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(UWB) [5], and RFID [6], among others. WiFi, in particular,
offers high availability and accuracy, although it comes with
slightly higher power consumption. This characteristic enables
widespread and accurate localization in nearly any environ-
ment with compatible devices.

The next generation of WiFi positioning, known as next-
generation positioning (NGP), relies on the IEEE 802.11az
Wi-Fi™ standard [7] and utilizes Time-of-Flight (ToF) mea-
surements to facilitate location-based services. In this context,
localization refers to the ability to determine the position of
a wireless device, such as a smartphone or laptop, within a
given environment. The IEEE 802.11az standard employs ToF
measurements to calculate the distance between a wireless
device and multiple access points (APs) in the environment.
These measurements are based on the time taken by a signal
to travel from the device to the AP and back. By leveraging
multiple APs and triangulation, the location of the device can
be accurately determined.

Traditional methods rely on direct line-of-sight (LOS)
conditions to extract sequential data, such as angle of arrival
(AoA), spatial information, or time of arrival (ToA), from
signals that encounter multiple paths. This extraction enables
the calculation of distances or ranges between network nodes.
Trilateration, a technique that estimates positions by measuring
the range among three devices, becomes viable once this
range can be measured. To achieve precise localization in
WiFi networks, deep learning, and fingerprinting systems are
employed, enabling sub-meter accuracy even in environments
with multipath signals where direct line of sight is not avail-
able.

In the scenario presented in this study, multiple access
points transmit 802.11az packets through a channel affected
by noise. By utilizing the NGP techniques, it is possible to
optimize the accuracy of indoor localization in this scenario.
Each station receives the packets, and it is assumed that the
stations are capable of distinguishing between the different
access points; there is no interference between the access
points. The experiments include four access points, as shown in

Abstract—Accurately classifying regions based on Wi-Fi sig-
nals can be a difficult task, especially when considering different 
frequency values. In this study, we aimed to improve the accuracy 
of indoor localization by developing a novel approach that does 
not rely on pre-trained models. To achieve this, fingerprints 
from the IEEE 802.11az standard were randomly selected, and 
the data samples were trained using parameterized station 
characteristics and neural network hyperparameters. The impact 
of each parameter on the localization accuracy was measured, 
and performance monitoring metrics such as F1-Measure and 
confusion matrix-based metrics were evaluated. Furthermore, the 
Thompson sampling (TS) algorithm was employed to determine 
the optimal parameters, which helped to achieve the best possible 
accuracy. The proposed approach demonstrated improved accu-
racy in region localization compared to conventional heuristic 
approaches which typically yield an accuracy range of 65% to 
77%. The proposed approach achieved up to 80% accuracy in 
region localization and could be a promising solution for indoor 
localization in various settings.
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I. INTRODUCTION

The increasing presence of smart sensors in various loca-
tions has created a demand for accurate and reliable localiza-
tion of specific devices in Internet of Things (IoT) applications. 
This need is particularly evident in settings such as hospitals, 
where the ability to locate medical staff, equipment, and 
patients would significantly improve the quality and efficiency 
of medical services. Achieving precise localization in both 
indoor and outdoor environments, while minimizing power 
consumption, is crucial [1]. While the global positioning 
system (GPS) has been commonly used for localization, its 
effectiveness indoors is limited by non-line-of-sight (NLOS) 
challenges. As a result, various technologies have been pro-
posed to enable indoor localization, including magnetic field-
based methods [2], Bluetooth [3], WiFi [4], Ultra Wide Band
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Figure 1: The scenario (5 m × 8 m × 3 m) under consideration
consists of classification regions encompassed by access points
[7], [11].

Fig. 1. The number of stations for fingerprinting is a parameter.
Uniform or random placement is possible; this work assumes
the 3-dimensional random positioning. The fingerprints for
each access point are generated based on the characteristics
of the propagation channel [8], [9], and ray tracing techniques
[10] are used to generate the corresponding channel impulse
response (CIR), which can effectively capture the effects of
reflections, diffractions, and scattering on the CIR. In recent
years, researchers have investigated the application of ray
tracing techniques in generating CIRs for different wireless
communication systems, including Wi-Fi, 5G, and IoT.

The rest of the paper is organized as follows: Section
II presents the proposed method based on training a neural
network (NN) with hyperparameter and Wi-Fi set-up optimiza-
tions. Section III devotes to presenting the simulation results,
and Section IV concludes the paper.

II. PARAMETER OPTIMIZATION WITH CNN

Constructing a NN involves two steps: (i) deciding on the
NNs’ structure and (ii) achieving optimal hyperparameters,
such as the number of neurons, hidden layers, dropout size,
training-validation ratio, batch size, and more. This section will
provide a general description of constructing a convolutional
neural network (CNN) using a proposed method to obtain the
optimal hyperparameters for indoor localization with the help
of Wi-Fi signals.

A. CNN Construction

A CNN is a structure used in deep learning systems
to extract features without the need for human intervention
automatically. The obtained features are used to train a system
and classify test data using the resulting model. In this study,
a database is created during the network’s training phase
by sampling channel fingerprints at various known locations
in an indoor environment. The network estimates the user’s
location based on a signal received at an unknown location
by referencing the database. The hyperparameters of the CNN
and Wi-Fi signaling parameters are used during optimization.

The CNN structure includes four network layers: con-
volutional, batch normalization, ReLu (rectified linear unit),
and average pooling. Fully connected layers that process data

Figure 2: A general view on the Pareto front in two-objective
optimization [16].

finalize the network including a grid-like construction [12],
and the convolution layer is the main module for getting
features automatically. The pooling decreases the number of
computations where the fully connected layer is attached to
the previously described layers. This network is selected over
the various networks to handle a variety of computer vision
problems [13] and estimate the exact position of multiple
stations based on the fingerprints and the position labels.

Our observations for the CNN structure are to keep the con-
volution+batch+relu+pooling (connected layer group
- CLG) together in a cascading fashion. Each connected layer
group increased from 1 to 5 to measure the performance during
the training. This is one of the objectives the TS algorithm
considers. Each CLG is identical and convolutions have 256
filters with 3-to-3 sizes [11]. Average pooling follows the
down-sampling by a factor of two.

B. Hyperparameter Optimization through TS Method

For any NN, suitable hyperparameters lead to constructing
an accurate network are required importantly. For this case,
obtaining optimal hyperparameters is not straightforward and
requires efficient optimization methods. The TS algorithm
is based on the Bayesian optimization (BO) method that
builds the Gaussian process (GP) [14]. This method tar-
gets to find the proper global minimizer x∗ of a function
y(x∗ ∈ argminxϵχ⊆Rdy(x)). In total, this method approxi-
mates the Pareto front where the final output data is the set of
points nearby the precise Pareto set [15]. The general idea of
the Pareto front is presented in Fig. 2.

In this study, the CNN is trained where the TS method
is employed for optimizing parameters such as the transmit
and receive antennas (TA and RA), the number of fingerprints
(NoF), the training-validation data split ratio (SR), and the
CNN parameters such as CLG counts, activations, dropout
(DO), and batch size (BS). Another objective of the TS
method is the validation of the confusion matrix characteristics
and determining the best-performing network structure by
considering both accuracy and performance monitoring metrics
such as sensitivity, precision, specificity, F1-Measure, balanced
accuracy, and Fowlkes Mallows Index (FMI). The confusion



Table I: Performance Monitoring Equations [17]

Sensitivity TP
(TP+FN)

F1-Measure 2×TP
2×TP+FP+FN

Precision TP
TP+FP Balanced Acc. Sensit.+Specif.

2

Specificity TN
(FP+TN)

FMI
√

(Prec. × Sensit.)

matrix for the seven regions (in Fig. 1) shows the multi-
class classification results using TP: True Positives, FP: False
Positives, TN: True Negatives, and FN: False Negatives. The
performance monitoring formulas are represented in Table I.

III. SIMULATION RESULTS

This work presents classification results of an indoor area,
which is divided into a total of seven zones. The testing
workspace consists of four sites with 802.11az access points
that send and receive signals. We optimize several parameters,
including the TA, RA, NoF, SR, and CNN parameters, such
as CLG counts, DO, and BS. TA, RA, and NoF are Wi-
Fi set-up-related parameters to be optimized. SR, CLG, DO,
and BS are the neural network-related hyperparameters. For
data acquisition, using a MATLAB simulator [11], we use
an iterative data generation that assumes random positions of
stations. The summary of the parameters is presented in Table
II. Here, we provide a summary of the ranges (initial value:
step size: final value) for the optimization parameters of the
Wi-Fi network and the NN, as well as their best-performing
values (indicated in bold).

In the experiments, the fingerprints are obtained and then
split into training, validation, and testing points. During itera-
tive training, we change the hyperparameters, and we record
single-step changes in each parameter, such as updating the
batch size from 16 to 32, while considering the validation
accuracy and confusion matrix. The optimal confusion matrix
metrics in the validation check sets the reference Pareto
optimal fronts to fine-tune the optimization. Each selected
metric has been chosen for a specific observation. Specificity,
also known as the True Negative Rate or inverse sensitivity,
represents the proportion of correctly identified negative cases.
Sensitivity, also known as recall or the True Positive Rate,
measures the correctly predicted positive values. Precision,
or the Positive Predictive Value, monitors the measure of
actual positive cases. Powers refer to precision as the True
Positive Accuracy, indicating the confidence score [18]. From
sensitivity and precision, the F1-measure is calculated using
the harmonic mean or the indicated formula in [17]. To
provide a better perspective for performance analysis, balanced
accuracy considers an imbalanced confusion matrix, and it
is the arithmetic mean of sensitivity and specificity. FMI
stands for a clustering performance measure, assuming that
the classification is similar to data clustering [17].

In Fig. 3, we present the testing results obtained after
optimizing the model through validation. Our observations
indicate that better results were obtained when the numbers
of TA and RA were both set to four and increasing the
number of NoF did not guarantee an increase in accuracy.
Therefore, obtaining a large amount of fingerprint data may not
necessarily ensure higher accuracy. This localization problem
has become more challenging, highlighting the importance of
optimization. The reported 68.40% classification accuracy in
the literature [19] has been improved to 80.01% in this study.

Table II: Summary of Simulation Parameters Including NN

Parameters Values
Number of the zones 7

Dimensions of the indoor location 5 m × 8 m × 3 m
Number of access points 4

Counts of TA and RA 1, 2, or 4
Wi-Fi Channel Width 20, 40, 80, or 160 MHz

NoF range 500:10:1000 (750)
Hyperparameters of CNN

CLG range 1:1:5 (4)
SR range 5:5:25 (15%)
DO range 5:5:35 (10%)
BS range 16:8:256 (16)

The decreasing color contrast in the metric group presented
in Fig. 3 matrix format can be observed after optimization.
Additionally, with Wi-Fi access points in every corner of a
closed environment, we observed that classifying the edge
regions was more challenging compared to the central regions.

IV. CONCLUSION

Constructing a convolutional neural network involves de-
ciding on its structure and achieving optimal hyperparame-
ters. In this study, a CNN was constructed to estimate the
user’s indoor location using Wi-Fi signals. The CNN struc-
ture includes convolutional, batch normalization, ReLU, and
average pooling layers, with fully connected layers finalizing
the network. The hyperparameters were optimized using the
Thompson sampling algorithm based on Bayesian optimiza-
tion. The TS algorithm optimized the parameters in terms of
transmit and receive antennas, the number of fingerprints, the
training-validation data split ratio, and the CNN parameters.
The TS algorithm also considered accuracy and performance
monitoring metrics such as sensitivity, precision, specificity,
F1-Measure, balanced accuracy, and Fowlkes Mallows Index
to determine the best-performing network structure. The results
showed that the proposed method achieved high accuracy in
estimating the user’s location in different regions of the indoor
environment. This study has tackled a more challenging task
by overcoming limited training data without utilizing pre-
trained data, which opens up possibilities for future work to
incorporate pre-trained network models.
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