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A B S T R A C T   

Especially in densely populated areas, district cooling represents an opportunity to reduce energy consumption 
and emissions. Nevertheless, this technology is characterised by large capital costs which impede its diffusion. As 
a consequence, optimization tools can significantly help to unleash their potential. In this paper, a methodology 
is proposed to combinedly optimize the design and operation of a district cooling system based on a Mixed 
Integer Quadratic Programming. The model is compared to the design only optimization, based on a properly 
tailored heuristic approach. The models, when applied to a case study characterized by seasonal demand, provide 
similar solutions, which differ by 0.5 % in terms of objective value for a standard scenario. The simultaneous 
design and operation optimization does not provide sensible savings with respect to optimizing solely the design. 
A sensitivity analysis is performed to prove the robustness of the results. The results showed that the simulta
neous operation and design optimization would be limited to 1 % of total costs in the case of seasonal cooling 
demand. On the other hand, if the cooling demand persists throughout the year, as in tropical climates, the 
combined optimization provides significant benefits, since these savings reach 4.7 % of total costs.   

1. Introduction 

Building energy consumption accounts for 40 % of total demand and 
36 % of CO2 emissions in Europe [1]. Over the last twenty years, 
building space cooling has more than tripled and is one of the most 
rapidly increasing energy end use sectors [2]. Moreover, it is expected 
that more than two thirds of buildings will have space cooling systems 
installed [3]. By 2050, the cooling demand of residential and commer
cial buildings is estimated to increase by up to 750 % and 275 %, 
respectively [4]. In 2019 the cooling sector was responsible for the 
emission of 1Gton of CO2. Moreover, the global yearly cooling demand 
is estimated to be 1900 TWh of electricity, accounting for the 16 % of 
building electricity consumption. Building space cooling is also 
responsible for high demand peaks during heat waves, which can cause 
blackouts or critical instabilities to the grid. As a consequence, with the 
increasing cooling demand, it is fundamental to invest and rely on more 
efficient technologies. District cooling is a suitable solution in areas with 
large energy density, such as central business districts or commercial 
areas [5], and more in general, buildings with higher cooling demand. 

District cooling systems utilize central production units to supply 
chilled water to connected users through underground insulated pipes 

[6]. They are usually more efficient than individual cooling due to 
different reasons. First of all, in larger chillers the ratio between the 
cooling energy produced and the electricity required, known as energy 
efficiency ratio (EER), is larger with respect to smaller residential 
chillers. Moreover, the more homogeneous load curve and reduced 
peaks in district cooling systems allow the chillers to operate closer to 
their design conditions, maximizing performance [7]. Lastly, thanks to 
the integration with renewable energy sources, the efficiency can further 
increase, and the environmental impact can be minimized [8]. In some 
cases, free cooling from water basins, rivers, or aquifers can be har
nessed, increasing the chillers EER [9,10]. In addition, district cooling 
can also be integrated with waste heat from industrial processes or 
Combined Cooling, Heat and Power plants (CCHP), enabling synergies 
with other energy systems [11,12]. 

On the other hand, district cooling systems are characterized by large 
capital costs, which limit their economic potential, although they can 
provide sensible reductions in terms of energy consumptions and CO2 
emissions [13]. Compared with district heating, the temperature dif
ference between supply and return lines is smaller, therefore larger mass 
flow rates are required to transfer the same amount of thermal power 
[9]. Consequently, larger pipes are necessary, causing a higher impact of 
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piping and pumping costs on the total life-cycle expenditures [14]. 
Furthermore, the energy transfer stations in district cooling systems are 
more expensive, since due to the lower temperature difference, larger 
heat exchangers are required. Moreover, in Europe the heating season is 
much longer than the cooling one, hence the yearly savings are limited 
and have a smaller impact on the total life-cycle costs. However, with 
the increase of electricity cost, the interest in district cooling is rising, 
thanks to the potential increase of economic savings [15,16]. 

In this context, optimization tools represent an opportunity that may 
help to reduce the costs of district cooling systems and to exploit their 
full potential. Several authors have implemented models for the optimal 
design and operation of district cooling systems, including heuristic or 
mixed-integer linear programming models [17]. Powell et al. [18] 
implemented a dynamic programming model for the optimal operation 
of a district cooling system with thermal energy storages. The results 
showed that the model allows to reduce energy consumption by 9.4 % 
and operation expenditures up to 17.4 %. Wang et al. [19] developed a 
hybrid model that includes both data driven and physical modelling to 
describe the functioning of a district cooling system. The hybrid model 
was also coupled with a genetic algorithm to optimize chillers operation. 
The authors introduced variable search bounds in the constraints to limit 
the fluctuations of the variables that have a smaller impact on the 
optimization. Chiam et al. [20] developed a holistic framework for the 
optimal hourly operation of district cooling systems. The model is hi
erarchical, as it is characterised by a genetic algorithm at a master level, 
whose decision variables constitute the parameters for a MILP model at 
inferior level. They optimized simultaneously the flow and temperature 
variables, while respecting non linearities and managed to achieve re
ductions of emissions up to 31 %. Guelpa et al. [21] proposed a reduced 
order model for the simulation of district heating systems. They also 
coupled this model with a genetic algorithm to optimize the operation, 
minimizing the pumping costs. The reduced order model proved to be 
accurate, and the computational cost decreased by 80 % compared to 
physical models. The optimal strategy would allow to save up to 20 % of 
pumping costs with respect to conventional operating conditions. Cox 
et al. [22] implemented a model predictive control strategy based on 
artificial neural networks coupled with a genetic algorithm to optimize 
the operation of a district cooling system integrated with a thermal 
energy storage. The model implemented is able to reduce the operation 
expenditures up to 16 %. Nova-Rincon et al. [23] proposed a dynamic 
programming approach based on 2D orthogonal collocation for the 
operation optimization of district cooling systems. In particular, the 
objective was to select the mass flow rates in order to avoid the low ΔT 
syndrome. Yan et al. [24] proposed a multi-objective optimization 
framework based on a sequential least squares programming algorithm 
for the operation of district cooling systems. The objective was to 
minimize the thermal discomfort and the operation costs. Zhang et al. 
[25] developed a control logic for multi-cold source district cooling 
systems. Moreover, they compared the results in presence or absence of 
ice thermal storage. They showed that thanks to ice thermal storage, it is 
possible to save up to 6.7 % in terms of operating costs. Dominkovic 
et al. [26] evaluated the potential of district cooling in tropical climates 
under different scenarios, using the EnergyPlan optimization tool. The 
results suggested the use of waste heat by means of absorption chillers 
and the use of cold energy storages to balance the electricity surplus of 
intermittent renewable energy sources. Matak et al. [27] modelled the 
integration of a waste-to-energy incineration plant in a district heating 
and cooling system. The results showed that in the summer the thermal 
energy produced by the plant is 33 % higher compared to winter, 
making it particularly attractive for district cooling, especially if thermal 
storage is installed. 

Concerning design optimization of district heating and cooling net
works, different authors proposed heuristic or deterministic algorithms 
to select the optimal network layout, the pipe diameters, the buildings to 
be connected, or the capacity, number and position of production units 
and storages. 

Regarding the optimization of chiller design, Ismaen et al. [28] 
developed a Mixed Integer Linear Programming model to optimize the 
capacities and operation of chillers in a district cooling system. The re
sults showed that, in case of variable cooling demand, the optimal so
lution consists in selecting more chillers and storages of different sizes 
and capacities. In this way, the chillers would operate longer at design 
conditions with maximum efficiency. Alghool et al. [43] developed a 
Mixed Integer Linear Programming to optimize the design and the 
operation of a solar assisted district cooling system. They optimized the 
sizes of solar collectors, absorption and electrical chillers, the storage 
capacity and the annual hourly production schedule. The results showed 
that the solar collectors would provide 46 % of the thermal energy 
required by absorption chillers. 

Different authors optimized the topology of district heating and 
cooling systems, focusing mainly on the layout and on the pipe di
ameters. Chan et al. [29] implemented a genetic algorithm integrated 
with a local search approach for the layout optimization of a district 
cooling network. In particular, they considered a graph in which every 
node is linked to all the other nodes and the problem of finding the 
optimal subtree network that minimizes both piping and pumping cost. 
Zeng et al. [30] developed a mathematical model to establish the 
annualized cost of a district heating and cooling network, based on the 
hourly load and optimized the pipe diameters through an integer 
encoded genetic algorithm. Egberts et al. [31] proposed a hybrid model 
characterised by a MINLP and a genetic algorithm for the optimization 
of the layout and pipe diameters of a district heating network. Moreover, 
the authors solved the problem guaranteeing robustness, taking into 
account the uncertainty of parameters such as demand or energy prices. 
Dobersek and Goricanec [32] optimized the network layout of a district 
heating system, minimizing capital and operation costs through a 
nonlinear algorithm. Al-Noaimi et al. [33] optimized the layout of a 
district cooling system through a MILP model based on an approximate 
decomposition, minimizing the sum of capital and operation costs. They 
considered an initial looped network with different locations for pro
duction units and storages. The objective of their model was to find the 
optimal tree-shaped subnetwork, the diameters and the location and size 
of storages and chillers, while the buildings connected to the network 
were known a priori. Dorfner et al. [34] developed a MILP model to 
optimize the layout and diameters of a district cooling network, 
considering the installation of redundant pipes in case of unavailability 
of some of the chiller plants. They applied the model to the Singapore 
district cooling network case study. 

Other authors optimized the layout of district heating and cooling 
networks by means of heuristic approaches. Allen et al. [35,36] 
considered different case studies and demonstrated that the minimum 
spanning tree coincides with the optimal solution. Other authors sug
gested the use of the shortest path between the production unit and the 
users to select the topology of a thermal network [37,38]. 

Few authors optimized district cooling networks taking into account 
the non-linearity of pressure drops and pumping cost, which can reach 
10 % of total operation expenditures, especially in larger networks. 
Moreover, a few authors optimized the set of users to be connected to a 
district heating and cooling network. Chow et al. [39] investigated on 
the optimal building mix that would be preferable to have in a district 
cooling system in order to have the demand curve as smooth as possible. 
The objective of the optimization was therefore to find the optimal mix 
of buildings that maximized the ratio between average and peak de
mand. Bordin et al. [40] instead, implemented a mathematical model to 
optimize the expansion of existing district heating networks. The goal of 
the algorithm was therefore to select the optimal set of new users that 
should be connected to the existing network maximizing the profits for 
the utility. However, this model does not take into account pumping 
costs, which in the case of district cooling can have an impact on the 
optimal solution. Neri et al. [41] implemented a MILP and a heuristic 
model to optimize the layout and the set of users to be connected to 
district cooling networks, minimizing the sum of capital and operation 
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costs and taking into account the non-linearity of pressure drops and 
pumping costs. The MILP model proved to be more accurate than the 
heuristic, but the latter is more than 90 % more efficient, while the so
lution differs about 1% from the one obtained by the MILP. However, the 
models are limited only to single plant district cooling system and 
thermal energy storage options are not considered. Dominkovic and 
Krajacic [42] implemented a linear programming model to determine 
the optimal share of district cooling in an urban context and the optimal 
size of thermal storage in different scenarios, minimizing the total 
socio-economic costs. They found that in the case of Singapore, the 
optimal solution consists in satisfying 30 % of cooling demand with 
district cooling and the other 70 % with individual cooling solutions. 

The optimal position of production plants in district heating and 
cooling networks has been addressed by few authors. Guelpa et al. [44] 
developed a genetic algorithm to optimize the location of heat pumps in 
a district cooling system to minimize the sum of capital and pumping 
costs. Wang et al. [45] optimized the position of a peak load boiler in a 
district heating network, showing that it should be placed in areas with 
high load density. Khir and Haouari [46] implemented Mixed Integer 
Programming models to optimize the network layout, the pipe di
ameters, the daily production schedule and the position and capacity of 
chillers and storages in a district cooling system. 

From the literature analysis, it emerges that when optimizing the 
design of district cooling networks, most authors focus on one or few 
specific aspects, such as the layout, the pipe diameters, the buildings to 
be connected or the position of the plants. There is hence a clear research 
gap in literature, as no author addressed the problem of simultaneously 
optimizing the buildings to connect to a thermal network and the po
sition of the production units. Indeed, the potential of district cooling 
systems is highly dependent on both factors. The position of centralized 
chillers and storages influences the piping and pumping costs, while the 
set of buildings to be connected to a district cooling system has an 
impact on the capital and operation expenditures. Moreover, the eco
nomic feasibility of connecting a building to a district cooling network 
depends on the position of the chiller plants. As a consequence, opti
mizing both aspects can lead to a major reduction of total costs and a 
higher penetration of district cooling in a defined urban context. How
ever, simultaneously optimizing all the parameters is not trivial, as 
computational cost is larger, especially if the non-linearity of pressure 
drops and pumping power is taken into account. 

In this paper, the simultaneous design and operation optimization 
has been implemented and compared to a design only optimization. The 
design optimization is done by an innovative iterative genetic algorithm 
with the number of variables progressively increased, which allows 
keeping the number of variables low. By using this approach, the model 
starts optimizing the problem with less decision variables, finding an 
initial coarser solution, which is then updated at each iteration, by 
optimizing the problem with an increasing number of variables. The 
combined optimization is done using a Mixed Integer Quadratic Con
strained Programming (MIQCP) model that optimizes both the design 
and the operation schedule of a district cooling network with thermal 
energy storage. The objective of this model is to find a trade-off between 
the minimization of capital and operational expenditures. Lastly, the 
two models are compared by applying them to a case study (analysed in 
different scenarios) and to show the differences between optimizing only 
the design and optimizing both design and operation. A sensitivity 
analysis was also conducted to determine the impact of electricity tariff 
and chiller cost on the trade-off between design and operation 
optimization. 

The main research gaps of the analysis are: 1) show the optimization 
of either the operation and the design of district heating and cooling 
systems 2) propose a novel approach to keep low computational costs for 
design optimization (this opens the possibility to use it for multi- 
scenario analyses) 3) show which are the benefits provided by the 
combined design and operation optimization, instead of design only 
optimization, for different scenarios. 

2. Design optimization 

The goal of this model is to optimize the design of a district cooling 
network minimizing the sum of capital and operation expenditures. In 
particular, the model through a genetic algorithm optimizes the set of 
users that shall be connected and the position of chillers and storages. 
The model is based on the following assumptions.  

• The network is tree-shaped.  
• Thermal losses are neglected, hence the temperature is homogenous 

on both supply and return lines. 
• The cooling power production of every chiller is constant and stor

ages are used for peak shaving and valley filling.  
• The demand of each building is always satisfied by the same chiller. 

This assumption is based on the fact that, in order to minimize 
pumping costs, the cooling demand of buildings should be satisfied 
by chiller plants close to them.  

• Every chiller relies on a specific storage, hence the extra/deficit 
production is absorbed/released always by the same storage). 

The operation is therefore not optimized in this model, since it is 
assumed that the chillers operate at constant load and that the storages 
are sized accordingly. 

The model is characterized by two types of integer decision vari
ables: xi and xj. The variable xi indicates whether the generic user i is 
connected or not to the network and by which chiller is fed. It can range 
between zero and the number of possible chiller locations. If it is equal to 
zero, the user i is not connected to the network, while if it is equal to j, it 
is connected and fed by the chiller indexed with j. Similarly, the variable 
xj indicates on which storage the generic chiller j relies on. Table 1 
summarizes how these variables are encoded. The other variables, such 
as the size of chillers and storages, the mass flow rate flowing in every 
branch of the network, the cooling power production and the cooling 
energy absorbed or released by the storage, are all dependent on xi and 
xj and are evaluated simultaneously with the cost function. The 
nomenclature for indices, the sets and the parameters is defined in Ta
bles 2 and 3, while in Table 4 are shown the values of the main pa
rameters used for the optimizations. The costs for different sizes of 
energy transfer stations are reported in Table 5. 

2.1. Cost function 

The cost function is the sum of capital and operation expenditures, as 
shown by Eq (1): 

costtot = costchillers + costop,chillers + costpiping + costpumping + costETS

+ coststorage (1)  

where.  

• costchillers is the capital cost for the installation of chillers;  
• costop,chillers is the operation cost of chillers;  
• costpiping is the capital cost of piping;  
• costETS is the capital cost for the installation of energy transfer 

stations;  
• coststorage is the capital cost for storage installation. 

The objective is therefore to minimize the total life-cycle costs. The 

Table 1 
Encoding of model variables.  

Variable value Meaning 

xi = 0 Building i not connected 
xi = j Demand of building i is fed by chiller j 
xj = k Chiller j is connected to storage k  

M. Neri et al.                                                                                                                                                                                                                                    



Smart Energy 13 (2024) 100127

4

capital costs represent the initial investments, while the operation costs 
are the sum of total operation expenditures during the lifetime of the 
system, adjusted by an actualization coefficient, which depends on the 
lifetime of the system and on the discount rate. This allows to evaluate 
the present value of future expenditures. 

2.1.1. Capital cost of energy transfer stations 
The size and the cost of energy transfer stations depend on the de

mand peak of the single buildings, whose demand profile are an input of 
the model, hence they are known a priori. The only unknown is whether 
a building is connected to the network or not. Hence, the capital cost of 
energy transfer stations can be defined as: 

costETS =
∑Ut

i|xi>0

cETS,i (2)  

where cETS,i is the cost of the energy transfer station of building i. The 
condition i|xi> 0 indicates that only buildings connected to the district 
cooling network are taken into account. 

2.1.2. Capital cost of chillers and storages 
The capital cost of chillers and storages is proportional to their sizes. 

Concerning the chillers, the model provides two options: individual 
chillers characterized by larger cost per unit of size and centralized 
chillers characterized by lower cost per unit of size. The total capital 
expenditure for chillers is therefore defined as: 

costchillers =
∑Ch

j
cchill,DC ∗ Sj +

∑Ut

i|xi=0

cchill,ind ∗ Si (3)  

where the first term refers to the cost of centralized chillers and the 
second term refers to the cost of individual chillers. The condition i|xi= 0 
indicates that only buildings not connected to the network, hence with 
an individual cooling system, are taken into account. Sj is the size of the 
generic centralized chiller indexed with j, while Si refers to the size of the 
independent chiller of the generic user indexed with i. The size of in
dividual chillers is known a priori, since it depends only on the demand 
peak, which is an input of the model. On the other hand, the size of 
centralized chillers depends on the variables xi and xj, since it was 
assumed that every user is fed by only one chiller and that every chiller 
operates at constant power. The mass flow rate inserted from a generic 
chiller into the network is evaluated as: 

Gt
ext,j = −

1
N
∑T

t

∑Ut

i|xi=j

Gt
ext,i + Losses ∀j ∈ Ch (4)  

where N is the number of time steps and Gt
ext,i is the mass flow rate of 

chilled water requested by the generic user i at time t. The condition 
i|xi = j indicates that only the users fed by chiller j are considered. The 
Losses term refers to the additional mass flow rate that the chillers should 
introduce in order to compensate the heat losses of thermal energy 
storages. This term is calculated by computing the theoretical mass flow 
rate inserted from the chillers and that would be absorbed by the ther
mal energy storages in the ideal case of unitary efficiency and multi
plying it by a loss factor, which itself is evaluated as: 

Lf= 1− ηcharge ∗ ηdischarge (5)  

where ηcharge and ηdischarge are the thermal energy storage efficiencies 
during charge and discharge. The mass flow rates absorbed or released 
by the thermal energy storages are evaluated as stated in Eq. (6): 

Gt
ext,k =

∑Ch

j|xj=k

(

Gt
ext,j +

∑Ut

i|xi=j

Gt
ext,i

)

∀ k ∈ St (6)  

where Gt
ext,k is the generic mass flow rate absorbed/released by the 

Table 2 
Sets and indices defined in both models.  

Set/Index Description 

Ut Set of users 
Ch Set of chillers 
St Set of Storages 
V Set of intermediate nodes 
H Set of pipe diameters 
B Set of network branches 
T Set of time instants 
i Index referring to the generic user 
j Index referring to the generic chiller 
k Index referring to the generic storage 
l Index referring to the generic branch 
v Index referring to the generic intermediate node 
t Index referring to the generic time instant  

Table 3 
Parameters used in both models.  

Parameter Description 

EERDC EER of large-scale chiller in district cooling networks 
EERind EER for small scale chillers in individual cooling systems 
Gt

ext,i Mass flow rate requested by generic user i at time t [kg/s] 
Ll Length of branch l [m] 
ct

el Cost of electricity at time t [€/kWh] 
cchill,DC Cost of centralized chiller per unit of size [€/kW] 
cchill,ind Cost of individual chiller per unit of size [€/kW] 
cstorage Cost of storage per unit of size [€/kWh] 
cETS,i Cost of energy transfer station installed at user i [€] 
ch

pipe Cost of pipe with diameter h per unit of length [€/m] 
ΔT Temperature difference between supply and return [K] 
cp Specific heat [kJ/(kJ*K)] 
nd Duration of cooling season [days] 
ny Life cycle of the system [years] 
r Discount rate [%] 
Δt Time interval between two steps [s] 
N Number of time instants 
max Gh Maximum mass flow rate admissible for a pipe with diameter h [kg/s] 
min Gh Lower bound of the maximum mass flow rate for a pipe with diameter h 

[kg/s] 
ηcharge Charge efficiency of thermal energy storage [%] 
ηdischarge Discharge efficiency of thermal energy storage [%] 
A Incidence matrix  

Table 4 
Values of main parameters.  

Parameter Value 

EERDC 6.5 [47] 
EERind 2.7 [47] 
cstorage 20 €/kWh [48] 
cchill,DC 400 €/kW [47] 
cchill,ind 600 €/kW [47] 
ny 30 y 
nd 60 d 
r 5% 
ΔT 7 ◦C 
ηpump 80 % [49] 
ηcharge 95 % 
ηdischarge 95 % 
N 24 
Δt 1 h  

Table 5 
Cost of energy transfer stations [47].  

Size [kW] 10 100 200 300 500 1000 
Cost [k€] 5.4 44 55 65 79 108  
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generic storage indexed with k at time t. The term in parentheses is the 
extra/deficit mass flow rate that every chiller inserts in the network with 
respect to the users’ demand. The condition j|xj = k indicates that only 
the chillers connected to the k storage are taken into account, as for 
hypothesis it was assumed that the extra/deficit mass flow rate of every 
chiller is always absorbed/released by the same storage. Once the mass 
flow rates are evaluated, the sizes of chillers and storages can be easily 
determined and consequently their cost. The size of the generic chiller is 
therefore given by the cooling power that it has to produce, which is 
equal for all time instances, as hypothesized. 

Sj = Gt
ext,j ∗ cp ∗ ΔT ∀ j ∈ Ch (7)  

where cp is the specific heat and ΔT is the temperature difference be
tween supply and return pipes. The sizes of the storages depend on the 
cumulate function of the cooling energy absorbed/released. In partic
ular, they are equal to the difference between the maximum and the 
minimum of this function. In fact, this value indicates the minimum size 
that a storage must have to be able to satisfy the demand. 

Sk = max
∑t

t=0
Gt

ext,k ∗ cp ∗ ΔT ∗ Δt

− min
∑t

t=0
Gt

ext,k ∗ cp ∗ ΔT ∗ Δt ∀ k ∈ St
(8) 

The capital cost of storages can be then computed as defined in Eq. 
(9): 

coststorage =
∑St

k
Sk ∗ cstorage (9)  

2.1.3. Chillers operation costs 
The operation costs of the chillers are equal to the actualized oper

ation expenditures of the chillers, which depend on the yearly electricity 
consumption, the electricity cost and the lifetime of the system. The 
yearly electricity consumption depends on the EER of the chillers, on the 
cooling demand and on the duration of the cooling season. As a conse
quence, the electricity consumption is evaluated considering a reference 
day and it is multiplied by the number of utilization days of the system 
within a year. This assumption is justified by the fact that the daily 
demand profile tends to be cyclic, as it depends especially on the use of 
the cooling systems, which itself depends on other factors like working 
hours and daily routines. On the other hand, the daily peaks vary and 
depend on the climate conditions. The shape of the demand curve has a 
certain pattern that depends on the type of building and on the users’ 
routines, while the amplitude of the curve depends mostly on the climate 
conditions. Consequently, it is sensate to compute the yearly consump
tion using a typical reference day and the number of usage days. The 
EER depends on the type of chillers. Two possible types have been 
considered: centralized ones with better performances and individual 
ones with lower performances. Eq. (10) defines the operation costs of 
centralized chillers: 

costop,chillers− DC =
∑T

t

∑Ch

j

(Gt
ext,j ∗ cp ∗ ΔT ∗ Δt

EERDC
∗ ct

el

)

∗nd ∗
∑ny

n=1

1
(1 + r)n

(10)  

where r is the discount rate, ny is the chiller lifecycle in years, nd is the 
length of cooling season expressed in days. The first fraction is the ratio 
between the cooling energy produced in the generic time interval and 
the energy efficiency ratio. Consequently, it represents the electrical 
energy required during the generic time interval by the chiller j. By 
multiplying this fraction for the cost of electricity, the electricity 
expenditure of the chiller j over the time interval t is obtained. The daily 
operation expenditures of centralized chillers are given by summing 

over all chillers and time intervals. By multiplying the daily expendi
tures for the length of the cooling season nd, the yearly electricity 
expenditure of centralized chillers is obtained. Lastly, the actualized 
operation costs are given by multiplying the yearly operation costs for 
the actualization factor, which is represented by the last summation 
term. This factor actualizes the expenses that are not faced immediately. 
Similarly, the operation cost of individual chillers is defined in Eq. (11). 

costop,chillers− ind =
∑T

t

∑Ut

i|xi=0

(Gt
ext,i ∗ cp ∗ ΔT ∗ Δt

EERind
∗ ct

el

)

∗nd ∗
∑ny

n=1

1
(1 + r)n

(11)  

where Gt
ext,i is the mass flow rate requested by user i at time t. The 

operation costs of centralized and individual chillers therefore differ, 
due to the different values of EER. In the case of centralized ones, the 
EER is generally higher. The total chillers operation cost is defined as: 

costop,chillers = costop,chillers− DC + costop,chillers− ind (12)  

2.1.4. Piping cost 
In order to evaluate the piping cost, it is necessary to compute first 

the mass flow rates in every branch of the network. Once the mass flow 
rates entering or exiting from each node are evaluated, the mass flow 
rate in every branch can be computed by solving the continuity equation 
in every node, which in matrix form is expressed as the following linear 
system: 

A ∗ Gt + Gt
ext= 0 (13)  

where A is the incidence matrix, Gt is the vector that includes the mass 
flow rates in every branch of the network at time t and Gt

ext is the vector 
of entering/exiting mass flow rates in each node at time t. An incidence 
matrix expresses the relation between nodes and edges of a graph. If the 
node i is an entry node of the edge j, the element aij of the matrix is equal 
to 1, while it is equal to − 1 if i is an exit node. If i is neither an entry nor 
an exit, the element aij is null. The diameters are chosen so that the 
maximum velocity does not exceed 1.5 m/s. For each pipe it is therefore 
selected the smallest diameter that can satisfy this constraint. The piping 
cost can then be evaluated as: 

costpiping =
∑B

l

∑H

h
Ll ∗ xh

l ∗ ch
pipe (14)  

where Ll is the length of the branch l, xh
l is an auxiliary binary variable 

that indicates whether the diameter h is selected for the branch l and 
cpipe

h is the cost per unit of length for a pipe with diameter h. 

2.1.5. Pumping cost 
After the mass flow rates and the pipe diameters have been evalu

ated, the pressure drops and pumping costs can be computed. The 
pressure drop at the generic time instant along the generic pipe is 
calculated as defined in Eq. (15). 

Δpt
l= 8∗

(

f ∗ Ll
Dl
+ βl

)

∗ Gt
l
2

ρ ∗ Dl
4 ∗ π2

+ ρ ∗ g ∗ Δzl (15)  

Where.  

• ρ is the density;  
• f is the friction coefficient;  
• Dl is the diameter of the pipe l;  
• βl is the sum of the coefficients of localized pressure drops;  
• Gl(t) is the mass flow rate flowing in pipe l at time t;  
• g is the gravitational acceleration; 
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• Δzl is the height difference between the exit and entry node of the 
pipe l;  

• Δpl(t) is the pressure drop on the pipe l at time t. 

It is hypothesized that the pumping stations are located in the same 
positions of the chillers and storages, hence in all the nodes in which 
mass flow rate enters into the network. The mechanical power provided 
by the pumps is therefore calculated as defined in Eq. (16): 

Pt
pump,mech =

∑Ch∪St

in

Gt
ext,in ∗ Δpt

in

ρ (16)  

Where the index in refers to the generic chiller or storage node from 
which a mass flow rate is inserted into the network, Δpt

in is the pressure 
increase due to the presence of a pump and ηpump is the efficiency of the 
pump. The electric power required by the pumps instead is computed by 
dividing the mechanical power with the efficiency of the pumps. 

Pt
pump,el =

Pt
pump,mech

ηpump
(17) 

The pumping cost is then evaluated multiplying the energy 
consumed by the pumps in each time interval by the cost of electricity, 
as defined in Eq. (18): 

costpumping =
∑T

t
Pt

pump,el ∗ Δt ∗ ct
el ∗ nd ∗

∑ny

n=1
1

/

(1 + r)n (18)  

2.2. Clustering approach 

The complexity and the computational cost of the model depends on 
the number of variables. In the case of a network with a large number of 

users, the problem may become too complex and it may be difficult for a 
genetic algorithm to converge to the global optimum. As a consequence, 
a clustering approach has been implemented in order to reduce the 
number of variables of the problem. This approach consists in grouping 
the users in clusters based on their distance on the graph. A unique 
decision is taken for all the users part of the same clusters, since it is 
highly probable that users close to each other should be either fed by the 
same chiller or all disconnected from the network. The algorithm 
implemented to group the users in clusters is called “k-minimum span
ning tree” [50] and is formed by the following steps.  

• Find the minimum spanning tree of the network if it presents any 
loops.  

• Delete the k-1 branches.  
• Extract the k subnetworks that formed. 

These k subnetworks represent the clusters and the nodes part of the 
same subnetwork are all part of the same cluster. In Fig. 1 is shown 
schematically how the algorithm works for a simple graph. 

2.3. Iterative procedure 

The clustering approach allows to solve the problem with a lower 
number of variables, easing the convergence to the optimum. However, 
if the number of clusters is too small and its users are far from each other, 
the solution may differ from the optimal one. On the other hand, if a 
large number of clusters is chosen, the algorithm may struggle to 
converge, or it may converge to a local optimum. As a consequence, an 
iterative approach has been implemented, which consists in solving the 
problem with an increasing number of clusters [41]. At each iteration a 
genetic algorithm is used to solve the problem, using the previous known 
solution as a member of the initial population. This method, hence, 

Fig. 1. k-minimum spanning tree algorithm with k = 3.  
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exploits the knowledge of a coarser optimal solution, obtained with a 
lower number of variables and looks for a more accurate one in its 
neighborhood, introducing additional variables. The procedure starts 
with a sufficiently low number of clusters and at each step, a cluster is 
divided in two new clusters. The iterations are stopped when the pre
fixed number of clusters is reached. 

3. Design and operation optimization 

This model has the objective of minimizing the sum of operation and 
capital expenditures of a district cooling network. Differently from the 
heuristic model previously explained, the set of users to be connected is 
an input of the problem and this is not optimized. On the other hand, the 
scheduling of the chillers and storages is optimized simultaneously with 
the design of the system. The model is nonlinear and non-convex and has 
been formulated using the paradigm of Mixed Integer Quadratic Con
strained Programming (MIQCP) and has been solved using Gurobi [51]. 
The reason for which it was chosen a nonlinear non-convex model is 
linked to the presence of bi-linear constraints, whose linearization is 
complex to handle. Table 6 defines the variables of the model, while the 
sets, indices and the parameters are the same already defined for the 
heuristic model in Tables 2 and 3 

3.1. Cost function 

The cost function is the sum of capital and operation costs. In this 
case, the users are all connected to the network, because the number of 
users is already known, therefore the cost of chillers for buildings not 
connected to the network is not considered. Moreover, the cost for en
ergy transfer stations is fixed for the same reason and does not depend on 
the decision variables. The other terms of the cost function are defined as 
in the previous model. 

3.2. Constraints 

The model is characterized by linear and nonlinear constraints, 
which are defined in the following paragraphs. 

3.2.1. Mass balance constraints 
The following constraints ensure that mass balance is respected for 

every type of node. Eq. (19) is the mass balance applied to the chiller 
nodes at a generic time instant. 
∑

l∈B
aj,l ∗ Gt

l + Gt
ext,j = 0 ∀ j ∈ Ch, t ∈ T (19)  

Where aj,l is the element on the jth row and lth column of the incidence 
matrix A. Eq. (20) reports the mass balance applied to the storage nodes 
at a generic time instant. The variable Gt+

ext,k represents the mass flow rate 
absorbed by a storage at time t, while Gt−

ext,k is the mass flow rate released 
at time t. The first variable is positive, while the second is negative, as 
the convention is that the mass flow rate exiting from the network has 
positive sign, while negative if it is entering in the network. 
∑

l∈B
ak,l ∗ Gt

l + Gt+
ext,k + Gt−

ext,k = 0 ∀ k ∈ St, t ∈ T (20) 

Eq. (21) represents the mass balance applied to the user nodes at a 
generic time instant. In this case, the mass flow rate exiting from the 
network is known, since it depends on the demand of the users. 
∑

l∈B
ai,l ∗ Gt

l = − Gt
ext,i ∀ i ∈ Ut, t ∈ T (21)  

Eq. (22) is the mass balance applied to a generic intermediate node v at a 
generic time instant t. These nodes are characterised by null external 
mass flow rates. 
∑

l∈B
av,l ∗ Gt

l = 0 ∀ ν ∕∈ Ut ∪ Ch ∪ St, t ∈ T (22) 

Constraint in Eq. (23) is a balance on the thermal energy storage, 
linking its variation of residual capacity with the mass flow rates 
entering or exiting from it, taking into account the thermal storage ef
ficiency for charge and discharge. 

Ct
k − Ct− 1

k − Gt+
ext,k ∗ cp ∗ ΔT ∗ Δt ∗ ηcharge

−
Gt−

ext,k ∗ cp ∗ ΔT ∗ Δt
ηdischarge

= 0 ∀k ∈ St, t ∈ T
(23) 

Moreover, the additional constraint in Eq. (24) is added in order to 
impose a daily cycle of charge/discharge. 

C0
k − CN

k − G0+
ext,k ∗ cp ∗ ΔT ∗ Δt ∗ ηcharge

−
G0−

ext,k ∗ cp ∗ ΔT ∗ Δt
ηdischarge

= 0 ∀ k ∈ St
(24)  

where the superscripts 0 and N refer to the first and last time steps. 

3.2.2. Capacity constraints 
The constraint in Eq. (25) ensures that the cooling power produced 

by a chiller is not greater than its capacity. 

Gt
ext,j ∗ cp ∗ ΔT ≤ Sj ∀ t ∈ T, j ∈ Ch (25) 

Constraint in Eq. (26) instead ensures that the maximum storage 
capacity is not exceeded. 

Ct
k ≤ Sk ∀k ∈ St, t ∈ T (26)  

3.2.3. Pressure constraints 
Constraint in Eq. (27) defines the pressure drop in a generic pipe. 

Since the pressure drop depends on the square of mass flow rate, a new 
variable called G2t

l is introduced to represent the product between mass 
flow rate and its absolute value. This is different than the square of mass 
flow rate, which is always positive, since in this case the pressure drop 
and the mass flow rate must have the same sign. 

Δpt
l − G2t

l ∗
∑

h∈H
xh

l ∗ Rh
l = 0 ∀ t ∈ T, l ∈ B (27) 

Constraint in Eq. (28) links the pressure at the inlet and outlet of each 
pipe with its pressure drop. The indices lin and lout indicate the input and 
outlet nodes of the generic pipe indexed by l. 

pt
lin − pt

lout
− Δpt

l = 0 ∀ t ∈ T, l ∈ B (28) 

Constraint in Eq. (29) guarantees that the pressure at user nodes is 

Table 6 
List of model variables.  

Sj Size of generic chiller j 

Sk Size of generic storage k 
xh

l Binary variable equal to 1 if the diameter h is selected for pipe l 
Gt

l Mass flow rate flowing in pipe l at time t 
Gt

ext,j Mass flow rate entering from chiller j at time t into the network 
Gt+

ext,k Mass flow rate absorbed from storage k at time t 
Gt−

ext,k Mass flow rate released from storage k at time t 
Ct

k Capacity of the storage k at time t 
Rl Fluid dynamic resistance of pipe l per unit of mass flow rate 
pt

s Pressure on generic node s at time t 
Δpt

l Pressure drop on pipe l at time t 
Gabst

l Absolute value of Gt
l 

Pt
j Pumping power required by pump at chiller node j and time t 

Pkt Pumping power required by pump at storage node k and time t 
G2l

t Product between Gt
l and its absolute value 

Gmaxl Maximum mass flow rate flowing in pipe l 
yGt

l Binary variable that is equal to 1 if the maximum mass flow rate in pipe l 
occurs at time t, otherwise it is equal to 0  
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larger than a minimum value. 

pt
i ≥ pmin ∀ i ∈ Ut, t ∈ T (29) 

The bilinear constraints in Eqs. (30) and (31) define the variables Pt
j 

and Pt
k, which represent the electrical power required by the pumps 

located in chillers and storage nodes. 

Pt
j + Gt

ext,j ∗
pt

j(
ρ ∗ ηpump

) = 0 ∀ j ∈ Ch, t ∈ T (30)  

Pt
k + Gt−

ext,k ∗
pt

k(
ρ ∗ ηpump

) = 0 ∀ k ∈ St, t ∈ T (31) 

Constraint in Eq. (32) defines the variable G2t
l as the product be

tween the mass flow rate flowing in branch l at time t and its absolute 
value. 

G2t
l − Gabst

l ∗ Gt
l = 0 ∀ l ∈ B, t ∈ T (32) 

Absolute value is not a linear function; therefore it is linearized by 
introducing the constraints in Eqs. (33) and (34), which ensure that the 
variable Gabst

l is equal to the absolute value of Gt
l . 

− Gabst
l + Gt

l ≤ 0 ∀ l ∈ B, t ∈ T (33)  

Gabst
l + Gt

l ≥ 0 ∀ l ∈ B, t ∈ T (34)  

3.2.4. Topology constraints 
Constraint (35) guarantees that only one diameter is selected for 

each pipe. 

∑H

h
xh

l = 1 ∀l ∈ B (35) 

Constraints (36) and (37) restrict the maximum mass flow rate in 
each pipe to a defined range. 

Gmaxl −
∑H

h
xh

l ∗ max Gh ≤ 0 ∀ l ∈ B (36)  

Gmaxl −
∑H

h
xh

l ∗ min Gh ≥ 0 ∀ l ∈ B (37) 

Constraints (38) and (39) ensure that the variable Gmaxl is equal to 
the maximum mass flow rate in branch l. These auxiliary constraints 
therefore linearize the max function, introducing additional binary 
variables. The first constraint is a big-M constraint, where M is a con
stant whose value is larger than the upper bound of Gmaxl. Conse
quently, if the maximum occurs at t, yGt

l is equal to zero and in order to 
satisfy both constraints, Gmaxl must be equal to Gabst

l . If the maximum 
occurs at another instant different than t, the first constraint is satisfied 
only if yGt

l is equal to one. 

Gmaxl − yGt
l ∗ M − Gabst

l ≤ 0 ∀ l ∈ B, t ∈ T (38)  

Gabst
l − Gmaxl ≤ 0 ∀ l ∈ B, t ∈ T (39)  

4. Case study 

Both models have been applied to the same case study. It was 
considered the topology of a distribution network of a Northern Italy 
district heating system, shown in Fig. 2. The area is characterized by 108 
users, while three possible positions for chillers and six for storage are 
considered. Each building has a different volume, as represented by the 
radius of the green dots in the figure. The height difference is close to 
zero, hence the gravitational component was neglected in the pressure 
calculations. 

The motivation for this choice of case study is related to the fact that 
this area is well-representative of a residential district in Mediterranean 

areas. As a consequence, although this is the topology of a district 
heating network, it constitutes a realistic case study for the application 
of district cooling in Mediterranean areas. Moreover, the district heating 
topology follows the shape that a district cooling would have, since it is 
built respecting typical urban constraints, such as the presence of 
buildings, roads, underground stations or water and gas piping systems. 

The cooling demand of every user has been calculated for a typical 
summer day using a dynamic model, described in the norm UNI EN ISO 
52016–1 [52], whose inputs are only the building volumes and the 
weather data. The model handles the uncertainty of the thermophysical 
properties through stochastic distributions. The electricity cost was 
extracted by the historical archive of the Italian electricity market. In 
particular, it was considered the monthly average of the day-ahead 
market for January 2022 [53]. Both cooling demand and electricity 
cost profiles are shown in Fig. 3. It can be observed that the demand is 
larger in the time interval between 10 a.m. and 8 p.m., reaching a peak 
demand of about 7 MW. The electricity cost presents two peaks at 8 a.m. 
and 7 p.m. During the night, the cooling demand is null since HVAC 
systems are mainly operated during the day in the warmest hours. 
However, also electricity cost is low, reaching a minimum at 5 a.m., due 
to the lower electricity demand during the night. These profiles suggest 
the possibility to implement power-to-cool strategies. In particular, 
chillers could operate at higher load during the night, when electricity is 
cheaper and the demand is low. The cooling energy could be therefore 
stored and released when the electricity is expensive and demand is 
larger. This strategy has a limit, which depends on the size of chillers and 
pipes. In fact, if only operation costs are considered, the optimal solution 
would be to produce the whole daily cooling demand when the elec
tricity cost is minimum. However, this solution would require extremely 

Fig. 2. Case study topology.  

Fig. 3. Daily profiles of cooling demand and electricity cost.  
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large components and the capital costs would be too large. Conversely, if 
only capital costs are minimized, the solution would consist in a constant 
cooling production, since in this way the size of chillers and pipes would 
be minimum. On the other hand, the operation schedule in this solution 
would not be optimal. As a consequence, one of the goals of this study is 
to determine if there is a trade-off between the two solutions. The 
objective is therefore to verify if it is beneficial installing larger chillers 
and pipes in order to be able to have a better operation schedule and 
obtain major savings. This problem was defined through the model for 
operation and design optimization (MIQCP, section 3). The model for 
the design optimization (heuristic, section 2), instead optimizes the set 
of users to be connected to a district cooling network and the position of 
chillers and storages. 

5. Results 

In this section are presented the results obtained by both optimiza
tion models. The simulations have been carried out on a laptop with the 
CPU Intel Core i7-510 1.8 GHz. 

5.1. Design optimization 

The maximum number of clusters was fixed to 20 and the model took 
25 min to find the optimal solution, which is shown in Fig. 4. 

According to the solution, 104 out of 108 users should be connected 
to the district cooling network and three chillers should be installed, 
each connected to a different storage. Fig. 5 shows the different costs of 
the optimal network. It can be observed that the capital costs are 
dominant and account for 73 % of the total expenditures. In particular, 
the capital costs for piping and energy transfer stations are the highest 
ones, representing the 24 % and 32 % of total costs, respectively. Con
cerning operation expenditures, chillers operation cost is the main one. 
However, pumping is not negligible and accounts for about 11 % of total 
operation expenditures. 

5.2. Design and operation optimization 

The optimal set of users and the network layout found with the 
heuristic algorithm has been considered as an input for the MIQCP 
model. The demand profile is therefore known, while the sizes of chillers 
and storages need to be optimized, as well as their scheduling. The 
optimization was launched and run for three days, but did not converge 
to the global optimum. However, it found a solution with an optimality 
gap of 2 %, which means that the local optimum found is, to the utmost, 

2 % more expensive than the global one. The large computational cost 
and the difficulty to converge is due to the large number of variables and 
the bilinear constraints, which not only are non-linear, but also they 
cause the non-convexity of the problem. In Fig. 6 it is shown the 
resulting optimal network layout. The sizes of chillers and storages are 
slightly different from the ones obtained with the design optimization 
model. In fact, the total storage and chiller capacity is almost the same, 
but it is distributed differently in the two solutions. This is also sum
marized in Table 7. 

In Fig. 7 it is shown the optimal hourly scheduling for chillers and 
storages. It can be observed that the cooling production by the chillers is 
almost constant during the day, since the ratio between the average and 
the peak load is 98 %. The storages are therefore used mainly for peak 
shaving and valley filling. They, in fact, store the extra cooling energy 
produced during the night and to release it when production of chillers 
alone can not satisfy the demand. 

Fig. 8 shows the cost details of this solution and the comparison with 
the design optimization solution. With respect to the solely design 
optimization, the costs are only 0.5 % lower. The results therefore are 
almost equal for the two solutions obtained with the different models. 

6. Sensitivity analysis 

The previous results show that for this case study it is possible to 
design and size district cooling networks considering a constant cooling 

Fig. 4. Optimal network design according to design optimization model.  

Fig. 5. Cost details of optimal district cooling network achieved with design 
optimization. 

Fig. 6. Optimal district cooling topology according to the operation and design 
optimization. 
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power production by the chillers with negligible cost increase. Indeed, 
the results obtained with the model for both design and optimization are 
very similar to the ones obtained with the model for design optimiza
tion. However, the savings obtained by optimal operation depend on the 
electricity cost, cost of equipment and number of cooling days. Elec
tricity cost is highly uncertain, especially nowadays, as it can vary 
sensibly, as a response to market trends and geopolitical crisis. Equip
ment cost is also uncertain, as in literature it is common to find price 
ranges, but not the exact ones, which instead depend on many factors, 
such as the labor cost for installation, which varies from country to 
country. Lastly, the number of cooling days depends mainly on the 
climate zone. 

In this section the results of a sensitivity analysis are presented. This 
is done to determine how these parameters influence the optimization 
results and how the operation strategy of chillers and storages changes 
with larger electricity costs, different costs for equipment installation. 
Hence, the analysis has been carried out on seven different scenarios, 
differing in terms of electricity cost profile, capital cost of centralized 
chillers or number of cooling days. Fig. 9 shows the electricity cost 
profiles considered for this analysis. Scenario 0 indicates the standard 
scenario used in the previous simulations, while in Scenario 1 and Sce
nario 2 two different cost profiles were considered. Scenario 1 is obtained 
increasing by 50 % the electricity cost of Scenario 0. Scenario 2 was 
instead obtained by selecting a day of May 2022, in which it was 
observed a large peak of electricity cost and a wide difference between 
minimum and maximum electricity cost. This therefore does not 
represent a typical profile, observable every day, but it is rather an 
exception and an extreme situation that occurred during a period 
characterized by high electricity cost, due to different external geopo
litical factors. Scenario 2 therefore offers more opportunities for sched
uling optimization. The two scenarios, named Scenario 3 and Scenario 4, 
instead, are obtained by lowering or increasing the capital cost of 
chillers by 20 % with respect to Scenario 0. Lastly, Scenario 5 and 

Scenario 6 are obtained considering a larger number of cooling days and 
the cost profiles used in Scenario 0 and Scenario 2, respectively. These 
two scenarios were considered as well, to determine how the results can 
differ if cooling demand is not seasonal. Table 8 summarizes the pa
rameters used for all the seven scenarios. 

6.1. Results 

In the following subsections the optimal chillers and storages oper
ation is presented for each of the new scenarios. In addition, Fig. 10 
shows the comparison in terms of total costs between design only and 

Table 7 
Chiller and storage sizes.  

Chiller/storage coordinates (x, 
y) 

Size (Operation and design 
opt) 

Size (Design 
opt.) 

(380.8374,679.2562) 4.9 MWh 5.1 MWh 
(141.6696,230.7191) 14.5 MWh 13.9 MWh 
(249.4144, 461.0040) 9.3 MWh 9.0 MWh 
(303.7968, 712.3305) 1.0 MW 0.7 MW 
(157.0443, 499.1148) 0.5 MW 1.0 MW 
(15.3938, 160.3585) 1.6 MW 1.4 MW  

Fig. 7. Optimal chillers and storages hourly scheduling.  

Fig. 8. Cost comparison between the optimal solutions obtained by the 
different models. 

Fig. 9. Electricity cost profiles taken into account.  
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combined optimization model solutions for all the new scenarios. 

6.1.1. Scenario 1 
Fig. 11 reports the hourly chiller and storage operation for scenario 

1, obtained through the model for optimal design and operation. In this 
case, the chillers tend to operate almost constantly during the whole 
day, apart from 8 a.m. and in the evening, when the production is 
sensibly lower. In particular, at 9 p.m. the cooling power produced by 
the chiller is minimum and equal to 2.15 MW, while the maximum is 
3.14 MW. The ratio between average and peak cooling production is 
equal to 95 %, since the load is sensibly lower only in few hours, while 
for the rest of the day it is almost constant. 

As shown in Fig. 10, for Scenario 1 the design and operation opti
mization (MIQCP) model allows to save 0.34 % more in terms of total 
life cycle costs with respect to the solution obtained the design optimi
zation (heuristic). 

6.1.2. Scenario 2 
Fig. 12 shows the optimal hourly operation according to the design 

and operation optimization model for scenario 2. In this case, the 
chillers operation tends to exploit more the variations of the electricity 
cost. The cooling power, indeed, ranges between 0.95 MW and 3.46 
MW. Hence, compared to the Scenario 0, the installed chiller capacity is 
11.6 % larger. On the other hand, the ratio between the average and 
peak cooling production (capacity factor) is 86 %. 

Fig. 10 shows that in Scenario 2 the additional savings that the 
design and operation optimization model allow to achieve amount to 1 
% with respect to design only optimization. 

6.1.3. Scenario 3 
Fig. 13 shows the optimal daily operation according to the design 

and operation optimization model for Scenario 3. Also in this case, the 
cooling production is almost constant during the day. In particular, only 
in the 2 h with highest cost of electricity, the production is lower than 
2.1 MW, while for the remaining 22 h, the chillers operate constantly 
with a total load of 3.05 MW. The ratio between average and maximum 
load is 97 %. 

Fig. 10 shows that in this scenario, optimizing simultaneously 
operation and design would allow to save 0.57 % more with respect to 
optimizing only the design. 

Table 8 
Summary of scenarios.  

Scenario Electricity cost profile Capital cost of 
centralized chillers 

Number of 
cooling days 

0 Standard (January 
2022) 

400 €/kW 60 

1 Middle (January 2022 
+ 50 %) 

400 €/kW 60 

2 High (May 2022) 400 €/kW 60 
3 Standard (January 

2022) 
320 €/kW 60 

4 Standard (January 
2022) 

480 €/kW 60 

5 Standard (January 
2022) 

400 €/kW 300 

6 High (May 2022) 400 €/kW 300  

Fig. 10. Cost comparison between model solutions in different scenarios.  

Fig. 11. Optimal chillers and storages hourly scheduling in scenario 1.  

Fig. 12. Optimal hourly operation for scenario 2.  
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6.1.4. Scenario 4 
Fig. 14 shows the optimal schedule of chillers and storages according 

to the design and operation optimization model for Scenario 4. In this 
case, the chillers operate constantly, with a load of 2.99 MW, hence the 
ratio between average and maximum load is 100 %. 

Fig. 10 shows that for Scenario 4, the design and operation optimi
zation solution is 0.7 % less expensive, with respect to the one obtained 
by the design only optimization model. The reason for the difference, in 
this case is related to the assumption made in the design optimization 
model, for which the cooling production of chillers is discrete, rather 
than continuous, as it depends on the buildings that should be fed. The 
design and optimization model is instead more flexible, since the chillers 
can operate freely as long as the network energy and mass balances are 
respected. 

6.1.5. Scenario 5 
Fig. 15 shows the optimal dispatch of cooling power from chillers 

and storages for Scenario 5. 
The maximum, minimum and average cooling power produced by 

the chillers are 3.54 MW, 1.61 MW and 3.04 MW, respectively. The 
chiller capacity factor is therefore 86 %, which is sensibly lower 
compared to scenario 0. 

Fig. 10 shows that in this case, optimizing simultaneously operation 
and design allows to save 0.4 % more in terms of total life cycle costs. 

6.1.6. Scenario 6 
Fig. 16 shows the optimal daily operation for scenario 6. It can be 

observed that the chiller production is very discontinuous and not 
constant. The maximum cooling power produced by the chillers is 5.4 
MW, with a capacity factor of 56 %. 

From Fig. 10 it can be observed that in Scenario 6, characterised by 
the maximum fluctuation of electricity cost and days of use of the district 
cooling system, optimizing simultaneously design and operation allows 

to save 4.7 % more with respect to optimizing only the design. It can also 
be observed that in the design and operation optimization solution the 
cost for chillers installation is higher, but this is compensated by lower 
cost of chillers operation and pumping. 

7. Discussion 

The design optimization model manages to optimize simultaneously 
the position of chillers and storages and the set of buildings to be con
nected, while keeping the computational time low, thanks to the com
bination of the iterative algorithm and the clustering approach. The 
chillers load is assumed to be constant and equal to the average cooling 
demand, minimizing the sizes. Hence in case of larger electricity costs, 
with daily fluctuations, the model may provide non-optimal results, as it 
optimizes only the design. On the other hand, the sensitivity analysis 
showed that if cooling demand is seasonal, even with larger volatility in 
the electricity prices, the relative difference in terms of objective func
tion from the optimum found with a design and operation optimization 
model is around 1 %. By lowering the optimality gap of the design and 
operation optimization model, its solution may improve and the dif
ference between the two models could rise, theoretically up to 3 %. 
Nevertheless, lowering the optimality gap would require a larger 
computational time and it is not guaranteed that a better solution will be 
found. Indeed, the optimality gap may be reduced by either improving 
the solution or by finding a new lower limit of the theoretical global 
optimum. 

The design and operation optimization model managed to optimize 
both the size of the equipment and the operating schedule. If on one 
hand the model is more accurate than the first one, on the other hand it 
is highly computationally expensive, due to the complexity and presence 
of non-linearities. Moreover, it requires the electricity cost profile as an 
input, which is uncertain as well and may change in the future. How
ever, the model could be useful to select suitable equipment sizes, on the 
basis of predictions on future energy prices. 

Fig. 13. Optimal operation in scenario 3.  

Fig. 14. Optimal hourly operation for scenario 4.  

Fig. 15. Optimal hourly operation for scenario 5.  

Fig. 16. Optimal hourly operation for scenario 6.  
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The applicability of both models depends on the assumptions under 
which they are built. In particular, it is limited to tree-shaped networks. 
However, in case of looped networks, it could be possible to find 
equivalent tree-shaped networks, as shown in Ref. [21]. Moreover, since 
thermal losses and temperature evolution are neglected, in the case of 
uninsulated pipes, the models could slightly underestimate the opera
tion costs. On the other hand, if the networks are relatively small and the 
temperature difference between the chilled water and the ground is 
sufficiently low, these phenomena can be neglected without sensible 
losses in accuracy. Additionally, the models assume a constant Energy 
Efficiency Ratio (EER), which is suitable for systems with constant 
supply chilled water and stable outdoor conditions. In the case of 
non-constant condenser temperatures, due to thermal excursion, these 
can be still taken into account by both models, considering a daily curve 
of EER. In that case, larger differences between the two models would be 
expected, due to the higher EER of chillers during the night. 

The results obtained for scenarios from 0 to 4, show that the 
scheduling optimization of the district cooling network does not influ
ence the design, hence operation and design optimization problems can 
be separated. The priority is to minimize the capital expenditures, which 
represent most of life cycle costs. The optimal solution suggests, indeed, 
to operate the chillers at constant load, minimizing in this way the 
capital costs, since pipes and chillers would need smaller sizes due to the 
absence of peak load. Hence, the impact of operation optimization is 
negligible and optimizing simultaneously the operation and the design 
of a district cooling network is not necessary. Similar results are ach
ieved with different electricity tariffs; with larger electricity price fluc
tuations, operation optimization may provide additional savings. The 
sensitivity analysis also showed that by lowering the chiller costs, the 
results do not change sensibly. The results hence confirmed that within 
the ranges of chiller and electricity costs considered in the sensitivity 
analysis, the size of chillers in district cooling systems can be chosen so 
that they can operate at constant load. The installation of larger chillers 
would be justified only for larger differences between peak and off-peak 
electricity prices. In that case, the operation savings would be larger and 
could compensate the larger initial investment. Further cost savings may 
be obtained by optimizing a wider time period. These results are indeed 
based on the optimization of a reference day, limiting the storage 
strategy to 24 h. By optimizing longer periods, seasonal storage strate
gies could be considered, but larger sizes would be required, which 
usually are limited due to space constraints in urban areas. 

The sensitivity analysis also showed that if cooling demand is not 
seasonal but is present throughout the entire year (scenarios 5 and 6), as 
in tropical climates, the impact of optimizing simultaneously design and 
operation is higher. Indeed, in these cases the relative difference in 
terms of total costs between the two models can be as high as 4.7 % if 
there is sufficient difference between off-peak and peak tariffs. Hence, if 
cooling demand is not seasonal, the model that optimizes both design 
and operation would be more appropriate, especially if there is large 
volatility of electricity price. 

8. Conclusions 

In this paper two different optimization models for district cooling 
networks are proposed. The first is based on a genetic algorithm coupled 
with a clustering approach and optimizes simultaneously the set of users 
to be connected and the position of chillers and storages. The operating 
schedule of the system is not optimized, but constant chiller operation is 
assumed, with thermal energy storages that match the unbalance be
tween cooling production and demand. The proposed approach allows 
to reduce the computational cost for achieving the solution. The second 
model has been formulated as a Mixed Integer Quadratic Constrained 
Programming and optimizes simultaneously design and operation, 
selecting the equipment size and the operating schedule that minimizes 
the total costs. The set of users to be connected and the network layout 
are inputs of this model. Both models could also have broader 

applications in the context of smart energy systems. They could be 
adapted to other district energy networks, such as district heating, and 
integrated with local energy sources, such as waste heat, by introducing 
additional equipment like heat pumps or absorption chillers. 

The two models have been applied to a case study characterized by a 
seasonal demand and compared to each other, in order to determine the 
effective impact on the results of simultaneously optimizing design and 
operation. For this case study the results obtained by the two models are 
very similar and for a standard scenario, characterized by typical elec
tricity prices, differ by 0.5 % in terms of life-cycle costs. However, the 
computational cost of the first model is negligible with respect to the 
second model, as it took less than 1 % of the computational time 
required for the combined optimization. 

A sensitivity analysis was also performed to determine how the re
sults differ in scenarios with larger volatility of electricity price and 
different cost for chiller installation. It was observed that also by 
lowering chillers cost by 20 %, the model tends to minimize their sizes 
and operate them with constant load. 

With further price difference between peak and off-peak periods, the 
impact of operation optimization could increase. However, it would be 
difficult to predict the future daily fluctuations of electricity price long 
in advance. Hence, in the design phase of district cooling systems it 
would be reasonable to separate design and operation optimization, 
assuming a constant operating schedule, if cooling demand is mainly 
seasonal. As a consequence, the use of district cooling networks as 
power-to-cool is certainly a benefit of this technology, as it allows to 
stabilize the grid, by operating the chillers and storing the cooling en
ergy when electricity is cheaper and demand is lower. However, the 
design should not be affected by these strategies, as they would not be 
profitable enough to justify the installation of larger equipment. 

For climates in which there is a continuous demand for cooling 
during the year, the situation is different. Indeed, the sensitivity analysis 
showed that in scenarios characterized by the presence of cooling 
throughout the entire year and a large difference between peak and off- 
peak electricity tariffs, installing larger chillers with the goal of 
exploiting these tariff differences would allow to save up to 4.7 % of 
total costs. 

Therefore, it can be concluded that in climates in which cooling 
demand is concentrated in few months, it is appropriate to optimize the 
design of a district cooling network and assume a constant operation 
schedule of the chillers. On the other hand, in tropical countries, where 
there is always demand for cooling, this assumption has a sensible 
impact on the total life cycle cost, if the volatility of electricity price is 
sufficiently large. In these cases, it would be therefore more appropriate 
to optimize simultaneously both design and operation. 
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