
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploring Temporal GNN Embeddings for Darknet Traffic Analysis / Gioacchini, Luca; Cavallo, Andrea; Mellia, Marco;
Vassio, Luca. - ELETTRONICO. - (2023), pp. 31-36. (Intervento presentato al convegno 2nd GNNet Workshop - Graph
Neural Networking Workshop tenutosi a Paris, France nel 8 December, 2023) [10.1145/3630049.3630175].

Original

Exploring Temporal GNN Embeddings for Darknet Traffic Analysis

Publisher:

Published
DOI:10.1145/3630049.3630175

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984355 since: 2023-12-05T15:14:28Z

Association for Computing Machinery

Exploring Temporal GNN Embeddings for Darknet Traffic
Analysis

Luca Gioacchini

Politecnico di Torino

Turin, Italy

luca.gioacchini@polito.it

Andrea Cavallo

Politecnico di Torino

Turin, Italy

andrea.cavallo@polito.it

Marco Mellia

Politecnico di Torino

Turin, Italy

marco.mellia@polito.it

Luca Vassio

Politecnico di Torino

Turin, Italy

luca.vassio@polito.it

ABSTRACT
Network Traffic Analysis (NTA) serves as a foundational tool for

characterizing network entities and uncovering suspicious traffic

patterns, thereby enhancing our understanding of network opera-

tions and security. As successfully done in other domains, due to

the scarcity of labelled data, Deep Learning (DL)-based solutions for

NTA have started adopting a 2-stage approach; (i) a self-supervised

upstream task generates compact and information-rich representa-

tions (embeddings) of network data without the need for a ground

truth; (ii) the embeddings serve as input to specialized models for

downstream tasks (supervised or unsupervised) – e.g. traffic classi-

fication or anomaly detection. Since graphs are intuitive represen-

tations of network traffic, in this work, we explore the potential of

temporal Graph Neural Networks (tGNNs) in generating intermedi-

ate embeddings in a self-supervised fashion. We assess the quality

of such embeddings by solving a host classification problem in a

darknet traffic scenario. We evaluate static and temporal GNNs over

a month-long period of traffic traces. We find that the inclusion of

node features and temporal aspects in the model, together with an

incremental training approach, allows for an accurate description

of host activity dynamics and enables the creation of 2-stage NTA

pipelines.

CCS CONCEPTS
• Networks → Network monitoring; • Security and privacy
→ Network security.

KEYWORDS
Darknets; Artificial Intelligence; Graph Neural Networks; Cyberse-

curity; Network Monitoring; Embeddings

ACM Reference Format:
Luca Gioacchini, Andrea Cavallo, Marco Mellia, and Luca Vassio. 2023.

Exploring Temporal GNN Embeddings for Darknet Traffic Analysis. In

Proceedings of the 2nd Graph Neural Networking Workshop 2023 (GNNet

This work is licensed under a Creative Commons Attribution

International 4.0 License.

GNNet ’23, December 8, 2023, Paris, France
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0448-2/23/12.

https://doi.org/10.1145/3630049.3630175

GNN GNN

Graph Generation

Temporal Snapshots

Classifier

Raw Data

Pre-processing

Self-supervised
Upstream Task

Embeddings

Supervised
Downstream Task

...

...

GNN...

Figure 1: 2-stage DL pipeline for classification tasks.

’23), December 8, 2023, Paris, France. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3630049.3630175

1 INTRODUCTION
In the context of Network Traffic Analysis (NTA), Deep Learning

(DL) techniques have emerged as powerful tools to address traf-

fic classification problems [2, 18], anomaly detection [22] and ex-

ploratory traffic analysis [7, 13, 20], among others. Thanks to the

availability of large data collections and user-friendly frameworks,

such techniques are becoming fundamental for characterizing and

comprehending the actions of network entities and unveiling signif-

icant patterns. However, differently from other domains, NTA ap-

plications typically present limited availability of labelled datasets

and fast and complex dynamic data with evolving structures which

complicate the training of DL models.

For this reason, recent DL-based solutions employ a 2-stage

pipeline [8, 9, 15]. In the first stage, a self-supervised upstream task
generates compact representations of input data in a latent space

(i.e. embeddings) without the need for ground truth. Then, in the

second stage, specialized machine learning or DL models operate

on these embeddings to solve specific problems, referred to as

downstream tasks (e.g. classification, clustering, anomaly detection).

This approach is motivated by the expectation that embeddings

that reflect the available relations and interactions between data

points contain valuable and representative information that can be

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630049.3630175
https://doi.org/10.1145/3630049.3630175

GNNet ’23, December 8, 2023, Paris, France Luca Gioacchini, Andrea Cavallo, Marco Mellia, & Luca Vassio

leveraged to address several downstream problems, even though

the embeddings are not specifically tailored for the final task.

Several techniques have been adopted to generate informative

embeddings, i.e. the first stage of the pipeline. Many works adopt

traditional feature engineering approaches and process the result-

ing datasets through (sparse) Autoencoders [12, 13, 16] or tradi-

tional Convolutional Neural Networks [1, 19]. Other works identify

analogies between sequences of packets (or flows) and words in

text documents. Hence, they generate embeddings borrowing tech-

niques from the Natural Language Processing (NLP) field [6, 8, 20].

In the latter case, the adoption of techniques belonging to domains

different from network traffic, like NLP, often requires an addi-

tional level of abstraction leading to hard-to-interpret solutions for

networking experts. In fact, modelling network traffic as a graph

is more intuitive and straightforward and some works started re-

lying on Graph Neural Networks (GNNs) to capture the complex

relation patterns of the network traffic. Indeed, GNNs are neural

network architectures that directly operate on graphs and capture

not only entity-specific information, but also connectivity patterns.

Therefore, they represent a powerful tool for modelling network be-

haviour. Specifically, end-to-end GNN-based architectures are used

to classify network packets [3, 23], and GNN-based autoencoders

are applied to traffic flows classification [10, 11].

In this paper, we aim to generate robust embeddings (stage 1) that

represent the activity of hosts sending traffic to darknet addresses.

We propose the usage of temporal GNNs (tGNNs) as embedding

generators to capture the complex spatial and temporal patterns

found in network traffic. We design a downstream host classifica-

tion task (stage 2) to evaluate the goodness of the embeddings, as

sketched in Figure 1.

Darknets are sensors that observe traffic received by networks

that are announced on the Internet but host neither production

services nor client hosts. Specifically, they are commonly used

to monitor incoming and potentially malicious attacks, since any

packet reaching a darknet address is unsolicited. We model darknet

traffic as a bipartite graph in which sender nodes (identified by their

IP addresses) are connected to nodes representing the destination

TCP ports. We process the graph to generate host embeddings

using three different GNNs: a static Graph Convolutional Network

(GCN) [14] adapted to dynamic scenarios through incremental

training (i-GCN), a temporal GNN (GCN-GRU [24]) and the same

temporal GNN trained incrementally (i-GCN-GRU). Additionally,

to exploit the full potential of GNNs, we enrich the graph with

node feature information related to the amount and type of traffic

generated (received) by each host (port).

We evaluate the generated embeddings through a downstream

node classification task where we label senders according to the

available ground truth. We find that (i) node features are essential

to map hosts belonging to the same class in the same region of the

latent space (< 0.50 of average F1-Score without node features); (ii)

the temporal GNN (GCN-GRU) better extracts the dynamics of host

activities (0.75 of average F1-Score); (iii) the incrementally-trained

temporal GNN (i-GCN-GRU) better follows the fast-changing be-

haviours of hosts improving the classification performance up to

0.80 of average F1-Score.

We show that the modelling of network traffic as a graph and the

adoption of tGNNs extract meaningful host activity patterns and

generate robust host representations, for which we envision several

applications to supervised and unsupervised tasks (e.g. clustering),

which can significantly advance the understanding and analysis of

network behaviour.

2 HOST EMBEDDINGS WITH GNNS
We defineV𝑡

𝐴
,V𝑡

𝐵
as two disjoint sets of nodes active in snapshot 𝑡

and E𝑡
𝐴,𝐵

as the set of edges that in snapshot 𝑡 link nodes inV𝑡
𝐴
with

nodes in V𝑡
𝐵
. We define a dynamic bipartite graph G = {G𝑡 }𝑇

𝑡=1
as

a sequence of 𝑇 static bipartite graphs G𝑡 = (V𝑡
𝐴
,V𝑡

𝐵
, E𝑡

𝐴,𝐵
). More

specifically, an edge 𝜖 = (𝑣𝐴, 𝑣𝐵,𝑤) ∈ E𝑡
𝐴,𝐵

indicates that there ex-

ists a connection between nodes 𝑣𝐴 ∈ V𝑡
𝐴
and 𝑣𝐵 ∈ V𝑡

𝐵
with

weight𝑤 . Each node 𝑣 ∈ V𝑡
𝐴
∪V𝑡

𝐵
can be associated with a feature

vector x𝑡𝑣 ∈ R𝐹 , where 𝐹 is the number of features. In our case,

V𝑡
𝐴
contains the external hosts sending packets to the darknet. An

edge 𝜖 = (𝑣𝐴, 𝑣𝐵,𝑤) indicates that, in snapshot 𝑡 , 𝑣𝐴 sent𝑤 packets

toward the destination port 𝑣𝐵 .

GNNs [21] are deep learning models that exploit the structural

information of a graph to generate meaningful representations for

its nodes. We train the GNNs with a self-supervised task, i.e. link

prediction. Specifically, at each snapshot 𝑡 , the GNNs generate node

embeddings and estimate the likelihood of the connections E𝑡
𝐴,𝐵

.

We employ a set of non-existing edges as negative examples for

training purposes. This is framed as a binary classification task, i.e.

classify each edge as existing or non-existing.

Here we provide details on the three GNNs we use in our experi-

ments. All of them are based on the Graph Convolutional Network

(GCN) [14] with 𝐿 layers. At each layer 𝑙 ∈ [2, 𝐿], a GCN receives in

input the representations at the previous layer 𝑧𝑙−1𝑣 for each node

𝑣 ∈ V𝐴 ∪V𝐵 and it generates the updated 𝑧𝑙𝑣 . Specifically, it first

transforms the node representations through a multiplication with

a learnable weight matrix𝑊 𝑙
and then produces the output repre-

sentation for a node 𝑢 as the weighted sum of the representations

of itself and its neighbours, i.e. 𝑧𝑙𝑢 =
∑

𝑣∈N′ (𝑢) ˆ𝑤𝑢𝑣𝑊
𝑙𝑧𝑙−1𝑣 , where

N ′ (𝑢) is the set containing node 𝑢 and its neighbours and ˆ𝑤𝑢𝑣 is

the weight of the edge between 𝑢, 𝑣 normalized such that the sum

of the weights of the edges of node 𝑢 equals 1. At the first layer, the

input node representations are their features, i.e. 𝑧1𝑣 = 𝑥𝑣 . The last

output layer of the GNN 𝑧𝐿𝑢 ∈ R𝐸 is the embedding of node𝑢, where

𝐸 is the embedding size. We omit time indexes 𝑡 for simplicity.

i-GCN: Adapting static GCN to dynamic scenarios. Since the GCN
is a static model, we adapt it to the time-evolving scenario of dark-

net traffic through incremental training, as illustrated in Figure 2a.

Specifically, we train a GCN on the first graph snapshot G𝑡=1
(ob-

taining GCN1) and produce the embeddings for the active nodes.

Then, for each subsequent snapshot 𝑡 ∈ [2,𝑇], we fine-tune the
pre-trained model GCN𝑡−1 on the graph snapshot G𝑡

and we ob-

tain GCN𝑡 . The resulting embeddings, thus, include past and latest

information.

GCN-GRU: Temporal GNN. To model the graph structure and

the dynamics of a temporal network, GCN-GRU [24] (a com-

mon tGNN) couples GNNs with recurrent neural networks, a

Exploring Temporal GNN Embeddings for Darknet Traffic Analysis GNNet ’23, December 8, 2023, Paris, France

GCN1

GCN2

GT GCNT

G2

G1

Time

Graphs Embedder Embedding

(a) Incremental GCN (i-GCN)

GM+1GM-H+1 ...

GCN-GRUM

GCN-GRUM

GTGT-H ... GCN-GRUM

GMGM-H ...

G1+HG1 ...
...

... ...

Training

Inference

(b) Traditional GCN-GRU

GTGT-H ...

GCN-GRU1+H

GCN-GRU2+H

GCN-GRUT

G2+HG2 ...

G1+HG1 ...

... ...

(c) Incremental GCN-GRU (i-GCN-GRU)

Figure 2: Different training strategies for Graph Neural Networks models.

Table 1: Considered node features.

Host Node Features Port Node Features

#Contacted darknet ports #Hosts contacting a port

Stats(#Packets per darknet port)

Stats(#Packets per source host

contacting a port)

#Contacted darknet hosts 0-valued dummy feature

Stats(#Packets per darknet host) 0-valued dummy feature

Packets per

source host

Stats(Size)

Packets per

darknet port

Stats(Size)

Stats(TTL) Stats(TTL)

Stats(MSS) Stats(MSS)

Stats(WIN) Stats(WIN)

Stats(TS) Stats(TS)

popular tool to deal with time-evolving data. Specifically, it em-

ploys Gated Recurrent Units (GRUs) [5], which rely on a mem-

ory to keep past information and merge it with new incoming

data. More in detail, the GCN-GRU applies a GCN to 𝐻 subse-

quent graph snapshots independently and forwards their out-

puts through a GRU to model temporal behaviours. Formally,

𝑍 𝑡 = GRU

(
GCN(G𝑡−𝐻), . . . ,GCN(G𝑡−1),GCN(G𝑡)

)
, where𝑍 𝑡 ∈

R |V
𝑡
𝐴
∪V𝑡

𝐵
|×𝐸

is the matrix containing the embeddings for all the

nodes active in snapshot 𝑡 .

In Figure 2b we overview the training (top) and inference (bot-

tom) phases to produce node embeddings. We use the first𝑀 snap-

shots to train the GCN-GRU (GCN-GRU𝑀). Notice that in this way

we train the model with 𝑀 − 𝐻 sequences of temporal graphs of

length 𝐻 . Then, we freeze it and use GCN-GRU𝑀 to compute em-

beddings for nodes active in each snapshot 𝑡 ∈ [𝑀 + 1,𝑇].

i-GCN-GRU: Incremental extension of tGNN. Finally, we extend
the incremental training approach to the tGNN to better follow

the fast-changing dynamics of host activity patterns and produce

more robust embeddings. In Figure 2c we overview the incremental

training approach. At each new time snapshot 𝑡 , we generate the

new GCN-GRU𝑡 by updating GCN-GRU𝑡−1. Notice that we update
both the GCN and GRU layers. Differently from i-GCN, we produce

embeddings by feeding the model with the current graph snapshot

and 𝐻 past graphs to exploit the GRU memory.

3 DARKNET TRAFFIC
Darknets are sets of IP addresses announced on the Internet but

without hosting any services. Thus, all received traffic is unsolicited.

They collect large-scale Internet scans and represent a valuable

source of information for cybersecurity. In this work, we collect

Table 2: Dataset and Ground Truth overview.

Total Daily (Avg.)

Hosts Ports Packets Hosts Ports Packets

Mirai-like 16 147 2 094 1 982 205 2 158 95 63 942

Brute-forcers 976 9 791 10 191 173 246 1 020 3 28 747

Spammers 1 014 49 783 4 891 353 252 7 048 157 785

Shadowserver 289 42 218 443 287 38 7 046

Driftnet 252 9 246 564 854 252 2 247 18 221

Internetcensus 271 252 213 909 224 234 6 900

Censys 329 65 069 3 400 900 245 12 455 109 706

Rapid7 344 139 60 469 283 25 6 046

Onyphe 115 186 39 030 97 158 1 393

Netsystems 45 199 226 559 43 191 8 391

Shodan 36 1 232 320 861 31 1 007 10 350

Exploiters 430 33 148 210 27 8 4 780

Securitytrails 18 207 107 826 17 15 3 478

Intrinsec 12 8 9 403 9 6 303

Unknown 39 828 65 535 39 654 818 3 594 49 461 1 279 188

Total 60 106 65 535 62 030 013 7 566 53 638 2 000 968

data from a /24 darknet in our university campus network for 31

days (2021-12-01 to 2021-12-31). We focus on TCP traffic, which

accounts for 93.7% of traffic, and remove hosts that send less than

5 packets per day [8]. We observe 60 106 remaining hosts sending

more than 62 million packets in a month.

3.1 Darknet traffic as a bipartite graph
We consider each day of our collection as a snapshot. According to

definitions in Section 2, letV𝑡
𝐴
be the set of hosts targeting darknets

at snapshot 𝑡 and let V𝑡
𝐵
be the set of the 2 500 most contacted

darknet ports at snapshot 𝑡 plus one additional node representing

all the remaining ports [8].

We obtain the dynamic bipartite graph {G𝑡 }𝑇=31
𝑡=1

which has 6 392

average nodes per snapshot and 49 198 average edges per snapshot.

We compute a set of features for both host nodes and ports. Thus,

each node is associated with a feature vector x𝑡𝑣 of size 37, which
summarizes the traffic intensity and type as detailed in Table 1. The

function Stats(·) extracts the sum, minimum, maximum, average

and standard deviation of the provided entity.

3.2 Ground Truth
To perform classification as downstream task, we generate a ground

truth for hosts considering four data sources: (i) ground truth avail-

able from [8] (ii) presence of fingerprints of Mirai-like malwares

observed in received packets [4]; (iii) information from a public

GNNet ’23, December 8, 2023, Paris, France Luca Gioacchini, Andrea Cavallo, Marco Mellia, & Luca Vassio

Graph
Convolution

V,1024 V,512

V, E=128

Node
Embeddings

GRU

...

Fully
Connected

None, 64

Output

None, 2

Gi-H

V, F=37

Inputs

xi-H

Gi-H+1

xi-H+1

Gi

xi

.........

Link Prediction
Head

Figure 3: Adopted GCN-GRU architecture.

repository of acknowledged scanners
1
, i.e. non-hostile hosts per-

forming scanning activities or providing services like search en-

gines; (iv) expert labels (brute-forcer, spammer and exploiter) based

on activities the same host performs on a honeypot. The result-

ing ground truth labels 34% of the hosts, responsible for 36% of

the total traffic, into 14 strongly unbalanced classes. We mark all

the remaining hosts as Unknown. We report details for each of the

classes in our dataset in Table 2. These statistics suggest distinct

behaviours characterizing different classes. Non-hostile groups (e.g.

Shadowserver, Rapid7) likely engage in (i) vertical scans, targeting

a limited set of ports with under 300 000 daily packets, possibly

running routine cybersecurity scans, and (ii) horizontal scans (e.g.

Shodan, Driftnet), covering large port ranges with less than 600 000

monthly packets, probably surveying TCP port usage. In contrast,

malicious classes (e.g. Mirai-like, Brute-forcers, Spammers) appear

to conduct massive scans, sending millions of monthly packets.

4 VALIDATING THE EMBEDDINGS
Given our assumption that good embeddings can serve any kind

of specialized model for any kind of task, we solve the supervised

classification problem of identifying the 14 classes described in

Section 3.2.

We rely on a k-Nearest-Neighbour (kNN) classifier, which assigns

the most frequent label among the 𝑘 nearest neighbours in the

embedding space. Thus, the closer the embeddings of hosts engaged

in similar activities, the higher the classification performance.

We use the first 20 days of our traffic to train the models and test

the classification performance on the subsequent 11 days. Since the

Unknown class includes nodes whose characteristics we cannot ver-

ify, we do not report classification metrics for them, but we consider

samples belonging to this class when computing the embeddings

neighbourhood.

4.1 Experimental settings
After a parameter tuning stage, for which we omit the details for

the sake of brevity, we design the model architecture as follows:

in all models, the graph convolution modules have three layers

(L=3) of 37 (input features), 1024 and 512 neurons respectively; for

1
https://gitlab.com/mcollins_at_isi/acknowledged_scanners

GCN and i-GCN, we add a fully connected layer at the end with

size 𝐸 = 128; for GCN-GRU variants (overviewed in Figure 3), the

GRU outputs embeddings sized 𝐸 = 128. The prediction head of all

models consists of a hidden layer with 64 neurons and an output

layer for the pretext task with 2 neurons (existing or non-existing
edge) on which we apply the Negative Log Likelihood loss function.

Note that for inference we do not use the link prediction head.

We train the GCN and GCN-GRU for 50 epochs with an early

stopping condition of 3 iterations as patience
2
. For incremental

trainings, we train and update the weights for 1 epoch on each

snapshot if node features are present, and for 5 epochs otherwise.

Unless otherwise specified, we set the GRU history 𝐻 = 5 and

𝑘 = 3 for the kNN classifier.

We develop all the models using the Python library PyTorch

and run the experiments on a Tesla V100-PCIE-16GB. We hope our

results and methodological insights can inspire the application of

temporal GNN to the analysis of other network traffic traces too.

For that, we release our source code and the dataset used in the

paper.
3
.

4.2 NLP embeddings as baseline
As baseline, we compare GNN-based embeddings with our pre-

vious approach i-DarkVec [8], which relies on Word2Vec [17] to

create the intermediate embeddings for hosts. We assume that the

reader is familiar with Word2Vec and provide a brief overview of

i-DarkVec. In a nutshell, at each snapshot, we group packets ad-

dressed to the same darknet TCP port and extract the sequence of

senders (i.e. the source hosts generating them) as they reach each

port. Analogously to NLP, hosts represent "words", whereas ports

represent "sentences". We feed the generated corpus as input to

Word2Vec. i-DarkVec produces contextual host embeddings such

that hosts co-occurring in time when targeting similar ports appear

close in the latent space. The kNN classifier on these embeddings

achieves 0.77 ± 0.02 of average F1-Score over the 11 testing days.

5 EXPERIMENTAL RESULTS
In Table 3 we report the per-class average F1-Score and standard

deviation over the 11 test snapshots. Classes are ordered by decreas-

ing support size. The support size counts host appearances for each

class over the 11 test snapshots (possibly with repetitions).

Firstly, we focus on the macro average F1-Score. We observe

that (i) tGNN without node features fails to capture meaningful

dynamics from darknet traffic (average F1-Score < 0.50 for all the

models); (ii) associating graph nodes with features empowers the

tGNN to generate more informative embeddings. The average F1-

Score improves by up to ≈ 0.39.

Focusing on single classes, we observe that (i) since darknet

implies a low level of interaction with senders, the classes deduced

from honeypot (i.e. Brute-forcer, Spammer, and Exploiter) exhibit

different patterns resulting in weak classification performance (F1-

Score < 0.65); (ii) for the other classes, all GNNs achieve an average

per-class F1-Score > 0.80.

Comparing standard versus incremental models, we observe that

(i) a static model (GCN) with standard training over more epochs

2
Number of epochs with no improvement after which we stop the training.

3
https://github.com/SmartData-Polito/gnn-for-darknet.git

https://gitlab.com/mcollins_at_isi/acknowledged_scanners
https://github.com/SmartData-Polito/gnn-for-darknet.git

Exploring Temporal GNN Embeddings for Darknet Traffic Analysis GNNet ’23, December 8, 2023, Paris, France

Table 3: Average F1-Score and standard deviation for the 3-Nearest-Neighbors classifier applied on the host embeddings
generated by different models. The best results for each task are in bold, and results within the standard deviation interval of
the best are in blue.

(t)GNN without Node Features (t)GNN with Node Features

Support GCN i-GCN GCN-GRU i-GCN-GRU GCN i-GCN GCN-GRU i-GCN-GRU

Mirai-like 22 878 0.63±0.03 0.76±0.02 0.69±0.03 0.72±0.02 0.98±0.00 0.98±0.00 0.86±0.04 0.98±0.00
Brute-forcer 3 530 0.10±0.04 0.53±0.03 0.53±0.03 0.52±0.01 0.62±0.03 0.61±0.03 0.61±0.03 0.63±0.03
Spammer 3 187 0.14±0.04 0.23±0.04 0.29±0.04 0.19±0.07 0.47±0.06 0.46±0.06 0.42±0.08 0.47±0.08
Shadowserver 3 149 0.14±0.13 0.49±0.15 0.64±0.07 0.49±0.16 0.91±0.01 0.90±0.02 0.95±0.01 0.96±0.01
Driftnet 2 772 0.77±0.09 0.73±0.06 0.87±0.05 0.90±0.02 0.88±0.04 0.85±0.05 0.97±0.02 0.97±0.02
Internetcensus 2 335 0.26±0.12 0.33±0.08 0.68±0.05 0.47±0.13 0.64±0.12 0.58±0.14 0.90±0.04 0.92±0.02
Censys 1 974 0.53±0.06 0.60±0.05 0.59±0.05 0.60±0.03 0.89±0.03 0.88±0.03 0.91±0.02 0.92±0.01
Rapid7 1 255 0.91±0.05 0.76±0.11 0.91±0.02 0.83±0.10 0.84±0.04 0.84±0.02 0.69±0.47 0.97±0.04
Onyphe 709 0.06±0.05 0.05±0.04 0.11±0.06 0.05±0.05 0.93±0.03 0.93±0.02 0.92±0.01 0.91±0.05
Netsystems 439 0.02±0.03 0.09±0.08 0.32±0.05 0.06±0.05 0.97±0.03 0.97±0.02 0.80±0.09 0.95±0.04
Shodan 341 0.12±0.16 0.14±0.16 0.23±0.10 0.10±0.14 0.81±0.05 0.79±0.06 0.76±0.05 0.79±0.06
Exploiter 254 0.00±0.00 0.07±0.20 0.00±0.00 0.06±0.16 0.07±0.20 0.07±0.20 0.00±0.00 0.10±0.21
Securitytrails 180 0.12±0.25 0.86±0.07 0.87±0.04 0.67±0.04 0.98±0.04 0.96±0.05 0.97±0.04 0.98±0.03
Intrinsec 47 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.35±0.24 0.24±0.17 0.75±0.12 0.73±0.13
Macro avg. 43 050 0.26±0.05 0.41±0.04 0.49±0.04 0.41±0.04 0.74±0.02 0.73±0.03 0.75±0.03 0.80±0.02

(best over 50) performs comparably to the 1-epoch-incremental

training (i-GCN) resulting in 0.74 of average F1-Score versus 0.73;

(ii) the temporal aspect introduced by GCN-GRU brings a slight

additional improvement (0.75 of average F1-Score). However, the

standard training makes the model overfit on the last data penal-

ising classes with fast behavioural changes (i.e. Exploiter, Rapid7

and Spammer); (iii) coarsely fine-tuning a model pre-trained on the

previous day for 1 epoch (i-GCN-GRU) preserves salient informa-

tion in the embeddings while updating them with current snapshot

dynamics. This results in a gain of up to ≈0.30 in the F1-Score of the

classes penalized by the standard training and an average F1-Score

of 0.80.

Comparing i-DarkVec NLP-style and tGNN embeddings, we no-

tice that they perform comparably for downstream task results (0.77

of F1-Score versus 0.80) and training times (74.51s versus to 69.27s).

The main advantage of the tGNNs approach relies on enhanced

intuitiveness and flexibility: (i) Whereas i-DarkVec requires extract-

ing sequences of hosts by destination ports to highlight coordinated

behaviours, tGNNs leverage the explicit connections between hosts

and ports; (ii) Enriching NLP embeddings with host features, al-

though not explored in this work, requires additional manipulation

of the embeddings (e.g. concatenation of features and embeddings),

whereas the tGNNs inherently include node features by design.

5.1 Impact of parameters
Finally, we evaluate the impact of the history parameter 𝐻 and the

training epochs for i-GCN-GRU.

Impact of history 𝐻 . In Figure 4a we evaluate the impact of the

length of the temporal component of the tGNNs by reporting the

average F1-Score for different values of 𝐻 . Note that 𝐻 = 0 corre-

sponds to the i-GCN of Table 3. Generally, enhancing the memory

length yields better results until a saturation point. This underscores

the significance of incorporating historical data using time-aware

GNNs, which effectively capture the evolution of the traffic over

time.

0 2 4 6 8
History length H

0.70

0.72

0.74

0.76

0.78

0.80

0.82

A
v
g.

F
1-

S
co

re

(a) Impact of history 𝐻

1 5 10 15 20 25 30
Training epochs

0.74

0.76

0.78

0.80

0.82

A
v
g.

F
1-

S
co

re

(b) Impact of training epochs

Figure 4: Impact of parameters for i-GCN-GRU.

Impact of training epochs. In Figure 4b we report the average F1-

Score when training (fine-tuning) the i-GCN-GRU for an increasing

number of epochs. Here the considerations of Table 3 are confirmed:

when the model is trained for a large number of epochs on the

current snapshot, it tends to overfit the model on the last time

snapshot of data, leading to a loss of past learned information. This

is reflected by a decrease in classification performance.

6 CONCLUSIONS
In this paper, we presented an initial exploration of tGNNs for

darknet traffic analysis. We represented darknet traffic at packet

level as a bipartite graph and generated host embeddings in a self-

supervised way relying on both static and temporal GNNs. We

defined node features and we experimented incremental training

strategies to better follow the dynamics of the network.

Experimental results show that (i) GNNs without node features

fail to extract similar behaviours among senders; (ii) When using

node features, GNN embeddings are comparable with those pro-

duced by i-DarkVec, which relies on an NLP technique; (iii) coarse

GNNet ’23, December 8, 2023, Paris, France Luca Gioacchini, Andrea Cavallo, Marco Mellia, & Luca Vassio

fine-tuning of a tGNN model pre-trained on the previous snap-

shot can preserve useful past information, following the frequent

changes in daily traffic.

All in all, despite the growing trend of NLP and cross-domain

adaptation like i-DarkVec, this preliminary work highlights that

more intuitive solutions based on GNNs can yield comparable re-

sults. Temporal GNNs are a more natural tool than NLP-style ap-

proaches for enhancing our comprehension of highly dynamic net-

work traffic, facilitating the enhancement of embedded knowledge

with richer information through node or edge features.

Future developments include the evaluation of the proposed

method on additional datasets encompassing other darknet traces

as well as different computer network scenarios. Furthermore, the

comparison with other approaches relying on feature engineering

or ML can provide further insights on the advantages and disad-

vantages of GNNs. A promising extension of the proposed architec-

ture comprises a deeper investigation of both node and edge fea-

tures and the application of different and more sophisticated GNN

architectures. Moreover, the generated embeddings can serve as

information-rich representations for several supervised or unsuper-

vised downstream tasks, such as clustering or anomaly detection.

ACKNOWLEDGMENTS
This work was partially supported by project SERICS (PE00000014)

under the MUR National Recovery and Resilience Plan funded by

the European Union - NextGenerationEU and the PRIN Project

xInternet (eXplainable Internet - 20225CETN9 - PRIN 2022).

REFERENCES
[1] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè. 2019. MIMETIC: Mobile en-

crypted traffic classification using multimodal deep learning. Computer Networks
(2019). https://doi.org/10.1016/j.comnet.2019.106944

[2] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé. 2019. Mobile Encrypted Traffic

Classification Using Deep Learning: Experimental Evaluation, Lessons Learned,

and Challenges. IEEE Transactions on Network and Service Management (2019).
https://doi.org/10.1109/TNSM.2019.2899085

[3] P. Bo, F. Yongquan, R. Siyuan, W. Ye, L. Qing, and J. Yan. 2021. CGNN: Traf-

fic Classification with Graph Neural Network. https://doi.org/10.48550/

arXiv.2110.09726

[4] J. Ceron, K. Steding-Jessen, C. Hoepers, L. Granville, and C. Margi. 2019. Improv-

ing IoT Botnet Investigation Using an Adaptive Network Layer. Sensors (2019).
https://doi.org/10.3390/s19030727

[5] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio. 2014. Learning Phrase Representations using RNN Encoder–

Decoder for Statistical Machine Translation. In Conference on Empirical Methods
in Natural Language Processing (EMNLP). https://doi.org/10.3115/v1/D14-1179

[6] D. Cohen, Y. Mirsky, Y. Elovici, R. Puzis, M. Kamp, T. Martin, and A. Shabtai.

2020. DANTE: A Framework for Mining and Monitoring Darknet Traffic. https:

//doi.org/10.48550/arXiv.2003.02575

[7] L. Gioacchini, L. Vassio, M. Mellia, I. Drago, Z.B. Houidi, and D. Rossi. 2021. Dark-

Vec: automatic analysis of darknet traffic with word embeddings. In Proceedings
of the 17th International Conference on emerging Networking EXperiments and
Technologies. https://doi.org/10.1145/3485983.3494863

[8] L. Gioacchini, L. Vassio, M. Mellia, I. Drago, Z.B. Houidi, and D. Rossi. 2023.

i-DarkVec: Incremental Embeddings for Darknet Traffic Analysis. ACM Transac-
tions on Internet Technology (2023). https://doi.org/10.1145/3595378

[9] Z.B. Houidi, R. Azorin, M. Gallo, A. Finamore, and D. Rossi. 2022. Towards a Sys-

tematic Multi-Modal Representation Learning for Network Data. In Proceedings
of the 21st ACM Workshop on Hot Topics in Networks. https://doi.org/10.1145/

3563766.3564108

[10] G. Hu, X. Xiao, M. Shen, B. Zhang, X. Yan, and Y. Liu. 2023. TCGNN:

Packet-grained network traffic classification via Graph Neural Networks. En-
gineering Applications of Artificial Intelligence (2023). https://doi.org/10.1016/

j.engappai.2023.106531

[11] T. Huoh, Y. Luo, P. Li, and T. Zhang. 2023. Flow-Based Encrypted Network Traffic

Classification With Graph Neural Networks. IEEE Transactions on Network and
Service Management (2023). https://doi.org/10.1109/TNSM.2022.3227500

[12] J. Höchst, L. Baumgärtner, M. Hollick, and B. Freisleben. 2017. Unsupervised Traf-

fic Flow Classification Using a Neural Autoencoder. In 2017 IEEE 42nd Conference
on Local Computer Networks (LCN). https://doi.org/10.1109/LCN.2017.57

[13] M. Kallitsis, R. Prajapati, V. Honavar, D. Wu, and J. Yen. 2022. Detecting and

Interpreting Changes in Scanning Behavior in Large Network Telescopes. IEEE
Transactions on Information Forensics and Security (2022). https://doi.org/10.1109/
TIFS.2022.3211644

[14] T.N. Kipf and M. Welling. 2017. Semi-Supervised Classification with Graph

Convolutional Networks. In International Conference on Learning Representations
(ICLR). https://doi.org/10.48550/arXiv.1609.02907

[15] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, and S.Y. Philip. 2022. Graph

self-supervised learning: A survey. IEEE Transactions on Knowledge and Data
Engineering (2022). https://doi.org/10.1109/TKDE.2022.3172903

[16] M. Lotfollahi, R.S.H. Zade, M.J. Siavoshani, and M. Saberian. 2017. Deep Packet:

A Novel Approach For Encrypted Traffic Classification Using Deep Learning.

https://doi.org/10.48550/ARXIV.1709.02656

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of

word representations in vector space. arXiv (2013). https://doi.org/10.48550/

arXiv.1301.3781

[18] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar. 2019. Towards the

Deployment of Machine Learning Solutions in Network Traffic Classification:

A Systematic Survey. IEEE Communications Surveys & Tutorials (2019). https:

//doi.org/10.1109/COMST.2018.2883147

[19] S. Rezaei and X. Liu. 2018. How to Achieve High Classification Accuracy with

Just a Few Labels: A Semi-supervised Approach Using Sampled Packets. https:

//doi.org/10.48550/ARXIV.1812.09761

[20] M. Ring, A. Dallmann, D. Landes, and A. Hotho. 2017. IP2Vec: Learning Similari-

ties Between IP Addresses. In 2017 IEEE International Conference on Data Mining
Workshops (ICDMW). https://doi.org/10.1109/ICDMW.2017.93

[21] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. 2009. The

Graph Neural Network Model. IEEE Transactions on Neural Networks (2009).
https://doi.org/10.1109/TNN.2008.2005605

[22] F. Soro, T. Favale, D. Giordano, L. Vassio, Z.B. Houidi, and I. Drago. 2021. The

New Abnormal: Network Anomalies in the AI Era. Communication Networks
and Service Management in the Era of Artificial Intelligence and Machine Learning
(2021). https://doi.org/10.1002/9781119675525.ch11

[23] B. Sun, W. Yang, M. Yan, D. Wu, Y. Zhu, and Z. Bai. 2020. An Encrypted Traffic

Classification Method Combining Graph Convolutional Network and Autoen-

coder. In 2020 IEEE 39th International Performance Computing and Communica-
tions Conference (IPCCC). https://doi.org/10.1109/IPCCC50635.2020.9391542

[24] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li. 2020.

T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE
Transactions on Intelligent Transportation Systems (2020). https://doi.org/10.1109/
TITS.2019.2935152

https://doi.org/10.1016/j.comnet.2019.106944
https://doi.org/10.1109/TNSM.2019.2899085
https://doi.org/10.48550/arXiv.2110.09726
https://doi.org/10.48550/arXiv.2110.09726
https://doi.org/10.3390/s19030727
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.48550/arXiv.2003.02575
https://doi.org/10.48550/arXiv.2003.02575
https://doi.org/10.1145/3485983.3494863
https://doi.org/10.1145/3595378
https://doi.org/10.1145/3563766.3564108
https://doi.org/10.1145/3563766.3564108
https://doi.org/10.1016/j.engappai.2023.106531
https://doi.org/10.1016/j.engappai.2023.106531
https://doi.org/10.1109/TNSM.2022.3227500
https://doi.org/10.1109/LCN.2017.57
https://doi.org/10.1109/TIFS.2022.3211644
https://doi.org/10.1109/TIFS.2022.3211644
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1109/TKDE.2022.3172903
https://doi.org/10.48550/ARXIV.1709.02656
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1109/COMST.2018.2883147
https://doi.org/10.1109/COMST.2018.2883147
https://doi.org/10.48550/ARXIV.1812.09761
https://doi.org/10.48550/ARXIV.1812.09761
https://doi.org/10.1109/ICDMW.2017.93
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1002/9781119675525.ch11
https://doi.org/10.1109/IPCCC50635.2020.9391542
https://doi.org/10.1109/TITS.2019.2935152
https://doi.org/10.1109/TITS.2019.2935152

	Abstract
	1 Introduction
	2 Host embeddings with GNNs
	3 Darknet Traffic
	3.1 Darknet traffic as a bipartite graph
	3.2 Ground Truth

	4 Validating the embeddings
	4.1 Experimental settings
	4.2 NLP embeddings as baseline

	5 Experimental results
	5.1 Impact of parameters

	6 Conclusions
	Acknowledgments
	References

