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Current trends on the use of deep learning methods for image analysis in
energy applications
Mattia Casini1, Paolo De Angelis1, Eliodoro Chiavazzo, Luca Bergamasco ∗

Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy

H I G H L I G H T S

Current application trends of deep learn-
ing for image analysis are analyzed.
Applications related to the energy sector
are systematically classified.
The emerging research trends for energy-
related problems are discussed.
A correlation chart for methods, tasks
and energy applications is proposed.

G R A P H I C A L A B S T R A C T
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A B S T R A C T

Deep learning methods for image analysis are attracting increasing interest for application in a wide range of
different research fields. Here we aim to systematically analyze and discuss the most relevant examples for
the energy sector. To this, we perform a comprehensive literature screening on applications of deep learning
methods for image analysis, classify the results in application macro-areas, and discuss the emerging trends
on the available energy-related cases. The results of the analysis show that, while the exploitation of these
methods for energy applications still appears to be at an early stage, the interest during the last years, in terms
of number of published works, has considerably grown. To provide a systematic overview on the available
energy-related examples, we present a schematic correlation chart mapping algorithms, tasks, and applications.
The reported analysis is intended to provide an up-to-date overview on the current application trends and
potential developments for energy applications in the next future.
. Introduction

During the last years, Artificial Intelligence has undergone sub-
tantial improvements in several different fields [1]. As of today, Ma-
hine Learning (ML) algorithms empower the systems underlying many
spects of our everyday life, such as tailored content recommenda-
ion on social networks, traffic prediction in car navigation maps,
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speech recognition, language translation tools or mail filtering [2]. No
less, ML-based techniques have attracted increasing interest in more
scientifically-oriented research applications, such as materials science
or clinical data analysis [3–6]. One of the most eminent examples of the
potential of a ML approach for scientific applications is the recently-
released AlphaFold engine for protein structure prediction [7]. Deep
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666-5468/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

ttps://doi.org/10.1016/j.egyai.2023.100330
eceived 28 September 2023; Received in revised form 17 November 2023; Accept
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ed 9 December 2023

https://www.elsevier.com/locate/egyai
http://www.elsevier.com/locate/egyai
mailto:luca.bergamasco@polito.it
https://doi.org/10.1016/j.egyai.2023.100330
https://doi.org/10.1016/j.egyai.2023.100330
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyai.2023.100330&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy and AI 15 (2024) 100330M. Casini et al.
Fig. 1. Schematic representation of prominent DNN architectures and their building blocks: the first illustration (a) shows a feed-forward NN for data processing, and its core
component, known as perceptron, is highlighted in the close-up box. The second illustration (b) displays a simplified CNN, designed for image processing. The data flows through
a sequence of convolutional (close-up box) and pooling layers, extracting important features that are then fed to the fully-connected NN through the flattening layer.
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Learning (DL), as a subset of ML models, is considered a particularly
promising method, owing to the possibility it provides of analyzing
large and intricate data structures [8]. Indeed, DL relies on artificial
neural networks with multiple layers, which are intended to mimic the
behavior of the human brain. Although still far from this latter goal,
DL algorithms can effectively learn from data [9].

The advent of Deep Neural Networks (DNN), has opened new and
remarkable possibilities to extract information from images, making
it faster and easier [10]. Pattern and data recognition from digital
images (or videos), known as computer vision [11], is typically best
accomplished in the deep learning framework via Convolutional Neural
Networks (CNNs), also called ConvNet [12]. These latter are specialized
neural networks, particularly suitable for pixel analysis as they rely on
convolution operations [13]. These networks can be used to perform
different tasks on images, such as classification [14], object detec-
tion [15] and image generation [16]. These models have applications
in important technological areas, such as e.g. facial recognition [17],
infrared COVID-19 detection [18] or self-driving cars [19].

Motivated by the increasing range of applications of deep learning
methods for image processing, in this work we target an analysis of
the recent trends on their utilization for scientifically-oriented research
areas, with particular focus on energy-related applications. In this latter
field, data-driven analysis based on images can indeed stand as a
valuable approach for e.g. screening of geographical areas for renew-
able potential assessments [20] or monitoring plant installations [21]
from satellite images, optimization of energy devices using thermo-
graphical images [22], or material design and optimization for energy
conversion and storage using microscopic images [23]. These examples
all support the opportunities that image analysis provide for energy-
related problems at large, especially for those cases where big data
processing is required, or when the complexity of the problem hinders
classical (physics-based) modeling approaches. Thus, here we aim to
screen the available examples on the use of deep learning methods
and image analysis for energy problems, to identify whether specific
emerging trends in the applications arise. To this, we perform a lit-
erature screening on deep learning methods for image analysis on
multiple databases, classifying the resulting energy-related applications
by research macro-areas and discussing the recent trends and possible
2

developments for these techniques in the near future.
The outline of this document is as follows. We first review the salient
aspects of convolutional neural networks and the available main archi-
tectures in Section 2. In Section 3, the results of the literature screening
are reported, along with a discussion of the emerging trends in energy-
related applications. In Section 4, we provide a compact overview on
algorithms, tasks and applications. In Section 5, we discuss the current
limits and perspective challenges for wider adoption and exploitation
of these methods in the energy field. Finally, the conclusions on the
proposed analysis are drawn, with an outlook on possible near-future
developments for the energy sector.

2. Deep neural networks in computer vision

Computer vision is the branch of computer science dealing with
the development of algorithms and techniques to enable computers to
extract information from images and videos, based on a partial repli-
cation of the functionality of the human visual apparatus [11]. Image
analysis algorithms have undergone considerable development during
the last decades, thanks also to completely new possibilities provided
by Machine Learning techniques [24]. Particularly, the introduction of
Deep Learning, has definitely opened to a real boost.

Deep Learning algorithms rely on deep neural networks. These
networks, whose architecture design takes inspiration from the human
brain, consist of a large set of interconnected neurons, which are
organized in multiple layers (hence the name deep). Each neuron is
in charge of elaborating an output, based on the received input. The
layers can be generally summarized to be: an input layer, for input
data acquisition and passage; a variable number of hidden layers, to
erform operations and process information at different levels of detail;
n output layer, for the output of the results [25]. A schematic overview
f this layout is shown in Fig. 1(a). In order to learn from data based on

one such layout, the network must be trained. The training phase allows
to establish the correct weights, which are associated with the different
connections among neurons and allow the model to adapt to the notions
to be learned [26]. The weights are indeed updated during training, to
reinforce the useful correlations between neurons and discourage the
irrelevant ones. A bias is also generally adopted, to offset the output of
each neuron, to be fed to an activation function. This latter function is
used to determine whether a neuron is activated or not, based on the

received input and on a threshold value. Several activation functions
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are available. The most commonly used are the sigmoid and ReLU
functions [27]. In general, the greater the number of hidden layers, the
deeper the network, and the more complex the information that can be
processed. However, an excessive number of layers leads to problems
in their management during the learning phase [28]. For this reason,
several techniques have been developed to maximize the effectiveness
of the network, while maintaining acceptable depths [26].

Thanks to the previous architecture, deep neural networks are in-
herently well-suited for handling large amounts of data. In general, the
network can be fed with any numerical data; however, this data must
comply with the layout of the input layer (i.e. it must be organized in
the form of a row vector of numerical values). In the case of images,
one may then think about flattening the three-dimensional data of an
image into a row vector to feed the input layer with the numerical pixel
values. In the raster format indeed, an image consists of one or multiple
matrices of pixel values. For a generic image, the overall dimension is
given by ℎ×𝑤×𝑐, where ℎ is height, 𝑤 is the width and 𝑐 is the number
f channels (with 𝑐 = 3 for Red, Green and Blue (RGB) color space or
= 1 for grayscale or black and white color models). This approach
ay probably provide a reasonable precision for e.g. the prediction

f classes in extremely simple images; however, the ability to analyze
ore complex images would yield little to no precision. This would be
ue to the image flattening operation, which causes the lost of most of
he information characterizing the image. In images indeed, pixels have
local) dependencies, which are fundamental for information extraction
nd must be preserved while feeding data to the neural network.
esides this possible loss of information, it is also important to consider
hat such an operation would imply a considerable usage of (RAM)
emory. As an example, a binary classification of a low-resolution
00 × 100 × 1 grayscale image using a neural network with just one
idden layer, would require storage of a total ≈ 1 × 108 number of
ariables (i.e. (100 × 100)2 for neural connections between the input
nd hidden layer, and 100 × 100 for neural connections between the
idden and the output layer), and ≈ 1 × 104 bias (i.e. 100 × 100 + 1 for

the neurons in the hidden and the output layers). Considering double
precision floating point (64 bits) data, an estimated total of 6.4 Gbit
would be required.

Thus, a dedicated class of neural networks have been developed
for the purpose: Convolutional Neural Networks (CNNs). These net-
works are built upon the same deep logic previously discussed (see
Fig. 1(b) for a schematic representation), except that here convolution
operations are employed on images to preserve their characteristic
two-dimensional local features.

2.1. Convolutional neural networks

Digital image representation may rely either on raster or vector
format, depending on the data structure underlying the visual output.
In the former case, the image results from a large, discrete set of pixels,
to which color-representative numerical values are associated; in the
latter, the image results from a series of mathematical rules which are
used to render curves and other features on a grid of points. Despite
the advantage of vector graphics over raster in size scalability with no
loss of quality, processing of this format involves particular considera-
tions [29,30] which deviate from the purpose of this work. Thus, here
we shall focus on methods for processing of the raster format only. As
previously introduced, in the raster format, an image consists of one or
multiple matrix pixel values. Image processing typically involves usage
of high-definition pictures (e.g. Full HD format is 1920 × 1080 pixel),
which implies a considerable amount of data to be handled. Hence,
the primary objective is to reduce this data, while preserving relevant
information on local features. In convolutional neural networks, this is
accomplished via convolution operations across multiple layers.

With reference to the general CNN layout shown in Fig. 1(b), the
input image is fed into a first convolutional layer, where the convo-
3

lution is performed. This operation implies that a kernel (also called
filter) is applied throughout the original image. Particularly, the kernel
(i.e. a matrix with predefined size and learnable weights) is made
shift with a given stride along the spanwise directions of the original
image with a zero padding (see Fig. 2(a)). The stride and padding are
hyperparameters of the convolutional layer, and are usually set to one to
preserve the input dimension, as shown in Fig. 2(a.i). At each step, an
element-wise multiplication between the filter and the original image is
performed, and the results are summed (along with the bias) to obtain
the convolved output. Each convolutional layer has multiple filters and
outputs one feature map per filter (see close-up box in Fig. 1(b)), which
highlights the specific patterns of the image that activate the filter the
most. The weights of the filters are not to be prescribed a priori, as
they are adjusted during training to enhance feature extraction [26].
In the case of RGB images, the same logic applies on the three color
channels, and the result is a single-depth convolved feature matrix. One
limit of the so obtained convolved maps is their adherence to the spatial
position of the features in the input image, which may lead to incorrect
results in case of even small rotation or shifting of the original image.
In this view, a more flexible output may be obtained by adjusting the
stride of the convolution; however, the use of a dedicated pooling layer
is more commonly adopted to the purpose (see Fig. 2(b)). The logic
of the operation is similar to convolution, except that the size of the
pooling filter is smaller than that used for the convolution (typically,
2 × 2 pixels with 2 pixel stride [26]), and results in a reduction of
the size of the feature map. Common criteria for this operation, which
is user-specified, are the max and average pooling (where the max
or average value of the mapped filter are respectively considered, as
shown in Fig. 2(b.i) and Fig. 2(b.ii)). Pooling operates on each feature
map separately, to reduce the computational load and memory usage. It
also helps to render the model invariant to image distortions, reducing
the redundancy of the information. The two layers (convolutional and
pooling) form one layer of the convolutional neural network. In deep
networks, the usage of multiple layers allows to obtain a multi-level
feature extraction, being those closer to the input committed to the
extraction of low-level features (such as, e.g., lines), and the ‘‘deeper’’
ones to more high-level features (such as, e.g., shapes).

In this view, one may then think that the development of deeper
and deeper networks via integration of additional hidden layers would
suffice for tackling progressively more complex problems. This strategy,
however, was previously demonstrated to be prone to error propa-
gation [31]. During each training step indeed, the model generates
a set of responses on the training data, which are then compared
with the correct solutions using a loss function [26] (also called cost
function). This function, based on different possible user-selected al-
gorithms, quantifies the errors of the model. To reduce these errors
during training, the back-propagation method can be employed, which
allows for a backward analysis of the network, from the output layer
to the input layer. Particularly, in this method, all the weights are
scrutinized to identify those mostly contributing to the propagation
of errors, based on the gradient of the loss function. The targeted
weights are then modified using an optimizer, in a tentative to reduce
the loss function based on the magnitude of the calculated errors. For
excessively deep networks, this can lead to two distinct yet similarly-
rooted blocking problems: the vanishing gradient and the exploding
gradient problems [26]. As the name suggests, the vanishing gradient
problem arises when the (normalized) gradients of the loss function
with respect to the model parameters become excessively small as they
are back-propagated through the network. Consequently, the initial
layers of the network receive minimal weight updates during train-
ing, resulting in a stagnation of the learning process. Conversely, the
exploding gradient problem occurs when the gradients grow exponen-
tially as they are back-propagated through the network. This leads
to substantial weight updates during training, causing instability and
frequently impeding the network training process from converging to
a meaningful solution. Both issues can severely hinder the training

process of deep neural networks; thus, various techniques have been
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Fig. 2. Effect of the convolutional and pooling layer hyperparameters. In (a) a 6 × 6 input layer (represented by a cyan matrix on the left) is convolved using a 3 × 3 kernel
represented by a magenta matrix on top). By varying the stride and padding hyperparameters, four different feature matrices are produced (shown on the right). Note that the
hosen hyperparameters affect the final output dimension, and only certain combinations (e.g unitary stride and padding in (a.i)) keep the input dimension unchanged. In the
econd example (b), a 6 × 6 feature matrix is subject to max (b.i), average (b.ii), and sum (b.iii) pooling layers to reduce the data and get an output layer (shown as the orange
atrix on the right), which is half of the original size (3 × 3).
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eveloped to mitigate these problems, including: weight initialization,
hanging the activation functions, gradient clipping or architectural
odifications [26].

In the context of architectural modifications, particularly, an im-
ortant advancement in tackling the problem was introduced by the
esNet architectures [32]. The fundamental concept behind ResNets

nvolves incorporating skip connections (also called shortcuts), that
nable the network to bypass one or more layers facilitating smoother
nformation flow throughout the network. This results in a substantial
odification of the convolutional block, which is here called residual

lock. This improvement enhances the learning phase, and ensures a
roper back-propagation flow of the gradients of the loss function. The
resence of skip connections thus guarantees that, even if the layers
ithin the block experience minimal weight updates, the input infor-
ation can still propagate to subsequent layers, effectively mitigating

he vanishing gradient problem. At the same time, the skip connections
estrict the extent of gradient explosion, thanks to bypass of certain
ayers during the back-propagation process. This finally prevents the
radients from accumulating to excessively high values, and mitigates
he instability caused by exploding gradients. This innovative solu-
ion has enabled the successful training of significantly deep neural
etworks, surpassing the 16-layer limit of the VGG16 model to more
han 150 layers of the ResNet152 model, resulting in a significantly
mproved accuracy and performance [31,32].

Finally, in the considered general layout (Fig. 1(b)), Fully-Connected
eural Networks (FCNNs) may be adopted as the final layers, to con-
ense the received information into an output vector [33]. This latter
utput can be used for classification purposes, where each element in
he vector indicates the probability that the input image pertains to a
pecific class, or for regression purposes, where each element in the
ector indicates useful features used for regression.

.2. Fully convolutional networks

Starting from the layout described in the previous section, other
rchitectures may be obtained in case the final, fully connected layer
4

which does not strictly perform convolution) is replaced with other
onvolutional layers [26]. In this case, Fully Convolutional Networks
FCNs) are obtained [37]. In these networks, all layers are indeed
onvolutional, which has two eminent advantages: to provide a more
lexible choice on the input data size (which is not any more con-
trained by the size of the fully connected layer), and a better compu-
ational management (due to the reduced number of parameters with
espect to those of the fully connected layer). The output of a FCN
s then a feature map, which is typically a down-sampled (or down-
ized) version of the input image; this output contains different useful
nformation for, e.g. object detection tasks [38,39], where boxes are
ypically used to highlight one or more target objects along with an
ssociated classification probability. The same result can be obtained
ith multiple steps even with a simple CNN; however, the FCN is
xtremely more efficient in performing this task, as it is able to do it in
single step [37].

The down-sampled output resulting from the FCN part of the net-
ork may also be up-sampled to a larger-size image (eventually, of the

ame size of the input image). This operation may be typically achieved
ia interpolation techniques (e.g. nearest-neighbor, bilinear or bicubic).
n this case, the first FCN, also called encoder, extracts the feature
ap that is then fed to another fully convolutional network, where
econvolution operations are adopted and implemented, resulting in
he so-called decoder of the network (see Fig. 3(a)). Each block of the
ecoder network consists of a repeating structure of up-sampling layers,
ollowed by a few deconvolution layers and an activaction function.
he purpose of this second part of the architecture is to reconstruct the

mage using the information extracted from the encoder part [40,41].
he final overall layout pertains then to an encoder–decoder network.
hese networks are typically employed for image segmentation tasks,
here they receive an image as an input, and provide a segmented
ersion of the original image (see, e.g. Fig. 3(b)). Other applications
nclude object detection [42], background removal [43] and noise
eduction [44].
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Fig. 3. Example of DNN for image segmentation. In (a) a typical infrastructure of an encoder–decoder network is shown. This type of NN involves data passing through a series of
convolutional and pooling layers, similarly to the CNN in Fig. 2(a). Afterwards, the extracted features are passed to the decoder, where several upsampling and de-convolutional
layers are employed to produce the final segmented image, where each pixel is associated to a certain class (here represented by different colors). In (b), an example of segmentation
on the PASCAL VOC 2012 benchmark database [34] is reported. This example compares: Encoding–Decoding Network with Pyramidal representation (EDPNet) by Chen et al. [35],
Pyramid Scene Parsing Network (PSPNet) by Zhao et al. [36] and Fully Convolutional Network with an 8-pixel stride (FCN-8s) by Shelhamer et al. [37]. The image is adapted
from Ref. [35] under CC BY 4.0 license.
3. Energy applications

3.1. Literature screening

In order to analyze the current trends in the scientific interest and
recent applications of Deep Learning methods for image analysis, we
first proceed with a screening of the available literature. To this end,
we rely on a cross-search on three different databases, namely: Scopus,2
Web of Science3 and ScienceDirect,4 all accessed on date 24/07/2023.
These databases were chosen as they provide a comprehensive indexing
of scientific documents, and a readily available user interface. All three
databases also dispose of several options for searching and analyzing
the results. Here we decided to opt for using relevant keywords, to
be searched in the abstract, title and keywords in the case of the
two former databases, and across the whole article in the case of
the latter database. The third database was indeed included for the
possibility it provides to search keywords throughout the whole ar-
ticle. We then selected appropriate keywords for our search, that is:
‘‘Machine Learning image analysis’’, ‘‘Deep Learning image analysis’’,
‘‘Convolutional Neural Networks image analysis’’. Different keywords
were used along with ‘‘image analysis’’ in a tentative to avoid possible
loss of information due to more or less specificity on the tagging of the
employed methods within a document.

The results of the research, for the three different databases and
keywords, are shown in Fig. 4 (left column), where a grouping by
application field has been applied. Note that, this grouping results
from the available filtering options for each database and, in case
of small discrepancy among the categories, the articles have been
manually inserted in the correct collector. We shall first note that
the number of articles retrieved from Scopus (Fig. 4(a.i)) and Web of
Science (Fig. 4(b.i)) show a similar trend in the applications, with a
quite clear bias of the results on ‘‘Computer Science’’, ‘‘Engineering’’
and ‘‘Medicine’’. This polarization may be interpreted based on the
large number of articles dedicated to the development of methods
(‘‘Computer Science’’), a rather generic keyword (‘‘Engineering’’) and
the well-known potential of these methods for the analysis of medical
images (‘‘Medicine’’). Other notable differences, such as ‘‘Mathematics’’
and ‘‘Social Sciences’’, may be tentatively attributed to either a different

2 Scopus database: https://www.scopus.com
3 Web of Science database: https://www.webofscience.com
4 ScienceDirect database: https://www.sciencedirect.com
5

coverage or a different application-filtering mechanism of the two
databases. As for the adopted keywords, the largest number of results is
generally obtained using ‘‘Deep Learning’’ for most of the applications.
This may be interpreted assuming it is a more general keyword than
‘‘Convolutional Neural Networks’’ (which are indeed a subset therein),
and considering that ‘‘Machine Learning’’ is a quite generic keyword
and probably less often used in the context of specific methods (and
thus more specific tags).

As expected, the number of articles retrieved from ScienceDirect
(Fig. 4(c.i)) is consistently larger. This may be attributed to the different
search protocol, where the target keywords can be located anywhere in
the article. Note that, this does not necessarily mean that the retrieved
source is pertinent, as occasional mention of the selected keywords may
occur throughout the body of text (e.g., in the Introduction). A detailed
screening of such a large number of full texts may be achieved via text
mining techniques [46,47]; however, this goes beyond the purpose of
this work. The trends in the applications retrieved from ScienceDirect
also shows noticeable differences from the two previous databases, as
well as a prominent difference in the results using different keywords.
This has led us to conclude that interpretation of the results from a
full-text search requires dedicated text mining tools. So, in order to
build our database for later analyses, we will adopt the results from
the first two databases as a reference, and manually evaluate and add
the relevant sources from the third database (as explained next).

Focusing on the number of articles related to ‘‘Energy’’ applications,
the first two databases show quite consistent number of results and,
based on the adopted filtering criteria, this application seems to still
have little representation within the databases. So, for this applica-
tion, we examine the publication trend during the last years (right
column, panels Fig. 4(a.ii), Fig. 4(b.ii) and Fig. 4(c.ii)), using the ‘‘Deep
Learning’’ keyword. A well-defined increasing trend emerges from all
three databases, demonstrating increasing interest and activity in this
application. Thus, in the following, we proceed and analyze in detail
the specific applications of the available documents within the energy
application field.

Our final database for energy applications is built based on the
articles retrieved using the keyword ‘‘Deep Learning image analysis’’
and filtering by ‘‘Energy’’ field from the abstract indexing in Scopus
and Web of Science, and from the additional articles from ScienceDi-
rect. For these latter documents, we proceeded by sorting the results
of the research by relevance, manually evaluated the pertinence of
the sources, and integrated those that were energy related into our
database. Starting from the most relevant source, and proceeding in

https://www.scopus.com
https://www.webofscience.com
https://www.sciencedirect.com
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Fig. 4. Results of the analysis on the scientific applications of DNN algorithms for image analysis from different journal article databases: (a) Scopus, (b) Web of Science (WoS),
and (c) Science Direct (SciDir). The plots on the left (a.i, b.i, c.i) show the total number of articles obtained by querying each database with the keywords: ‘‘Deep Learning
Image Analysis’’ (light color tone), ‘‘Convolutional Neural Networks Image Analysis’’ (medium color tone) and ‘‘Machine Learning Image Analysis’’ (dark color tone). The results
of each query were then split according to the scientific area of the article. The abbreviations in the labels are: Phys. and Astronomy: Physics and Astronomy; Bioch., Gen. &
Mol. Bio.: Biochemistry, Genetics and Molecular Biology; Earth and Plan. Sci.: Earth and Planetary Sciences; Agric. and Biol. Sci.: Agricultural and Biological Sciences; Environm.
Sci.: Environmental Science. The plots on the right show the number of articles published per year, since 2014, for the energy field only, as obtained by the ‘‘Deep Learning
Image Analysis’’ keyword. The hatched bar for the year 2023 represents a forecast obtained by interpolating an exponential law, using the number of articles between the years
2020–2022.
descending order, the pertinence was found to be reduced to little
after few tens of documents. Using this procedure, 16 pertinent ar-
ticles (which were not present within the results from the two first
databases) were found and included in our database. Based on the
adopted screening procedure, our final database for energy applications
consists of 152 total articles. Fig. 5 shows a compact visual summary
of the adopted protocol for the systematic literature screening, inspired
by the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement [45]. One final consideration on this
database is that, articles falling within other categories than ‘‘Energy’’,
such as ‘‘Materials Science’’ or ‘‘Environmental Science’’, may still be
relevant for our analysis. To overcome possible loss of information, we
manually checked the results in these areas and found that the results
of interest for our purposes were all already present in the ‘‘energy’’
search.

At an in-depth analysis of the articles classified as energy related in
our database, a quite heterogeneous situation of specific applications
emerged. Thus, we decided to further categorize the articles based on
three different levels of application: Systems & Policies, for applications
to large power plants or geographic data processing; Devices, for en-
ergy devices; Materials, which includes articles related to materials for
6

energy conversion and storage. An overview of this categorization is
shown in Fig. 6, with the actual share on the number of articles in our
final database. The specific topical coverage for all the articles in each
category is analyzed in the next sections.

3.2. Systems & policies

Consistently with the increasing global demand for energy sustain-
ability and migration from fossil to renewable resources [51], articles
falling within this category mostly generally focus on improvement and
monitoring of energy conversion and distribution systems in the solar
and wind sectors.

The number of solar and wind power plants has increased signifi-
cantly in recent years, due to the growing interest in renewable energy
utilization [52,53]. So, the importance of maintaining high standards
of efficiency and reliability has acquired major importance, towards
a reduction of costs with an optimized energy production. For this
reason, a number of methods have been developed that use neural
networks to detect the occurrence of defects or anomalies in photo-
voltaic modules [54–56] or wind turbines [57–59], and the recognition
of the type of defect. For example, in [60,61] images are processed
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Fig. 5. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram [45] illustrating the evolution of the database throughout our analysis, according
to the following stages: Identification, Screening and Included. For each database, namely Scopus, Web of Science (WoS), and Science Direct (SciDir), identification has been obtained
ccording to three queries (Q1, Q2, Q3) using different keywords. The articles retrieved from the ‘‘Deep Learning Image Analysis’’ query underwent then a screening, to refine
he selection to only those papers specifically relevant to DL applications in the Energy field. For SciDir, a total of ca. n = 600 full texts were selected by pertinence during the

screening and analyzed within the total n∗ results. Finally, in the last step, duplicates were excluded to obtain our final database of included 152 entries.
Fig. 6. Tree-map plot of the energy-related articles resulting from the union of the three databases. The energy-related articles were categorized according to the scale of the
energy application, i.e. Systems & Policies, Devices, and Materials. The percentage shown in parentheses indicates the percentage of the articles for each of the three categories with
respect to the total number of energy-related articles. We further divided each category based on the area of application. For Systems & Policies, the sub-categories were Solar
and Wind energy conversion, and Power plants. In the Device category, we found applications related to thermal image analysis and state of charge of batteries. Finally, for the
Materials category, all articles fall within energy storage applications. The percentage of each sub-category represents the fraction of articles compared to the total number of
articles in its category.
using a convolutional neural network that performs a classification,
detecting eventual defects, while in [62] a convolutional encoder de-
coder model, called U-Net, is used to perform semantic segmentation
from electroluminescence images, segmenting any defect in the images.
Weather events, that may interfere with the proper operation of power
generation, are also included in the analyses, such as partial coverage
of solar panels due to snow [63], which uses combined pre-processing
techniques, convolutional neural networks and machine learning; other
studies analyze points of ice formation on the surface of wind turbine
7

blades [64]. Using these methods, it is thus possible to intervene
promptly, ensuring the proper functionality of the plant.

Among the major challenges of these energy sources, other studies
address their uncertain and volatile characteristics, which imply the
need to ensure the security and stability of energy production, for both
solar and wind, by forecasting and organizing the production. Forecast-
ing can be divided into three categories: day-ahead and intra-hours,
which are called long and mid term forecasting, and minutes-ahead
previsions which are called nowcasting [65]. The studies requires no
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Fig. 7. Examples of how neural networks (NN) are applied to image analysis for each scale of energy application. In the first example (a), the Envisioning CLoud Induced
Perturbations in Solar Energy (ECLIPSE) algorithm, developed by Paletta et al. [48], predicts and segments clouds in the sky to determine future irradiance levels and associated
uncertainties. This can help to predict the solar energy output and improve energy-grid management. The image is adapted from Ref. [48] under CC BY 4.0 license. The second
example (b) shows an infrared detection system developed by Xia et al. [49] used for monitoring and diagnosing faults in electrical devices (in this case, insulators) of the electric
power grid. The image is adapted from Ref. [49] under CC BY 4.0 license. The last example (c) is the result of the NN model developed by Kumar et al. [50]. This model predicts
the growth of the Solid Electrolyte Interphase (SEI) dendritic electrodeposits on copper electrodes, which is an important degradation mechanism in batteries. Due to its intrinsic
multi-scale nature, it is challenging to predict its growth using physics-based models, and here Kumar et al. show how the data-driven models are a valid alternative. The image
is adapted from Ref. [50] under CC BY 4.0 license.
numerical data, but only sky images as input for CNN architectures
to perform previsions, mostly for the solar case [66–70], but also for
wind prediction [71–73]. These data-driven ML and DL methods pro-
vide new opportunities to significantly reduce processing time and to
continuously refine the output prediction, which supports the emerging
interest. Recent research shows that significantly accurate predictions
are possible [72,74].

An example of these applications is shown in Fig. 7(a), where the
model keeps track of the cloud motion from sky images for short
term prediction of irradiance levels and extract information on the
local irradiance map [48]. Particularly, here the neural network, which
receives an RGB image as an input, is made up of five different modules.
The first two are a Spatial Encoder and a Temporal Encoder, which
are a 2D and a 3D convolutional blocks respectively, used to extract
the image features and temporal features. The third is a Future State
Prediction module, which is a convolutional memory-supported module,
used to elaborate the features extracted by the previous modules and to
provide the short-term predictions. The last two modules are employed
to generate the visual output. Particularly, the fourth is a decoder,
consisting of convolutional and up-sampling layers, to generate a seg-
mented image in which the sky, clouds and sun are classified. Finally,
the last Irradiance Module, consists of convolutional layers followed
by a fully connected network, and it is used to output the irradiance
map. Fig. 7(a) shows five sequential images with a 2 min gap from
each other (on the rows, from left to right), and the RGB images, the
correct segmentation, the segmentation from the model with a square
highlighting the position of the sun, and a close up on the sun to
indicate if there is partial or full cloud coverage (on the columns, from
top to bottom).

Another relevant application concerns the analysis of the territory,
with two different purposes: to evaluate the areas with the highest
potential for energy production [20,75], or to count the number of
plants already in place. As regards the first purpose, the use of FCN
has been suggested to predict annual energy production of a wind
plant depending on two input data, the design of the plant and lo-
cal wind conditions [76]. Other studies analyze the solar potential
of rooftops [77]. Here, a FCN performs segmentation of fisheye sky
images; then, from the segmented images, features used to calculate
the solar potential are extracted. Similarly, satellite images and con-
volutional encoder–decoder networks have been used to perform data
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extraction though semantic segmentation for rooftop potentials [78].
Here, the rooftops are classified and differentiated from e.g. streets and
other objects; then, a software is employed to transform the segmen-
tation into vector files to compute surfaces and perimeters. Finally, a
filter is used to remove unsuitable areas for PV installations (e.g., in
this case, those smaller then 5 m2).

Finally, counting the number of installed plants has particular rel-
evance for the analysis and monitoring of their growth with respect
to previous years and for their utilization. Here, relevant works have
proposed modifications to a pre-existing CNN, called DeepSolar [79],
to perform a segmentation of the images, and obtain the number of el-
ements classified as PV plants [21]. Several other examples within this
research field are available [80–84], which have particular relevance
in the context of a general assessment on the utilization of renewable
sources over large-scale territories (e.g. country-scale level) and may
then be helpful for policy makers and energy planning.

3.3. Devices

At the level of energy devices, a quite diversified picture emerges
in the specific applications, with some aspects akin to those discussed
in the previous section. In general, two main research lines can be
outlined: analyses on infrared images for generic thermal monitoring,
and analyses on the state of charge of batteries.

Analyses of infrared images include examples on malfunction de-
tection in power and electrical equipment [22], where different CNN
architectures are used for fault detection thanks to the infrared image
analysis and classification, or on cooling devices [85], where CNNs are
used for multi-classification of different fault conditions of a radiator,
or for motors [85–87]. In these cases, the analyses help both to flag the
problems for prompt action, and to determine the frequency and typol-
ogy of possible defects. Other efforts focus on the recognition of thermal
events [88,89], using FCNNs for classification and object detection on
infrared images, detecting the hot spots. Another interesting application
relates to combustion systems, where Deep Learning methods can be
efficiently exploited for process optimization. Here, several examples of
different solutions for the analysis and monitoring of target phenomena
are available [90], with the main objective to improve the performance
of different devices in operation.
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An example application of these methods at device level is shown in
Fig. 7(b). Here, a Mask R-CNN (a modified CNN architecture, typically
used to perform object detection and image segmentation [91]) was
employed to detect target objects in infrared thermographic images (top
of the panel) and, following a conversion from RGB to grayscale, to
extract temperature values (bottom of the panel) at each point of the
grayscale image [49].

Finally, few other works can also be mentioned on other different
thermally-related processes, such as the analysis of emissions through
image analysis [92], or thermal distributions and dispersion to target
and mitigate unintended heat losses; an example of this latter appli-
cation is reported in [93], where a convolutional encoder–decoder
model is trained using numerical (FEM) images to predict the thermal
performance of buildings.

As far as energy storage is concerned, a research trend outlines on
batteries, and on the monitoring of the state of charge in particular. In
this context indeed, image analysis based on Deep Learning methods
may stand as a valuable approach to help physics-based modeling of
the charging and discharging process in its entire complexity. Examples
can be found on the analysis of the state of charge for a better energy
management in electric vehicles [94], where multiple Neural Networks,
including a CNN for object detection, are used to extract information
and monitor the battery power consumption. Other methods can also
be used for the prediction of the performance in batteries and fuel
cells [95], or for capacity prediction [96]. Fuel cells has been analyzed,
for example, using a CNN architecture for predicting different physical
quantities resorting to images [97]. Neural networks have also been
adopted to recreate synthetic data for the improvement of the battery
utilization, using a convolutional encoder–decoder [98]. Finally, an ad-
ditional relevant application relates to the prediction of the remaining
useful life [99], where Fully CNNs and simple CNNs are used to extract
physical information from images.

3.4. Materials

We shall now turn the attention on articles specifically related to
research on materials for energy purposes. Here, most efforts promptly
emerge on development of materials for lithium-ion batteries and fuel
cells.

For lithium-ion batteries, image analysis based on Deep Learning
methods proves to be particularly effective, as it can help overcoming
major modeling challenges related to the high-dimensionality of the
problem and to the large number of micro-structure characteristics of
the materials. In addition, Deep Learning based approaches may also
alleviate the demanding resources required for more conventional trial-
and-error methodologies [100]. In this view, different methods based
on Deep Learning for image analysis have been developed to encompass
different data sources, such as Scanning Electron Microscopy (SEM),
Transmission Electron Microscopy (TEM), and Scanning Probe Mi-
croscopy (SPM), all discussed theoretically in [23] and more practically
in [101]. Another important aspect for batteries relates to the End
of Life. Clearly, here the possibility of materials analysis for correct
recycling and disposal is key, and Deep Learning can help obtain
optimal results by analyzing X-ray images and perform object detection,
to identify different elements in images [102].

An example at this level of applications is shown in Fig. 7(c). Here, a
method to predict the electro-deposition growth of dendritic copper in
electrochemical cells, without prior detailed knowledge of the system,
was adopted [50]. A convolutional neural network, supported by a
Long Short-Term Memory (LSTM) was used [103]. The convolutions are
performed through the image and time, allowing the model to extract
the relevant features to predict the electro-deposition growth from a
given image. The Figure shows the comparison of the real and predicted
evolution (left and right columns, respectively) at different time steps.

In the case of fuel cells, the problem is more related to the repeti-
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tiveness of the analysis work, which is also time-consuming and can
lead to human errors in the classification [104]. Numerous efforts
have been made in this respect, and promising results have been
obtained on accuracy and better energy management, using Convolu-
tional encoder–decoder for semantic segmentation [105], and different
semantic segmentation algorithms [106–108] used to perform a mi-
crostructural analysis. All these works aim to support and accelerate
research and development of more and more innovative and performing
materials to be used. Finally, an interesting general overview of Ma-
chine Learning and Deep Learning methods for image-based material
analysis can be found in [109,110], which offer insight into the topic
and into possible future directions.

4. Discussion

As a final overview on the presented analysis, we report in Fig. 8
a schematic correlation chart for the available algorithms with respect
to different tasks and applications. The algorithms can be divided into
two main types: Machine Learning and Neural Networks (these latter
being, strictly speaking, a sub-set of the former).

Machine Learning includes algorithms which are typically less de-
manding in terms of computational resources than neural networks;
thus, they can be generally adopted in those cases where the desired
level of accuracy can be obtained with a simple dataset (allowing
faster project development). Here, typical tasks on image analysis
involve regression, classification, segmentation and clustering. For re-
gression, methods include linear, multi-linear or polynomial regres-
sion [111] or LASSO regression [112]; whereas, for classification or
segmentation include K-Nearest Neighbor [113], Support Vector Ma-
chine [114], Naive Bayes [115], Decision Tree [116] and Random
Forest [117]. For clustering, instead, typical ML algorithms include K-
means clustering [118], DBSCAN [119], Gaussian mixture model [120],
Mean-shift [121] or Agglomerative clustering [122].

Neural Networks algorithms include Convolutional Neural Networks
(CNN), Fully-convolutional Networks (FCN) and Encoder–Decoder net-
works, which have all been discussed in this work. Typically, CNN
are best suited for classification and regression [66], whereas FCN
are mostly adopted for object detection and segmentation [76,77].
Encoder–Decoder may be typically employed for image segmentation,
image enhancement, and image generation [41]. Note that, neural
networks is a constantly expanding topic, and several other methods
may be included into this category, such as the Generative-Adversarial
Networks (GANs) [123]. These networks are characterized by two
different modules: the generator, which is trained to generate data, and
the discriminator, whose goal is to detect real data from fake data.
During training, the discriminator forces the generator to improve in
its task in order to generate images that are increasingly similar to
the real ones. Once the training is completed, the generator only is
used for the required task. Typical applications of these algorithms
include image enhancement, which is used to increase the resolution
of an image [124], or to restore the missing parts of an image, or
for image generation, which is used to generate virtual dataset. Dif-
ferent typologies of GANs are available, among the mostly adopted the
following can be mentioned: Vanilla GAN, Conditional GAN (CGAN),
Deep Convolutional GAN (DCGAN), CycleGAN, Style GAN or Super
Resolution GAN (SRGAN) [123,125].

From our analysis, we observed that several tasks can be related
to different specific energy-oriented applications (see Fig. 8). The most
explored applications result in classification, object detection and seg-
mentation for different energy applications, and regression mostly for
research at the materials level (see also Fig. 7). On the other hand,
image enhancement for materials research results to be still little
explored; however, potential applications may include 3D geometry re-
construction from 2D microscopic images [108]. Finally, the remaining
tasks for the presented applications appear to be still little or not yet

explored.
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Fig. 8. Schematic correlation chart of available algorithms, tasks and applications, to assist with the decision-making for the choice of different data-driven models for energy
applications. In the middle of the diagram, a list of the computer-vision tasks (magenta boxes) presented in this work are shown. Each task can be accomplished using a ML
(dark orange boxes) or a NN (light orange) model, listed on the left, depending on the complexity of the problem. Note that some models can perform multiple tasks, which is
determined by the training method and hyperparameters used. On the right, the three scales of the energy applications are shown (cyan boxes): System & Policies, Devices and
Materials. All data-driven tasks can serve all three scales, but the black solid line indicates where our literature analysis shows significant success in applying one model. The gray
line indicates where the community moderately exploits the application, and the dashed black line indicates areas that, based on our analyses, are still little or not yet explored.
Table 1
Overview of key properties, generally observed tasks and related applications in the energy field for Convolutional Neural Networks (CNN), Fully-Convolutional Networks (FCN),
Encoder–Decoder networks (E–D) and Generative Adversarial Networks (GAN) with potential future challenges for an increased exploitation in the energy field.

NN Key properties General tasks Energy applications Energy field Future challenges

CNN ⋅ Efficient feature extraction
⋅ High parameter efficiency
⋅ Robustness to image
distortions
⋅ Computationally intensive

⋅ Classification
⋅ Regression

⋅ Fault and anomaly detection
⋅ Energy consumption
forecasting
⋅ Energy production forecasting

⋅ Wind and PV power
generation systems
⋅ General power plant
monitoring
⋅ Electro-chemical batteries

⋅ Improve resource
handling for large datasets
⋅ Reduce data input
requirements
⋅ Include domain-specific
knowledge

FCN ⋅ Pixel-level output
⋅ Flexibility on input images
⋅ Computationally intensive
⋅ Possible contextual limitation

⋅ Object detection
⋅ Segmentation

⋅ Energy production forecasting
⋅ Recognition of thermal events

⋅ Wind and PV power
generation systems
⋅ Performance analysis of
energy devices

⋅ Improve scaling with
input size
⋅ Improve contextual
inference
⋅ Include domain-specific
knowledge

E–D ⋅ Good contextual capturing
⋅ Versatile architecture for
different tasks
⋅ Possible complex training
⋅ Possible reconstruction loss

⋅ Image segmentation
⋅ Image enhancement
⋅ Image generation

⋅ Spatial energy production
forecasting
⋅ Defect identification
⋅ Thermal performance
prediction
⋅ Synthetic data generation
⋅ Micro-structural analysis

⋅ Energy-efficient building
design
⋅ Fuel cells
⋅ Electro-chemical batteries

⋅ Improve training times
⋅ Improve parallel data
processing
⋅ Include domain-specific
knowledge

GAN ⋅ High-quality image
generation
⋅ Prone to Unsupervised
Learning tasks
⋅ Difficult training stability
⋅ Resource intensive

⋅ Image enhancement
⋅ Resolution increase
⋅ Image reconstruction
⋅ Image generation

⋅ Novel energy pattern
discovery
⋅ Generation of synthetic images

⋅ Wind and PV power
generation systems
⋅ Energy consumption
analysis
⋅ Power plant monitoring

⋅ Improve resource
handling
⋅ Improve training stability
In general, and in perspective, suitable applications for DNN based
mage analysis that still appear to be little or not yet explored, may be
xpected to include particularly those situations where a physics-based
odeling approach can be limited by the complexity of the problem

t hand [126]. As an example, liquid foams, although relevant for a
umber of energy-related problems such as enhanced oil recovery and
arbon capture [127–129], are notably challenging from a modeling
oint of view, due to the wide range of morphological and dynamical
eatures they exhibit at different scales. For this reason, they are indeed
ypically best modeled as simplified mathematical objects [130]; hence,
ata-driven approaches based on images may stand as a valuable
lternative or complementary tools for e.g. time-evolution prediction
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f complex systems based on bubble pattern recognition [131] or foam
structure analysis and optimization [132] for different energy-related
soap film [133,134] and foam-based [135] applications. No less, these
methods may be helpful for the analysis of phase-change dynamics
and optimization for latent heat storage applications [136,137], par-
ticularly, as alternate approaches to e.g. simplified ones [138] for the
analysis of the phase-change propagation front based on image data
acquisition and processing.

Towards further applications, an overview of the key properties
for the different DL methods, along with a summary of the observed
energy-oriented applications available is reported in Table 1. The Table
also reports on the possible perspective challenges for a wider adoption
and further exploitation of these methods for energy applications in the

future, discussed in more detail in the next section.
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5. Current limits and perspective challenges

Based on our analyses, some specific features that DNNs must hold
for their application to energy-related problems emerge with respect
to standard image analysis. These specific features can be generally
summarized as follows.

Data characteristics and quality. Energy systems can often generate
more complex, noisy, or irregular data compared to well-structured
and high-quality images typically used in standard DNN applications.
For example, these can include sensor data from power grids, satel-
lite images for renewable energy assessments, and thermal images
for the analysis of energy efficiency. Therefore, these data may typ-
ically require different pre-processing and specific feature extraction
techniques.

Time evolution dynamics. The analysis of energy systems often re-
quires considering temporal dynamics, such as for load forecasting,
where the data is inherently based on time series and influenced by
many factors, such as weather, the usage patterns, and economic activ-
ities. Standard DNNs for image analysis are not specifically designed to
handle these time-evolution dependencies effectively.

Spatial complexity. In some specific applications, such as smart grid
management or mapping of renewable resources, the spatial complexity
and geographical context are crucial for proper results. Standard image
analysis DNNs are not generally optimized to process and understand
this spatial context, as it is required for energy applications.

Scale and Granularity. Energy data can vary significantly in scale
and granularity. For example, the analysis of data from a single wind
turbine or from a large-scale national power grid, requires different ap-
proaches and tuning. Thus, standard image DNNs may not be efficient
in handling such different data scales without proper modifications.

Regulatory and safety considerations. Energy systems are very often
subject to strict regulatory standards and safety requirements. There-
fore, data-driven models to be used in this sector must be highly
accurate, reliable, and interpretable. Standard DNNs for image analysis
are not generally subject to such specific constraints; thus, applications
to the energy field require proper reliability assessment in this sense.

Integration of domain knowledge. The analysis of energy systems often
requires the integration of domain-specific knowledge into model de-
velopment and assessment, such as engineering principles, which is not
generally required in standard DNNs for image processing. Therefore,
tailored intervention to include this knowledge is generally and often
necessary.

Resource constraints. Standard DNNs for image analysis can be
resource-intensive, as they are not generally subject to specific con-
straints in this regard. On the other hand, energy applications may often
present resource-limited environments, which limits the direct usage of
standard DNNs without proper interventions.

Diverse objectives and metrics. Diverse specific objectives for energy
applications, such as optimizing energy efficiency or predicting failures,
require different metrics for the evaluation of the results (such as,
e.g., accuracy, resilience). These metrics can be very different from
those in standard image analysis; thus, specific metrics should be
developed on a case-by-case bases along with the related tuned model
architectures and training approaches.

The previous required features can then be summarized into the
following perspective challenges for the field: developing models that
can handle noisy and irregular data, incorporate temporal and spatial
dynamics, include domain-specific knowledge into models, and meet
the required accuracy to comply with regulatory and safety standards
in the sector. In order to address these challenges, adaptation and
tuning of state-of-the-art models can be envisioned, involving a multi-
disciplinary effort that combines data science experience, materials
and energy engineering, and regulatory expertise. Regarding the in-
clusion of domain-specific knowledge into models, in particular, the
recently introduced Physics-Informed Neural Networks (PINNs) rep-
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resent a promising pathway [139,140]. These networks allow indeed
inclusion of the information on the governing physical laws into the
learning process for a given problem, which is a significant step for-
ward in blending scientific knowledge with neural network models.
This feature is particularly relevant for the applications in the energy
sector, where the adherence of the results to physical laws and system
dynamics is crucial. Thus, the application of PINNs to image analysis
opens to remarkable possibilities in the field.

Besides, more and more computationally efficient models are re-
quired. Model pruning [141], that is the removal of unnecessary or
redundant parameters from a neural network that do not contribute
significantly to performance, represents a readily available pathway for
faster inference times and lower memory requirements. However, more
systematic advancements on computational efficiency may still require
improvement of the neural network architectures and optimization of
the hardware utilization, levering parallel processing capabilities of the
Graphic Processing Units (GPUs) and Tensor Processing Units (TPUs).

6. Conclusions

In this work, the salient aspects of Machine Learning and Deep
Learning methods for image analysis have been reviewed and dis-
cussed. Based on this methodological ground, a literature screening
has been performed on the related application fields, to outline the
current research trends and analyze possible emerging opportunities.
Particularly, the applications related to the energy sector at large have
been analyzed in detail. The analysis has shown that, while usage of
Deep Learning methods for images appears to be still at the early stage
of exploitation for energy-related applications, an increasing trend
clearly emerges in the number of publications per year.

The database of energy-oriented articles, obtained by a cross-search
on multiple literature resources, has been examined. The retrieved
energy-related applications have been categorized into three different
levels, namely: systems and policies, devices and materials. At the
systems and policies level, most articles have been found to focus on
the improvement and monitoring of energy conversion and distribution
systems in the solar and wind sectors. At the device level, a trend
appears on application to analyses on infrared images for generic
thermal monitoring, and analyses on the state of charge of batteries.
Finally, at the materials level, most of the efforts seem to focus on
the analysis of microscopic images towards improvement of lithium-ion
batteries and fuel cells.

In order to provide a systematic overview of the results obtained, a
schematic correlation chart of available algorithms, tasks and applica-
tions has been presented and discussed. This chart is intended also as a
useful tool to assist with decision-making for the choice of different
data-driven models for energy applications. For the sake of clarity,
we remark that, considering the large extent and possible different
interpretations of ‘‘energy-related’’ applications, this work does not
pretend to be completely exhaustive on the coverage of all possible
examples. Notwithstanding, the presented literature analysis has been
designed to outline the main current and emerging research lines in
the field. In this view, we hope that this work will stimulate further
activities on application of Deep Learning methods for image analysis
in the energy field.
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