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A B S T R A C T

The mammalian brain exhibits a remarkable diversity of neurons, contributing to its intricate architecture
and functional complexity. The analysis of multimodal single-cell datasets enables the investigation of cell
types and states heterogeneity. In this study, we introduce the Neuronal Spike Shapes (NSS), a straightforward
approach for the exploration of excitability states of neurons based on their Action Potential (AP) waveforms.
The NSS method describes the AP waveform based on a triangular representation complemented by a set of
derived electrophysiological (EP) features. To support this hypothesis, we validate the proposed approach
on two datasets of murine cortical neurons, focusing it on GABAergic neurons. The validation process
involves a combination of NSS-based clustering analysis, features exploration, Differential Expression (DE),
and Gene Ontology (GO) enrichment analysis. Results show that the NSS-based analysis captures neuronal
excitability states that possess biological relevance independently of cell subtype. In particular, Neuronal Spike
Shapes (NSS) captures, among others, a well-characterized fast-spiking excitability state, supported by both
electrophysiological and transcriptomic validation. Gene Ontology Enrichment Analysis reveals voltage-gated
potassium (K+) channels as specific markers of the identified NSS partitions. This finding strongly corroborates
the biological relevance of NSS partitions as excitability states, as the expression of voltage-gated K+ channels
regulates the hyperpolarization phase of the AP, being directly implicated in the regulation of neuronal
excitability.
1. Introduction

The mammalian brain displays many cell types, contributing to its
complex structure and functions [1–4]. Investigating cellular hetero-
geneity means understanding how cells specialize for specific func-
tions [5,6] and how they interact to form intricate neuronal networks
during development or in adult organisms [7–11].

Multimodal single-cell analysis provides multiple layers of data
to explore neuronal states and their transcriptional profiles across
cell types [12–16]. Indeed, understanding cellular heterogeneity re-
quires profiling thousands of cells in multiple dimensions to accurately
identify and characterize neuronal types and subtypes [17–19].

A cell type is a group of cells that share a stable phenotype based
on transcriptomic, morphological, and functional markers. However,
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these categories have significant uncertainties [20]. Neurons exhibit a
remarkable diversity in terms of their types. Neuronal types encompass
various categories, each classified according to distinct sets of criteria,
often overlapping. This classification can hinge on morphological fea-
tures, such as the neuron’s shape, whether it resembles a pyramid, star,
or exhibits a bipolar structure. Alternatively, neuronal categorization
can be based on their functional roles within neural circuits or the
specific neurotransmitters they release. In the context of this study, our
primary focus is on GABAergic neurons, which release the inhibitory
neurotransmitter GABA (gamma-aminobutyric acid) and play a cru-
cial role in modulating the activity of excitatory neurons. It is worth
noting that GABAergic neurons comprise multiple cell subtypes, each
characterized by distinct morphological and transcriptomic profiles.
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Furthermore, the varying nature of cell dynamics introduces addi-
tional layers of heterogeneity, introducing the concept of cell states. A
cell state refers to a ‘‘transient or dynamically responsive property of a
ell to a context’’ [20], distinguished by complex molecular and func-
ional properties [21]. These states encompass varying activation levels
nd involve neuroplasticity mechanisms, which are connected to the
ynamic adaptation of neurons to activation patterns within a neural
ircuit [22]. In the mammalian brain, plasticity mechanisms play a
rucial role in the variability of neuronal states, acting throughout the
ifespan of the organism to balance stability and adaptation of neuronal
etworks, supporting brain functions and learning [23,24].

Investigating these states is paramount, as it is crucial to understand
he intricate biological mechanisms underlying brain functions [25].
owever, the identification of cell states is challenging due to the

ack of well-defined, quantitative, and precise state definitions in the
iterature. This results in a notable gap concerning dedicated methods
or effectively examining these states.

This paper introduces Neuronal Spike Shapes (NSS), which repre-
ents an innovative model-based approach crafted to explore electro-
hysiological data to study cell states within neurons. To bridge the
xisting gap in the investigation of excitability states, NSS introduces a
imple model that requires a limited amount of EP data, summarizing
he AP waveform into a triangular representation through a set of
escriptive EP features. What sets NSS apart from existing research on
ell heterogeneity studies is that NSS does not operate as a classification
ethod aimed at assigning labels to cell types, thereby constructing
comprehensive taxonomy encompassing various neuronal categories.

nstead, NSS adopts a structured approach to perform unsupervised
xploratory analysis, aiming to identify electrophysiological cell states
ithin groups of cells. In addition, using only AP-related features
mong the many other EP features, the provided approach requires
minimal set of data compared to other approaches, mitigating data

vailability issues that are critical for patch-clamp and in particu-
ar patch-seq datasets. It is worth noting that the current literature
till lacks dedicated methods for effectively probing cell states at the
ingle-cell level, underscoring the significance of our work.

This study applies the NSS analysis to two high-throughput datasets
f murine cortical interneurons. The first dataset provides solely elec-
rophysiological data [26], while the second dataset offers a com-
rehensive characterization of cells encompassing electrophysiologi-
al, transcriptomic, and morphological aspects [27]. Results validate
SS’s capacity to autonomously identify well-established cell states

n neurons, outperforming existing approaches detailed in the litera-
ure. Given the limited body of related work, our validation primarily
oncentrates on identifying the high excitability fast-spiking state in
eurons [28]. Results demonstrate NSS’s capability for identifying cells
ithin high excitability state by comprehensively evaluating different
P features. Furthermore, our approach successfully identifies new
lusters of cells that share AP features, thereby representing unknown
xcitability states, thus providing a guide for future investigations.
his outcome underscores the exploratory potential of the proposed
ipeline, which can unveil concealed relationships among states within
dataset. These relationships can subsequently be further examined in

onjunction with cell types to advance our comprehension of neuronal
ehavior.

After providing an overview of the scientific background in Sec-
ion 2 and of the existing literature in Section 3, this manuscript
resents the proposed methodology in Section 4, followed by a detailed
resentation and discussion of the conducted analysis and its results in
ection 5. Section 6 draws conclusions and suggests future directions
o advance the proposed research.

. Background

Current approaches to studying EP characteristics related to cell
tates involve the computational analysis of single-cell multimodal
2

data and the development of mathematical models to describe the AP
waveform. This section introduces essential background concepts for
comprehending the proposed methodology and its relevance to the
study of neuronal states.

2.1. Computational electrophysiological analysis of neuronal states

Computational studies focusing on cell heterogeneity aim to un-
cover distinct cell heterogeneity within a single-cell dataset [26,27,
29–33]. Typically, this involves conducting unsupervised clustering
analysis to group cells and assigning identities to these clusters based on
established knowledge [19]. For example, in the context of scRNA-seq
data, cells are labeled by identifying known markers within their
expression profiles [34,35]. However, this marker-based approach pri-
oritizes recognizing stable cell identities over detecting transient func-
tional states [31,36]. In this context, the use of multimodal datasets
provides a valuable opportunity to enhance the study of cell hetero-
geneity and state dynamics by integrating consistent information from
multiple modalities obtained from the same cells [15].

Considering state dynamics in the multimodal analysis of neuronal
heterogeneity is pivotal. Indeed, information processing in neuronal
cells relies both on the characteristics of the stimulus, such as its
intensity and on transient neuronal cell states, such as excitability
states [37]. Constantly shifting excitability states make a neuron’s
reaction to the same stimulus vary from one moment to another and
affect functional activation [38]. Thus, the regulation of membrane
excitability is a fundamental physiological phenomenon that drives the
operation of all biological tissues in which voltage-dependent changes
in ionic conductances lead to APs [38]. In the brain, activity-dependent
modulation of intrinsic excitability plays a significant role in the plas-
ticity of neuronal circuits [39]. The AP waveform comprises extrinsic
components resulting from interactions between neurons and other
cells, as well as the extracellular environment. It also involves dy-
namic regulation of membrane composition driven by neuroplasticity
mechanisms that operate on different timescales [25,40]. These fac-
tors transiently affect the neuronal excitability state at the time of
stimulation.

Patch-seq, a multimodal single-cell technology, holds particular
significance in studying neuronal cell states as it simultaneously an-
alyzes electrophysiological activity and transcriptomic profile [41–44].
In fact, by directly accessing data on the functional cellular responses
to defined stimuli, patch-seq supports the analysis of cellular activation
patterns as markers of transient functional states. The electrophysio-
logical component of Patch-seq relies on the patch-clamp technique
for studying ion channels [45–47]. This enables the characterization of
cellular electrophysiological properties and provides a platform for ba-
sic and pharmacological research [48–50]. During a Patch-seq analysis,
cells exhibit a range of electrophysiological responses. Among them, the
NSS approach specifically focuses on the action potential waveform due
to its ability to provide crucial information on the neuronal excitability
state [38].

2.2. The action potential waveform

In neurons, the Action Potential waveform provides information on
the excitability state. APs mediate cell–cell communication, allowing
signals to propagate along the axon and reach synaptic buttons at the
axon terminals [51]. An AP is characterized by a rapid sequence of
voltage changes that occur across the neuronal membrane [52]. Over
time, the membrane potential is determined by the relative ratio of
extracellular and intracellular ion concentrations and the membrane
permeability to each ion. Although the AP waveform remains consistent
between species and neuronal cells, differences in the composition of
ion channel populations in the neuronal membrane lead to noticeable
variations in AP shape, relating to the cell’s excitability state. These
dynamics follow well-conserved phases, as described in this section.

The AP can be divided into four primary phases, as illustrated in

Fig. 1:
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1. Resting state: In this phase, the membrane potential is close to
the equilibrium potential of potassium ions (𝐸K+ = −75 mV), and
both sodium (Na+) and potassium (K+) voltage-gated channels
are closed (Fig. 1.1).

2. Depolarization: When the AP is triggered, depolarization of the
membrane occurs, resulting in the opening of voltage-gated Na+
and K+ channels. This triggers a positive feedback loop, where
depolarization opens more Na+ channels, further increasing
membrane depolarization. The membrane potential approaches
a positive value that is closer to the equilibrium potential of
sodium ions (𝐸Na+ = +55 mV) (Fig. 1.2).

3. Repolarization: As the membrane potential becomes positive,
Na+ channels begin to inactivate, while K+ channels remain
open. This halts the influx of Na+ ions into the cell and al-
lows the efflux of K+ ions to prevail, leading to repolarization
(Fig. 1.3).

4. Hyperpolarization: During this phase, Na+ channels remain
inactivated and the repolarization process causes additional K+

channels to open. Furthermore, the AP triggers the influx of
calcium ions (Ca2+). As a result, the membrane potential briefly
becomes more negative than the resting state (Fig. 1.4).

Following the peak of the AP, the voltage-gated Na+ channels enter
an inactivated state, resulting in a refractory period where subsequent
stimuli cannot trigger APs. Over time, the Na+ channels gradually
reactivate, while the Na+-K+ ion pump actively restores the resting
membrane potential.

2.3. Models of the action potential waveform

The initial model of the AP, as proposed by Hodgkin and Hux-
ley, described its initiation and propagation in neuronal cells using
a set of nonlinear differential equations, representing a continuous-
time dynamical system [53]. However, this model considered only Na+
and K+ conductances, each with a single type of voltage-dependent
channel. This simplistic approach overlooked the complexity of voltage-
dependent conductances in neuronal membranes, limiting the explo-
ration of the underlying biomolecular substrates of electrophysiological
behavior. In reality, the neuronal membrane exhibits a wide diversity
of conductances. Voltage-gated currents, including Na+, Ca2+, and K+

currents, consist of at least two distinct components [52]. Addition-
ally, other currents are activated by membrane hyperpolarization [54].
The complexity and diversity of AP conductances can be attributed
to a wide range of types and isoforms of ion channels [55,56]. The
relative prevalence of different channel populations at the membrane
contributes to the electrophysiological features of neuronal action po-
tentials. The interplay and regulation of channel activation among these
populations present a significant challenge in understanding and mod-
eling this phenomenon [52]. Alterations in the underlying biomolec-
ular ion channel composition impact AP shape, firing rate, and the
emergence of distinct higher-level patterns in the electrophysiological
phenotype and state of different neurons [52].

The intrinsic components of the AP waveform generated by a partic-
ular neuron are regulated by its electrophysiological and morphological
features and its membership in specific groups of cells (as demonstrated
by the taxonomy described in [27]). In fact, the AP waveform exhibits
substantial and stable differences among various neurons in the mam-
malian brain [52]. Consequently, the analysis of AP waveforms alone
facilitates the study of cellular heterogeneity among interneuronal cell
families [57]. Mathematical models of AP shape have supported the
construction of a coherent neuronal taxonomy that aligns with the
transcriptomic profiles of cells [58].

Given the intricate structural and functional interconnections
among neurons within brain neuronal networks, each AP waveform
property is intrinsic, dependent on the cell itself, and extrinsic, influ-
enced by stimulation and cell connections during stimulation. Conse-
quently, the AP waveform provides information on cell states and the
3

corresponding functional activations of neurons within their respective
neuronal networks. The proposed approach uses the rich information
contained in the AP waveforms to analyze neuronal excitability states.

3. Literature review

While the literature provides a rich set of approaches for classifying
cell types using electrophysiological features [26,27,58], it lacks ap-
proaches specifically addressing cell states, which is the primary focus
of NSS. Indeed, the literature lacks a clear and quantitative definition
of intrinsic excitability states, making it challenging to understand
their role in neuronal function and network dynamics. Furthermore,
traditional methods to assess intrinsic excitability fail when exposed to
realistic synaptic input [39].

Current approaches in studying intrinsic excitability states involve
analyzing various EP features. Some methods focus on overall firing
rates to assess excitability, assuming that a neuron’s average firing
rate encodes information about its intrinsic excitability and input re-
ceived [59]. For instance, research by [60] explores the effect of
dopamine on intrinsic excitability states by measuring cortical interneu-
ron firing rates (which range from about 8 Hz in control to reaching
70 Hz under stimulation). Other studies, such as [61], also employ
spiking rates to gauge excitability. Some investigations concentrate on
AP shape for excitability analysis. For example, [62] focuses on the
AP repolarization phase duration, [57,63] base their analysis on AP
total duration, while [64] defines fast-spiking neocortical interneurons’
excitability state using various AP characteristics.

These approaches collectively underscore the importance of EP
features and AP shape in understanding intrinsic excitability. However,
they reveal a lack of consensus over the EP features and their distinc-
tive ranges for known excitability states. For example, several works
measure intrinsic excitability based on the AP half-width, but describe
the same excitability state, i.e., physiological fast-spiking behavior in
neocortical interneurons, with different measures of AP half-width:
0.25 ± 0.02 ms in [63], 0.34 ± 0.07 ms in [64], and 0.64 ± 0.04 ms
in [65]. These limitations highlight the need for a more structured
definition of excitability.

From the reviewed literature, excitability definitions are either
activation-based, threshold-based, or both. Activation-based excitability
is based on the intensity of the firing activity in relation to the stimulus.
Considering the latter, highly excitable cells have high firing rates [60]
compared to other cells at the same level of stimulation. Threshold-
based excitability is based on the ease of evoking a AP response. In this
sense, highly excitable cells have low AP thresholds [63], implying a
low-intensity current stimulus is sufficient to evoke a firing response.
However, activation- and threshold-based definitions sometimes lack
coherence. For example, fast-spiking neocortical interneurons are de-
scribed as cells in a high excitability state, and present high firing rates
(coherently with activation-based definitions) but high AP thresholds
(contrary to what threshold-based definition would imply) [28,61].
This example is especially relevant for the provided work, which aims
to analyze two datasets of cortical interneurons.

To address the current lack of a unique and comprehensive defi-
nition of excitability, a more systematic and quantitative approach is
required, involving intentional selection of EP features and dynamic
range analysis rather than fixed, experiment-dependent values [38].
In fact, the NSS methodology provides an automatic, unsupervised
quantitative pipeline to analyze neuronal excitability states, based pri-
marily on the AP waveform. It supports the joint analysis of relevant
features, enabling systematic exploration of excitability states in patch-
seq and patch-clamp datasets. NSS offers the advantage of unsupervised
cell grouping, automatically identifying states and their corresponding
feature ranges, generalizing the method across datasets.

Additionally, NSS relies on a minimal set of EP features describing
the first AP obtained during patch-clamp ramp stimulation. This mini-
mizes the number of required experiments, making the method efficient

and practical.
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Fig. 1. Membrane dynamics underlying AP. (1) Resting state. The membrane resting potential is close to the K+ equilibrium potential (𝐸K+ = −75 mV), and at this potential
both Na+ and K+ voltage-gated channels are closed. (2) Depolarization. When the AP is triggered, membrane depolarization causes the voltage-gated Na+ and K+ channels to open.
It starts positive feedback where depolarization causes the opening of more Na+ channels, which in turn further depolarizes the cell membrane until reaching a positive value that
approaches the Na+ equilibrium potential (𝐸Na+ = +55 mV) (3) Repolarization. As membrane potential gains positive values, Na+ channels begin to inactivate, and K+ channels
stay open, stopping the Na+ ions flux into the cell, and making the flow of K+ ions outside the cell prevail (4) Hyperpolarization. Na+ channels are still inactivated, and more
K+ channels open due to repolarization and the Ca2+ influx caused by the AP. Na+ channels inactivation causes a refractory period where subsequent stimuli cannot trigger APs.
Then, the membrane slowly returns to its resting potential.
4. Methods

The NSS method utilizes a simplified triangular representation of
the AP waveform (see Section 4.1), allowing a concise description
of individual neuronal spikes. This triangular shape serves as a ba-
sis for computing mathematical electrophysiological features, which
summarize the shape and duration of the AP generated by a neuronal
cell.

Due to the relations between the AP shape and the firing pattern of
neurons, NSS describes excitability states, corresponding to the ability
of cells to respond with different intensities and firing patterns to
stimuli, and not as the easiness to evoke an AP response.

4.1. NSS: a simple triangular model

The proposed mathematical model summarizes the attributes of a
neuron’s AP waveform into a straightforward triangular representation
within the voltage–time plane. The AP waveform exhibits a well-
conserved spike shape in the time–voltage domain, as shown in Fig. 2.
Within the NSS framework, three points are considered particularly
informative regarding the AP:
4

• THR: This point corresponds to the minimum depolarization of
the cell membrane relative to the resting potential (see Fig. 1.1)
required to initiate an AP. The threshold dynamically adapts
based on previous membrane activations [66] and varies depend-
ing on the cell type and state. For example, the voltage threshold
for AP generation in cortical interneurons of the Fast-spiking (FS)
and Non-Fast-spiking (NFS) types was found to be approximately
−31.6 ± 5.0 mV and −39.6 ± 6.4 mV, respectively [28].

• P: This point corresponds to the highest depolarized voltage
attained during AP generation (i.e., the peak of the spike). At the
peak, the membrane exhibits maximum permeability to sodium
ions (Na+), causing the membrane potential to approach the Na+
equilibrium potential (𝐸Na+ = +55 mV). Peak potential typically
ranges from 0 to +40 mV, as reported in [67] (see Fig. 1.1).

• Trough (TRO): This value, as defined in [26,27], represents the
hyperpolarization phase (see Fig. 1.4). It can be further divided
into two sub-points: the FTRO corresponding to the most negative
membrane potential within 5 ms after the peak time, and the Slow
Trough (STRO), corresponding to the most negative membrane
potential between 5 ms after the peak time and the subsequent ac-
tion potential threshold time. During the hyperpolarization phase,
the membrane potential approaches the equilibrium potential of
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Fig. 2. Example of neuronal AP. Threshold (THR), Peak (P), and Trough (TRO) points
are the vertices of the NSS triangular representation (in red) over-imposed to the AP
waveform.

potassium ions (K+) (𝐸K+ = −75 mV), with values typically
ranging from −70 to −75 mV, as reported in [67].

This triangular representation of the AP serves as the fundamental
framework of the NSS approach. The coordinates of its three vertices
are determined by the voltage values (𝑉𝑇𝐻𝑅, 𝑉𝑃 , 𝑉𝐹𝑇𝑅𝑂) and time
values (𝑇𝑇𝐻𝑅, 𝑇𝑃 , 𝑇𝐹𝑇𝑅𝑂) specific to each analyzed AP potential.
Furthermore, the sides of the triangle summarize various functionally
relevant geometric properties of the AP waveform. Specifically, the
THR − P side approximates the depolarization phase (see Fig. 1.2), the
P − FTRO side represents the repolarization phase (see Fig. 1.3) and hy-
perpolarization phase (see Fig. 1.4), while the THR − FTRO side reflects
the overall duration of the AP and the depth of the hyperpolarization.

4.2. NSS features

Using the abstract triangular simplification at the core of the NSS
approach, it becomes possible to assess voltage and time differences,
the ratios between the relevant triangle parameters, and the slopes
of the lines intersecting its vertices. These measurements contribute
to a concrete, multidimensional AP shape description. When the time
(𝑇𝑃 , 𝑇𝑇𝐻𝑅, 𝑇𝐹𝑇𝑅) and voltage (𝑉𝑃 , 𝑉𝑇𝐻𝑅, 𝑉𝐹𝑇𝑅𝑂) coordinates are known
for all three vertices (P, THR, and FTRO), the necessary information for
evaluating these features is available. These properties can be derived
directly from raw EP signals obtained in patch-clamp experiments or as
precomputed derived properties exposed in EP datasets.

In this work, the focus was on features generated solely from ramp
stimulation. Ramps offer the advantage of rapidly and directly generat-
ing current–voltage relationships, making them suitable for analyzing
cellular responses characterized by rapid activation or time indepen-
dence [68]. This is particularly relevant for assessing the onset of the
AP [68], as ramps help avoid artifacts arising from desensitization [69].
Additionally, the fast exploration of the entire voltage range in voltage-
clamp stimulation enables precise threshold detection, and the AP data
considered refers to the first AP evoked during ramp stimulation. This
is important since, even if the threshold for AP generation exhibits a
dynamic range variation depending on the interneuron subtype [63]
and the excitability state of the cell, which is regulated through several
neuroplasticity mechanisms [40], it ensures the data observed closely
5

Table 1
NSS features, along with description and unit of measurement.

Feature Mathematical description Unit

𝑈𝑝𝐷𝑜𝑤𝑛𝑟𝑎𝑡𝑖𝑜
𝑆𝑢𝑝

𝑆𝑑𝑜𝑤𝑛
–

𝑆𝑙𝑜𝑝𝑒𝑑𝑒𝑒𝑝
|𝑉𝐹𝑇𝑅𝑂−𝑉𝑇𝐻𝑅 |

|𝑇𝐹𝑇𝑅𝑂−𝑉𝑇𝐻𝑅 |
V∕s

𝐴𝑃ℎ𝑎𝑙𝑓𝑤𝑖𝑑𝑡ℎ
𝑇𝑃 −𝑇𝑇𝐻𝑅

2
μs

𝐷𝑜𝑤𝑛𝑤𝑖𝑑𝑡ℎ 𝑇𝐹𝑇𝑅𝑂 − 𝑇𝑃 μs
𝑈𝑝𝐷𝑜𝑤𝑛𝑤𝑖𝑑𝑡ℎ 𝑇𝐹𝑇𝑅𝑂 − 𝑇𝑇𝐻𝑅 μs
𝑊 𝑖𝑑𝑡ℎ 𝑇𝑃 −𝑇𝑇𝐻𝑅

2
− 𝑇𝐹𝑇𝑅𝑂−𝑇𝑃

2
μs

𝐻𝑒𝑖𝑔ℎ𝑡 |𝑉𝑃 − 𝑉𝐹𝑇𝑅𝑂| V
𝛥𝑉𝑑𝑒𝑒𝑝 |𝑉𝐹𝑇𝑅𝑂 − 𝑉𝑇𝐻𝑅| V
𝛥𝑉𝑇𝐻𝑅𝑃 |𝑉𝑇𝐻𝑅 − 𝑉𝑃 | V
𝛥𝑉𝑟𝑎𝑡𝑖𝑜

|𝑉𝑃 −𝑉𝑇𝐻𝑅 |

|𝑉𝑃 −𝑉𝐹𝑇𝑅𝑂 |
–

represent intrinsic excitability features, preventing the effects of pro-
longed stimulation, such as adaptation, from introducing confounding
factors.

Table 1 presents a set of features that characterize the geometric
properties of the triangular NSS representation. NSS features quanti-
tatively express the attributes of the triangular geometric model, with
mostly features originating from projections onto the triangle’s axes or
direct derivations thereof. Features like 𝐷𝑜𝑤𝑛𝑤𝑖𝑑𝑡ℎ and 𝑈𝑝𝐷𝑜𝑤𝑛𝑤𝑖𝑑𝑡ℎ
are projections along the time axis, 𝐻𝑒𝑖𝑔ℎ𝑡, 𝛥𝑉𝑑𝑒𝑒𝑝 and 𝛥𝑉𝑇𝐻𝑅𝑃 rep-
resent projections along the voltage axis, while 𝑆𝑙𝑜𝑝𝑒𝑑𝑒𝑒𝑝, 𝐴𝑃ℎ𝑎𝑙𝑓𝑤𝑖𝑑𝑡ℎ,
𝑊 𝑖𝑑𝑡ℎ and 𝛥𝑉𝑟𝑎𝑡𝑖𝑜 are derived from these projections. These proper-
ties offer a comprehensive overview of the depolarization phase (see
Fig. 1.2), as well as the repolarization and hyperpolarization phases
(see Fig. 1.3–4), providing a synthetic summary of the complete AP
shape. It is worth noting that these features focus on modeling the
AP shape rather than its position in the time–voltage plane. Therefore,
they exclude absolute time and voltage values, emphasizing the relative
relationships between absolute voltage and time values at the three
key points, expressed as differences or ratios. This differential approach
allows for a more generalized description of the AP shape, independent
of absolute values. As shown, the NSS framework supports flexible
analysis that can adapt to the specific characteristics of the data in
different datasets.

Finally, it is important to highlight the bi-univocal mapping be-
tween each neuron and the multidimensional point described by the
computed NSS features of its AP. This mapping enables the application
of clustering and classification algorithms to investigate the heterogene-
ity of neuronal cells based on their EP profiles alone or in combination
with multimodal analysis.

4.3. NSS for excitability states identification

Once a cell has been modeled through the EP features constituting
NSS, such representation can be used to investigate the existence of cell
states across single-cell datasets.

Fig. 3 illustrates the flow to perform clustering analysis over NSS
features obtained from the datasets. Such exploration is unsupervised,
by exploiting clustering approaches to aggregate cells sharing similar
AP waveforms, according to NSS representation. Whereas the NSS
mapping is pivotal and the innovative core to the provided data ex-
ploration pipeline, its analysis relies on state-of-the-art clustering tech-
niques. In this case, a well-established method in the literature, i.e., the
Hierarchical Agglomerative Clustering (HAC), was selected. This clus-
tering technique begins by treating each data point as an individual
cluster. Subsequently, it iteratively merges the closest clusters based on
a chosen distance metric. This merging process ultimately results in the
creation of a hierarchical structure of clusters referred to as a dendro-
gram. Strategically cutting this dendrogram to a specific level yields
the desired number of clusters for further data analysis. Using HAC
offers several advantages: it is not sensitive to initialization conditions
(unlike methods like K-Means) or assumptions about cluster shapes;
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it is robust against outliers in the data; and it allows for examining
data groups at different levels of granularity. In this work, Euclidean
distance and Ward Linkage are chosen, respectively, as the distance
measure to assess the proximity between individual cells and as the
merging approach for combining separate clusters during the iterative
construction of the final clustering. These two criteria are commonly
employed in the literature to identify compact clusters [70].

The choice of clustering cardinality, denoted as 𝐾, aims to select the
number of clusters that better supports data exploration. While with
HAC it usually involves analyzing the dendrogram generated by the
algorithm, in this pipeline a priori optimization using maximization of
the Silhouette score [71] is selected to standardize the procedure. The
Silhouette metric 𝑠 is calculated as follows:

𝑠 = 𝑏 − 𝑎
𝑚𝑎𝑥(𝑎, 𝑏)

(1)

where the average intra-cluster distance 𝑎 quantifies intra-cluster co-
hesion, and the average inter-cluster distance 𝑏 measures inter-cluster
separation. Unlike other metrics such as the Sum of Square Errors (SSE),
the Silhouette metric, given its mathematical definition, is robust to
non-spherical clusters [70].

4.4. Validation of NSS clusters as excitability states

A multi-step validation shows that the proposed methodology iden-
tifies intrinsic excitability states, targeting the following aspects:

1. Coherence with excitability definitions. Analysis of the distribution
of cells within each NSS cluster over features that are tradi-
tionally used in the literature to model excitability: (i) Action
Potential Half Width (APhalf−width), i.e., the duration of the initial
part of the AP in ms; (ii) Inter Spike Interval (ISI), the average
time interval separating APs in the cell’s firing response in ms;
(iii) f-I curve slope (FICS), the slope of the f-I curve, putting
the firing rate in relation to stimulation current intensity; and
(iv) 𝐼𝑇𝐻𝑅, i.e., the minimum current intensity level capable of
generating a firing response, in pA.

2. Coherence with known excitability states. Analysis of the preva-
lence of cell-type labels within each NSS cluster to map the re-
lationships between NSS clusters and cell types with recognized
intrinsic excitability properties. Cell-type labels are provided as
metadata in the datasets.

3. Characterization of excitability states. Investigation of the rel-
evance of NSS features to explain clustering results in rela-
tion to intrinsic excitability states. This analysis relies on two
approaches:

• Spearman’s correlation [72], a statistical method to mea-
sure the strength and direction of the linear relationships
between the NSS features and the identified intrinsic ex-
citability states. The Spearman’s correlation coefficient
yields a numerical value ranging from −1 to 1, where
a positive value indicates a positive correlation and a
negative value indicates a negative correlation.

• Permutation feature importance method based on an
RF classifier [73] to detect non-linear relationships be-
tween the NSS features and the identified intrinsic ex-
citability states. RF is a versatile machine learning algo-
rithm capable of assessing feature importance within a
dataset [74]. In essence, it evaluates how each feature con-
tributes to prediction accuracy across an ensemble of deci-
sion trees. This approach offers a robust and interpretable
means of identifying the most pertinent features.
6

Fig. 3. Pipeline of EP exploration using NSS on PatchClampDataset and PatchSeqDataset.

4.5. Transcriptional exploration of NSS clusters

While the main NSS validation focuses on the analysis of EP fea-
tures, further insights may be collected looking at the transcriptional
profiles of cells belonging to the NSS clusters. This is particularly true
when analyzing new unknown states identified by NSS.

The transcriptional exploration employs the transcriptomic profiles
of cells to explore the NSS clustering results. This specific analysis
is applicable to Patch-seq datasets, which provide electrophysiologi-
cal and gene expression data simultaneously on the same cells (see
Section 2), facilitating cross-validation and joint analysis of EP and
transcriptomic findings. The analysis follows a workflow for scRNA-seq
data analysis that is well-established in the research community [75],
using the Seurat pipeline [15] to cover the following steps:

1. Dimensional reduction. This step generates a two-dimensional
(2D) visualization of the embedding of the cells generated with
Uniform Manifold Approximation and Projection (UMAP), a non-
linear dimensional reduction method highlighting the global
differences of the transcriptomic profiles. All the following steps
base upon this transcriptomic embedding.

2. Cell types identification. This step links cells to the four distinct
GABAergic neuronal subtypes by labeling cells with expression
levels of cell-type marker genes and cell-type labels, respectively.
These four are very well known and characterized subtypes of
cortical GABAergic neurons, Pvalb, Sst, Vip, and Lamp4. Their
identification supports the subsequent analyses and exploration
of the NSS clusters by supporting their identity as excitabil-
ity states. Indeed, as discussed in Section 3, the Pvalb cell
type has a typical pattern of higher excitability (higher spiking
rates, yet higher threshold) with respect to the other subtypes,
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Table 2
Datasets for NSS analysis. For each dataset, the number of cells profiled under EP, morphological and transcriptomic profiles
is provided. EP: Electrophysiological profile; Morph: morphological reconstructions; scRNA-seq: transcriptomic profile.

Dataset ID Specimen Cells EP Morph scRNA-seq Ref.

PatchSeqDataset Mouse visual cortex GABAergic interneurons 4200 517 3371 [27]
PatchClampDataset Mouse visual cortex Neurons 1938 461 – [26]
thus its prevalence in a NSS cluster supports its representation
power of excitability. The PatchClampDataset provides gene ex-
pression levels as transcriptomic data and cell type labels as
metadata [27].

3. NSS clusters over cell types comparison. The following step ex-
amines the distribution of NSS labels across transcriptomic cell
types and subtypes by comparing their respective visualizations
on the transcriptomic embedding.

4. Intra-type NSS clusters Differential Expression (DE) analysis. Tran-
scriptomic data allow DE analysis among NSS clusters to investi-
gate gene expression profiles that could shed light on the under-
lying biological mechanisms for each identified state. This can
be applied at different clustering resolutions. Specifically, within
the same transcriptomic subset, DE analysis targets groups of
cells with different NSS labels to identify intra-type differences.
The analysis provides a list of the top DE genes, highlighting
the genes that characterize each group primarily and specifically
compared to the other.

5. Ontology-based biological processes enrichment. GO EA [76] sup-
ports the further and systematic investigation of the resulting
lists of DE genes. This approach helps to generate hypotheses
based on knowledge about the involvement of specific gene
sets in biological processes. The GO is a systematic and curated
nomenclature and annotation of biological processes, molecular
functions, and cellular components associated with each gene.
The GO EA of a gene list highlights overrepresented processes
and functions in GO. Additionally, the provided analysis involves
a manually curated investigation of the functional aspects of
specific genes. This work uses the GO platform supported by
PANTHER [76], using the ShinyGO tool [77] to perform system-
atic GO EA, and leverages on GeneCards [78] or Uniprot [79]
platforms for the subsequent investigations.

4.6. Datasets

The presented analysis relies on two datasets of murine visual
cortical neurons. Table 2 illustrates their characteristics. The scarcity of
datasets containing a sufficient cell count is a notable challenge within
the realm of patch-seq data. The provided study exclusively centers on
murine cellular data, which were thoughtfully selected based on criteria
such as cell count, data quality, and accessibility.

The PatchSeqDataset [27] takes advantage of the patch-seq tech-
nique, which combines patch-clamp with scRNA-seq to collect EP and
transcriptomic profiles of 4200 mouse visual cortical GABAergic in-
terneurons, reconstructing the morphological conformation of 517 of
them.

The PatchClampDataset [26] provides EP data from 1938 neurons of
adult mouse visual cortical neurons and morphological reconstructions
for 461 of them. This dataset, accessible online via the Allen Brain
Atlas Cell Types Database [80], provides a mixture of spiny and aspiny
neurons. This work analyzed only cells labeled as aspiny, under the
consensus that this morphological label is a strong indication that the
cell is an interneuron.

The experiments proposed in this paper focus on the GABAergic
neurons from both datasets. Notably, GABAergic neurons are abun-
dantly represented in the PatchSeqDataset [27], whereas they comprise
approximately half of the cell population in the PatchClampDataset [26].
The selection of GABAergic neurons resorts to the metadata provided
7

in the datasets: transcriptomic cell type labels supplied by the authors
allowed the consideration of only cells labeled as GABAergic neurons
for PatchSeqDataset [27], and morphological metadata allowed the con-
sideration of only cells labeled as aspiny (thus, putatively GABAergic)
for PatchClampDataset [26], respectively.

As a premise for the provided analysis, a data cleaning step removed
cells with incomplete information or outlier feature values in both
datasets. Taking into account the cleaning and filtering of data that
retain only GABAergic cells, the analysis employs 3653 neurons for
PatchSeqDataset and 770 for PatchClampDataset.

The main analysis presented in this study focuses on the
PatchSeqDataset, as it provides both EP and transcriptomic data, en-
abling direct cross-validation of the NSS-based excitability states iden-
tification with transcriptomic ground truths. The PatchClampDataset
supports the further EP validation of the NSS method, but, since it only
provides coarse-grained labeling of cell types using transgenic murine
lines (see Section 5), it does not support transcriptomic validation.

Both PatchClampDataset and PatchSeqDataset provide comprehensive
EP characterization of single cells, including voltage-clamp stimuli and
responses collected for each sample. Each cell in the datasets is asso-
ciated with multiple types of stimulation, corresponding to standard
patch-clamp protocols such as current ramps, short squares, and long
squares. For each stimulation type, there are multiple sweeps, which
are repeated trials in which the parameters of the stimulation protocol
vary, resulting in different EP responses. For example, the long square
stimulation set includes a sweep for each step of the current amplitude
applied as input to the neuron.

5. Results and discussion

This section proposes experimental results from the application of
NSS on both the PatchSeqDataset and the PatchClampDataset. While the
PatchSeqDataset supports full multimodal analysis, the
PatchClampDataset only provides EP analysis. Results validate NSS’s
capability for identifying both the well-known fast-spiking state and
potential new candidate excitability states within both the considered
datasets. New identified states are thoroughly characterized based on
their electrophysiological and transcriptomic profiles.

5.1. Validation: NSS identifies the fast-spiking excitability state

NSS was validated by proving its capability of identifying well-
known excitability states in both datasets and identifying new, un-
known ones independently of cell types.

Following the approach described in Section 4, HAC was applied
to computed and z-score standardized NSS features from Table 1 on
both datasets. For PatchSeqDataset, the optimization of the clustering
identified an optimal number of 𝐾 = 3 clusters (Silhouette score: 0.34).
A second solution, 𝐾 = 2, achieved a similar score (Silhouette score:
0.32) but was neglected in favor of the best-performing cardinality.
For PatchClampDataset, the clustering analysis produced two potential
solutions: the optimal clustering was identified at 𝐾 = 2 (Silhouette =
0.40), slightly better than 𝐾 = 3 (Silhouette = 0.38).

Fig. 4 illustrates the scatter plots of the data based on the PCA analy-
sis of NSS features for PatchSeqDataset (top left panel) and
PatchClampDataset (top right panel), respectively. The dot colors refer
to the identified clusters. Clustering results for PatchSeqDataset (𝐾 =
3) denote clusters as EC0 (violet), EC1 (green), and EC2 (yellow).
Clustering results for PatchClampDataset (𝐾 = 2) denote clusters as EC0

(violet) and EC1 (yellow).
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Fig. 4. NSS clustering results and fast-spiking EP feature analysis for PatchSeqDataset (right column) and PatchClampDataset (left column). In the first row, tri-dimensional PCA
plots along the three most relevant PCs visualize clustering results for PatchSeqDataset (𝐾 = 3) and PatchClampDataset (𝐾 = 2). The following rows present violin and box plots of
the distribution of cells within each NSS cluster over fast-spiking feature values. The color coding refers to clustering labels: for PatchSeqDataset (𝐾 = 3) EC0 (violet), EC1 (green),
and EC2 (yellow), for PatchClampDataset (𝐾 = 2) EC0 (violet) and EC1 (yellow).
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Considering that GABAergic neurons, the main focus of this anal-
sis, present four cell subtypes, to exclude the possibility that in the
atchSeqDataset NSS was merely recapitulating transcriptomic cluster-
ng, the 𝐾 = 4 clustering case was also analyzed. However, this
ase only introduced a further split within the EC1 cluster. This ad-
itional grouping neither recapitulates transcriptomic cell-type regions
or provides more informative insights than the other case (data not
hown).

State-of-the-art methods to identify the fast-spiking state resort to
he excitability features introduced in Section 4.4. In particular, the
ast-spiking state is characterized by low APhalf−width and ISI, high
ICS, and high 𝐼𝑇𝐻𝑅. Through a comparative analysis of the fast-
piking feature values across clusters, the remaining rows in Fig. 4
how that NSS captures the fast-spiking excitability state and additional
nknown states. In particular, cluster EC0 captures the fast-spiking
tate in both datasets, consistently exhibiting the lowest APhalf−width
nd ISI, the highest FICS, and the highest 𝐼𝑇𝐻𝑅 compared to the
ther clusters within the same dataset. Additionally, NSS captures other
nknown states in both PatchSeqDataset (clusters EC1 and EC2) and
atchClampDataset (cluster EC1), further discussed later.

At this stage, it is important to confirm that NSS actually identifies
xcitability states, not cell types. This passes through the assessment
hat the NSS cluster EC0 captures the fast-spiking state, not just a single
ell type. The fast-spiking state and the Pvalb interneuronal cell subtype
ave a strong link. Among GABAergic interneurons, the Pvalb subtype
s associated with the fast-spiking excitability state. Fast-spiking cells
ave intense activation upon stimulation and high thresholds. This
nique functional profile appears to support the role of Pvalb cells as
rimary regulators of excitable neurons, as highlighted in [57]. This
ole demands that they fire with high intensity to exert an effect (high
ctivation) while selectively integrating stimuli from other GABAergic
nterneurons in the inhibitory network (high threshold).

Fig. 5 overlays the 𝐼𝑇𝐻𝑅 distributions of the different GABAergic
ubtypes onto the scatter plots of cells with NSS cluster labels for the
atchSeqDataset. The identification of the cell types relies on the gene
xpression profiles of cells. The results show that almost all Pvalb cells
ave an EC0 label. Since Pvalb cells are notably in the fast-spiking state,
his finding supports that the NSS cluster EC0 corresponds to the fast-
piking excitability state. Nevertheless, cluster EC0 is not limited to a
ingle cell type. Sst cells also significantly contribute to the definition
f this cluster through cells with high 𝐼𝑇𝐻𝑅 values (i.e., high 𝐼𝑇𝐻𝑅 is a
9

arker of the fast-spiking state) further confirming that EC0 represents
state and not a cell type. These findings are consistent with results
btained in human cells, where the electrophysiological profile of some
st cells shows they are in a fast-spiking state, drawing a close similarity
o Pvalb cells [33]. In conclusion, results validate NSS capability of
apturing the well-known fast-spiking excitability state independently
f cell types.

A similar analysis performed on the PatchClampDataset produced
oherent results. 71% of EC0 cells are labeled as Pvalb cells, and 10%
re Sst cells with high 𝐼𝑇𝐻𝑅. The Sst cells are the 22% of EC1 cells,
howing that they belong to both EC0 and EC1 clusters. Since the
atchClampDataset does not contain transcriptomic data, cell types were
ssigned using labels from Cre lines of the transgenic mice used in the
atch-clamp experiments [26].

To further exclude that NSS is identifying cell types, Fig. 6 shows
he embedding of the Sst cells labeling the cells with subtypes obtained
rom metadata available in the PatchSeqDataset [27] (left side). On the
ight side, the same embedding is labeled based on the NSS clusters.
gain, the figure confirms that cluster EC0 is not associated with a
pecific cell subtype.

An additional validation of the correct identification of the fast-
piking state among the Sst cells can be obtained through Gene On-
ology (GO) Enrichment Analysis (EA). In fact, the fast-spiking state
resents positive regulation of processes involving potassium (K+)
hannels. They sustain the intense firing activity typical of the fast-
piking state by shortening the AP repolarization and hyperpolarization
hases, that is, the refractory period, where AP firing is inhibited [38].

A GO EA performed over the 111 positively DE genes in EC0
ersus EC1 cells within the Sst subset highlighted that, within the Sst
mbedding, the EC0 cluster exhibits an enrichment of K+ channels-
elated processes, consistent with the fast-spiking state it captures. In
articular, Fig. 7 shows the enrichment of specific ontology elements
elated to K+ channels, particularly in the molecular functions ontology,
here ‘‘Voltage-gated K+’’ and ‘‘K+ channel activity’’ are enriched. The
E genes list contains numerous entries associated with K+ channels,
hich are characterized by the ‘‘Kcn’’ naming pattern [81]. This further
alidates that EC0 captures the fast-spiking state. Since the comparison
s based on Sst cells only, results pertain to the fast-spiking state and
ot to cell subtypes.
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Fig. 6. Sst cells labeled with the transcriptional cell sub-types provided by the metadata (on the left) and the EP clusters (on the right).
Fig. 7. GO EA analysis of the EC0 versus the EC1 cluster within the Sst cells subset.
Results are provided for Biological Process (Top), Molecular Function (Center), and
Cellular Component (Bottom). The x axis represents the fold change, ranked from the
highest. The highlighted terms are the ones directly correlated to K+ channels.

5.2. Exploration: NSS supports the characterization of known and unknown
excitability states

The validations conducted so far have affirmed the capability of
NSS in not only identifying the well-known fast-spiking state but
also in discerning new states, denoted as clusters EC1 and EC2 for
PatchSeqDataset, and cluster EC1 for PatchClampDataset. This section
10
performs further investigations to understand if these novel states are
potential candidates for new excitability states.

Distinctive attributes in the repolarization and hyperpolarization
phases of the Action Potential, alongside the gene expression patterns
of potassium channels, notably contribute to the regulation of various
neuronal excitability states. States identified by NSS primarily diverge
in their AP repolarization and hyperpolarization phases, displaying
varying expression profiles of potassium channels that modulate the
duration of the refractory period. This aspect strongly substantiates
their classification as novel neuronal excitability states.

To support this investigation, Figs. 8 and 9 visually represent the
Spearman’s linear correlation of NSS features with the cluster label
(column LABEL) for the PatchSeqDataset and the PatchClampDataset,
respectively. Features such as 𝛥𝑉𝑑𝑒𝑒𝑝, 𝛥𝑉𝑟𝑎𝑡𝑖𝑜, and 𝛥𝑉𝑡ℎ𝑟𝑝, associated with
the AP repolarization and hyperpolarization phases, exhibit the highest
linear correlation with cluster labels, suggesting that the information
encapsulated within these elements explicates a substantial portion of
the inter-cluster variance. Given the pivotal role played by these phases
in characterizing neuronal excitability, this finding effectively supports
that the identified clusters capture distinct excitability states.

Figs. 10 and 11 further support this finding reporting the mean accu-
racy decrease of RF classification upon the removal of specific features
from the model for the PatchSeqDataset and the PatchClampDataset,
respectively. Notably, the removal of the 𝛥𝑉𝑟𝑎𝑡𝑖𝑜 led to an approximate
4% decrease in mean accuracy for the PatchSeqDataset and an 11%
decrease for the PatchClampDataset. This trend reinforces the criticality
of features associated with the AP repolarization and hyperpolarization
phases, solidifying the NSS clusters as indicative of distinct neuronal ex-
citability states. Indeed, varying durations of AP repolarization directly
influence the refractory period, thus correlating with the regulation of
diverse excitability states [38].

Consistent with the results of the feature importance analysis and
their role in excitability regulation, the presence of different excitability
states was also analyzed by comparing the typical AP waveform of each
NSS cluster, searching for significant differences in the repolarization
and hyperpolarization phases.

Figs. 12 and 13 display the raw AP waveforms of the median cells
within each cluster (the closest cells to the centroid of the respective
cluster) for PatchSeqDataset and PatchClampDataset, respectively.

For the PatchSeqDataset, the comparison of the AP waveforms from
clusters EC0, EC1, and EC2 (Fig. 12) reveals three distinct AP shapes,
where the repolarization and hyperpolarization phases exhibit the most
variability across clusters, particularly in the region near the FTRO, cor-
responding to a different typical duration for the refractory period. The
NSS EC0 cluster displays a narrow AP shape with a deep FTRO, while
the EC2 cluster demonstrates the opposite behavior, characterized by a
gradual repolarization phase and an almost flat FTRO. Finally, the EC1
cluster occupies an intermediate position between these two extremes.

For the PatchClampDataset (Fig. 13), the AP shape of the median
cells from EC0 demonstrates a rapid decline in the repolarization phase,
while the AP shape from EC1 exhibits the opposite trend, with a longer
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Fig. 8. Spearman’s correlation of NSS features and cluster labels for PatchSeqDataset.
An hot (high positive correlation) and cold (high negative correlation) diverging color
map represent the correlation levels.

Fig. 9. Spearman’s correlation of NSS features to clustering label-excitability state. An
hot (high positive correlation) and cold (high negative correlation) diverging color map
represent the correlation levels.

Fig. 10. Mean accuracy decrease in the cluster label prediction for PatchSeqDataset
done by RF model when shuffling values of NSS features.
11
Fig. 11. Mean accuracy decrease in the cluster label prediction for PatchClampDataset
done by RF model when shuffling values of NSS features.

Fig. 12. AP spikes of median cells identified using NSS on PatchClampDataset with
coloring with respect to label of 𝐾 = 2 NSS clustering: EC0 (violet), EC1 (green), EC2
(yellow). Median AP spikes and their superimposition. NSS backbones THR-P-FTRO
triangles are reported as dashed line over the spiking graphs.

AP duration and a slower repolarization phase, corresponding to a
longer refractory period.

This result confirms the relevance of the repolarization and hyper-
polarization phases in distinguishing the NSS clusters, supporting their
classification as distinct excitability states.

Eventually, the differences in the gene expression patterns of potas-
sium channels significantly influence the repolarization and hyperpo-
larization phases of the AP, emphasizing distinct neuronal excitability
states. The NSS clusters showcase three distinct gene expression pat-
terns for potassium channels, solidifying the identification of NSS clus-
ters as excitability states at both the electrophysiological and molecular
levels.
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Fig. 13. AP spikes of median cells identified using NSS on PatchClampDataset with
oloring with respect to label of 𝐾 = 2 NSS clustering: EC0 (violet), EC1 (yellow).

Fig. 14A and B illustrate the gene expression profiles of two K+

hannel-related genes (i.e., Kcnc2 and Kcnn2) for the three clusters of
he PatchSeqDataset. Both genes exhibit expression levels that support
C0 as the fast-spiking excitability state, as well as EC1 and EC2 as

distinct excitability states. Kcnc2, associated with fast AP repolariza-
ion, demonstrates the highest expression levels in EC0, intermediate

levels in EC1, and the lowest levels in EC2 (Fig. 14.A). This observation
confirms EC0 as the fast-spiking state, where increased expression
of specific K+ channel genes indicates a positive regulation of AP
repolarization steepness, resulting in a narrower AP shape. Likewise,
it validates EC1 and EC2 as intermediate and lowest excitability states,
espectively.

Conversely, Kcnn2 contributes to the slow component of the synap-
ic after-hyperpolarization phase. As a member of the SKCa channels,
cnn2 serves as a vital mediator of spike adaptation by generating a
ubstantial afterhyperpolarization in instances of intense activity [82].
his phase primarily involves Ca++-dependent and voltage-independent
+ currents that can persist for several seconds following a series of
Ps. Thus, the observed reverse trend in the expression levels of Kcnn2

ndicates the positive regulation of a slower repolarization phase in EC2
nd EC1. This once again confirms that EC0 represents the fast-spiking
tate, which corresponds to the absence of firing adaptation.

Taking together all these findings NSS identifies three excitability
tates in PatchSeqDataset. EC0 cluster, as extensively validated in Sec-
ion 5.1, captures the fast-spiking excitability state; EC2 captures a low
xcitability state and EC1 captures an intermediate state between the
wo.

. Conclusions

This paper introduced the NSS approach, which offers a straight-
orward method to analyze AP waveforms for studying neuronal cell
tates. The article presents the framework of NSS analysis, outlines its
12

o

ata requirements and demonstrates its application using two data sets
f murine neocortical neurons PatchClampDataset and PatchSeqDataset,
escribed in [26,27], respectively. The NSS analysis captures cellular
eterogeneity and in particular cell-type independent neuronal ex-
itability states. In fact, it identifies a sub-portion of Sst cells in a
ast-spiking excitability state, consistently to what observed in [33]
or human cells. NSS partitions prove consistent with existing activity-
ased, and not threshold-based definitions of neuronal excitability.
n particular, in both datasets, NSS identifies a cluster that captures
he well-characterized fast-spiking neuronal excitability state that, in
atchSeqDataset, proves to be specifically enriched for cellular processes
elated to K+ channel metabolism and plasticity. This is consistent
ith the notion that K+ channels play a crucial role in regulating
P waveforms, particularly in the repolarization and hyperpolarization
hases, which explain most of the variability observed across the
dentified clusters. The EP analysis combined with cell line-based cell
ype labeling over PatchClampDataset provides additional validation of
he NSS capability of capturing the heterogeneity of cells with respect
o types and states that are consistent across the two datasets.

NSS facilitates EP analysis and can be applied to single-cell patch-
lamp datasets. Patch-seq datasets also enable multimodal analysis
nd biological validation of the NSS approach. The NSS-based anal-
sis benefits from patch-seq datasets due to their inherent consis-
ency between EP and transcriptomic cellular profiles. Unfortunately,
atch-seq datasets currently face challenges in terms of data availabil-
ty, and they often have low throughput due to technical limitations,
esulting in a limited number of samples per dataset and hinder-
ng large-scale analysis [42,83]. Nevertheless, recent advancements
n semi-automatic patch-clamp setups allow for the generation and
ublication of large-scale patch-clamp datasets [41].

Apart from the limitations inherent to patch-seq data, which include
ssues like data scarcity (where only a handful of datasets, around 3–4,
upport multimodal analysis) and challenges related to the accessibility
nd interoperability of available patch-seq datasets, NSS also suffers
rom limitations connected to the simplicity of the model, that on the
ther had is also one of the strengths. It is important to note that NSS fo-
uses on just one of the numerous electrophysiological processes within
ells. While this approach yields simple and comprehensible results,
t provides a limited perspective on neuronal complexity. Nonetheless,
onsidering this as the initial step in a modular approach to dissecting
euronal complexity, we anticipate the development of complementary
omponents to NSS that will broaden the coverage of our overall
trategy. Limitation of this work also include the narrow manually
urated analysis of transcriptomic results, which focuses on the most
elevant findings.

Thus, the forthcoming advancements encompass the application of
he method to new Patch-seq datasets as they become accessible, the
xpansion of the analysis of neuron dynamics with the incorporation
f new modular components, and the enhancement of the multimodal
alidation process and manually curated analysis to make it more
ystematic and comprehensive.

Additionally, once comprehensive human patch-seq datasets be-
ome available on a larger scale, we plan to extend the validation of
he NSS method to include them. In particular, we aim to apply the
SS methodology on the patch-seq dataset analyzed in [33], where the
lectrophysiological profile of one of the Sst subtypes exhibits similarity
o the Pvalb profile, that is, to a fast-spiking excitability state as soon as
t will be made publicly available. Future research aims to analyze more
atasets containing different neuronal types and potentially from other
pecies. This includes both patch-clamp and patch-seq datasets. Future
esearch will incorporate a more comprehensive characterization of
ene expression profiles within NSS-based partitions regarding multi-
odal analysis. Moreover, the future availability for human neuronal
ata, will provide ground for testing the NSS method not only on
urine dataset, showing its generality. This will allow for the detection
f complex expression patterns and expand subsequent analysis to a
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Fig. 14. Relations between the median AP shapes with exemplary triangles (first row), the NSS clustering labels over the transcriptomic embedding, with an indication of the
transcriptional GABAergic subtypes associated to each cluster (second row), and the expression levels of exemplary K+-channels-related genes (Kcnc2 and Kcnn2) across NSS clusters,
represented through violin plots showing the gene expression levels distributions across cells in each cluster. The colors identify the NSS clusters for the 𝐾 = 3 case, namely violet
for EC0, green for EC1, and yellow for EC2.
broader range of genes. Such an approach will provide a more extensive
exploration of the NSS biological significance, including considering
alternative or integrative approaches to ontology-based analyses.

Many neuronal properties and behaviors lack a universally agreed-
upon definition and comprehensive characterization in the existing
literature. The NSS approach can contribute to the analytical study of
these properties within patch-seq datasets, helping to establish consen-
sus around essential and widely used concepts in neuronal physiology.
An important future direction is to utilize the NSS approach to investi-
gate the relationships between AP shape and crucial neuronal features
beyond the sole intrinsic excitability, as provided in this work, and
analyzing also other key aspects such as plasticity [40] and firing rate
set points [84] in neuronal cells.
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