-
served by considering the values of VSS[%] compared to VSS[%]max.,
where VSS[%] is a global statistic that reports the average values
over all the results obtained for the instances grouped within each
category, while VSS[%]max reports the maximum observed value for
a given instance category. Therefore, when analyzing the VSS[%],
one observes that when the cost of the future capacity increases,
the observed differences between the solutions obtained by solv-
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ing the stochastic and the deterministic models tend to decrease.
Specifically, for all instance categories, one observes the highest
value of the VSS[%] when « =0.3 and the lowest value when
o = 0.7. While, in all cases, the VSS[%] values are always signifi-
cant, this general trend is nonetheless observed.

We now examine to what extent the first-stage decisions of the
SVCSBP-LS and EEV formulation differ. As highlighted in Crainic
et al. (2016), the EEV problem generally overestimates the future
demand, that is, a total item volume larger than the actual vol-
ume, and a larger set of available bins in the future. Moreover,
when the percentage of scenarios affected by capacity loss and the
probability of bin types being affected by capacity loss are low, the
EEV formulation underestimates the reduction of available capacity,
meaning that the total volume of first-stage capacity predicted to
be available at operation times is larger than the actual available
volume. This behavior can lead to two undesired situations. First,
the EEV solution may include a set of bins that are not suitable
for the set of scenarios considered. The capacity plan is then more
expensive than necessary even when the solution is feasible and
implementable. Second, the EEV solution may include insufficient
capacity for certain situations (subset of scenarios) in which the
actual availability of bins is limited, yielding an unfeasible capacity
plan for those situations.
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Table 4
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% of infeasible instances for availability class AV1 in the long-haul transportation setting.

o SL[%] TLI%] Set T3 - BL[%] Set T5 - BL[%]
20-30 40-50 60-70 20-30 40-50 60-70
0.3 20 50 12.50 10.00 25.00 0.00 0.00 0.00
75 10.00 20.00 47.50 0.00 0.00 0.00
100 8.75 43.75 82.50 0.00 0.00 0.00
40 50 12.50 12.50 32.50 0.00 0.00 0.00
75 10.00 15.00 40.00 0.00 2.50 10.00
100 6.25 25.00 77.50 0.00 5.00 22.50
60-80 50 12.50 15.00 30.00 0.00 3.75 12,50
75 10.00 17.50 12.50 125 16.25 28.75
100 8.75 15.00 53.75 6.25 275 30.00
05 20 50 1250 20.00 32,50 0.00 0.00 0.00
75 10.00 22.50 70.00 0.00 0.00 0.00
100 15.00 75.00 98.75 0.00 0.00 0.00
40 50 15.00 20.00 32,50 0.00 0.00 0.00
75 10.00 12.50 50.00 0.00 0.00 2.50
100 8.75 52.50 98.75 0.00 0.00 25.00
60-80 50 1250 17.50 25.00 0.00 0.00 15.00
75 10.00 12.50 35.00 0.00 13.75 26.25
100 8.75 30.00 85.00 0.00 25.00 30.00
0.7 20 50 10.00 20.00 40.00 0.00 0.00 0.00
75 5.00 35.00 100.00 0.00 0.00 0.00
100 35.00 92.50 98.75 0.00 0.00 0.00
40 50 10.00 20.00 30.00 0.00 0.00 0.00
75 5.00 15.00 100.00 0.00 0.00 0.00
100 10.00 77.50 100.00 0.00 0.00 5.00
60-80 50 10.00 20.00 30.00 0.00 0.00 3.75
75 5.00 15.00 55.00 0.00 2.50 23.75
100 10.00 65.00 97.50 0.00 12,50 30.00

The importance of the problem and parameter setting was fur-
ther emphasized as we observed about 10% infeasible instances
when the variability in future bin availability and cost is high
(AV1), while most instances were feasible in the other settings.
Table 4 details this observation, showing that when uniform losses
are expected (availability class A1), the number of infeasible in-
stances grows considerably with the variability in availability and
cost. The issue is particularly sensitive when only a limited num-
ber of bin types is available on the market (up to 30% for sets T5
but 98.75% for T3). These observations highlight the need for con-
sidering uncertainty in capacity planning when the availability of
bins may be limited in the future.

5.3. Capacity loss and uncertainty

As stated, the uncertainty on the availability of contracted ca-
pacity at operations time is not addressed in the literature. Thus,
this subsection is dedicated to studying how considering the possi-
ble loss in the planned/contracted capacity as a stochastic param-
eter is valuable. We thus compare the results obtained by solv-
ing the SVCSBP-LS (Appendix B contains the complete result tables
and analysis) to those of Crainic et al. (2016) where the possible
capacity loss and its variability were not considered. It should be
noted that, in both studies, the uncertainty related to the demand
as well as to the availability and the costs of extra bins in the fu-
ture are explicitly considered. Therefore, in the present paper, we
model the capacity loss for contracted bins for the urban distribu-
tion and the long-haul transportation cases, while all other sources
of uncertainty are the same as in Crainic et al. (2016).

The results obtained in both studies emphasize the usefulness
of stochastic formulations to perform capacity planning. Further-
more, as previously observed, taking into account the uncertainty
related to the capacity of the contracted bins significantly increases
both the average and the maximum values of the EVPI and the
VSS for all instances considered. When comparing these results to
the ones obtained in Crainic et al. (2016), considering the local-
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ized capacity losses characterizing the instances of the urban dis-
tribution case, one observes that the VSS values are about 3 times
higher than the ones reported in the prior study. The increase in
the VSS values is even higher for the instances related to the long-
haul transportation case (which are characterized by uniform ca-
pacity losses), i.e., the VSS values are 4 to 5 times higher in this
case. We can therefore conclude that excluding this source of un-
certainty from the stochastic model may lead to underestimate the
capacity available at operations time and the additional costs one
will have to support, and this, in both urban distribution and long-
haul transportation contexts.

6. Managerial insights

Having established that incorporating the concept of capac-
ity loss and uncertainty in capacity planning can provide the
shipper with a competitive advantage through better operations
management and reduced costs, we now discuss the structure
of the capacity planning solutions. We study, in particular, how
solutions vary depending on the attributes of urban distribution
and long-haul transportation problem settings, with emphasis on
the expected available volumes of contracted bins at operations
time.

We base our analysis on comparing the results of SVCSBP-LS
and those of Crainic et al. (2016), where the loss of capacity was
not considered, on the following performance indicators

o Average number of bin types contracted in the capacity plan N;

o Average percentage of the total capacity needed which is
booked at the first stage Caprs;

o Average percentage of the objective function value achieved at
the first stage Objrs;

computed for all combinations of instance sets, availability classes,
and the other characteristics of the sets.

Table 5 summarizes the variation interval means for the first
three measures for each capacity-planning solution according to
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Table 5
Comparative performance of capacity-planning solutions.
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No capacity loss

Set Availability Caprsrange Caprsmean Objrsrange Objpsmean N;range Nymean
T3 AV1 71.82%-83.96% 78.50% 63.38%-72.87% 68.56% 1.10-1.20 1.13
AV2+AV3 60.81%-81.58% 72.91% 52.64%-70.86% 62.76% 1.00-1.10 1.03
T5 AV1 67.12%-83.61% 76.15% 59.21%-73.17% 66.84% 1.33-1.44 1.37
AV2+AV3 65.62%-83.14% 74.53% 56.53%-72.56% 64.58% 1.00-1.20 1.03
Uncertain capacity loss - long-haul transportation
Set  Availability =~ Caprsrange Caprsmean Objrsrange Objpsmean N;range Nymean
T3 AV1 61.19%-82.85% 64.81% 48.45%-73.41% 60.39% 1.20-3.00 1.98
AV2+AV3 0%-78.62% 42.89% 0%-68.40% 34.99% 0-1.70 0.93
T5 AV1 6.17%-81.12% 49.70% 4.87%-70.99% 40.33% 0.30-3.00 1.60
AV2+AV3 0%-81.25% 44.35% 0%-71.71% 36.42% 0-1.90 1.00
Uncertain capacity loss - urban distribution
Set Availability Capgsrange Capgsmean Objgsrange Objrsmean N;range Nymean
T3 AV1 66.38%-84.02% 74.39% 59.17%-75.32% 65.92% 1.00-3.00 1.87
T5 AV1 55.25%-81.62% 72.01% 48.15%-72.14% 63.41% 1.30-3.90 2.18

the number of bin types (Column 1) and the availability of extra
bins on the spot market (Column 2). When the parameters that
determine the actual volumes of first-stage bins are equal, the re-
sulting structures of the capacity-planning solutions are the same
for availability classes AV2 and AV3 and we thus present the re-
sults of instances with availability classes AV2 and AV3 together.
For further details and complete tables concerning the figures and
results reported in this section, the interested reader may refer to
Lerma (2018).

When the capacity loss on contracted bins is not accounted for,
the shipper books the capacity sufficient to limit the adjustments
and costs when the actual demand becomes known. As observed
previously (Crainic et al., 2016; Lerma, 2018), this plan tends, in
this case, to mostly include bins of the same type, with only one
or two bins of different types. This relates to the cost orientation
of the shipper who uses standardized bins tailored by the carrier
to the shipper’s needs to avoid the higher loading/unloading and
handling costs generated by non-standardized loading schemes. In-
deed, results in Table 5 show that, when the availability of second-
stage bins is limited, the average number of bin types, N;, increases
slightly, reaching the maximum values of 1.20 for set T3 and 1.44
for set T5. Most capacity is booked (Capgs around 79%) and paid
for (Objrs around 69%) at contracting time. It is worth noting, how-
ever, the large variance of all values.

We now turn to examine to what extent and how the struc-
ture of the capacity plan changes when the shipping company
takes into account the uncertain nature of capacity loss of con-
tracted bins. The percentage of the total capacity needed which
is booked at the first stage, Caprs, characterizes the capacity plan
and its variation is a good indication of the structural changes
brought by varying the problem definition. Table 6 displays the
average Caprs values for long-haul transportation and urban dis-
tribution contexts for each set of bin types (Column 1), bin avail-
ability class in the second stage (Column 2), and capacity-lost cost
(Column 3).

The results show the sensitivity of the capacity plan to the ap-
plication context, the availability of extra bins on the spot mar-
ket, the way capacity is lost and modeled, and the cost of the ca-
pacity loss. They thus illustrate the impact of these factors on the
managerial decisions concerning how much capacity to contract.
The sensitivity and impact are particularly strong in the long-haul
transportation context where the capacity the shipper should con-
tract in the first stage changes dramatically with the changes in
problem parameters. In particular, when freight demand rises, the
supply falls, and the cost of the spot market rates rises, the shipper
may suffer from the higher second-stage costs and the methodol-
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ogy proposes to book in advance most of the required capacity. The
costs of extra bins and capacity loss at operation time, modeled
through the parameter ¢, impacts strongly the creation of safety
buffers in the long-haul transportation context. Thus, the percent-
age of capacity contracted initially, Capgs, doubles when alpha in-
creases from 0.3 to 0.7. The situation is different in the urban dis-
tribution context, where the shipper should contract more or less
the same high-value capacity in all cases. Notice that the percent-
age of capacity contracted initially is the same for all settings when
the possibility of capacity loss is higher, irrespective of the number
of bin types.

Fig. 1 depicts the average values of the percentage of the capac-
ity which is booked at the first stage, Caprs, and the average num-
ber of bin types contracted in the capacity plan, N;, for the long-
haul transportation context (where the capacity loss is uniformly
distributed) for the sets T3 and T5, the availability classes AV1, dark
gray, and AV2, light gray, and three levels of BL, the % of overall ca-
pacity loss for the contracted bins (low = 20%, medium = 50%, and
high = 70%). The figure illustrates further the need in this case to
book most of the capacity needed in the first stage, irrespective of
the possibility of capacity loss at operation time. Moreover, the ca-
pacity plan includes several bin types, nearly in all the instances
we addressed, with their number increasing with the level of pos-
sible capacity loss. In practice, such a capacity plan would require,
however, that attention be paid to the loading/unloading require-
ments of the different bin types; the complexity of such require-
ments should be reflected in the bin type cost.

Some cases are of particular interest. First, when there are only
three types of bins and the availability of the second-stage bins
is limited (AV1), the structure of the capacity-planning solution is
always the same, regardless of the likelihood and amplitude of ca-
pacity loss and the plan books in advance almost all the capacity
needed for the planning horizon.

The second case worthy of interest is when the probability of
losing a large amount of capacity is high. Given the risk of limited
availability of extra bins in the future and the obligation to satisfy
the demand, the plan leads in this case to increase the percentage
of capacity booked in advance, even though the cost of bins and
capacity loss is higher. As illustrated in Fig. 1 parts a and b, this
increase is much more significant when the number of bin types
is low.

The third case concerns the availability of bins in the future as
represented through the classes AV1 - AV3. When the predicted
level of availability is high, as in class AV2, the capacity plan is
based mainly on the premium cost of extra bins and capacity loss
(parameter «) and varies considerably depending on the value of
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Table 6
Variation of Caprs, % of contracted capacity during the 1st stage, with problem parameters.
Long-haul Urban
transportation distribution
Set Availability o Caprs Caprs
T3 AV1 0.3 35.44% 70.09%
AV1 0.5 53.36% 78.44%
AV1 0.7 69.03% 86.78%
AV2+AV3 0.3 26.49% 61.24%
AV2+AV3 0.5 42.01% 69.30%
AV2+AV3 0.7 53.50% 75.01%
T5 AV1 0.3 30.32% 61.96%
AV1 0.5 45.71% 70.43%
AV1 0.7 57.01% 75.64%
AV2+AV3 0.3 26.99% 62.98%
AV2+AV3 0.5 42.91% 69.99%
AV2+AV3 0.7 53.66% 76.16%
100 100
90 90
80 74.61 80
71.61 72.78
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(c) Nt for instance set T3.

(d) N¢ for instance set Tb.

Fig. 1. Average values of Caprs and N; for capacity-loss levels, long-haul transportation setting, availability classes AV1 (dark gray) and AV2 (light gray).

the predicted capacity loss for the contracted bins (parameter BL).
The percentage of capacity contracted (first stage) increases with
the premium cost and decreases as the BL increases. The latter be-
haviour corresponds to the realization that there is little value in
booking in the advance capacity that one will lose for the most
part when it will be necessary to use it.

Finally, in the long-haul transportation context, the average
number of bin types selected when the contract is established (N;)
increases with « and is particularly sensitive when the number
of bin types is relatively low and the predicted future availability
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is highly uncertain (class AV1). When the latter is not a concern,
most of the bins included in the capacity plan are of the same type
(the value of N; is always below 1.9), irrespective of the variations
in the other problem parameters.

We now turn to the urban distribution context, where the ca-
pacity loss is “localized”, that is, it is assumed more predictable
and less widespread than in the long-haul context, with only a
few contracted bins losing their entire capacity, while the others
remain unaffected. The results are nearly the same for all avail-
able classes in this context, and thus we display the results for the
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Fig. 2. Average Caprs and N; for capacity-loss levels, urban distribution setting, availability classes AV1 (dark gray) and AV2 (light gray).

availability class AV1 only in Table 5. To complete those figures,
Fig. 2 depicts the average values of the percentage of the capac-
ity booked at the first stage, Caprs, and the average number of bin
types contracted in the capacity plan, N, for the sets T3 and T5,
the availability classes AV1 (dark gray) and AV2 (light gray), and
three levels of BL, the % of overall capacity loss for the contracted
bins (low = 20%, medium = 50%, and high = 70%).

It is noticeable that an increase in accurate information about
the capacity loss in the urban distribution, compared to the long-
haul transportation, allows the shipper to book in advance the
same capacity as for the case with no capacity loss, but with the
greater managerial flexibility of being able to select among a larger
set of bin types. Thus, the structure of the capacity plan, reflected
in Caprs, the percentage of total capacity contracted at the first
stage does not change in any significant manner with the variation
of most parameters. The values observed (Fig. 2) for the average
number of bin types selected in the capacity plan, N, also support
this observation, raising from an average of 1.87 when three bin
types are available to 2.18 when five types are available (results for
the volatile class AV1). Obviously, this number increases with the
level of capacity loss (given by the BL parameter). This flexibility
would prove beneficial given the availability of new transportation
modes, e.g., cargo-bikes and light rail, for city logistics systems.

7. Conclusions

We focused in this paper on the tactical logistics capacity-
planning problem arising in the supply-chain management con-
text, which is relevant in both the long-haul transportation and
urban distribution contexts. We addressed the planning problem
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faced by a shipper negotiating with a carrier a tactical plan-
contract to secure the capacity, of various types in terms of size
and cost, needed to perform recurring storage or transport activ-
ities of goods, packed in loads of various sizes, to respond to the
demands of its own customers. over a given medium-term plan-
ning horizon. The contract negotiation is undertaken in an uncer-
tain environment.

We introduced, for the first time in the literature, the issue of
the availability of the contracted capacity when needed at opera-
tions time. We explicitly addressed and modeled the uncertainty
related to the loss of contracted capacity, simultaneously with the
uncertainty in demand, i.e., the number and sizes of the loads the
shipper handles at each operation occurrence during the planning
horizon, and the availability and cost of future capacity to be used
in an ad-hoc (spot) manner when needed. We thus introduced the
Stochastic Variable Cost and Size Bin Packing with Capacity Loss,
SVCSBP-LS, problem, generalizing several bin packing problems of
the literature.

We proposed a two-stage stochastic formulation with recourse
to address the SVCSBP-LS, where the first stage is dedicated to se-
lecting the capacity units of each type to include in the tactical
capacity plan, while the second stage concerns the adjustments to
the plan through the acquisition of ad-hoc capacity on the spot
market and the assignment of loads to the available capacity units,
following the revelation of new information on the loads to handle,
the loss of contracted capacity, and the characteristics and costs of
capacity units available on the spot market. The SVCSBP-LS formu-
lation minimizes the total cost of the contracted capacity, plus the
expected costs of handling the loss of capacity and securing the
ad-hoc capacity over the repetitions of activities during the plan-
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ning horizon. We then proposed an efficient progressive-hedging-
based metaheuristic adapted to the complexity of the SVCSBP-LS.

The proposed model and solution method have been validated
for both the long-haul transportation and urban distribution con-
texts, through an extensive experimental campaign on a large set
of instances. These two contexts not only qualify the methodology
for two broad and important application areas but also provide a
rich experimental ground through differences in their physical and
operational characteristics.

Computational results highlight the need to consider explicitly
the uncertainty in capacity-planning applications, as well as the
usefulness of building a stochastic programming model integrating
the uncertainty on the actual volume of contracted capacity which
is expected to be available during operations. Indeed, the benefits
of using the stochastic programming SVCSBP-LS model, compared
to solving deterministic formulations assuming perfect knowledge
of the future, are significant. Not only the deterministic formula-
tion yields infeasible capacity plans in several relevant situations,
but the numerical analysis shows that the stochastic formulation
results in improved operations management (prediction of the ca-
pacity needed) and economic benefits in terms of lower operating
costs.

The solution method also provided the means to explore the
different behaviors of the model in urban distribution and long-
haul transportation settings. Managerial insights were drawn, spe-
cific to each context, concerning the impact on the structure of the
capacity plan of a wide range of variations in the uncertain param-
eters describing the context in which the firms operate, including
the probability of the reduction of contracted capacity, the type
and scope of the capacity loss, and the cost of replacing the lost
capacity.

It is noteworthy that, when uncertainty on the future availabil-
ity of contracted and ad-hoc capacity is high and widespread, it
is advisable to book most capacity in advance; in fact, book more
than expected to be needed when there is a high risk of capac-
ity loss. On the contrary, when there is a high probability of los-
ing a large amount of the contracted capacity but the availabil-
ity of ad-hoc resources is not an issue, then, very little capacity
should be booked in advance. The shipper should rather wait until
the shipping date to purchase the necessary capacity at that mo-
ment’s price. Finally, when the potential loss of capacity is highly
localized, i.e., the loss concerns a few types of capacity only which
might, however, be entirely missing, the shipper should contract
the capacity in advance paying particular attention to the corre-
sponding resource types.

Many interesting developments are still ahead regarding the
tactical capacity planning problem under uncertainty. The gener-
alization of the problem to address other important issues, such
as the selection, and associated contracting, of a limited set of
carriers among several service providers proposing different con-
tract costs, capacity types, availability, and costs, appears of prime
interest. Considering the service-quality rating of various carriers
would nicely enrich this generalization. Extending the range of un-
certainty issues considered to, e.g., the hazard types generating the
loss of capacity or the shortage of ad-hoc resources, and the cor-
relations which may occur among the future availability of con-
tracted and ad-hoc capacity given the type of carrier and disturb-
ing events constitutes a challenging and important research and
development avenue. The continuous development of efficient so-
lution methods, for increasingly complex problem settings consid-
ered and the associated model formulations, is a necessary and
challenging R&D field.

We also believe that the methodology proposed in this paper
and the research stream evoked above are particularly relevant to
the planning of resilient supply chains which have to adjust and
operate in rapidly evolving contexts, as was observed during the
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Covid-19 pandemic and the recovery which started even before the
pandemic is fully controlled. The benefits to decision-support sci-
ence would come from advances in modeling uncertainty and tac-
tical planning in complex situations and efficiently addressing the
corresponding formulations. The benefits to transportation would
follow from, on the one hand, the need to evaluate and understand
in more depth, and model adequately, the various sources of uncer-
tainty and hazards which characterize the application context, and,
on the other hand, the increase in managerial agility with respect
to decision making at planning and operation levels. We plan to
contribute to these areas in the near future, in particular in the
context of the forthcoming developments related to the Italian Re-
covery and Resilience Plan (part of the European recovery plan)
(Minister of Economy & Finance, 2021).
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Appendix A. PH-based meta-heuristic for the SVCSBPP-LS

Build the discretization of the stochastic problem

We first rewrite the SVCSBPP-LS stochastic (1)-(10) model us-
ing a discretized form. Sampling is applied to obtain a set of rep-
resentative scenarios, namely the set S, and these are used to ap-
proximate the expected cost associated with the second stage. For
the first stage, let yj.s =1 if bin j e J¢ of type t € T is selected un-
der scenario s € S and 0 otherwise. For the second stage, define
K =, K™, where K™ is the set of extra bins of type T € T in
scenario s € S, and let Z° be the set of items to pack under sce-
nario s € S. Let g*S be the cost associated with bins of type t € T
in scenario s € S, V]f.s be the actual volume of first-stage bin j e J*
under scenario s € §, and v§ be the volume of item i € Z° in sce-
nario s € S. Then, variable z;* is equal to 1 if and only if extra bin
k € K™ of type t € T is selected in scenario s € S, and xfj and x3,
are item-to-bin assignment variable for scenario s € S.

Given the probability ps of each scenario s € S, the SVCSBPP-LS
problem (1)-(10) can be approximated by the following equivalent
deterministic model:

I;,HZIQZ s Z Z ftyﬁs + Z Z grszlzs + Z Z ct (V[ _ V]t.S)yE.s

seS teT jeJt TeT kekTs teT jeJt
(A1)
st yE =y, VteT,j=1,....|7-1,5€S, (A2)
le?j_;_fok:], VieI’ses, (A3)
jeg keks
> UK < VY, VieT.jeJlses.  (A4)
ieZs
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> v, <VTZ, VieT. keK™ ses, (A5)
ieZs

¥ =y, VteT.jeJ's.s €S, (A.6)
y¥ef{o,1}, VteT, jeJt seSs, (A7)
7 €{0,1}, VtieT, keK™ seS, (A.8)
ije{O,l}, Viel’,je J,s€S, (A.9)
X, € {01}, VieT kek'ses. (A10)

Constraints (A.6) are referred as the non-anticipativity constraints.
They ensure that the first-stage decisions are not tailored to
the scenarios considered in S. Indeed, all the scenario solutions
must be equal to produce a single implementable plan. Thus, the
non-anticipativity constraints link the first-stage variables to the
second-stage variables, so the model is not separable.

To apply Lagrangean relaxation and make the model separa-
ble, we need a different expression of the non-anticipativity con-
straints. Let 373 €{0,1},VteT, je J', be the global capacity plan,
i.e,, the set of bins selected at the first stage. The following con-
straints are equivalent to (A.6):

F=y, VteT, jeJ'.ses, (A11)

¥:e{0,1}, VteT, jeJ" (A12)

Constraints (A.11) force the first-stage solution of each scenario to
be equal to the global capacity plan. Constraints (A.12) are simply
the integrality conditions on the selection of the bins. With this
formulation of the non-anticipativity constraints, when we apply
Lagrangean relaxation to (A.11), we can penalize individually the
difference between the scenario solution and the global solution
of each bin in the plan.

Following the decomposition scheme proposed by Rockafellar &
Wets (1991), we relax constraints (A.11) using an augmented La-
grangean strategy. We thus obtain the following objective function
for the overall problem:

miny 2 3 ps [z T Y Y g Y Y (V- Vi)Yt

seS teT jeJt TeT kekTs teT jeJt
= =t\2
+T T MO -F) 1T T A0 )
teT jeJt teT jeJt

(A13)

where )»5.5, Vje Jt,VteT, and Vs € S, define the Lagrangean mul-
tipliers for the relaxed constraints and p]? is a penalty ratio asso-

ciated with bin j e J¢ of type t e T. Within function (A.13), let us
consider the quadratic term. Given the binary requirements of ys.s

and )75., the term becomes:

—\ 2 - -
22 A=) =203 (05052 = 2055 + pf(55)%) =

teT jeJt teT jeJt
(A14)

=33 (P — 20557, + piF5). (A15)

teT jeJt
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Therefore, the objective function can be formulated as follows:

minyzx 3 Ps |:Z >

t | St pts 65 otot o Pi\yts
= &5 <f +cB5(V Vj)+)‘j ,ijj+ 2>yj+

+Y T gL TR Y p;y';].

TeT keK™s teT jeJt teT jeJt

(A16)

Given constraints (A.2)-(A.10) and the objective function (A.16),
the relaxed problem is not separable by scenario. However, if the
overall plan 375., Vt eT and Vj e J¢, is fixed to a given value vector
(i.e., the expected value of the scenario solutions), then the model
decomposes according to the scenarios in S and the scenario sub-
problems can be expressed as follows:
min 22

(ft+ct5(vtv-§5)+k;sp§yg+

t
?)W DI

teT jeJt TeT keK™s

(A17)
st yE =y, VteT,j=1,....|7-1,5€8, (A18)
Y+ x =1, VieT'ses,  (A19)
jeg keks
D ovixs < VEYY, VteT, jeJl,ses, (A.20)
ieZs
> UK <ViZS, VieT keK™ seS, (A.21)
iezs
yz-se{O,l}, VteT, jeJtses, (A.22)
7 €{0,1}, VteT, keK¥ seS, (A.23)
xj; €{0,1}, Viel’',je J,seS8, (A.24)
x5 € {0, 1}, Viel’,ke K’ seS. (A.25)

Furthermore, by noting that A;S and ,0][. are exogenous constants
for the model (A.17)-(A.25), we can reformulate each scenario sub-
problem as follows. We define 7 =T U7 to be the overall set of
bin types. For each scenario s, let B = 77 UK™ be the set of
available bins of type T in the subproblem and B° = |J; B be
the whole set of bins available in the subproblem. For b € B, let
V[® be the actual volume of bin b (for b e K™, V[ =V7) and let
ff* define the fixed cost associated with bin b. The value of fI* is
given by

= {f;wﬁ(ﬁ—@) A -+
g

(A.26)

Thus, each scenario subproblem can be reduced to a determin-
istic VCSBPP with modified fixed costs and an additional constraint
that ensures an order in the selection of bins of type T € T:

min - >0 > Ky

TeT beB™

(A.27)
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st. Y=y, YTeT.b=1,....[B" -1, (A.28)
fob =1, VieT, (A.29)
beBs

> K, < VYR VTeT,beB™, (A.30)
iezs

yiFef{0,1}, YT eT,be B, (A.31)
X3 € {0, 1}, VieI’,be B, (A.32)

where yJ* =1 if bin b € B™ of type T € T is selected, O otherwise.

Phase 1 of the meta-heuristic

Obtaining consensus among subproblems. At each iteration of
the meta-heuristic, the solutions of the scenario subproblems are
used to build a temporary global solution (the overall capacity
plan). Consensus is then defined as scenario solutions being similar
with regard to the first-stage decisions with the overall capacity
plan and, thus, being similar among themselves. This section de-
scribes how the overall plan is computed. Moreover, we introduce
strategies for the penalty adjustment when nonconsensus is ob-
served and techniques to guide the search process by bounding the
number of bins that can be selected at the first stage.

Defining the overall capacity plan. Let v be the iteration counter
in the pH algorithm. At each iteration, the algorithm solves sub-
problems (A.27)-(A.32), obtaining local solutions yfs” yjf.s", Vse S,

VT e T, and Vb e B™. The subproblem solutions are then combined
in the overall capacity plan ;7? by using the expected value oper-
ator, as shown in Eq. (A.33). The weight used for each component
is the probability ps associated with the corresponding scenario.

)7? = Z psyfs", YT e T.Vbe 5. (A.33)
ses§

Moreover, we define an overall solution based on the number of
bins in the capacity plan. Let §™ =Y, .- yi*” be the total num-
ber of bins of type T e T in the capacity plan for scenario subprob-
lem s € S at iteration v. Equivalently to (A.33), using the expected
value operator on 8™ Vs e S, we can define the overall capacity
plan for each bin type T € T as

g?u _ Zpsa?sv _ Zps Z stv

seS SeS  beBT

_ Z ZPS.VESV — Zygv

beJT s€§ beBT

(A.34)

Eq. (A.34) can be used to define the stopping criterion. Thus, we
consider consensus to be achieved when the values of §7", Vs € S,
are equal to 87V,

It is important to note that (A.33) and (A.34) do not necessarily
produce a feasible capacity plan. When consensus is not achieved,
the overall solution may not satisfy the integrality constraints on
the first-stage decision variables. For nonconvex problems such as
the SVCSBPP-LS using the expected value as an aggregation opera-
tor does not guarantee that the algorithm converges to the optimal
solution. Moreover, it cannot ensure that a good (feasible) solution
will be obtained for the stochastic problem. Therefore, (A.33) and
(A.34) are used as reference solutions with the goal of helping the
search process of the pH algorithm to identify bins for which con-
sensus is possible. Both are used in the penalty adjustment, while
(A.34) is also used in the bounding strategy.

Penalty adjustment strategies. To promote consensus among the
scenario subproblems, we adjust the fixed costs of bin types in
the objective function at each iteration to penalize a lack of im-
plementability and dissimilarity between local solutions and the
overall solution. We propose two different strategies for these ad-
justments, both working at the local level in the sense that they
affect every scenario subproblem separately.
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The first strategy was originally proposed by Rockafellar & Wets
(1991). Using information on the bin selection (i.e., variable ygs" ),
it operates on the fixed costs by changing the Lagrangean multi-
pliers. For a given iteration v, let )LESV be the Lagrangean multi-
plier associated with bin b € B™ for scenario s € S, and let pZ" be
the penalty deriving from the quadratic term. Note that the value
of pb?" is variable-specific. At each iteration, we update the values
)LES" and ,ob?‘), Vb € B™ and Vs € S, as follows:

AT = )»ES(V_U + ph?(u_l)(y?v ) (A.35)

TV
Py
where o > 1 is a given constant and plfo is fixed to a positive value
to ensure that pbﬂ — oo as the number of iterations v increases.

We initialize )»f)o = 0 for each scenario s € S. Eq. (A.35) can then
reduce, increase, or maintain this contribution according to the dif-
ference between the value of the bin-selection variables in the sub-
problem solutions and the overall capacity plan. The initial choice
of plfo is important. An inaccurate choice may cause premature
convergence to a solution that is far from optimal or cause slow
convergence of the search process. To avoid this, we set ,olfo pro-
portional to the fixed cost associated with the bin-selection vari-
able: pf% = max(1, f7/10), Vb € B% and V7 € 7. The value of p°
increases according to (A.36) as the number of iteration grows.

The second penalty adjustment is a heuristic strategy, which di-
rectly tunes the fixed costs of bins of the same type. The goal of
this strategy is to accelerate the search process when the overall
solution is close to consensus. When consensus is close, the dif-
ference between the subproblem solution and the overall solution
may be small, and adjustments (A.35) and (A.36) lose their effec-
tiveness, requiring several iterations to reach consensus.

Let f7¥ be the fixed cost of bin b € B of type T ¢ T for sce-
nario s € S at iteration v. At the beginning of the algorithm (v = 0),
we impose f70 = fT. Then, when at least oy of the variables have
reached consensus, we perturb every subproblem by changing f7V
as follows:

f?s(v—l) M if §TSv-1D o S?(v—l)
f?s(v—1) . % if §Ts(v-1) _ S?(v—l)
frso-1) otherwise.

T(v-1)
b bl

<ap (A.36)

fo = (A.37)

Here M is a constant greater than 1, while oy is a constant such
that 0.5 <oy < 1. The current implementation of this heuristic
strategy uses oy = 0.75 and M = 1.1. The rationale for (A.37) is the
following: if 7= > §7("=1) this means that in the previous it-
eration the number of bins of a given bin type T in scenario s was
larger than the number of bins in the reference solution §7—1.
Thus, the use of bins of type T is penalized by increasing the fixed
cost by M. On the other hand, if §750-1D < 5§70~ we promote
bins of type T by reducing the fixed cost by 1/M.

Bundle fixing. To guide the search process, we introduce a
variable-fixing strategy called bundle fixing.

We restrict the number of bins of each type that can be used,
specifying lower and upper bounds. It should be noticed that it is
equivalent to fix single bin-selection variables, since all bins of a
certain type T are ordered and constraint (A.28) ensures that the
selection of bins follows this order.

Let 5T and S;," be the minimum and maximum number of bins
of type T involved in the overall solution at iteration v:

§IV « min ™, (A.38)
seS
STV« max s, (A.39)

seS

At each iteration, the bundle strategy applies two bounds as fol-
lows. The lower bound &%’ determines a set of compulsory bins
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that must be used in each subproblem; to implement this we set
the decision variables ygs(”“) to one for b=1,...,8%". The upper

bound 3,\3“ is an estimate of the maximum number of bins of type
T available in the next iteration; this reduces the number of deci-
sion variables in the subproblems. To implement this we remove
decision variables yzs(”“) for b= S;," +1,..., 187

Termination criteria. There are to date no theoretical results on
the convergence of the pH algorithm for integer problems. Thus,
we implement three stopping criteria for the search phase of the
proposed meta-heuristic, based on the level of consensus reached
and the number of iterations.

The level of consensus is measured through Egs. (A.38) and
(A.39), as consensus is reached when 8%’ = Snf/,”, VT e T. To speed
up the algorithm, we actually stop the search, and proceed to
Phase 2, as soon as consensus has been reached for all the bin
types except one, type 7', for which 87, < 3F,.

When neither of the preceding conditions has been reached
within a maximum number of iterations (200 in our experiments),
the search is stopped and the meta-heuristic proceeds to the Phase
2.

Phase 2 of the meta-heuristic. Phase 2 is thus invoked either
when consensus is not achieved within a given maximum num-
ber of iterations, or the search was stopped when all but one bin
type were in consensus.

In this case, there is only one bin type T’ with Snf; < S;I/, that
is, not in consensus. Given the efficiency of the item-to-bin heuris-
tic, Phase 2 computes the final solution by iteratively examining
the possible number of bins for T’ (a consensus solution is always
possible because 87\/; is feasible in all scenarios):
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For all § ¢ [S;’, SE] do

« Set the number of bins of type T’ to §;

Solve all the scenario subproblems with the heuristic;

o Check the feasibility of the solutions;

Update the overall solution if a better solution has been
found;

Produce the consensus solution.

When the maximum number of iterations is reached, consensus
is less close. Phase 2 of the meta-heuristic then builds a restricted
version of the formulation (A.1)-(A.10) by fixing the bin-selection
first-stage variables for which consensus has been achieved, to-
gether with the associated item-to-bin assignment variables. The
range of the bin types not in consensus is reduced through soft
variable-fixing strategy. The resulting restricted MIP problem is
solved exactly with a commercial solver.

Appendix B. Analysis of EVPI and VSS

In this appendix, we evaluate how the values of the EVPI and
VSS change depending on the parameters that characterize the ac-
tual volume reduction of first-stage bins (i.e., SL, TL and BL).
B1. Expected value of perfect information

Table B.1 reports the average and maximum percentages EVPI,

showing how different parameters such as the level of the volume
reduction, the percentage of scenarios affected by capacity losses

Table B.1
The impact of SL, TL and BL on EVPI in the urban distribution setting.
SL[%] TL[%] BL[%] Set T3 Set T5
EVPI[%] EVPI[%]max  EVPI[%] EVPI[%]max
50 20-30 16.26 26.62 15.77 23.91
40-50 16.24 28.09 16.00 23.63
60-70 16.90 31.99 16.15 24.90
20 75 20-30 16.30 26.65 15.94 23.90
40-50 16.33 28.47 15.95 23.31
60-70 17.06 33.43 16.08 25.32
100 20-30 16.45 26.13 15.93 23.84
40-50 16.22 28.67 15.80 23.30
60-70 17.00 33.75 16.00 24.48
50 20-30 16.33 26.54 15.98 23.97
40-50 16.10 29.08 15.79 23.23
60-70 17.05 33.93 16.16 25.57
40 75 20-30 16.32 26.66 15.91 23.94
40-50 15.99 29.99 15.61 23.16
60-70 16.66 34.84 15.91 24.34
100 20-30 16.25 26.35 15.92 23.60
40-50 15.68 30.20 15.20 22.81
60-70 16.03 35.49 15.40 23.29
50 20-30 16.23 26.70 16.07 23.75
40-50 15.92 30.10 15.47 23.38
60-70 16.52 48.07 15.99 24.46
60 75 20-30 16.22 26.46 15.88 23.85
40-50 15.47 28.95 15.06 22.81
60-70 15.75 60.76 15.23 23.27
100 20-30 16.11 26.50 15.79 23.56
40-50 15.08 28.00 14.54 22.73
60-70 14.59 50.01 14.21 21.93
50 20-30 16.23 26.55 15.95 23.79
40-50 15.48 29.18 15.20 23.10
60-70 15.84 36.60 15.47 23.81
80 75 20-30 16.05 26.47 15.73 23.83
40-50 15.04 30.29 14.46 22.61
60-70 14.76 51.06 14.20 23.17
100 20-30 15.87 25.68 15.48 23.50
40-50 14.28 26.51 13.90 22.61
60-70 12.99 28.73 12.81 21.73
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Table B.2
The impact of SL, TL and BL on EVPI for instance set T3 in the long-haul transportation setting.
SL[%] TL[%] BL [%] AV1 AV2-AV3
EVPI[%] EVPI%]max EVPI[%] EVPI%]max
50 20-30 18.12 25.59 15.61 24.23
40-50 20.27 34.30 17.28 27.36
60-70 25.21 63.69 19.79 29.42
20 75 20-30 17.73 24.95 14.93 23.54
40-50 20.67 38.63 16.66 24.65
60-70 26.03 63.14 19.80 29.13
100 20-30 16.58 24.60 13.68 2241
40-50 19.01 37.97 15.02 21.84
60-70 27.83 61.04 18.59 25.83
50 20-30 18.30 25.66 15.67 26.48
40-50 23.20 40.98 18.45 29.05
60-70 30.92 63.53 22.30 32.52
40 75 20-30 17.01 24.10 14.31 22.53
40-50 22.16 40.79 17.31 26.21
60-70 32.49 64.40 21.30 31.79
100 20-30 14.75 22.89 11.56 21.09
40-50 19.43 38.07 13.42 20.23
60-70 35.60 65.67 16.50 25.29
50 20-30 18.29 29.49 15.44 26.84
40-50 25.35 50.96 19.16 31.13
60-70 34.46 74.27 23.01 35.04
60 75 20-30 17.09 35.24 13.29 2241
40-50 24.91 52.88 16.71 27.18
60-70 40.30 76.84 19.65 30.42
100 20-30 13.85 33.34 8.91 19.27
40-50 22.10 57.15 9.56 16.96
60-70 43.53 77.34 10.39 18.53
50 20-30 18.54 34.95 15.02 27.57
40-50 27.77 56.97 19.09 32.17
60-70 37.34 75.52 22.34 35.95
80 75 20-30 16.58 3437 12.09 2242
40-50 25.22 53.94 14.95 25.70
60-70 42.52 75.24 16.00 28.90
100 20-30 12.09 31.38 6.27 16.55
40-50 22.20 56.19 3.97 9.24
60-70 46.16 77.35 4.14 8.15

and the probability that a bins type has a capacity reduction, affect
the EVPI. Indeed, the above mentioned aspect is highlighted by the
reduction of the average percentage EVPI with an increase of SL
and TL. For example, Table B.1 highlights that when SL and TL are
respectively equal to 20% and 50%, and BL is between 60% and 70%,
the average and maximum percentages of EVPI are 17% and 32%
for instances with three bin types (set T3), and 16% and 25% for
instance with five bin types (set T5).

Finally, the considerable risk of not being able to pack all items
affects the decisions of the shipper, whose willingness to pay for
the complete information about the future depends on the avail-
ability of bin types. Indeed, when the shipper can include in its
capacity plan a wide range of bin types (in terms of volumes
and types), its decisions are not affected by the availability of the
second-stage bins, regardless of the context (long-haul transporta-
tion or urban distribution). In this case, at the shipping day, most
likely it will be able to pack all the items using different config-
urations of bins or split them in different bin types. This aspect
emerges by the results obtained considering the instances in T5
(see Tables B.1 and B.3).

On the contrary, the knowledge of the future becomes particu-
larly important when the shipper can use a lower number of bin
types and their availability could be limited at the shipping day.
In this case, the risk of not being able to pack all items is high
and the shipper may not be able to switch to other carrier who
supply more capacity, with the consequent risk of unshipped prod-
ucts that turn into a loss of revenues. As highlighted in Table B.2,
this aspect is particularly relevant in the long-haul transportation,
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where considering three types of bins (set T3), the impacts of the
number of scenarios affected by the uncertainty and the probabil-
ity that a bin types has a capacity reduction depend on the avail-
ability of second-stage bins. For example, the average percentage
of EVPI reaches 46% when SL, TL, and BL are equal to 80%, 100%,
and 70%, respectively (see Table B.2).

B1.1. Value of the stochastic solution (VSS)

In this section, we focus on the VSS. Tables from B.4 to B.6 re-
port the average and maximum percentages VSS, showing how dif-
ferent parameters such as the level of the volume reduction, the
percentage of scenarios affected by capacity losses and the proba-
bility that a bins type has a capacity reduction, affect the VSS.

As stated in the Appendix B.1, in the urban distribution, where
the losses are localized, the stochastic approach is more valuable
when there is a low probability of losing a large number of en-
tire bins, which is for the example the case of unavailability of
vans, when they are modeled as bins. Indeed, given the atomiza-
tion of parcel flows (Morganti, Seidel, Blanquart, Dablanc, & Lenz,
2014) and the high performance levels required by the contrac-
tual schemes in terms of number of delivery per day (Perboli &
Rosano, 2019), an event that disrupts the regularity of operations
and makes capacity fully unavailable, could have a huge impact on
the service and profitability levels.

Indeed, in this case, Table B.4 shows that the average VSS de-
creases as SL increases for both sets T3 and T5. The maximum val-
ues of VSS are reached when SL is equal to 20% and BL is 70%. In
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The impact of SL, TL and BL on EVPI for instance set T5 in the long-haul transportation setting.

SL[%] TL[%] BL [%] EVPI[%] EV Pl %]max
50 20-30 16.05 24.71
40-50 17.93 27.18
60-70 20.51 31.33
20 75 20-30 15.39 23.33
40-50 17.65 27.78
60-70 20.70 30.36
100 20-30 13.87 22.11
40-50 15.19 21.97
60-70 18.51 27.49
50 20-30 16.28 25.73
40-50 19.47 30.75
60-70 23.47 35.77
40 75 20-30 15.03 25.03
40-50 18.53 28.08
60-70 22.84 33.54
100 20-30 11.83 19.62
40-50 13.75 20.66
60-70 17.41 26.68
50 20-30 16.31 27.08
40-50 20.49 32.35
60-70 24.92 36.79
60 75 20-30 14.29 24.45
40-50 18.46 31.79
60-70 22.14 34.89
100 20-30 9.42 18.44
40-50 10.34 17.39
60-70 12.04 30.31
80 50 20-30 16.14 28.30
40-50 21.23 34.39
60-70 25.04 43.02
75 20-30 13.32 26.15
40-50 17.44 32.46
60-70 19.51 50.83
100 20-30 7.07 16.82
40-50 533 27.16
60-70 6.61 54.26
Table B.4
The impact of SL, TL and BL on VSS in the urban distribution setting.
SL{%] BL[%] Set T3 Set T5
VSS[%) VSSmax[%] VSS[%] VSSmax[%]
20 20 9.31 23.61 8.24 22.61
30 9.21 24.83 7.98 23.48
40 9.83 28.23 8.25 27.30
50 12.24 32.97 10.26 32.69
60 14.03 38.92 12.74 38.68
70 15.49 44.49 13.82 45.00
40 20 9.24 23.61 7.88 22.61
30 8.86 24.80 7.78 23.15
40 9.31 29.54 7.95 27.27
50 11.65 36.34 9.84 34.15
60 13.11 40.16 11.20 39.31
70 13.02 42.68 11.28 40.68
60 20 9.14 23.61 7.71 22.61
30 8.71 23.27 7.68 22.44
40 8.93 22.39 8.04 22.74
50 11.12 25.71 9.55 23.97
60 12.49 31.96 10.61 30.59
70 12.08 38.24 10.42 27.85
80 20 9.09 23.61 7.75 22.61
30 8.70 22.63 7.74 22.44
40 9.03 22.36 8.09 22.83
50 11.10 25.71 9.61 24.03
60 12.39 32.66 10.45 31.22
70 11.80 30.58 10.29 27.41
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Table B.5
The impact of SL, TL and BL on VSS for instance set T3 in the long-haul transportation setting.
SL[%] TL[%] BL[%] AV1 AV2-AV3
VSS[%] VSSi%Jmax  VSS[%] VS %]max
50 20-30 6.41 21.52 10.42 25.14
40-50 8.32 23.05 13.19 29.33
60-70 11.65 26.89 17.51 35.35
20 75 20-30 6.19 19.88 10.41 27.02
40-50 11.16 23.43 15.84 30.57
60-70 12.00 25.33 19.47 41.04
100 20-30 8.10 23.15 12.01 26.96
40-50 12.08 22.68 17.08 32.72
60-70 13.15 27.41 22.58 43.59
50 20-30 8.31 21.81 11.98 27.75
40-50 12.02 27.09 17.47 36.46
60-70 13.14 33.15 22.21 43.40
40 75 20-30 10.28 22.39 13.57 27.58
40-50 12.27 25.54 18.86 39.70
60-70 14.24 31.47 21.90 57.95
100 20-30 10.24 23.03 14.58 32.92
40-50 11.75 23.87 20.65 47.63
60-70 15.74 32.00 15.03 62.07
50 20-30 9.92 27.21 14.00 33.47
40-50 12.41 2471 19.64 40.68
60-70 16.17 36.68 19.85 80.83
60 75 20-30 10.52 2411 14.74 32.86
40-50 12.32 26.85 18.68 53.22
60-70 23.70 31.38 8.00 78.57
100 20-30 10.67 24.83 15.64 36.01
40-50 11.27 26.44 14.18 62.05
60-70 0.25 0.75 3.33 8.33
50 20-30 10.18 23.70 15.01 32.25
40-50 12.44 28.37 19.10 56.13
60-70 28.13 37.55 8.22 80.40
80 75 20-30 10.36 23.92 14.96 35.19
40-50 16.85 56.65 13.11 74.73
60-70 0.00 0.00 1.95 30.88
100 20-30 9.46 23.52 14.78 44.59
40-50 8.45 20.00 6.46 52.34
60-70 - - 2.92 6.81

this case, the average and maximum percentages of VSS are 15%
and 44% for T3 and 14% and 45% for T5.

In the case of the long-haul transportation (Table B.5), when
we consider instance set T3, when the availability of second-stage
bins is limited and a considerable amount of capacity is likely to
be lost in first-stage bins, the stochastic problem is not worth solv-
ing from a pure cost point of view, while the eventual infeasibility
may be the real issue. In this case, the experimental tests revealed
that when SL and TL are low, VSS increases as BL increases. On
the contrary, when all the parameters have high values, VSS drops
sharply. In particular, when we consider the availability class AV1
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and SL, TL and BL are respectively equal to 80%, 75%, and 70%, and
the average VSS percentage falls to 0%.

As in instance set T3, and even in instance set T5 (see
Table B.6), when SL and TL are low, the value of VSS increases as
BL increases. In particular, the average percentage of VSS reaches
22% when SL, TL, and BL are respectively equal to 20%, 100%, and
70%, while the maximum percentage of VSS reaches 88%, with SL,
TL, and BL respectively equaling 40%, 100%, and 70%. On the con-
trary, when SL and TL are high, the value of VSS decreases as BL
increases and falls to 2% when SL, TL, and BL are respectively equal
to 80%, 75%, and 70%.
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Table B.6
The impact of SL, TL and BL on VSS for instance set T5 in the long-haul transportation setting.
SL[%] TL[%] BL [%] VSS[%] VSS;%]max
50 20-30 8.03 24.23
40-50 10.12 35.71
60-70 15.79 41.69
20 75 20-30 7.94 24.87
40-50 14.92 37.66
60-70 19.66 43.39
100 20-30 11.16 35.40
40-50 17.18 39.62
60-70 21.95 43.35
50 20-30 10.16 33.00
40-50 16.80 38.14
60-70 19.90 43.09
40 75 20-30 13.56 35.41
40-50 17.88 37.49
60-70 20.48 58.54
100 20-30 14.40 35.04
40-50 18.47 45.31
60-70 10.66 88.36
50 20-30 13.39 34.73
40-50 18.10 38.91
60-70 19.28 57.73
60 75 20-30 14.51 35.28
40-50 18.04 78.50
60-70 717 84.46
100 20-30 14.30 34.40
40-50 11.27 64.27
60-70 3.11 23.86
50 20-30 14.66 35.38
40-50 17.49 74.47
60-70 10.46 85.88
80 75 20-30 14.41 35.69
40-50 11.61 63.08
60-70 1.88 19.62
100 20-30 13.71 55.57
40-50 4.46 51.44
60-70 2.68 6.56
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