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MODELING AND STEERING
MAGNETO-ELASTIC MICRO-SWIMMERS

INSPIRED BY THE MOTILITY OF SPERM CELLS

MARTA ZOPPELLO a∗ , ANTONIO DE SIMONE b ,
FRANÇOIS ALOUGES c AND LAETITIA GIRALDI d

ABSTRACT. Controlling artificial devices that mimic the motion of real microorganisms,
is attracting increasing interest, both from the mathematical point of view and applications.
A model for a magnetically driven slender micro-swimmer, mimicking a sperm cell is
presented, supported by two examples showing how to steer it. Using the Resistive Force
Theory (RTF) approach [J. Gray and J. Hancock, J. Exp. Biol. 32, 802 (1955)] to describe
the hydrodynamic forces, the micro-swimmer can be described by a driftless affine control
system where the control is an external magnetic field. Moreover we discuss through at first
an asymptotic analysis and then by numerical simulations how to realize different kinds of
paths.

1. Introduction

In the last decade, micro-motility has been attracting growing interest, both for the
biological understanding of micro-organisms and technological applications. In the latter
direction, the topic addresses several challenges as for instance the conception of artificial
self-propelled and/or easily controllable microscopic robots. Such kind of devices could
revolutionize the biomedical applications (Peyer et al. 2013) as for instance it could be
useful to minimize invasive microsurgical operations (Nelson et al. 2010).

Learning skills from biological organisms requires, in particular, that we learn how to
move and control continuously deformable objects such as filaments, cilia, and flagella.
This is, in fact, an instance of bio-inspired soft robotics, where novel designs are inspired
by the study of how animals exploit soft materials to move effectively in complex and
unpredictable natural environment. There exists now a quite wide literature that makes a
connection between the problem of swimming at the micro-scale, and the mathematical
control theory. Starting from the pioneering work of Shapere and Wilczek (1989) and
Montgomery (2002), the dynamics of self-propelled microscopic artificial swimmers has
been considered for instance in Alouges et al. (2008, 2013), Alouges and Giraldi (2013),
Gérard-Varet and Giraldi (2015), and Giraldi et al. (2015) where the rate of shape changes
of the swimmer is considered as a natural control.
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A12-2 M. ZOPPELLO ET AL.

The aim of the present paper is to study the mechanism of propulsion of two examples
of magneto-elastic artificial micro-swimmers: the first one is a swimmer, that we call
“magneto-elastic Purcell swimmer”, composed by only 3 links which are supposed to be
uniformly magnetized and linked together with rotational springs. The second one, inspired
by the work of Dreyfus (Dreyfus et al. 2005) consists of a swimmer that looks like a sperm
cell, with a head and a tail made of a film of permanent magnetic material, and activated by
an external magnetic field. At first we briefly recall a general model for magneto-elastic
swimmers, following Alouges et al. (2015). Then regarding the Purcell Magneto-elastic
swimmer, by an asymptotic analysis, we prove that it is possible to steer it along a chosen
direction when the control functions are prescribed as an oscillating external magnetic
field. For the sperm-like magneto-elastic micro-swimmer, we show that by actuating it
with a magnetic field composed of a constant longitudinal component and an oscillatory
transversal one, one can propel it along the longitudinal axis. Moreover this longitudinal
magnetic field can be used as a steering device, and by varying its direction one can guide
the magneto-elastic swimmer along curved trajectories and even bends of sharply curved
pipes.

2. Formulation of the problem

Following Alouges et al. (2013, 2015), we think of our swimmer as composed by N
segments, which move in the plane z = 0.

This two-dimensional setting is suitable for the study of slender, essentially one-dimen-
sional swimmers exploring planar trajectories as explained in Alouges et al. (2013, 2015).
The swimmer consists of N rigid segments, each of length L with articulated joints at their
ends. We define by (x,y) the coordinates of the first end of the first link and we call θ the
angle that the first segment makes with the horizontal x-axis and αi, for i = 1, · · · ,N −1,
the relative angle between the i+1 and the i-th segment (see Figure 1). The N segments are
uniformly magnetized with magnetization Mi and linked together with torsional springs,
with elastic constant K, that tend to align the segments one with another. Those produce
torques when the segments are not fully aligned. In what follows we assume that an external

magnetic field H(t) :=

⎛⎝Hx(t)
Hy(t)

0

⎞⎠ is applied and that it is horizontal in such a way that the

motion holds in the horizontal plane. For the i−th segment, the torques due to the external
field and to the torsional springs take the form

Tm
i = Mi ×H

Tel
i,xi

= Kαiez
(1)

2.1. Equations of motion. As it was noticed in Alouges et al. (2015) the equations which
govern the dynamics of the swimmer form a system of ODEs, which is affine with respect to
the magnetic field H(t). The hydrodynamic forces acting on the i-th link, are approximated
by using Resistive Force Theory (RTF) introduced in Gray and Hancock (1955), according
to which the forces exerted by the fluid on the swimmer are linear in its velocity. We will
denote the parallel (resp. perpendicular) drag coefficients with ξi (resp. ηi). In our particular
case this system describes the evolution of position and shape variables and thus consists of
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H(t)%

FIGURE 1. The magneto-elastic N-link swimmer.

N+2 equations. Those are obtained by writing the balance of forces for the whole swimmer
and the balance of torques for the subsystems consisting of the N, N − 1 · · ·1 rightmost
segments. We call those subsystems S1,S2, · · ·SN respectively (S1 is therefore the whole
system). The motion of the swimmer holds in the horizontal plane since only horizontal
forces and vertical torques apply. The final system reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fh = 0 ,

ez ·
(

TS1
h +TS1

e +TS1
m

)
= 0 ,

ez ·
(

TS2
h +TS2

e +TS2
m

)
= 0 ,

...

ez ·
(

TSN
h +TSN

e +TSN
m

)
= 0 .

(2)

Here, Fh denotes the total hydrodynamic force acting on the swimmer, TSi
h (resp. TSi

e and
TSi

m ) is the hydrodynamic (resp. elastic and magnetic) torque of the subsystem Si.
Following the construction made in Alouges et al. (2015) system (2) becomes

Mh (θ ,α)

⎛⎜⎜⎜⎜⎜⎝
ẋ
θ̇

α̇1
...

α̇N−1

⎞⎟⎟⎟⎟⎟⎠=−K

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

α1
...

αN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−Mx

m (θ ,α)Hx(t)−My
m (θ ,α)Hy(t) , (3)

with Mh (N+2)× (N+2) matrix, Mx
m and My

m vectors in RN+2 all depending on (θ ,α) :=
(θ ,α1, · · · ,αN−1). All these matrices can be computed explicitly following the approach
given in Alouges et al. (2015).
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A12-4 M. ZOPPELLO ET AL.

FIGURE 2. The magneto-elastic Purcell swimmer of shape (α2,α3) at the posi-
tion x in the plane subject to an external magnetic field H.

3. Two cases study

In this section we will analyse two examples, the first one is a generalization of the well
known Purcell three link swimmer, that we call Purcell magneto-elastic swimmer, and a
second example of a swimmer composed by 10 segments which try to move mimicking a
sperm cell. For the first example by an asymptotic analysis, we prove that it is possible to
steer the swimmer along a chosen direction when using an oscillating external magnetic
field. In the second example, using values for the geometric and material parameters which
are realistic for a magnetic multi-layer, we discuss the possibility to make the swimmer
moving straight or to steer the system along curved paths.

3.1. Purcell magneto-elastic swimmer. To benefit from the symmetry of the system, for
this particular system we use as state variables the coordinate x := (x,y) of the middle point
of the second segment, and the angle θ that it forms with the x-axis. With the notation of
the preceding section, we call α2 and α3 the relative angles to the central link of the left
and right arms respectively, see Figure 2. To compute the equation of motion we follow
the same procedure described in the preceeding section considering all the links equally
magnetized. In this way from (3) we end up with⎛⎜⎜⎝

ẋ
θ̇

α̇2
α̇3

⎞⎟⎟⎠=f0(θ ,α2,α3)+ fx(θ ,α2,α3)Hx(t)+ fy(θ ,α2,α3)Hy(t) (4)

We can solve for ẋ as

ẋ = G1 (θ ,α2,α3) θ̇ +G2 (θ ,α2,α3) α̇2 +G3 (θ ,α2,α3) α̇3 . (5)

Regarding instead the subsystem associated with the shape and the orientation of the
swimmer we have⎛⎝ θ̇

α̇2
α̇3

⎞⎠= g0(θ ,α2,α3)+gx(θ ,α2,α3)Hx(t)+gy(θ ,α2,αN)Hy(t) . (6)

In order to overcome any symmetry obstruction (Alouges et al. 2017) we assume that our
Purcell magneto-elastic swimmer satisfies

η2 = η3 = η ξ2 = ξ3 = ξ with η1 ̸= η ξ1 ̸= ξ (7)
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They are suitable for example in the case of a swimmer with an head.
Starting from a swimmer with a horizontal shape (θ = α2 = α3 = 0), we can use the
horizontal component of the external magnetic field as a “stabilizer” whereas the oscillating
vertical component produces the shape deformation and the motion. In order to understand
further what happens when such a field is applied we make the following perturbation
analysis. We assume that

(Hx(t),Hy(t)) = (1,ε sin(ωt)) , (8)

and compute the asymptotic expansion of the swimmer displacement with respect to small
ε after a period 2π

ω
.

Linearizing the system of equations (6) for small angles (θ̃ , α̃2, α̃3), to first order in ε

we get that the triplet

⎛⎝ θ̃

α̃2
α̃3

⎞⎠ satisfies the equation,

⎛⎝ ˙̃
θ

˙̃α2
˙̃α3

⎞⎠= A

⎛⎝ θ̃

α̃2
α̃3

⎞⎠+bsin(ωt) (9)

with

A = ∇(g0 +gx)(0,0,0) , b = gy(0,0,0) . (10)

Here, A is the 3×3 matrix which depends on the drag coefficients, (η1,η) and (ξ1,ξ ), on
the magnetization M and on the elastic constant K.

The solution of the system (9) is thus given by⎛⎝ θ̃(t)
α̃2(t)
α̃3(t)

⎞⎠=
1
2i

(
A+(ω)exp(iωt)b−A−(ω)exp(−iωt)b

)
+ c(ω)exp(At) (11)

where A±(ω) := (−A± iωI)−1 and c(ω) = A−(ω)b−A+(ω)b.
The first part of the solution is a periodic solution, while the last is an exponentially decaying
perturbation, as we shall see now. Indeed, by applying Routh-Hurwitz criterion on the
characteristic polynomial of A, we prove that the real part of its eigenvalues are all negative.
This provides the stability of the asymptotic periodic solution.

Proposition 3.1. The steady-state solution, called S ∞, of (9)

S ∞(t) =
1
2i

(
A+(ω)exp(iωt)b−A−(ω)exp(−iωt)b

)
, (12)

is stable.

Proof: The characteristic polynomial of A reads

pA(λ ) = det(A−λ Id) = a3λ
3 +a2λ

2 +a1λ +a0 ,
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A12-6 M. ZOPPELLO ET AL.

where

a0 = detA =−
432M

(
3K2 +4KM+M2)(2η +η1)

d
< 0 ,

a1 =

− 36
d

(
M2
(

10η
2 +28ηη1 +η

2
1

)
+K2

(
16η

2 +64ηη1 +η
2
1

)
+KM

(
31η

2 +98ηη1 +3η
2
1

))
< 0 ,

a2 = trA =
−12

d

(
M
(

2η
2 +17ηη1 +5η

2
1

)
+K

(
2η

2 +37ηη1 +9η
2
1

))
< 0 ,

a3 =−1 < 0

d = L9
η

2
(

8ηη1 +7η
2
1

)
and

a3a0 −a2a1 =
−1

L9η3η2
1 (8η +7η1)2

(
432
(
2(K +M)(16K3 +31KM+10M2)η4+

+5
(
144K3 +339K2M+217KM2 +42M3)

η
3
η1 +

(
2514K3 +5015K2M+2867KM2 +506M3)

η
2
η

2
1+

+
(
613K3 +1309K2M+802KM2 +150M3)

ηη
3
1 +(9K +5M)

(
K2 +3KM+M2))

η
4
1

)
< 0 .

Using the Routh-Hurwitz criterion (Gantmacher 1959), we have that the real part of the
eigenvalues of A is negative and therefore the steady state of the equation (9) is stable.
2

As a consequence, the solution of (11) exponentially converges to the periodic solution
(12) and in particular θ ∼ εθ̃ ∞ oscillates around 0 indicating that the swimmer stays nearly
horizontal, stabilized by the horizontal component of the magnetic field. Similarly, the fact
that the shape variables (α2,α3) are periodic (and small) indicates that the swimmer stays
nearly straight.

In order to go further, and compute the (asymptotic) net displacement of the swimmer
after one period of the oscillating external field, we linearize as well the equation (5) in
(θ ,α2,α3) near (0,0,0).

Noting,

ẋ = Gx(θ ,α2,α3) ·

⎛⎝ θ̇

α̇2
α̇3

⎞⎠ and ẏ = Gy(θ ,α2,α3) ·

⎛⎝ θ̇

α̇2
α̇3

⎞⎠
where Gx (resp. Gy) is the 1×3 matrix composed of (Gi · ex)i=1,···3 (resp. (Gi · ey)i=1,···3),
we obtain ∆x as∫ 2π

ω

0
ε
(
Gx(0,0,0)+ ε

tS ∞(t ′)∇Gx(0,0,0)
)
S ∞(t ′)dt′+o(ε2) .

Since, t ↦→ S ∞(t) is periodic, the latter equality reads

∆x = ε
2
∫ 2π

ω

0

tS ∞(t ′)∇Gx(0,0,0)S ∞(t ′)dt′+o(ε2) , (13)
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and a straightforward computation leads to express

∇Gx(0,0,0) =

L
2(2η +η1)

⎛⎜⎜⎜⎝
2(η −η1) −η1 η

− (6ηη1−4ηξ+η1ξ1
(2ξ+ξ1)

−η1(2η+ξ1)
(2ξ+ξ1)

−η(η1−ξ1)
(2ξ+ξ1)

(2η2+4ηη1−3η1ξ )
(2ξ+ξ1)

η1(η−ξ )
(2ξ+ξ1)

η(η+η1+ξ )
(2ξ+ξ1)

⎞⎟⎟⎟⎠ .

Similarly, the same formula holds for ∆y by substituting Gx with Gy and in this case,

∇Gy(0,0,0) =

⎛⎝0 0 0
0 0 0
0 0 0

⎞⎠ ,

thus, ∆y = o(ε2). It follows that the leading term, with respect to small angles, of the
trajectory of the swimmer along the y-axis is negligible after one period of the oscillating
fields compared to the one along the x-axis.

From now on, we focus on the x-displacement of the swimmer, ∆x and we prove that the
leading term of order ε2 does not vanish after one period of the oscillating fields.

Plugging (12) into (13) and noting that the two terms vanish because of periodicity,

∫ 2π

ω

0

t (A+(ω)exp(iωt)b
)

∇Gx(0,0,0)
(
A+(ω)exp(iωt)b

)
= 0 ,∫ 2π

ω

0

t (A−(ω)exp(−iωt)b
)

∇Gx(0,0,0)
(
A−(ω)exp(−iωt)b

)
= 0

we obtain ∆x as

∆x = ε
2
∫ 2π

ω

0

ω

4
(tbtA+(ω)NA−(ω)b

)
, (14)

where N is the 3×3 matrix (∇Gx(0,0,0)− t∇Gx(0,0,0)).
Moreover, the 3 × 3 matrix N is skew-symmetric and not null. Therefore, 0 is an

eigenvalue of multiplicity 1. Let us denote by u its associated eigenvector. A direct
computation leads to

u =

⎛⎝ η1ξ +ηξ1 −2ηη1
2η2 +4η1η −2ξ η −ξ1η −3η1ξ

6ηη1 −2ξ η1 −4ηξ1

⎞⎠ .

Thus, to ensure that (14) is not null, it is sufficient to prove that the triple of vectors
{u,A−(ω)b,A+(ω)b} are independent. But, for large frequencies ω , we can expand the
matrix A±(ω) as

A±(ω) =± I
iω

− A
ω2 +o(

1
ω2 ) . (15)
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FIGURE 3. The magneto-elastic swimmer: initial configuration, before the appli-
cation of the external magnetic field.

and

det(u,A−(ω)b,A+(ω)b) = det(u,
b
ω
,

Ab
ω2 )+o(

1
w4 ) =

−

(
L9

ω
3
η

3
η

2
1 (8η +7η1)

2(3ηη1 −2ηξ1 −η1ξ )

)−1

×

×

(
ηη1(113K +38M)+216M2(2η +η1)

(
η

2
ξ1
(
4η

2(5K +2M)+η
2
1 (29K +8M)

)
+ηη1(η1 −η)

(
K
(

4η
2 +37ηη1 +13η

2
1

)
+6η1M(2η +η1)

)
−η1ξ

(
8η

3(2K +M)

+2η
2
η1(40K +13M)+ηη

2
1 (53K +14M)+η

3
1 (13K +6M)

)))
.

This determinant does not vanish identically then we obtain that by prescribing an oscillating
magnetic field as (8), the magneto-elastic Purcell swimmer moves along the x-axis. Notice
that here the assumption on the drag coefficients (7) is crucial.

3.2. Moving mimicking sperm cells. Let us now consider the swimmer depicted in Figure
3, which consists of a large (say, disk-shaped) head linked to a tail composed of 10 segments.
Each segment, including the head, is 10µm long, so that the length of the whole system is
110 µm. In order to represent a continuous tail made of a Permalloy thin film, we use the
following values for the magneto-elastic parameters: K = 1

12 10−11Nm and Ms = 8 ·10−8 Am
. As for the drag coefficients, we follow Friedrich et al. (2010) and take ξi = 6.2 · 10−3

Nsm−2, ηi = 12.4 ·10−3 Nsm−2, for i = 2, · · · ,N, ξ1 = η1 = 0.05Nsm−2.

3.2.1. Straight swimming. We first consider the case where the swimmer, originally in the
horizontal position, is excited by a magnetic field similar to the one used in the previous
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FIGURE 4. Horizontal displacement during one period of the external field (left)
and velocity of the swimmer (right). Very small and very high frequencies are not
effective and a maximum displacement is obtained for a frequency of about 8 Hz.
Three bullets indicate the frequencies 3, 8 and 50 Hz that are used in the sequel
for a more thorough analysis.

example, with a constant horizontal component and an oscillating vertical one

H(t) = (Hx,Hy sin(ωt))t (16)

where Hx = 0.01T and Hy = 0.02T are fixed. These values have been selected on a trial-
and-error basis, as field strengths of magnitude achievable in a laboratory and producing
interesting performance. Notice that the presence of a nonzero value of Hx proved necessary
to obtain stable net motion along the horizontal axis.

We explore the dynamics of the swimmer by varying the driving frequency ω/2π in
the range 3-70 Hz. We see from Figure 4 that the net horizontal displacement per cycle is
maximised at about 8 Hz, while the maximal swimming speed is attained around 50 Hz. The
value of this maximal displacement is close to 5 µm, while the maximal swimming speed
is around 70µm/s. The evolving shape of the swimmer is well characterised by the angle
Ψ(s, t) between the horizontal axis and the tangent to the swimmer at arc-length distance s
from the external end of the head segment. Following Friedrich et al. (2010), we compute
the Fourier coefficients of Ψ(s, ·)

Ψ̂n(s) =
∫ 2π

ω

0
Ψ(s, t)exp(inωt) dt

From a numerical analysis of
Ψ̂1(s)Ψ̂1(0)

|Ψ̂1(0)|
[performed as in Alouges et al. (2015)] it can be

shown that Ψ̂1(s) is well approximated by a function of the type Ψ̂1(s) = λ +µsexp(iϕ)
which indicates a behaviour of Ψ(s, t) that is well approximated by the function

Ψ(s, t)∼ Re(Ψ̂1(s)exp(iωt))∼ λ cos(ωt)+µscos(ωt +ϕ) . (17)

The deformation of the swimmer is thus composed of a global rotation (the spatially constant
term) and of a term describing bending with a spatially constant curvature (the term linear
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A12-10 M. ZOPPELLO ET AL.

FIGURE 5. Trajectory of the head of the swimmer with the magnetic field given
by (16) with ω = 8 Hz. The close-up view in the right panel emphasizes the
oscillations in the head movement. Lengths are in µm.

in s), which both oscillate in time with angular frequency ω and a phase shift ϕ . According
to (17), there is no travelling wave of curvature propagating along the tail of the swimmer.
Therefore, this swimming mechanism is very different from the one observed in sperm cells
in Friedrich et al. (2010), but also from the one observed in the artificial system described
in Dreyfus et al. (2005), which is also actuated by an external oscillating magnetic field. In
particular, notice that by differentiating (17) with respect to s, we obtain that the curvature
remains constant along the tail of the swimmer (i.e., s-independent) at every time, while
being modulated by a time-dependent amplitude (see Figure 5).

3.2.2. Swimming in circles. The previous section shows that, as it was pointed out already
in Dreyfus et al. (2005), the constant horizontal component of the magnetic field (which
is parallel to the initial straight configuration of the magnetic tail, and then parallel to
its average orientation during the motion), acts in a stabilising way, keeping the average
orientation of the swimmer always aligned with it. Indeed, the swimmer oscillates, following
the oscillations of the transversal component of the applied field, but its average motion is
that of a translation along the average direction of the oscillating magnetic field, which is
horizontal.

If we now consider an external magnetic field which is obtained by superposing fast
transversal oscillations with frequency ω on a slowly varying longitudinal field, oscillating
at frequency ω ′ ≪ ω , we expect that we can use the direction of the slowly varying field to
steer the swimmer. As an example, consider an external magnetic field of the form

H = H∥eθ(t)+H⊥ sin(ωt)e⊥
θ(t) (18)

where eθ(t) is the unit vector forming an angle θ(t) with the horizontal axis given by

θ(t) = 2πt/Tmax , (19)

and H∥ and H⊥ have again the values of Hx = 0.01T and Hy = 0.02T , respectively. Here, in
order to have a clear separation of the time scales associated with fast and slow oscillations,
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FIGURE 6. Trajectory of the head of the swimmer with the magnetic field given
by equations (18, 19). The average direction of the magnetic field experiences a
low frequency circular motion together with a high frequency oscillation. The
swimmer follows the slow modulations of the applied magnetic field by tracing a
circular trajectory. Lengths are in µm.

we take ω/2π = 8Hz, and Tmax = 40s, which, in view of (19) leads to a frequency ω ′/2π =
0.025Hz ≪ ω/2π .

The swimmer traces now a circular trajectory, and its average orientation follows the
slow modulations of the applied magnetic field (see Figure 6).

3.2.3. Turning abruptly. In this last section we push further the idea developed in the
previous section. Indeed, we take the same parameters as before, and use now a magnetic
field given by (18) which oscillates around an average orientation eθ(t) that now varies in
time according to

θ(t) =
π

4

(
1+ tanh

(
30
(

t
Tmax

− 1
2

)))
. (20)

Notice that θ(t) experiences a sudden jump from 0 to π

2 around t = Tmax
2 . The result we

obtain is displayed in Figure 7 and shows clearly a sudden change in the swimming direction
which would allow the swimmer to navigate along an elbow in a pipe. Here, we are tacitly
assuming that the pipe is wide enough with respect to the size of the swimmer so that
the hydrodynamics effects of the walls can be neglected. Enriching the model to consider
explicitly the confining effects due to the pipe walls would be interesting, also in view of
recent results in Alouges and Giraldi (2013), but will not be done here.

4. Conclusions

In this paper we analyzed two examples of magneto-elastic microswimmers, one inspired
by the well known classical Purcell swimmer and the other one that resembles a sperm
cell. In both cases we show that by prescribing a particular oscillating magnetic field we
are able to steer the swimmer along one direction, at first by an asymptotic analysis on a
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FIGURE 7. Trajectory of the head of the swimmer with the magnetic field given
by equations (18, 20) where we have used ω/2π = 8 Hz and Tmax = 10s. The
sudden rotation of the axis along which the magnetic field oscillates induces
a sudden change in the swimming direction that could allow the swimmer to
navigate along the elbow of a pipe (not shown). Lengths are in µm.

“toy model” swimmer and then by numerical simulations which use geometric parameters
consistent with those achievable by current manufacturing techniques,. Our analysis provide
a feasibility study for the engineering of microscopic artificial swimmers. We showed
that our magneto-elastic swimmer propels itself with a mechanism, which is very different
from the ones previously reported in the literature for flexible magneto-elastic filaments.
Indeed, the deformation of the swimmer is composed of a global rotation and of a bending
deformation with a spatially constant curvature, which both oscillate in time at the same
frequency of the external magnetic field, but with a phase shift. By contrast, sperm cells and
artificial swimmers exploiting control of their curvature propel themselves by propagating
internally activated waves of bending along the flagellum.
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