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Abstract. Group actions are becoming a viable option for post-quantum
cryptography assumptions. Indeed, in recent years some works have shown
how to construct primitives from assumptions based on isogenies of ellip-
tic curves, such as CSIDH, on tensors or on code equivalence problems.
This paper presents a bit commitment scheme, built on non-transitive
group actions, which is shown to be secure in the standard model, un-
der the decisional Group Action Inversion Problem. In particular, the
commitment is computationally hiding and perfectly binding, and is ob-
tained from a novel and general framework that exploits the properties
of some orbit-invariant functions, together with group actions. Previ-
ous constructions depend on an interaction between the sender and the
receiver in the commitment phase, which results in an interactive bit
commitment. We instead propose the first non-interactive bit commit-
ment based on group actions. Then we show that, when the sender is
honest, the constructed commitment enjoys an additional feature, i.e., it
is possible to tell whether two commitments were obtained from the same
input, without revealing the input. We define the security properties that
such a construction must satisfy, and we call this primitive linkable com-
mitment. Finally, as an example, an instantiation of the scheme using
tensors with coefficients in a finite field is provided. In this case, the
invariant function is the computation of the rank of a tensor, and the
cryptographic assumption is related to the Tensor Isomorphism problem.

Keywords: Cryptographic group actions · Non-transitive group actions · Bit
commitments · Linkable commitments · Tensors

1 Introduction

Group Actions in Cryptography. Recent developments in quantum comput-
ing make the advent of a quantum machine suitable for cryptanalysis purposes a
threat. Many cryptographic algorithms that are used nowadays can no longer be
considered secure against a quantum attacker. Primitives relying on the hard-
ness of the Discrete Logarithm or the Factorization problem are broken by the
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well known Shor’s algorithm [33]. This leads to the birth of the Post-Quantum
Cryptography, that aims to find and study protocols based on cryptographic
assumptions that appear to be resistant to attacks performed by quantum com-
puters. The most promising ones are based on lattices, multivariate polynomials,
hash functions, error correcting codes and isogenies of elliptic curves. However,
in order to increase the variety of probably secure assumptions, it is necessary to
find new problems with useful features to build new cryptographic protocols. A
recent line of study concerns equivalence problems and cryptographic group ac-
tions. The most known reference is given by Couveignes in 2006 [11] and was used
in the setting of isogeny-based cryptography. Moreover, the explicit use of group
actions can be found in the 1991 article of Brassard and Young [8]. More recently,
the framework has been studied by Grigoriev and Shpilrain, [15], Alamati, De
Feo, Montgomery and Patranabis [1] and Ji, Qiao, Feng and Yun [20], introducing
some formal cryptographic assumptions. There are many group actions suitable
for post-quantum cryptography, arising from different areas of mathematics and
computer science. Some examples can be the class group action of CSIDH [9],
the one induced by the general linear group on various objects [20, 30, 35], the
action acting on polynomials [26] or the ones concerning linear codes [3, 30]. In
the last years, cryptographic group actions have been employed to design many
primitives such as sigma protocols and signature schemes (via the GMW scheme
for Graph Isomorphism [14]), ring and group signatures [4,5], key exchanges [9]
and updatable encryption schemes [22].

Commitment Schemes. A commitment scheme is a cryptographic protocol
between two parties, a sender and a receiver. The sender wants to commit to
a value b without revealing it to the other party. To do this, he binds b to a
commitment C that is sent to the receiver. In a second moment, the sender wants
to reveal b and the receiver must be able to verify that it was the committed
value behind C. A commitment must satisfy two security properties: it must
not reveal any information about the committed value (hiding property), and
the sender cannot reveal a different b′ ̸= b that opens to the same commitment
(binding property).
Commitment schemes are widely used, both as stand-alone protocols and as
atomic parts of more involved mechanisms. For example, they are used in Zero-
Knowledge proofs [23], digital auctions [25], signature schemes [21], multi-party
computation [13], e-voting [12] and confidential transactions [29]. In this work,
we will mainly focus on bit commitments, where the committed value b can be
1 or 0.

Related works. Bit commitments schemes are a component of many crypto-
graphic algorithms. In 1991, Naor [24] showed how to obtain a bit commitment
protocol starting from a pseudorandom generator. Bit committments from group
actions are known in literature. In 1991 Brassard and Young [8] present an inter-
active scheme from certified and uncertified group actions. In 2019 Ji, Qiao, Song
and Yun [20] present, among other construction, two interactive bit commitment
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schemes relying on cryptographic assumptions on non-abelian group actions.
Finally, another famous commitment, which is however based on a pre-quantum
assumption, is the Pedersen commitment [27]. This scheme has an interesting
property: it can be shown that two commitments are created starting from the
same value, without opening the commitments [29].

Our Contribution. We present a bit commitment scheme that is non-interactive,
perfectly binding and computationally hiding in the standard model. This scheme
is based on a group action framework that makes use of certain invariant func-
tions. One of the innovative aspects of our proposal is that it concerns non-
transitive group actions, while known cryptographic applications use transitive
actions or they restrict to one orbit. The non-transitivity of the action used in
this paper is crucial and necessary; in fact, we need to be able to exhibit two
elements that are in two different orbits. Such elements are generated with the
aid of the new group action framework, in which we endow the group action
with a function that is constant inside the orbits. Given the group G acting on
the set X via the action ⋆, an invariant function f : X → T , with T be a set,
has the following property

f(g ⋆ x) = f(x), ∀x ∈ X, g ∈ G.

The key point is that evaluating this function on a randomly chosen element
is hard, while, for a particular subset of elements that we call canonical elements,
it is easy to compute. Also, the fact that the function is constant inside the or-
bits guarantees that, if we consider two elements with distinct image, they must
live in (and generate under the action of G) distinct orbits. This observation
is crucial to prove our commitment scheme is perfectly binding. We call Group
Action with Canonical Elements (GACE) a group action with the above prop-
erties. Moreover, the existence of decision problems about whether an element
is randomly picked from a specific orbit or not enables us to prove that our
commitment scheme is computationally hiding.
The structure of our construction enables an additional property that is shared
with the Pedersen commitment. An honest sender generating two commitments
of the same value b can prove to the receiver that they are in fact linked to the
same message, without revealing it. We call this scheme a linkable commitment
and we formally define the security properties that enable the adoption of such
a primitive in cryptography. However, using some techniques from ring signa-
ture schemes [5], we show how to extend this property to the case of a possibly
malicious sender in the Random Oracle Model.
This work is organized as follows: Section 2 recaps all the cryptographic tools
that will be used in the rest of the paper, while Section 3 introduces the frame-
work that we will use to design a non-interactive commitment scheme starting
from cryptographic group actions. In particular, we introduce the concept of
Group Action with Canonical Elements. Section 4 shows how to design a bit
commitment starting from canonical elements, and its security is proved under
the decisional Group Action Inversion Problem assumption, while in Section 5



4 G. D’Alconzo et al.

we introduce the notion of linkable commitments and we show how our protocol
is indeed a linkable one. Section 6 shows an instantiation of the framework with
tensors, and finally, Section 7 concludes the work and gives some idea for further
research.

2 Preliminaries

In the course of this paper, with Pr[A] we denote the probability of the event
A. Let λ denote the security parameter, this means that the parameters of the
cryptographic schemes instantiated with security parameter λ are chosen in such
a way that the best known attack would break the scheme using at least 2λ

operations. A function µ(λ) is negligible in λ if for every positive integer c there
exists a λ0 such that for each λ > λ0 we get µ(λ) < 1

λc .
Finally, in the pseudocode “←$” denotes the random sampling, “←” is a variable
assignment and “=” is the equality check.

2.1 Group Actions

This section introduces group actions, along with the complexity assumptions
that must be made in order to use them in cryptographic protocols. Definitions
reported here are mostly taken from [1]. We point out that through this work
we do not need the action to be abelian, contrary to what is required in [11]
or [1]. All the following definitions and constructions are meaningful also in the
non-abelian case.

Definition 1. A group G is said to act on a set X if there is a map ⋆ : G×X →
X that satisfies the following properties:

– Identity: if e is the identity element of the group G, then e ⋆ x = x for every
x in X.

– Compatibility: given g and h in G and x in X, we have that (gh) ⋆ x =
g ⋆ (h ⋆ x).

In this case, we say that the triple (G,X, ⋆) is a group action.

A group action (G,X, ⋆) may satisfy some algebraic properties that lead to
the definition of classes of group actions, namely the action is transitive if for all
x1, x2 in X there exists an element g in G such that x1 = g ⋆ x2; moreover, the
action is said free when the following holds: g is the identity element of G if and
only if there is an x in X such that g ⋆ x = x. Finally, we say that the action is
regular if it is both free and transitive.
Note that, if the group action (G,X, ⋆) is regular and the group G is finite, then
for every x in X the map g 7→ g ⋆ x is a bijection and |G| = |X|. Furthermore,
if the group action is regular, then we can define the element δ(x, y) of G as the
unique element for which x = δ(x, y) ⋆ y. If the action is not transitive, instead,
then there exist x and y in X such that δ(x, y) does not exist.
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Alamati, De Feo, Montgomery and Patranabis also define the concept of effective
group action: a formal definition can be found in [1], here we just report the key
points.

Definition 2. A group action (G,X, ⋆) is effective if:

– the group G is finite and there exists a probabilistic polynomial time (PPT)
algorithm for executing membership and equality testing, sampling, and for
computing the group operation and the inverse of an element;

– the set X is finite and there exist PPT algorithms for computing membership
testing and the unique representation of any element in X;

– there exists an efficient algorithm to compute g ⋆ x, for each g in G and x
in X.

Informally, a group action is said effective if it can be manipulated easily and it
can be computed in practical time. An example of non-effective group actions
is the set of polynomials in m variables of bounded degree n over a finite field,
with the symmetric group Sm, permuting the variables. It can be seen that the
unique representation is given by the algebraic normal form, but it cannot be
computed in polynomial time in n and m.

In the rest of this work, even when not explicitly written, we will consider
effective group actions.

2.2 Cryptographic assumptions on group actions

The presented definition leads to efficient group actions, which can be used to
build cryptographic protocols. However, in order to use them in cryptography
we need to define some suitable computational assumptions. In [1], the authors
report some computational assumptions on group actions, for instance the fol-
lowing embraces the fact that, given two random elements x, y ∈ X in the same
orbit, then it must be intractable to compute δ(x, y).

Definition 3. Let λ be a parameter indexing G and X. Being DG and DX

two distributions over G and X respectively, then the group action (G,X, ⋆) is
(DG,DX)-one-way if for all PPT adversaries A there is a negligible function
µ(λ) such that

Pr[A(x, g ⋆ x) ⋆ x = g ⋆ x] ≤ µ(λ),

where x is sampled according to DX and g according to DG.

In this paper, we assume that DG and DX are the uniform distributions over G
and X, and we refer to this assumption as One-way group action assumption.

Another assumption that can be used when working with group actions is
the Group Action Pseudo Randomness (GA-PR) problem, defined in [20]. It
can be seen as a generalisation of the Decisional Diffie-Hellman assumption. An
equivalent assumption can be found in [1], and a group action with this property
is called weakly pseudorandom. For example, in [20], the authors state that it
can be applied to the general linear group action on tensors. Let us now define
more formally the problem on which the GA-PR assumption is based.
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Definition 4. Let G be a group action family such that for a security parameter
λ, G(1λ) returns an effective group action (G,X, ⋆) with log(|G|) = poly(λ) and
log(|X|) = poly(λ). Denote the triple as a public parameter pp = (G,X, ⋆).
The group action pseudo random game (GA-PR) is given in Figure 1. We define
the advantage of an adversary A of GA-PR as

Adv(A,GA-PR) =

∣∣∣∣Pr[A wins GA-PR(pp)]− 1

2

∣∣∣∣.
The GA-PR assumption states that for all PPT adversaries A there is a negligible
function µ(λ), with λ being the security parameter, such that

Adv(A,GA-PR) ≤ µ(λ),

GA-PR(pp)

Adversary A Challenger C
b←$ {0, 1}, s←$ X

if b = 1 then

g ←$ G, t← g ⋆ s

if b = 0 then

s, t t←$ X

Guess b′ b′ A wins if b = b′

Fig. 1. Group Action Pseudo Random game.

For the bit commitment scheme, we will refer to the GA-PR assumption
when the set X consists of only two orbits. We call this new assumption and the
relative game 2GA-PR.

We remark that the adversary of the GA-PR game must be able to distinguish
whether the challenger has picked the element t uniformly at random inside the
orbit of s or inside the set X. However, when t is picked inside X, it is still possible
that t is picked inside the orbit of s as well; therefore, even a computationally
unbounded adversary would not be able to win the game with probability 1.

In particular, if we consider the 2GA-PR game, and we suppose that the two
orbits have the same cardinality, the event that t is picked uniformly at random
inside the set X and t results to be an element in the orbit of s is 1

4 . Therefore,
even an adversary with unbounded computational power, who can distinguish
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whether t lives in the same orbit of s or not, cannot win the game with proba-
bility greater than 3

4 .

The observation above motivates the introduction of an assumption which we
refer to as decisional Group Action Inversion Problem (dGA-IP). The dGA-IP
problem, also known as Isomorphism Problem [20], is the decisional variant of the
group action inversion problem presented in [34], applied to the case in which the
set X is given by only two orbits. If the restriction on the two orbits is removed,
a large number of similar problems can be found in literature [16,17,28].

Definition 5. The dGA-IP game is presented in Figure 2, where pp is given by
the tuple (G,X, ⋆, t0, t1), with t0 and t1 elements that lie in distinct orbits under
the action of G. We define the advantage of an adversary A of dGA-IP as

Adv(A, dGA-IP) =
∣∣∣∣Pr[A wins dGA-IP(pp)]− 1

2

∣∣∣∣.
The dGA-IP assumption states that for all PPT adversaries A there is a negli-
gible function µ(λ), with λ being the security parameter, such that

Adv(A, dGA-IP) ≤ µ(λ),

dGA-IP(pp)

Adversary A Challenger C
c, b←$ {0, 1}, g, g′ ←$ G

s← g ⋆ tc,

if b = 1 then

t← g′ ⋆ s

if b = 0 then

t← g′ ⋆ t1−c

s, t

Guess b′ b′ A wins if b = b′

Fig. 2. decisional Group Action Inversion Problem game.

This game, compared to 2GA-PR, reflects more clearly the fact that it is
hard to distinguish whether two elements in X live in the same orbit or not, and
an adversary with unbounded computational power would win this game with
probability 1.
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2.3 Commitment schemes

A commitment scheme is a cryptographic scheme that allows one party to com-
mit to a value m by sending a commitment com, and then to reveal m by opening
the commitment at a later point in time.

Definition 6. A commitment scheme on a message spaceM is a triple of PPT
algorithms (PGen,Commit,Open) such that:
1. PGen(1λ) takes as input a security parameter λ in unary and returns public

parameters pp;
2. Commit(pp,m) takes as input the public parameters pp, a message m in M

and returns the commitment com and the opening material r;
3. Open(pp,m, com, r) takes as input the public parameters pp, the message m,

the commitment com and the opening material r and returns accept if com
is the commitment of m or reject otherwise.

In the rest of this work we omit the public parameters pp in the inputs of
Commit and Open.

To be suitable in cryptography, commitment schemes must satisfy the hiding
and binding properties. Hiding means that com reveals nothing about m and
binding means that it is not possible to create a commitment com that can be
opened in two different ways. These properties are formally defined.

Definition 7. Let ΠCom = (PGen,Commit,Open) be a commitment scheme and
let Hiding(ΠCom) be the hiding game represented in Figure 3. We define the
advantage of an adversary A of Hiding(ΠCom) as

Adv(A,Hiding(ΠCom)) =

∣∣∣∣Pr[A wins Hiding(ΠCom)]−
1

2

∣∣∣∣.
A commitment scheme ΠCom is computationally hiding if for all PPT adversaries
A there is a negligible function µ(λ), with λ being the security parameter, such
that

Adv(A,Hiding(ΠCom)) ≤ µ(λ),

If, for every pair m0,m1, the commitments com0 and com1 have the same distri-
bution, where (comi, ri) = Commit(mi) for i = 0, 1, we say that the commitment
is perfectly hiding.

Note that, in the case of a bit commitment, the adversary does not send m0

and m1, and the bit chosen by the challenger is the committed bit in com.

Definition 8. A commitment scheme ΠCom = (PGen,Commit,Open) is com-
putationally binding if for all PPT adversaries A there is a negligible function
µ(λ), with λ being the security parameter, such that

Pr

 pp← PGen(1λ),

(com,m0, r0,m1, r1)← A(pp)

∣∣∣∣∣∣∣
m0 ̸= m1,

Open(m0, com, r0) = accept,

Open(m1, com, r1) = accept

 ≤ µ(λ).

If for every adversary A it holds that µ(λ) = 0, we say that the commitment
scheme is perfectly binding.
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Hiding(ΠCom)

Adversary A Challenger C

pp pp← PGen(1λ)

Choose m0,m1 ∈ {0, 1}n m0,m1 b←$ {0, 1}

com com← Commit(pp,mb)

Guess b′ b′ A wins if b′ = b

Fig. 3. Hiding game for commitment schemes.

Commitment schemes from Group Actions Previous commitments were
known from cryptographic group actions. Brassard and Young [8] propose two
kind of bit commitments from what they call certified and uncertified group
actions. A certified group action is an action from the group G over the set X
such that checking that two elements are in the same orbit is an easy task. On the
contrary, the same verification could not be polynomial-time for an uncertified
group action. Since the problem of deciding whether two elements of X are in the
same orbit is assumed to be hard in this work, we will focus on the latter case.
Given a group action from G on X, the computationally binding and perfectly
hiding bit commitment presented in [8] is as follows.

– The receiver randomly generates x0 from X and g from G. Then sets x1 as
g ⋆ x0. He sends to the sender the pair (x0, x1) and a proof π that they are
in the same orbit.

– The sender wants to commit to the bit b. First, he checks that the proof π is
valid, then he picks h from G and sends com = h⋆xb to the receiver, keeping
secret h.

– To open the committed bit b, the sender reveals b and h to the receiver,
which checks that com is equal to h ⋆ xb.

The first thing to notice is that this is an interactive bit commitment, since
the sender needs the receiver’s cooperation for the creation of the commitment.
Secondly, the communication cost is at least as big as the proof of the statement
that x0 and x1 are in the same orbit. This is an NP-statement (the witness is
given by g) and hence admits an interactive proof (even a non-interactive one,
using the Fiat-Shamir heuristic and the Random Oracle Model), but it can be
very large in communication.

In [20], Ji, Qiao, Song and Yun propose two bit commitment protocols. The
first is a slight generalization of the protocol from [8], using non-abelian group
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actions. The obtained protocol has the same drawbacks noticed above: it is
interactive and has a large communication cost. The second proposal concerns
the use of the following pseudorandom function

f : X ×G→ X ×X, (x, g) 7→ (x, g ⋆ x)

and, after applying the Blum-Micali amplification [7], the authors build an inter-
active bit commitment scheme using the construction from [24]. In this construc-
tion it is needed that |X| ≥ |G|, and the obtained bit commitment is statistically
binding and computationally hiding.

3 Our Framework

The goal of this section is to design a non-interactive commitment scheme using
assumptions from cryptographic group actions. We will focus on non-abelian and
non-transitive actions. To develop such a commitment scheme, we first analyze
the issues arising from an initial construction, then we define a framework that
we use to circumvent these problems.

3.1 A first attempt

Based on the non-transitivity of the group action (G,X, ⋆), we can do a first
attempt in building a non-interactive bit commitment scheme. We give its de-
scription using a trusted third party (TTP), and then we analyze how to remove
it.
Given the action (G,X, ⋆), the TTP chooses and publishes two elements x0 and
x1 of X lying in different orbits. The sender, to commit a bit b, generates a
random g in G and sets as the commitment of b the value com = g ⋆ xb. The
opening material is g. In other words, the sender picks a random element in the
orbit of xb. In the opening phase, given b, com and g, the receiver accepts if com
is equal to g ⋆ xb and rejects otherwise. Informally, the hiding property is given
by the fact that checking whether com is in the orbit of x0 or x1 is hard, while
the binding property follows from the impossibility of going from an orbit to
another via the action of G.
In the following we try to remove the TTP and analyze some possible scenarios.

1. The sender generates and publishes x0 and x1. In this case we can
see that a malicious sender can generate x0 and x1 in the same orbit via
x1 = h ⋆ x0. He commits to g ⋆ x0 and, during the opening phase, he could
open to both 0 and 1 using g or gh−1. In this case, the binding property
does not hold.

2. The sender generates and publishes x0, x1 together with a proof π
that they are in different orbits. Given a proof π that x0 and x1 are not
in the same orbit, we obtain that the protocol is hiding and binding, under
the assumption that deciding whenever two elements share the orbit is hard.



Non-Interactive Commitment from Non-Transitive Group Actions 11

In this scenario, the hard task is the generation of the proof π. In fact, the
language

L = {(y0, y1) ∈ X ×X | y0 and y1 are in different orbits}

is in coNP. Unless we have a computationally unbounded prover [14] (and
this is not the case), it means that known techniques fails to generate a
short non-interactive proof for L which would enable the design of a non-
interactive commitment scheme. Since interactive bit commitments based on
group actions are known [8,20], we do not further study this case.

3. The receiver generates and publishes x0 and x1. We are again in the
case of interactive bit commitments, and we remand to the known schemes
based on group actions.

With such techniques, we have seen that there are some tricky aspects that are
hard to deal with. For example, we need to build a proof for a language in coNP,
and the absence of a witness (as we are used to, when we work in NP) is the
first obstacle. To overcome such difficulties, we introduce a general framework
on group actions that ease the design of the non-interactive bit commitment
sketched above. The trick is the definition of an invariant function that is con-
stant inside the orbits and hard to compute for a randomly chosen element.
However, we assume that there is a set of representative elements for which the
computation of such a function is easy. This avoids the need of a proof for the
above language L. These concepts will be formalized in the next subsection.

3.2 Group Actions with Canonical Elements

In this section, we introduce the concepts of invariant functions and canonical
elements, and we present the cryptographic assumptions linked to them.

Definition 9. Given a group action (G,X, ⋆) and a function f : X → T , we
say that f is invariant under the action of G if f(g ⋆ x) = f(x) for every g in G
and every x in X. We say that f is fully invariant if f(x) = f(y) if and only if
there exists g in G such that y = g ⋆ x.

In the following, we can assume that f is surjective, restricting the set T to the
image f(X). To exploit the properties of invariant functions while keeping the
dGA-IP hard, we want the function f to be hard to compute on a large class of
elements of X. At the same time, we want to define particular elements of X on
which the computation of f is feasible.

Definition 10. Let f : X → T be a surjective invariant function for the action
(G,X, ⋆) and let T ′ ⊂ T . Suppose that there exists a polynomial-computable map

⟨·⟩ : T ′ → X, t 7→ ⟨t⟩

such that the function f ◦ ⟨·⟩ is the identity on the subset T ′ of T . We call ⟨·⟩
the canonical representation of T ′ in X and ⟨t⟩ the canonical t-element (with
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respect to f and ⟨·⟩). If T ′ = T , we say that ⟨·⟩ is complete. Moreover, we say
that (G,X, ⋆, f, ⟨·⟩) is a Group Action with Canonical Element (GACE) if the
following hold:

1. if O(z) is the orbit of z in X, then for any PPT adversary A there is a
negligible function µ such that

Pr[A(x) = f(x)] ≤ 1

|T ′|
+ µ(|x|),

where x is sampled uniformly random from
⊔

t∈T ′ O(⟨t⟩);
2. there is a PPT algorithm that for any t in T ′ computes f(⟨t⟩).

In other words, the definition above says that, for every t in T ′, we have
f(⟨t⟩) = t and the function f is hard to compute in general, but is instead easy
to calculate on canonical elements. Moreover, the construction of such ⟨t⟩ is a
polynomial-time task.

In the following constructions, whenever a random element of X is needed,
we pick a random canonical element ⟨t⟩, a random g from G and compute g ⋆ ⟨t⟩.
In this way, instead of using the whole X, we always work with the union of the
orbits of the canonical elements. In other words, the set on which the group G
acts becomes

X ′ =
⊔
t∈T ′

O(⟨t⟩).

This implies that the GACE (G,X ′, ⋆, f, ⟨·⟩) has a fully invariant function f and
the canonical representation ⟨·⟩ is complete. Given a fully invariant function f ,
the problem of determining whether two elements have the same image under f
is equivalent to deciding whether they lie in the same orbit (dGA-IP).

4 The Commitment Scheme

4.1 Bit commitment scheme from a GACE

The first application of our framework is a bit commitment scheme. Given a
Group Action with Canonical Elements, we design the commitment scheme de-
scribed in Figure 4, following the attempts shown in Subsection 3.1. The bit
commitment is proven secure under both the dGA-IP assumption that we have
introduced in this paper and the 2GA-PR assumption; the security proof under
the latter assumption can be found in Appendix A.

Theorem 1. The bit commitment scheme in Figure 4 is perfectly binding.

Proof. Without loss of generality, we can assume m0 = 0 and m1 = 1. Suppose
there exists an adversary A that on input pp = (G,X, ⋆, f, ⟨·⟩, t0, t1) returns the
tuple com, r0, r1 such that

Open(0, com, r0) = Open(1, com, r1) = accept
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PGen
(
1λ

)
1 : choose (G,X, ⋆, f, ⟨·⟩)
2 : t0 ←$ T ′

3 : t1 ←$ T ′ \ {t0}
4 : return (G,X, ⋆, f, ⟨·⟩, t0, t1)

Commit (b)

1 : g ←$ G

2 : c← g ⋆ ⟨tb⟩
3 : return (c, g)

Open (b, c, g)

1 : if g−1 ⋆ c = ⟨tb⟩
2 : return accept

3 : else return reject

Fig. 4. Bit commitment scheme from a GACE.

with positive probability. This means that r0 ⋆ ⟨t0⟩ = com = r1 ⋆ ⟨t1⟩, and then
r−1
1 r0 ⋆ ⟨t0⟩ = ⟨t1⟩. Therefore, ⟨t0⟩ and ⟨t1⟩ are in the same orbit, but this is a

contradiction and such an adversary A cannot exist.

Theorem 2. The bit commitment scheme in Figure 4 is computationally hiding
under the decisional Group Action Inversion Problem assumption.

Proof. The dGA-IP assumption states that every adversary of the dGA-IP game
has at most negligible advantage. We prove that the existence of an adversary
of the game Hiding(ΠCom) with advantage at least ϵ(λ), where ϵ(λ) is a non-
negligible function, implies the existence of an adversary A of the dGA-IP game
with advantage 2ϵ2(λ), which is non-negligible.
The proof is divided in 3 parts: firstly, we describe our adversary A of the dGA-
IP game. It will exploit two instances of an adversary of the Hiding(ΠCom) game,
therefore we must show that it correctly simulates the challenger of such a game.
Finally, we quantify a lower bound to the advantage of the adversary A.

1. Reduction description.
The adversary A of the dGA-IP game (see Figure 5) receives from the chal-
lenger two set elements s and t, generated according to the dGA-IP game.
A creates two instances of the adversary of Hiding(ΠCom) game having non-
negligible advantage, namely A1 and A2. Then, the adversary A provides
A1 with s and A2 with t separately. The two hiding commitment adversaries
A1 and A2 return respectively the bits b0 and b1 as outputs of their internal
routine. Finally, the dGA-IP adversary A returns to the challenger the bit
b′ which is set to 1 if b0 = b1, otherwise it is set to 0.

2. A correctly simulates the Hiding(ΠCom) challenger.
We show thatA correctly simulates the challenger of the Hiding(ΠCom) game,
so that it is possible to quantify the probability of success of the adversaries
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A1 and A2. The elements s and t which A uses as input to A1 and A2 are
generated as follows:

– s is a random element in the orbit generated by ⟨tc⟩, with c chosen
uniformly at random in {0, 1};

– when b = 1, t is chosen uniformly at random in the same orbit of s (note
that g′ ⋆ s = g′g ⋆ ⟨tc⟩ is random as long as g′ ←$ G), otherwise, if b = 0,
t is chosen at random in the orbit of ⟨t1−c⟩.

In particular, the orbit of s is chosen uniformly at random via the selection
of c; then, given c, the orbit of t is chosen uniformly at random via b. This
guarantees that A correctly simulates the challenger of the Hiding(ΠCom)
game, who must choose, in the first step, whether to create a commitment to
0 or to 1. Therefore, the adversaries A1,A2 win their games with probability
greater than 1

2 + ϵ(λ).

3. Measurement of A’s advantage.

Finally, we compute a lower bound to the probability of success of A that
we have described in the dGA-IP game.

We observe that the adversaries A1 and A2 do not interact, so the events
that they win their games can be considered independent as long as their
inputs are also independent.

It is possible to show that the selection of the inputs is independent, since
the selection process of s and t is performed picking at random the orbit
O(s) of s by sampling the bit c, and the orbit O(t) of t by sampling the
bit b (actually the bit that determines the orbit of t is interpreted according
to the value of s, but this is not relevant as long as the bit b is chosen at
random).
Then, the canonical elements of the sampled orbits are randomized by sam-
pling two random group elements g, g′ ∈ G and computing the action of such
elements (or of the element g′g instead of g′, if b = 1, which is a random
element as long as g′ is random) on the canonical elements.

Given that the inputs to A1 and A2 are independent and that the two
adversaries perform their operations regardless of the existence of each other,
the events that A1 wins its game and A2 wins its game are independent.

For the sake of brevity, we refer to the event that A1 wins or loses its game
as (A1 wins) or (A1 loses) and we do the same for A2 and A: the game
they are playing will be clear from the context.

Finally, we compute the lower bound of the probability of advantage of A.
To do that, we observe that A wins the game when b′ = b and this happens
either when both A1 and A2 win, or when they both lose.
In fact, when b = 0 then O(t) ̸= O(s); therefore, b0 ̸= b1 happens if and only
if both A1 and A2 win or when they both lose. The same holds when b = 1.
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Therefore,

Pr[A wins] =

Pr[(A1 wins ∧ A2 wins) ∨ (A1 loses ∧ A2 loses)] =

Pr[(A1 wins ∧ A2 wins)] + Pr[(A1 loses ∧ A2 loses)] =

Pr[(A1 wins)] Pr[(A2 wins)] + Pr[(A1 loses)] Pr[A2 loses)] ≥(
1

2
+ ϵ(λ)

)2

+

(
1

2
− ϵ(λ)

)2

=
1

2
+ 2ϵ(λ)2.

Since ϵ(λ) is a non-negligible function, we have defined an adversary A of the
dGA-IP game that has a non-negligible advantage. This contradicts the dGA-
IP assumption, therefore the adversary of Hiding(ΠCom) with non-negligible
advantage does not exist and the commitment scheme ΠCom satisfies the hiding
property.

The two previous results can be summarized in the following corollary.

Corollary 1. The bit commitment scheme in Figure 4 is secure under the de-
cisional Group Action Inversion Problem assumption.

We also have expanded the security analysis of the hiding property of the
commitment scheme under to the 2GA-PR assumption requiring that the two
orbits O0 and O1 used to instantiate the bit commitment have similar size, i.e.

|Pr[x ∈ O0]− Pr[x ∈ O1]| = ν(λ)

for a randomly chosen x in O0 ∪O1 and a negligible function ν(λ).
We have proved the following theorem.

Theorem 3. If the bit commitment scheme in Figure 4 is instantiated using
two orbits of similar size, it is secure under the 2GA-PR assumption.

Proof. The commitment scheme satisfies the property of perfect binding, as
shown in Theorem 1. The proof of the computationally hiding property can
be found in Appendix A.

Finally, Appendix B shows that Hiding(ΠCom) reduces to dGA-IP, also. This
allows us describe the relation between the dGA-IP and 2GA-PR assumptions.

Corollary 2. The 2GA-PR problem reduces to dGA-IP when it is instantiated
with two orbits of similar size.

We summarize the reductions between the hiding game of the commitment
scheme and the two assumptions in Figure 6.
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Adversary A(pp) Challenger C(pp)
c, b←$ {0, 1}, g, g′ ←$ G

s← g ⋆ ⟨tc⟩,
if b = 1 then

t← g′ ⋆ s

if b = 0 then

t← g′ ⋆ ⟨t1−c⟩
Hiding(ΠCom) Adversaries

Guess b0

A1
pp, s

b0

s, t

Guess b1

A2
pp, t

b1

if b0 = b1 then

b′ ← 1

if b0 ̸= b1 then

b′ ← 0

b′

A wins if b = b′

Fig. 5. Reduction from dGA-IP(pp) to the hiding game for the bit commitment scheme.

5 Linkable Commitments

The proposed bit commitment has the following additional feature. Given two
commitments com0 and com1, if we suppose that the sender is honest, there is a
way to prove that their committed value is the same. Based on this notion, we
define the concept of linkable commitment. We require that the sender is honest
to be assured that the commitments lie either in the orbit of ⟨t0⟩ or ⟨t1⟩. To
the best of our knowledge, this property has not been formally defined before.
However it is well known that, for example, Pedersen commitments enjoy this
property which is used, among other things, in the Monero’s RingCT protocol
[29].

Definition 11. Let ΠCom = (PGen,Commit,Open) be a commitment scheme.
Let m0 and m1 be two messages and let (com0, r0) = Commit(m0) and (com1, r1) =
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dGA-IP
Th. 2

Th. 6

Th. 5

Hiding(ΠCom)

2GA-PR

Cor. 2

Fig. 6. Reductions between games and problems. “A → B” means that solving B
implies solving A. The reductions represented by a dashed line require the extra hy-
pothesis about the similarity of the orbits.

Commit(m1). We say that ΠCom is linkable if there exist the two following PPT
algorithms:

1. LinkMaterial(r0, r1), whose output is a value rL;
2. Link(com0, com1, rL), that returns 1 if m0 = m1 and 0 otherwise.

In order to be secure, a linkable bit commitment must satisfy some security
properties for these two additional algorithms Link and LinkMaterial as well.
First, we want that the linking material rL does not reveal any information
about the committed value. This means that an adversary that has access to two
commitments of m and the linking material rL does not learn anything about
m. We call this property linkable-hiding. Then, it must not be possible to link
two commitments that are obtained starting from two distinct values. A linkable
commitment with this property is said linkable-binding. Finally, we focus on how
the value rL can be generated. We want that, if a user (somehow) knows that
two commitments are linked without knowing their opening material, he can not
generate a proof of that (via the linking material). In other words, being m a
message, and being (com0, r0) = Commit(m) and (com1, r1) = Commit(m), no one
can generate a value rL such that Link(com0, com1, rL) = 1 without knowledge
of any information regarding the opening materials r0 and r1. This additional
property is called link secrecy.
We formalize these new properties in the following definition.

Definition 12. Let HidingLink(ΠCom) be the game described in Figure 7. We
define the advantage of an adversary A of the game HidingLink(ΠCom) as

Adv(A,HidingLink(ΠCom)) =

∣∣∣∣Pr[A wins HidingLink(ΠCom)]−
1

2

∣∣∣∣.
Let λ be the security parameter. A linkable bit commitment
ΠCom = (PGen,Commit,Open, LinkMaterial, Link) is said

– computationally linkable-hiding if for all PPT adversaries A there is a neg-
ligible function µ(λ) such that

Adv(A,HidingLink(ΠCom)) ≤ µ(λ);
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– computationally linkable-binding if for all PPT adversaries A there is a neg-
ligible function µ(λ) such that

Pr

[
pp← PGen(1λ),

(m0, com0,m1, com1, rL)← A(pp)

∣∣∣∣∣ m0 ̸= m1,

Link(com0, com1, rL) = 1

]
≤ µ(λ);

– computationally link secret if for all PPT adversaries A there is a negligible
function µ(λ) such that

Pr[A wins LinkSecrecy(ΠCom)] ≤ µ(λ),

where LinkSecrecy(ΠCom) is the linking secrecy game in Figure 8.

In the above definitions, whenever µ(λ) = 0, we say that the property is perfect.

HidingLink(ΠCom)

Adversary A Challenger C

pp pp← PGen(1λ)

Choose m0,m1 ∈ {0, 1}n m0,m1 b←$ {0, 1}

(com0, r0)← Commit(mb)

(com1, r1)← Commit(mb)

com0, com1, rL rL ← LinkMaterial(r0, r1)

Guess b′ b′ A wins if b′ = b

Fig. 7. Linkable-hiding game.

5.1 Linkable bit commitment from GACE

Using the bit commitment shown in Subsection 4.1, we can endow the scheme
to obtain a linkable bit commitment. This extension is natural, since the com-
mitments of a chosen message are in the orbit of that message, and showing
that they are linked reduces to exhibit a group element which sends one into the
other.

Theorem 4. The bit commitment scheme in Figure 4 endowed with the algo-
rithms in Figure 9 is a secure linkable bit commitment scheme under the One-
Way Group Action and dGA-IP assumptions.
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LinkSecrecy(ΠCom)

Adversary A Challenger C
pp← PGen(1λ)

m←$M
(com0, r0)← Commit(m)

pp, com0, com1 (com1, r1)← Commit(m)

Choose rL rL A wins if

Link(com0, com1, rL) = 1

Fig. 8. Link secrecy game.

LinkMaterial (m, r0, r1)

1 : return r0r
−1
1

Link(com0, com1, rL)

1 : if rL ⋆ com1 = com0

2 : return 1

3 : else return 0

Fig. 9. Algorithm for linking commitment from a GACE.

Proof. We have already proven in Theorem 1 that the bit commitment in Figure
4 is secure under the dGA-IP assumption. Now, we prove that the linkable com-
mitment scheme is secure, namely it is computationally linkable-hiding, perfectly
linkable-binding and computationally link secret.

– Linkable-hiding. We show that the Hiding game reduces to the HidingLink
game. The idea is to let the adversary of the Hiding(ΠCom) game to simulate
the HidingLink game challenger by creating a new random commitment (and
the linking material) to the same message of the commitment it has received
from its challenger. Now we explain it in greater detail.
Let A′ be an adversary that wins the HidingLink game with non-negligible
advantage ϵ(λ). We can define an adversary A for the Hiding game that
wins with a non-negligible advantage. Since we are in the binary case, the
challenger C picks a message b and sends to A the commitment com of b. Now
A picks a random element g in G and computes com′ = g⋆com, that is a valid
and randomly generated commitment to b. A queries to A′, the adversary of
the HidingLink game, the commitments com, com′ and the linking material g.
Note that A correctly simulates the challenger of the HidingLink game since
the bit b and com are chosen at random from C, com′ is chosen at random
from A and the linking material is valid.
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A′ returns a bit b′ which A sends to C as its guess. If A′ correctly guesses the
bit committed to in com and com′ then clearly alsoA wins its game. Therefore
the advantage of A is the same of the one of A′ and is non-negligible.
We can conclude that, since the commitment ΠCom is computationally hiding
under the dGA-IP assumption, it is also computationally linkable-hiding.

– Perfectly linkable-binding. Suppose that an adversary returns with pos-
itive probability a tuple (m0,m1, com0, com1, rL) such that m0 ̸= m1 and
Link(com0, com1, rL) = 1. By construction, there exist two elements g0 and
g1 in G such that

com0 = g0 ⋆ ⟨m0⟩ and com1 = g1 ⋆ ⟨m1⟩

From Link(com0, com1, rL) = 1 we have that rL ⋆ com1 = com0, and hence
com0 and com1 are in the same orbit. Since m0 = f(com0) = f(com1) = m1,
where f is the invariant function in the GACE, we have a contradiction.
Hence, there are no adversaries that can output such a tuple with positive
probability.

– Computationally link secret. We show that, if a PPT adversary A, on
input com0 and com1, can find rL such that Link(com0, com1, rL) = 1, then it
contradicts the One-way group action assumption. Essentially, if com0 and
com1 are commitments to m0, then they are in the same orbit of ⟨m0⟩.
Finding an rL in G such that Link(com0, com1, rL) = 1 means finding an
element of G sending com1 to com0, and this is intractable by hypothesis.

Remark 1. Observe that, if an inadmissible value is committed, for instance an
element x that is not in the orbit of ⟨t0⟩ nor ⟨t1⟩, then the linkability continues
to work. In fact, two commitments of the above x can be linked. Therefore we
refer to the above scheme as a honest sender linkable commitment. To cover
even the case where the sender may commit to an inadmissible value, some
techniques from ring signature schemes can be used. Using the framework of
Beullens, Katsumata and Pintore [5], a proof of the legitimacy of the commitment
can be generated in the random oracle model. In the commit phase, the sender
generates (com, r) from Commit(b), then attaches to com a non-interactive proof
of the OR-relation

{(com, g) | com = g ⋆ ⟨t0⟩ or com = g ⋆ ⟨t1⟩}.

We refer to [5] for the details. However, this proof needs many repetitions to
achieve a reasonable security level, leading to a huge cost in communication.

6 An Instantiation with Tensors

6.1 3-tensors and group actions

Let n be a positive integer and let V be the tensor space given by Fn
q ⊗Fn

q ⊗Fn
q .

Let {e1, . . . , en} be a base of Fn
q , hence an element M of V can be written as

M =
∑
i,j,k

M(i, j, k)ei ⊗ ej ⊗ ek, (1)
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where M(i, j, k) are elements in Fq. A rank one (or decomposable) tensor is an
element of the form a⊗ b⊗ c, where a, b, c are in Fn

q . Given a tensor M , its rank
is the minimal non-negative integer r such that there exist M1, . . . ,Mr rank one
tensors for which M =

∑r
i=1 Mi, and we write rk(M) = r. In general, computing

the rank of a tensor is an hard task [18,31,32].
A group action can be defined on the vector space V of tensors from the

group G = GL(n)×GL(n)×GL(n) as follows:

⋆ : G×V→ V,(A,B,C) ,
∑
i,j,k

M(i, j, k)ei ⊗ ej ⊗ ek

 7→∑
i,j,k

M(i, j, k)Aei ⊗Bej ⊗ Cek.

It can be shown that this action does not change the rank of a tensor. However, if
it is extended to non-invertible matrices, this property does not hold: for example
the zero matrix sends every tensor into the zero tensor.

6.2 GACE and bit commitment from tensors

Given the group action defined above, we want to build a Group Action with
Canonical Element. Since the computation of the rank is supposed to be hard,
we set T = N and

f : V→ N, M 7→ rk(M).

In order to define the function ⟨·⟩, we need to do some observations. From Eq.
(1), we see that the rank of a tensor is at most n3 and with a simple trick it
can be shown that it is at most n2. Actually, the maximal rank is strictly less
that this value. As showed in [19], the maximal rank attainable by a tensor
in V is between 1

3n
2 and 3

4n
2. Moreover, an open problem in this field is to

exhibit the explicit construction of a high-rank tensor. Even if there are some
results [2,6,36], we are not able to construct a tensor of any given rank. Luckily,
there is a set of integers for which we can easily exhibit tensors of a given rank.
Let T ′ = {1, . . . , n} and we can define the function

⟨·⟩ : T ′ → V,

r 7→
r∑

i=1

ei ⊗ ei ⊗ ei.

We can see that f(⟨r⟩) = r for any r in T ′ = {1, . . . , n}, hence the tuple
(G,V, ⋆, f, ⟨·⟩) is a GACE. In fact, computing the rank of a random tensor
of promised rank between 1 and n is hard, while recognize the rank of ⟨r⟩ is
easy.

The non-interactive bit commitment scheme we present is based on the gen-
eral one in Figure 4. During the parameter generation phase, we choose n − 1
and n as elements of T ′ encoding the bits 0 and 1, respectively.
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Concretely, given a security parameter λ, a prime power q, an integer n and
the tensor space V = Fn

q ⊗ Fn
q ⊗ Fn

q , the public parameters are

(G,V, ⋆, f, ⟨·⟩, n− 1, n).

Let us analyze the assumptions on this particular group action. The dGA-IP
assumption for tensors is related to the Tensor Isomorphism problem [16, 17],
which is complete for a large class of problems and it is conjectured hard even
for a quantum computer. The One-Way assumption on tensors is linked to the
computational version of the dGA-IP problem: given two tensors in the same
orbit, find the group element that links them. This problem is believed to be hard
and it is directly used in various cryptosystem [10,20], while other constructions
use polynomially equivalent problems [35]. When we consider just the orbits of
rank n and n− 1, these assumptions seem to remain intractable.

Summarizing, to commit to a bit b, the sender picks a random g in G and
obtains the commitment com equal to g ⋆ ⟨n − 1⟩ if b = 0 or g ⋆ ⟨n⟩ if b = 1.
The opening material is given by g. To open the commitment com, the sender
communicates to the receiver b and g and the latter checks that g−1 ⋆ com is
equal to ⟨n − 1⟩ or ⟨n⟩. There is one additional check to take care during the
opening phase: the receiver must verify the membership of g to G. In fact, if
g = (A,B,C) and A, B or C are non-invertible, then g can send a tensor of rank
n to a tensor of rank n− 1, breaking the binding property.
Analogously, a linkable bit commitment can be designed on tensors with the
constructions given in Subsection 5.1.

7 Conclusions

In this work, we have presented a framework based on group actions that makes
use of invariant functions and canonical elements, namely a Group Action with
Canonical Element (GACE). The considered invariant function must be hard
to compute on a large class of elements, but at the same time its computation
on the canonical elements must be feasible. Then, we showed how to design
a bit commitment based on this framework that is proven secure in the stan-
dard model. More in detail, breaking the hiding assumption of our commitment
scheme means breaking independently both 2GA-PR and dGA-IP. This leads to
the first non-interactive bit commitment relying on group actions.
One of the most interesting aspects of our construction is that it requires the
action to be non-transitive. This is somehow novel in the cryptographic group
action literature, where previous schemes rely on transitive action or they re-
strict to a single orbit. Concretely, in our framework we need to exhibit two
elements that belong to two different orbits.
Moreover, we introduce the notion of linkable commitment and we prove that
our bit commitment can be easily extended to a linkable one. Finally, we show
an instantiation of our framework and commitment using tensors on finite fields.
In this case, the invariant function is the tensor rank, and the cryptographic
assumption is linked to the computational version of the dGA-IP problem.
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As a future work, a commitment based on more orbits or new cryptographic
schemes starting from a GACE could be investigated. At the same time, it would
be interesting to find other GACEs to concretely instantiate the framework.
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A 2GA-PR reduces to Hiding(ΠCom)

The reduction used to prove the hiding property under the 2GA-PR assumption
is exactly the same given in the proof of Theorem 2, and the main difference
between the proof of the hiding property under the dGA-IP assumption and the
following is that the outcome of the adversaries of the Hiding(ΠCom) game A1

and A2 are not independent anymore, but are only conditionally independent
once the input values (s and t) are fixed.
In fact, in the 2GA-PR game Pr[O(s) = O(t)] = 3

4 which means that the selection
of the value of t, input to A2 depends on the selection of s, given in input to A1.

Theorem 5. The bit commitment scheme in Figure 4 instantiated with two
orbits of similar size is computationally hiding under the 2GA-PR assumption.

For simplicity, in the following proof we assume that the cardinality of the
two orbits is the same, that is, the probability of picking an element at random
inside any orbit is 1

2 . The proof can be easily generalized to the case where the
probability of falling into one orbit is negligibly greater than the probability of
falling into the other. In other words, the proof holds whenever there exists a
negligible function ν(λ) such that, given the two orbits O0 and O1,

|Pr[x ∈ O0]− Pr[x ∈ O1]| = ν(λ)

for a randomly chosen x in O0 ∪O1. This assumption seems admissible and not
too strict for cryptographic purposes.

Proof. We must prove that the hiding property holds for ΠCom. We show that,
given an adversary of the Hiding(ΠCom) game with non-negligible advantage,
we can build an adversary of the 2GA-PR game with non-negligible advan-
tage (recall that the advantage of A is defined as Adv(A, 2GA-PR(pp)) =
Pr[A wins 2GA-PR(pp)]− 1

2 ).

1. Reduction description.
To define A, we use two independent instances of the same adversary A1,A2

of the hiding game as we did in the proof of Theorem 2; then, we perform
the same reduction, as it is presented in Figure 10.
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Adversary A Challenger C
b←$ {0, 1}, s←$ X

if b = 1 then

g ←$ G, t← g ⋆ s

if b = 0 then

t←$ X

Guess b0

A1
s

b0

s, t

Guess b1

A2
t

b1

if b0 = b1 then

b′ ← 1

if b0 ̸= b1 then

b′ ← 0

b′

A wins if b = b′

Fig. 10. Reduction from 2GA-PR to the hiding game for the bit commitment scheme.

2. A correctly simulates the Hiding(ΠCom) challenger.
The adversary A correctly simulates the challenger of Hiding(ΠCom) with
respect to the adversaries A1 and A2 separately, in fact both s and t are
uniformly sampled from the set of commitment to 0 and 1. Therefore, A1

and A2 will output the right bit with advantage ϵ(λ).
3. Measurement of A’s advantage.

From now on, when we consider the orbits O(s) and O(t) of s and t respec-
tively, they will assume binary values according to the relation used in the
bit commitment scheme ΠCom: O(s) = 1 if s lives in the orbit of commit-
ments to 1, and O(s) = 0 if s lives in the orbit of commitments to 0. The
same holds for O(t).
Before computing the lower bound of the advantage of the adversary A, we
state the following remark.

Remark 2. The outcomes of the games performed by A1 and A2 in the re-
duction of Figure 10 are not independent since the values given as inputs
to them are dependent values (note that t is in the same orbit of s with
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probability 3
4 ). However, it is still true that the outcomes of the adversaries

A1 and A2 are independent if conditioned to fixed input values.

For the sake of generality, we need to consider the case in which the advantage
of the adversaries A1 and A2 in playing Hiding(ΠCom) game is not uniformly
distributed on the possible outputs. That is, it is possible that

Pr[A1 wins | O(s) = 1] =
1

2
+ ϵ(λ) +∆,

Pr[A1 wins | O(s) = 0] =
1

2
+ ϵ(λ)−∆,

with ∆ possibly a negative value. The same holds for Pr[A2 wins | O(t) = b],
with b ∈ {0, 1}.

Now, we can start with the computation of the lower bound of the advantage
of A in winning the 2GA-PR game.
The probability that A wins the 2GA-PR game can be computed as follows,
partitioning the event in three disjoint events:

Pr[A wins] = Pr[b′ = b] =

Pr

(b = 0 ∧O(s) ̸= O(t)) ∧ b′ = b︸ ︷︷ ︸
Event A

+
Pr

(b = 0 ∧O(s) = O(t)) ∧ b′ = b︸ ︷︷ ︸
Event B

+
Pr

[
b = 1 ∧ b′ = b︸ ︷︷ ︸

Event C

]
.

We now separately quantify the three probabilities as follows. We recall that
according to the event we are considering, the event b = b′ can be translated
in terms of success of the adversaries A1 and A2

– Event A: when b = 0 and O(s) ̸= O(t), then b = b′ when both A1 and
A2 win or when both of them lose. Therefore, it holds that

Pr[b = 0 ∧O(s) ̸= O(t) ∧ b′ = b] =

Pr[b = 0 ∧O(s) ̸= O(t) ∧ A1 wins ∧ A2 wins]+

Pr[b = 0 ∧O(s) ̸= O(t) ∧ A1 loses ∧ A2 loses].
(2)

We can compute this probability by considering the general case
Pr[b = 0 ∧O(s) ̸= O(t) ∧ A1 outcome ∧ A2 outcome] and then substi-
tuting outcome with wins or loses accordingly with the formula above.
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It holds that

Pr[b = 0 ∧O(s) ̸= O(t) ∧ A1 outcome ∧ A2 outcome] =
1∑

c=0

Pr[b = 0 ∧O(s) = c ∧O(t) = 1− c ∧ A1 outcome ∧ A2 outcome] =

1∑
c=0

(
Pr[A1 outcome ∧ A2 outcome | b = 0 ∧O(s) = c ∧O(t) = 1− c]·

· Pr[b = 0 ∧O(s) = c ∧O(t) = 1− c]
)
.

Since the outcomes of A1 and A2 are independent once their input values
are fixed, we have that

Pr[A1 outcome ∧ A2 outcome | b = 0 ∧O(s) = c ∧O(t) = 1− c] =

2∏
i=1

Pr[Ai outcome | b = 0 ∧O(s) = c ∧O(t) = 1− c],

with c ∈ {0, 1}.
Since the outcome of A1 only depends on the value of O(s) and the
outcome of A2 depends only on O(t), then

Pr[A1 outcome ∧ A2 outcome | b = 0 ∧O(s) = c ∧O(t) = 1− c] =

Pr[A1 outcome | O(s) = c] Pr[A2 outcome | O(t) = 1− c]

Therefore, since Pr
[
b = 0 ∧O(s) = b̄ ∧O(t) = 1− b̄

]
= 1

8 with b̄ ∈ {0, 1}
then

Pr[b = 0 ∧O(s) ̸= O(t) ∧ A1 outcome ∧ A2 outcome] =

1

8

(
Pr[A1 outcome | O(s) = 1] · Pr[A2 outcome | O(t) = 0]+

Pr[A1 outcome | O(s) = 0] · Pr[A2 outcome | O(t) = 1]

)
.

We can finally compute the initial probability given in Eq. (2), by sub-
stituting outcome with wins and loses and obtaining

Pr[b = 0 ∧O(s) ̸= O(t) ∧ b′ = b] =
1

8
+

1

2
ϵ2(λ)− 1

2
∆2. (3)

– Event B: when b = 0 and O(s) = O(t), then b = b′ when either A1 wins
and A2 loses or when A1 loses and A2 wins. Therefore, it holds that

Pr[b = 0 ∧O(s) = O(t) ∧ b′ = b] =

Pr[b = 0 ∧O(s) = O(t) ∧ A1 wins ∧ A2 loses]+

Pr[b = 0 ∧O(s) = O(t) ∧ A1 loses ∧ A2 wins].
(4)
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Since in this case the input of A1 and A2 are in the same orbit, then we
can state

Pr[b = 0 ∧O(s) = O(t) ∧ b′ = b] =

2Pr[b = 0 ∧O(s) = O(t) ∧ A1 wins ∧ A2 loses] =

2

1∑
c=0

Pr[b = 0 ∧O(s) = c ∧O(t) = c ∧ A1 wins ∧ A2 loses].

Using arguments similar to the ones used for Event A, that is the con-
ditional independence of the outcomes of the adversaries once the inputs
are fixed, the fact that the output of A1 (resp. A2) depends only on O(s)
(resp. on O(t)) and finally that Pr[b = 0 ∧O(s) = c ∧O(t) = c] = 1

8 , for
c ∈ {0, 1}, we can write the Eq. (4) as follows

Pr[b = 0 ∧O(s) = O(t) ∧ b′ = b] =
1

8
− 1

2
ϵ2(λ)− 1

2
∆2. (5)

– Event C: when b = 1, O(s) = O(t), then b = b′ when both A1 and A2

win or when both of them lose. Therefore, it holds that

Pr[b = 1 ∧ b′ = b] =

Pr[b = 1 ∧ A1 wins ∧ A2 wins]+

Pr[b = 1 ∧ A1 loses ∧ A2 loses].
(6)

As in the computation of the probability of Event A, we must com-
pute Pr[b = 1 ∧ A1 outcome ∧ A2 outcome]. Using similar arguments
as before, and noticing that Pr[b = 1 ∧O(s) = c ∧O(t) = c] = 1

4 with
c ∈ {0, 1}, it can be shown that

Pr[b = 1 ∧ A1 outcome ∧ A2 outcome] =

1

4

1∑
c=0

Pr[A1 outcome | O(s) = c] Pr[A2 outcome | O(t) = c]

Therefore, substituting outcome with loses and wins, and using the
probabilities of success of adversaries A1 and A2, from Eq. (6) we obtain

Pr[b = 1 ∧ b′ = b] =
1

4
+ ϵ2(λ) +∆2. (7)

Combining the partial results derived analysing Event A, Event B and
Event C from Equations (3),(5) and (7) respectively, we obtain the final
result

Pr[A wins] =
1

2
+ ϵ2(λ),

which proves that we have built an adversary for the 2GA-PR game which
wins with non-negligible advantage. Therefore, an adversary who wins the
hiding game with non-negligible advantage does not exist due to the 2GA-
PR assumption. This means that the binary commitment scheme we have
described results to be perfectly binding and computationally hiding.
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B Hiding(ΠCom) reduces to dGA-IP

Theorem 6. The Hiding(ΠCom) game reduces to dGA-IP game.

Proof. We show how the existence of an adversary of dGA-IP problem with non-
negligible advantage allows the creation of an adversary of the Hiding(ΠCom)
game with non-negligible advantage.

1. Reduction description.
The adversary A of the Hiding(ΠCom) game (see Figure 11) receives from
the challenger a commitment c to a randomly generated bit b. A generates a
commitment c′ to a random bit b′ and sends c, c′ to A′, the adversary to the
dGA-IP game with non-negligible advantage. A receives a response b0 from
A′ and returns to the Hiding(ΠCom) challenger the bit b′ if b0 = 1 (i.e. A′

has guessed that c and c′ are in the same orbit), otherwise A returns 1− b′.

Adversary A Challenger C
b←$ {0, 1}, g ←$ G

c← g ⋆ ⟨tb⟩

c

b′ ←$ {0, 1}
g′ ←$ G

c′ ← g′ ⋆ ⟨tb′⟩

Guess b0

A′ c,c’

b0

if b0 = 1 then

b̄← b′

if b0 = 0 then

b̄← 1− b′

b̄

A wins if b = b̄

Fig. 11. Reduction from the hiding game for the bit commitment scheme to dGA-IP.

2. A correctly simulates the dGA-IP challenger.
The adversary A receives a commitment to a random unknown bit b. There-
fore, in order to simulate the dGA-IP challenger, it generates a random bit b′
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and a commitment to such bit. In this way, A generates couples of elements
in X that live in the same orbit with probability 1

2 as it does the dGA-IP
challenger.

3. Measurement of A’s advantage.
The adversary A wins exactly with the same probability of A′, since every
time A′ guesses the right answer to the dGA-IP game, A learns the orbit in
which the element c lies since it knows the orbit of c′. Therefore, ifA′ wins the
dGA-IP game with non-negligible advantage, also A wins the Hiding(ΠCom)
game with non negligible advantage.
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