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Abstract: The Intelligent Fault Diagnosis of rotating machinery calls for a substantial amount of
training data, posing challenges in acquiring such data for damaged industrial machinery. This paper
presents a novel approach for generating synthetic data using a Generative Adversarial Network
(GAN) with cycle consistency loss function known as cycleGAN. The proposed method aims to
generate synthetic data that could effectively replace real experimental data. The generative model is
trained to transform wavelet images of simulated vibrational signals into authentic data obtained
from machinery with damaged bearings. The utilization of Maximum Mean Discrepancy (MMD)
and Fréchet Inception Distance (FID) demonstrates a noteworthy resemblance between synthetic
and real experimental data. Also, the generative model enables the synthesis of data that may have
been entirely lacking from the experimental observation, indicating generative zero-shot learning
capabilities. The efficacy of synthetic data in training diagnosis algorithms by means of Transfer
Learning (TL) on Convolutional Neural Networks (CNNs) has been demonstrated to be comparable
to that of real data. The study has been validated by means of the test rig for medium-sized industrial
bearings accessible at the Politecnico di Torino.

Keywords: intelligent fault diagnosis; generative adversarial networks; cycleGANs; transfer learning;
machine fault diagnosis; convolutional neural networks; maximum mean discrepancy; bearings;
rotating machinery; condition monitoring

1. Introduction

The impact of machine learning (ML) and deep learning (DL) approaches is grow-
ing in the domain of rotating machinery diagnosis [1–4]. The increasing interest in these
methodologies can be attributed to the potential of these algorithms to acquire knowledge
in a highly automated manner, enabling them to establish meaningful connections between
input variables, frequently derived from condition monitoring signals [5], and diagnostic
outputs. This correlation is achieved with a remarkable level of accuracy, making these
techniques valuable for predictive maintenance objectives. In this context, the involve-
ment and expertise of operators in maintenance decision making are diminished, since
they are increasingly dependent on the knowledge acquired by intelligent algorithms
through the analysis of training data. This procedure is frequently associated with the
examination of rolling element bearings (REBs) [6–10], as they serve as mechanical compo-
nents that can gather informative data pertaining to the entire machinery and its overall
performance [11–14].

Intelligent Fault Diagnosis (IFD) [1] has emerged as a prominent field in the past
decade, focusing on the utilization of Artificial Intelligence (AI) for diagnosing machine
components. Numerous approaches have been employed in this context. In the field
of ML, the extraction of diagnostic features is typically performed manually, such as in
the application of algorithms like support vector machine (SVM) [15–17] or k-nearest
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neighbors (kNN) [18–20]. Then, DL is distinguished by the adoption of an automated
approach for extracting features [21,22], which might manifest through the application of
deep networks like convolutional neural networks (CNNs) [23–28]. The latter frequently
engage with multi-dimensional data such as images. In the scenario of diagnosing
rotating machinery, these images are commonly depicted as time-frequency images,
such as spectrograms or Continuous Wavelet Transform (CWT) representations [27,29].
However, the efficacy of ML and DL approaches relies on the availability of a sufficient
amount of training data [3,30,31] that faithfully capture the potential operating conditions
and machine failures.

The availability of data is often limited in industrial applications. This limitation
is particularly relevant when attempting to capture a comprehensive and representative
distribution of potential damages. The currently accessible public datasets available in
the field of bearing fault diagnosis [32–37] have been derived from extensive experimental
efforts. However, they do not provide the same magnitude of data as certain datasets
found in other domains, such as image recognition [38], sound detection [39] and natural
language processing [40,41] for which foundation models are available [42]. In those
domains, AI has demonstrated significant potential, and the presence of labeled data is
certainly a contributing factor to this outcome. Due to this rationale, a significant portion
of the scholarly literature concerning IFD focuses on the implementation of approaches
with the objective of diminishing the substantial amount of training data.

Transfer Learning (TL) [3,43–45] approaches are employed to transfer previously
gained knowledge from ML models across different tasks and domains representing differ-
ent diagnostic scenarios. This approach effectively reduces the requirement for extensive
training data. In general, TL often entails the process of building a model on a large dataset
and subsequently employing it as a pre-trained basis for addressing similar or related
problems. This technique offers the advantage of requiring less data and training time
compared to training models from scratch. In the literature concerning machine fault
diagnosis, there have been reports of instances where diagnostic capabilities have been
successfully transferred to new working conditions of the same machine [46,47], as well as
to different machines [48]. Also, several techniques are available for the re-utilization of
models pre-trained for image recognition [29] and sound recognition [49,50] in the field of
rotating machinery diagnostics.

Generative Adversarial Networks (GANs) [51–53] could be intended in a broad sense
as TL approaches. In the domain of IFD, GANs are employed to construct generative
models capable of producing synthetic data resembling the patterns observed in operating
machinery [54–61]. Artificially produced data serve the purpose of enhancing the training
dataset for IFD models for improving the performances and the feature extraction capa-
bilities of the latter. The concept of GAN leverages the underlying mechanism employed
by stacked autoencoders and variational autoencoders, which have been employed in the
past to produce high-level features for training machine learning classifiers [62] and to
diagnose rotor-bearing systems [63,64]. In recent years, a growing body of literature has
drawn attention to the potential of GANs in the field of rotating machinery fault diagnosis.
The significance of these models is highlighted by their capacity to enhance the quality and
amount of data, as well as to address the issue of data imbalance for rotating machinery
fault diagnosis. Moreover, the existing research emphasizes challenges in this field. For
instance, one notable challenge is model generalization. This refers to the issue where
a model trained on a specific set of machinery may not exhibit satisfactory performance
when applied to another set, owing to variations in operating conditions, machine types,
and fault characteristics. Additionally, the utilization of generative models can be intricate
and demand substantial computational resources for effective training. Shao et al. [65]
synthetized one-dimensional signals for augmenting the training set of diagnosis models,
Liu et al. [56] proposed latent optimized stable GAN (LOSGAN) for data augmentation,
Liang et al. [66] combined wavelet transform, GANs and CNNs for varying working con-
ditions, Zhao and Yuan [67] boosted the training process by using improved GAN for
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imbalanced datasets, whereas Cao et al. [59] employed GANs by transforming time signals
into 2D images. Wasserstein GANs were investigated by Pu et al. [68] and Zhao et al. [58],
while Liu et al. [69] included self-attention modules. Cycle-consistent adversarial learning
and cycleGANs [70] were investigated by Jiao et al. [71], while Luleci et al. [72] employed
cycleGANs to translate an undamaged domain to a damaged domain for structural health
monitoring. CycleGANs for bearing fault diagnosis were also investigated by Xie and
Zhang [73]. The authors developed a cycleGAN model for converting data from healthy
operating conditions to inner race damaged data for the well-known CWRU dataset [32].
In this instance, all the operating conditions are seen by the generative model, although
only for undamaged data.

At its core, existing research on GANs for rotating machinery frequently necessitates
the presence of data from all the operating conditions to train generative algorithms that
effectively augment or balance the training datasets. Furthermore, due to the extensive
utilization of the CWRU experiments, distinct working conditions are frequently interpreted
as different loads since speeds slightly vary in the CWRU signals. However, it has been
recently noted by Hendriks et al. [33] that the absence of wide-ranging RPMs could result
in the lack of a meaningful change in working conditions.

The primary objective of this study is to produce synthetic data that could replace the
experimental damaged data required for training IFD algorithms in the field of industrial
bearing diagnosis. Namely, this study suggests the generation of synthetic data also for
operating conditions that have not been explicitly trained in the generative model. To
achieve the intended objective, a GAN with cycle consistency loss function (cycleGAN) [70]
is implemented and trained to transform CWT images of simulated vibrational signals into
real signals, subsequently enabling the generation of synthetic data on the base of simu-
lations. The simulated signals are produced by means of the model initially proposed by
McFadden and Smith [74–76]. Recent studies by Sobie et al. [77] suggest that despite the fact
that the use of advanced modeling approaches could provide additional understanding on
the interaction between components of the bearing system, McFadden and Smith’s model
still accurately depicts the system’s general behavior. The synthetic data are employed
for the purpose of training diagnosis models by means of TL. The experimental activity
is related to the test rig for medium-sized industrial bearings available at Politecnico di
Torino [78,79]. It is shown that synthetic data can replace real experimental damaged data
for training IFD models.

The novel contributions introduced in this study are reported in the following sections.
Firstly, it enables the generation of data pertaining to machine working conditions that
were previously unexplored in experimental settings. In this sense, the model stands
as a generative zero-shot learning approach for machine fault diagnosis. Secondly, it
introduces the analysis of the potential of GANs for the fault diagnosis of medium-sized
industrial systems, which differ from the commonly encountered laboratory bearings.
Lastly, it investigates the capabilities of generating data as machine speed varies rather than
focusing solely on loads. This implies the capability to generate frequency distributions
that significantly deviate from those encountered during the training of the generative
model. In the context of zero-shot generative AI for rotating machinery, there is no work
to date that modulates the rotating speed to produce operating conditions never seen
by GANs.

2. Generative AI and Machine Fault Diagnosis

The application of generative AI in diagnosing rotating systems predominantly in-
volves the use of GANs on a large scale. The concept of GAN was first introduced in 2014
by Goodfellow et al. [52] within the field of generative AI. GANs are composed of two
convolutional architectures engaged in a zero-sum game [80,81] as shown in Figure 1.
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Figure 1. Generative Adversarial Network (GAN): general outline.

The objective of generator G is to generate images that closely resemble a specific
distribution Y of images, using random input in the form of white noise X. Discriminator D
consists of a CNN that functions as a binary classifier, discerning between authentic
images and synthetic ones generated by the generator by transformation X → G(X) . The
mathematical representation of the competitive interaction between the two convolutional
structures can be described by objective function LGAN , as shown in Equation (1). The
expected value operator E[·] is applied to generic y, which belongs to domain Y and follows
probability distribution py. Similarly, generic x belongs to domain X and follows probability
distribution px. The output of the generator is denoted as G(·), while the output of the
discriminator is denoted as DY(·). Namely, this latter represents the probability of the input
image being real. From the perspective of the discriminator, it is advantageous to maximize
the LGAN function, whereas for the generator, it is suitable to decrease it. The existence
of such a dichotomy leads to the establishment of a zero-sum game. Then, the training of
GAN involves the identification of a Nash equilibrium [80,81] between the generator and
discriminator components, as represented by Equation (2).

LGAN = Ey∼py

[
log DY(y)] +Ex∼px [log(1− DY(G(x))]], (1)

min
G

max
D
LGAN . (2)

A particular type of generative networks is represented by cycleGANs, which were
originally introduced in 2017 by Zhu et al. [70]. The fundamental architecture of cycleGANs
is shown in Figure 2 and consists of two generators, denoted as G and F, as well as two
discriminators, referred to as DY and DX . The two GANs are mathematically interconnected
through cycle consistency loss function Lcyc defined in Equation (3). The global loss
function is reported in Equation (4), where λ is the weight assigned to Lcyc.

Lcyc = Ex∼px [‖F(G(x))− x‖1] +Ey∼py [‖G(F(y))− y‖1], (3)

Ltot = LGAN(x → y) + LGAN(y → x) + λLcyc. (4)
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Function Lcyc enables the establishment of a bidirectional correspondence between
two image domains X and Y, even in cases where training data pairings {xi, yi} lack
an exact equivalent in the coupled domain (i.e., unpaired image-to-image translation).
The Lcyc function in Equation (3) imposes a constraint on the model built on two GANs,
ensuring that it produces an image that is virtually identical to input image x after un-
dergoing transformation x → G(x)→ F(G(x)) ≈ x . This method obviates the need for
a perfect coupling between training images xi and yi. For instance, in the original paper,
the methodology is employed to convert the style of images, thereby transforming them
from paintings to photos. This transformation could be achieved without prior training by
providing both the painting and its associated photo as input. This is because the model is
cycle consistent and it learns the specific mapping from the x to the y domain for which
x → G(x)→ F(G(x)) ≈ x rather than a random one.

The methodology adopted in this study employs cycleGAN networks to generate
synthetic data by transforming CWT transform images of simulated vibrational signals
into their corresponding experimentally observable counterparts. Therefore, cycleGAN
translates the output of a simulation model into its corresponding real-world representation,
closing the gap between them. This study also postulates that the cyclic consistency
property can be leveraged to generate data for rotating machinery operating situations that
have never been explicitly trained in the cycleGAN conversion model.

3. Generating Synthetic Bearing Fault Data via cycleGAN

The methodology described in this section involves the implementation of an experi-
mental campaign with the objective of extracting vibrational signals from medium-sized
bearings under both normal and fault states. Then, analytical simulations are conducted to
reproduce vibrational behavior. The signals derived from each of these sources undergo
pre-processing for the purpose of training image-based generative AI systems. The latter
aims to transform the outcomes derived from a simulation model into data that closely
resemble those seen in a real experimental scenario. The generative model trained in this
manner is able to provide data that can serve as alternatives to data obtained from the
actual experiment, hence becoming valuable for the training of diagnostic models.

3.1. Experimental Activity

The experimental study relates to the test rig designed for medium-sized industrial
bearings; the test rig is located in the laboratories of the Politecnico di Torino [78]. The
experimental campaign associated with this test rig represents a pioneering effort to in-
vestigate vibration data for large industrial bearings with localized damages [50]. The test
rig shown in Figure 3a can accommodate a maximum of four bearings, each having an
outer diameter ranging from 280 mm to 420 mm. The main shaft is driven by a three-phase
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motor with a power output of 30 kW. A PERIFLEX® (Unna, Germany) elastic coupling
connects the shaft to the electric motor. Hydraulic actuators are employed to apply ra-
dial and axial loads independently, with a maximum magnitude of 200 kN, by means of
adapters (Figure 3b) that enclose the bearings being tested. The hydraulic actuators are
fed by air–oil conversion pumps that are coupled to the pneumatic system present within
the laboratory. The bearings being examined are lubricated by an external recirculation
system, which involves the injection of ISO VG 150 oil at a flow rate of 2.5 L/min under a
pressure of 6 bar. The architectural design of the test rig is characterized by the so-called
“self-contained box” enclosure. The present architecture ensures that loads are balanced by
the elastic deformation of the box, thereby dissipating the load circuit within the box. One
notable benefit of such a design is in its capability to effectively manage substantial loads
without necessitating the use of oversized main bearings supporting the whole system.
Each adapter contains a SKF CMS 2200T sensor (Gothenburg, Sweden) for measuring
acceleration and temperature. The sensors are coupled to a Scadas III LMS acquisition
system. Further details regarding the experimental setup are provided in references [50,78].
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contained box” [78]; (c) SKF 22240 CCK/W33 bearing disassembly; (d) inner race damage (IR) [50,79].

The experimental activity involved the analysis of vibration samples extracted from
the test rig being investigated. Namely, the spherical roller bearing SKF 22240 CCK/W33
underwent testing. The bearing has an internal diameter of 200 mm, with a taper ratio of
1:12, and an external diameter of 360 mm. The disassembled bearing is shown in Figure 3c.
The bearing was tested under both normal operating conditions and a damaged condition
specifically focused on the inner race (IR). The localized defect was induced by machining,
and it has a diameter of 2 mm with a depth of 0.5 mm, as shown in Figure 3d. The
test settings and parameters of accelerometer signal extraction are presented in Table 1.
The generative model was trained using exclusively data related to the nominal speed
of 877 rpm. By converse, the data obtained from the working conditions at 607 rpm
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and 997 rpm were excluded from the training process of the cycleGAN model. Thus,
the generative model was unaware of the existence of images representing frequency
distributions at speeds other than the nominal 877 rpm.

Table 1. Test conditions and signal extraction for the bearing SKF 22240 CCK/W33.

Radial load (kN) 124.8
Speed (rpm) 607, 877, 997
Duration (s) 30

Sampling frequency fs (Hz) 20,480
Overlap 0.7

Chunk duration (s) 0.8
Chunks per signal 250

3.2. Simulating Bearing Vibration Signal

The vibrational behavior of rolling bearings with localized damages was simulated
using the analytical model originally proposed by McFadden and Smith [74–76]. The
model has gained significant recognition in scholarly works, despite being among the initial
attempts to simulate the behavior of faulty bearings. According to recent research [77],
incorporating more sophisticated modeling techniques such as three-dimensional finite
element analysis and considering contact mechanics phenomena offers supplementary
insights into the interactions among the constituents of the bearing system. Nevertheless,
Sobie et al. [77] emphasize that that McFadden and Smith’s model continues to effectively
capture the overall behavior of the system.

Also, the simple model of McFadden and Smith was utilized in this study because it
leaves out some details about the mechanical system being examined. For instance, the
model does not consider the inertial interactions that occur between the rolling elements,
lubricant, and races, nor does it account for the elasto-hydrodynamic behavior of the
lubricant. In the context of this research, these limitations can be viewed as advantageous
as they enable the generative AI model based on the cycleGAN architecture to assess
its capacity to integrate all the absent information into the simulated model, particularly
in the scenario where the complexity of the simulated model is significantly reduced.
Consequently, if the generative model can generate synthetic data using minimal initial
information, it is reasonable to assume that it can effectively evolve to more intricate
simulation models with a higher level of detail.

The model is shown in Equations (5)–(8), whereby the impulse response h(t) is derived
from decay parameter β = 500 Hz and structural resonance fstruct = 1700 Hz. Function
d(t) represents the Dirac comb function. Each pulse of the Dirac comb is separated by
a distance equal to the reciprocal of defect characteristic frequency fde f ect. According to
manufacturer SKF® the IR characteristic frequency related to the bearing under analysis is
fde f ect = 10.824 · fr, where fr represents the rotation frequency of the machine. The load
operating on the rolling element at the angular coordinate ψ, denoted as Qψ, is determined
using the well-known formulation by Harris [82]. The load distribution factor is represented
by ε. The convolution operator is denoted by symbol ∗, and the characteristic frequency of
the asynchronous motor, fmotor, is defined as fmotor = 6 fstator, where fstator represents the
frequency of the stator power supply. Parameters β, fstruct, A1 and A2 were selected based
on first attempt values. It was therefore intended for the generative algorithm to adjust the
influence of these parameters by acquiring knowledge on how to modify the simulated
data to align them with experimental observations.

h(t) = e−βtsin(2π fstructt), (5)

d(t) = ∑
k

δ(t− kT), T = 1/ fde f ect, (6)
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Qψ = Qmax

[
1− 1− cos(ψi)

2ε

] 10
9

,−ψm < ψ < ψm, (7)

s(t) =
[
Qψd(t)

]
∗ h(t) + A1sin(2π frt) + A2sin(2π fmotort). (8)

3.3. Data Pre-Processing and CycleGAN Training

The simulated and experimental signals were pre-processed to emphasize the ex-
istence of bearing damages within the harmonic content. In particular, the 250 sample
pairs obtained from the simulated and experimental signals (Table 1) were subjected to
normalization based on the mean value and variance of each sample. The implementation
of the normalizing procedure aims to ensure that both simulated and actual signals can be
effectively characterized using comparable scales. Subsequently, the signals were filtered
within the frequency range of 1400 Hz to 2800 Hz; then, envelope [10,12,13] env(t) was
extracted. The CWT transform shown in Equation (9) was subsequently utilized. In this
equation, operator ψ∗(·) denotes the complex conjugate of the Morse wavelet, while a
and b are the scaling and translation factors of the wavelet transform, respectively. The
selection of the Morse wavelet was based on its widespread application in signal analy-
sis for this particular type of signals, owing to its advantageous properties of temporal
and frequency localization. These characteristics render it well-suited for the purpose
of identifying sudden pulses due to bearing defects. The Morse wavelet was employed
with a symmetry parameter γ = 3 and a time-bandwidth product P2 = 60; in addition,
the CWT had 24 voices per octave. The CWT images are produced by operation W2(a; b),
which enhances the trace of the rolling element’s transition from the defect inside the
CWT spectrum.

W(a; b) =
1√
a

+∞∫
−∞

env(t)ψ∗
(

t− b
a

)
dt. (9)

Figure 4a illustrates an instance of the CWT spectrum associated with a simulated
signal operating at a rotational speed of 877 rpm. Conversely, Figure 4b shows the corre-
sponding experimental signal. The cycleGAN model developed in a Matlab® environment
was trained using a dataset consisting of 250 CWT image pairs. The training lasted 9 h
and 26 min, utilizing an NVIDIA® T4 GPU that was accessible on the High-Performance
Computing (HPC) infrastructure provided by the commercial cloud environment Amazon®

AWS. The training hyperparameters are reported in Table 2. Given the evident computa-
tional cost complexities involved in implementing hyperparameter optimization techniques
on such large and complex architectures, the authors use as a starting point the hyperparam-
eters shown in Table 2, which are easily found in the literature inherent to cycleGANs [70].
Appendix A provides the description of the architectures employed in cycleGAN, specifi-
cally pertaining to the generators and discriminators. Tables A1 and A2 present detailed
information regarding these frameworks. After the completion of the training process, the
model was utilized to generate images based on simulated data. The signal generated
under the condition of 877 rpm is illustrated in Figure 4c. Striking resemblances to the real
signal are observed (Figure 4b). The process of generating the data can be summarized
as follows:

• simulating the accelerometer signal;
• pre-processing the signal through normalization, filtering and envelope extraction;
• applying the continuous wavelet transform and generating 256 × 256 images by

squaring the CWT coefficients;
• utilizing the images as input for the cycleGAN model previously trained to transform

images of simulated signals into their corresponding real counterparts. The resulting
output of the cycleGAN model is an image that is a surrogate for a real image from
experimental activity.
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Table 2. cycleGAN training hyperparameters.

Epochs 200
Mini-batch size 1

Optimizer Adam
Learning rate 0.0002

Gradient decay factor 0.5
Squared gradient decay factor 0.999

Adversarial loss weight (λ) 10

Figure 4 demonstrates the capabilities of the generative model to produce synthetic
data that retrace the operational conditions on which the algorithm was trained. The acqui-
sition of this ability can be of great value in augmenting the existing data on operational
conditions if damage data are already accessible, hence enabling the adjustment of any
class imbalance within the datasets. Indeed, fault data are much rarer and more difficult
to find in practical industrial settings. However, certain operating conditions, namely
those pertaining to various rotational speeds, may not be available from experimental
activities. Hence, it is desirable for the generative model to have the capability to produce
also some of these operating conditions. Such capabilities belong to a zero-shot generative
learning framework.

Taking into consideration the aforementioned scenario, the cycleGAN model was
utilized for the purpose of generating the continuous wavelet transform (CWT) data
corresponding to the rotation speeds of 607 rpm and 997 rpm. The decision to manipulate
the operating conditions by altering the rotational speeds instead of loads was undertaken
to test the ability of the generative AI algorithm to produce frequency content that had
not been experienced before. On the other hand, it should be noted that altering the
load while maintaining a constant rotational speed of 877 rpm would not have significant
impact on the characteristic frequencies associated with the fault. These frequencies are
primarily influenced by kinematic parameters and remain unchanged regardless of load
variations. The rates of 607 rpm and 997 rpm were chosen in close proximity to the training
speed of 877 rpm to ensure that the demodulation band ranging from 1400 Hz to 2800 Hz
remained pertinent in detecting damage within the demodulated signal. In these instances,
it is evident from Figures 5 and 6 that there were notable resemblances between the real
experimental signals and the signals generated by the cycleGAN model.

3.4. Validation of the CycleGAN Generative Model

The validation of the synthetic data generation methodology presented in this study
involved the utilization of the MMD metric [83], the Fréchet Inception Distance (FID) [84,85]
and a specifically designed TL methodology.
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The MMD is a non-parametric statistical metric used to quantify the dissimilarity of two
probability distributions. The empirical estimate of the MMD is calculated using Equation
(10), where φ(·) represents the characteristic kernel of the nonlinear mapping function, and
X = {xi}N

i=1 and Y =
{

yj
}M

j=1 are two given datasets. In this study, a radial basis function
(RBF) kernel [86] is employed. Similarly, the FID metric is widely employed in GANs to mea-
sure how distant the images produced by generative AI are from reality. Specifically, FID em-
ploys the components of the latent space formed by the Inception Net-V3 [87] for the purpose
of computing the statistic specified in Equation (11), where µr is the mean value of the real im-
age, µg is the mean value of the generated image, Σr is the covariance matrix of the real image,
Σg is the covariance matrix of the generated image and Tr represents the trace. Within the
framework of this research, the MMD and FID metrics were employed to assess the discrep-
ancy between probability distributions pertaining to simulated data, real data, and synthetic
data. This enables the measurement of the degree of similarity that arises in a qualitative
manner (as shown in Figures 4–6) between the real and synthetic data. Consequently, de-
creased MMD and FID values signify a higher degree of similarity between the distributions,
thereby implying that the synthetic data could potentially serve as valid alternatives to the
experimental data.

Table 3 presents the computed values of the MMD and FID for different machine
conditions. The data generated by cycleGAN exhibit a higher degree of resemblance to
the authentic data in comparison to the simulated data. This statement is true for both
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the explicit training condition of the generative algorithm (877 rpm) and the two distinct
operational conditions (607 rpm and 997 rpm).

MMD2(X, Y) =

∥∥∥∥∥ 1
N

N

∑
i=1

φ(xi)−
1
M

M

∑
j=1

φ(yi)

∥∥∥∥∥
2

, (10)

FID =
∥∥µr − µg

∥∥2
+ Tr(Σr + Σg − 2

(
ΣrΣg

) 1
2 ). (11)

Table 3. MMD and FID measuring the distance from real machine data for different operating
conditions.

Speeds (rpm) Data Distributions MMD FID

607
Real—Simulated 0.187 265.717
Real—Generated 0.106 78.270

877
Real—Simulated 0.218 317.714
Real—Generated 0.069 47.888

997
Real—Simulated 0.202 278.152
Real—Generated 0.073 48.607

In order to evaluate the effectiveness of synthetic data as substitutes for real data, a series
of training experiments were performed on three distinct diagnosis models based on the TL
approach [49,50]. Namely, the CNNs AlexNet [88], VGG16 [89], and ResNet18 [90], which
were initially pre-trained for image recognition on ImageNet [38], were trained through the
fine-tuning process. The initial and intermediate layers, which are responsible for extracting
image features that can differentiate between different classes, were kept the same. However,
the final layer was replaced, and its weights were adjusted through retraining to the specific
diagnostic task. This methodology enables the utilization of the knowledge existing in models
trained on image recognition, particularly on a vast dataset like ImageNet [38]. Then, a
general comprehensive knowledge can be applied into a specific domain, such as machinery
diagnosis, through the implementation of time-frequency image recognition techniques.

Each model was tested exclusively with real data from the test rig. However, the
models were trained using three distinct configurations: in the first scenario, real damage
data were utilized for training; in the second scenario, simulated damage data were em-
ployed for training; and lastly, in the final scenario, the training fault data were generated
through the cycleGAN generative model. The diagnosis models were trained using a total
of 900 training samples. These samples were divided into 150 samples for each speed
and two health conditions (i.e., healthy and IR), amounting to 60% of the dataset. Also,
300 validation samples were used, with 50 samples for each speed and two health con-
ditions, representing 20% of the total dataset. Finally, 300 test samples were employed,
consisting of 50 samples for each speed and two health conditions. The fine-tuning hyper-
parameters employed for the fault diagnosis models are reported in Table 4.

Table 4. Fine-tuning hyperparameters for CNNs-based fault diagnosis.

Epochs 4
Mini-batch size 32

Optimizer Momentum
Initial learning rate 10−4

L2 regularization 10−4

Momentum factor 0.9

4. Results and Discussion

The analyses were performed accounting the metrics of accuracy and recall for diag-
nostic testing. Accuracy is reported in Equation (12), whereas Equation (13) formalizes the
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concept of recall. In the equations, the variable TP represents the number of true positives,
which identifies the accurate identification of damages. Variable TN represents the number
of true negatives, which refers to accurately identified healthy data. FP represents the
number of false positives, which refers to misclassified normal data as damaged. FN
represents the count of false negatives, which indicates misclassified damaged data as
normal. Hence, the recall rate serves as a metric to quantify the proportion of the fault
samples that are correctly classified as such by the diagnosis model.

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)

Recall =
TP

TP + FN
. (13)

The test results for the three diagnostic models were produced using real experimental
data and are presented in Figure 7. The figure presents the performance results in the
case of training using real, simulated, and synthetic damaged data. The performance was
measured in terms of mean and standard deviation, which were derived from five separate
tests. It is evident that all models exhibit high accuracy when trained using real damaged
data, but they fail in identifying damage (as shown in Figure 7b) when trained using
simulated data. One notable finding is that two of the utilized models, specifically AlexNet
and VGG16, reveal noteworthy diagnosis metrics when trained with synthetic data. The
metrics derived from the use of synthetic IR data for training purposes exhibit a level
of similarity to the high metrics produced from the utilization of real data. This implies
that synthetic data have the potential to effectively replace actual data in the training of
diagnostic algorithms. The training times are reported in Figure 7c. The AlexNet model
is noted for its superior performance, whereas there are no notable distinctions identified
among the real, simulated, and synthetic datasets in terms of training times.

The findings indicate that the cycleGAN generative model successfully produces data
that closely resemble the real data obtained from the test rig. In the specific scenario under
investigation, this assertion was corroborated for a particular operational state (877 rpm)
that underwent explicit training in the generative model. The aforementioned outcome
can be observed in diverse manifestations within the literature. It is frequently employed
to enhance the quality of training data by rectifying imbalances in datasets that may be,
for instance, disadvantaged with respect to fault data. The findings reported in this study
demonstrate that by the implementation of a suitable pre-processing approach and the
integration of a cycleGAN generative model, it becomes feasible to generate data for
operational scenarios that may not have been included in the experimental procedures,
setting up as a zero-shot generative learning approach. Namely, it is observed that there
are two distinct rotation speeds (607 rpm and 997 rpm) where data could be effectively
generated. These conditions indicate a notable alteration in the frequency distribution of
the accelerometer data when compared to the initial condition of 877 rpm. This capability is
characteristic of generative zero-shot learning and can be attributed to several factors. The
utilization of an envelope-based pre-processing technique enables the identification and
emphasis of fault features within spectra. The fault features exhibit a somewhat consistent
shape across the various rotation speeds that are being studied. Hence, if the generative
algorithm acquires the ability to manipulate those fault characteristics, it is conceivable
that it can do so for varying rotation speeds as well, provided that the fault features
in question have resemblance to those it has already acquired. Hence, it is postulated
that the efficacy of this approach is constrained by its capacity to generate CWT spectra
exhibiting fault features of comparable morphology when the operational parameters
of the machinery undergo changes. Nevertheless, it is important to emphasize that the
cycle consistency function plays a crucial role in facilitating a direct mapping between
simulated and real signals. The Lcyc function was specifically designed to facilitate the
training of image translation models in the presence of unpaired images within the training
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dataset. In this scenario, it is observed that training images are paired. However, it is
important to note that the algorithm does not explicitly learn the process of pairing images.
Instead, the Lcyc functions make the model focus on mapping an image to a different
domain and subsequently reconstruct the original image, as presented in Figure 2 and
Equation (3). This approach has the potential to significantly enhance the capacity to
generate data under diverse operating conditions, exhibiting a generalized knowledge
that can be extrapolated to novel and unfamiliar scenarios. Nevertheless, it is crucial to
highlight that while validating the methods on speeds other than the training speed, it
is important to consider the potential issues that may arise from moving away from the
established 877 rpm, as it is uncertain how such deviations could impact the system’s
capabilities. The presence of uncertainty can be attributed to potential limitations within
the cycleGAN model, as well as the choice of a demodulation band that may no longer
adequately emphasize the transition from defects in CWT spectra.
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In conclusion, it is important to acknowledge that the diagnostic performances
achieved by ResNet18 are poor when compared to those achieved by AlexNet and VGG16.
This element is of significant interest and merits additional examination. The authors
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highlight that Resnet18 distinguishes itself from AlexNet and VGG16 by incorporating
residual connections. These connections are also found in the cycleGAN architecture and
may potentially contribute to Resnet18′s ability to discern differences in synthetic data with
respect to real ones. However, it is important to note that the aforementioned speculation
is currently conjectural in nature and warrants additional research.

5. Conclusions

The objective of this work was to provide a generative AI-based methodology for
synthesizing data that can serve as substitute for real-world data on damage in industrial
rotating machinery. These synthetic data are used to train diagnostic algorithms based
on deep learning and transfer learning. In order to achieve this objective, a cycleGAN
generative neural network was employed to transform wavelet images associated with
simulated signals into their experimental counterparts. The AI-based generative process
was further validated by employing the MMD and FID metric. The examination of these
indicators makes it possible to quantitatively determine the effectiveness of the generative
network on the entire set of images investigated. Subsequently, three CNNs-based diagnosis
models were trained utilizing the transfer learning technique, employing real, simulated,
or synthetic data pertaining to damaged machinery. The diagnosis models were tested
exclusively on authentic data acquired from a dedicated experiment carried out on a test
platform featuring industrial bearings of medium size. Based on the evidence and analysis
presented, it can be inferred that:

• cycleGANs were found to be very efficient architectures for producing synthetic data
in the form of CWT images, which may be utilized to augment or substitute real
bearing fault data;

• the synthetic data generated by cycleGANs exhibiedt a higher degree of resemblance
to real data when compared to the outcomes obtained from a simulation model.
This assertion holds true for both the specific machine operating conditions that the
generative algorithm was explicitly trained on, as well as for different conditions;

• the proposed methodology was able to generate data for working conditions that
could be entirely lacking in the experimental activity. It is claimed that generative
zero-shot capabilities arise also as a result of the cycle consistency inherent in the
generative model;

• the synthetic data generated by the model were found to be effective for training
diagnostic algorithms, which exhibited very high accuracy when evaluated using real
data collected from the rotating machinery.

Potential future advancements encompass the investigation of diverse radial and axial
loading conditions, alongside the examination of distinct forms of bearing defect. Speeds
more distant from the training speed will also be tested in the future. Furthermore, the
objective is to perform a comprehensive examination by employing increasingly complex
simulation models. Further research is essential to gain a comprehensive understanding
of the underlying factors contributing to the ineffectiveness of the ResNet18 model when
trained using synthetic data. Also, future developments will require the adoption of genera-
tive approaches available in the literature that will be measured under the conditions stated
in this work to deliver a genuine and legitimate comparison to the scientific community.
Ultimately, there are intentions to explore the boundaries in which data can be generated
for operating conditions for which the generative model has not been explicitly trained as
well as testing on different types of bearing.
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Appendix A

This appendix accounts for the architecture of the cycleGAN model. Table A1 shows
the modules that comprise the generators of the two GANs within the cycleGAN frame-
work, whereas Table A2 illustrates the modules that constitute the discriminators.

Table A1. Architecture of cycleGAN generators.

Structure Block Layer Filter Size Stride/
Padding Channels

Image input layer 256 × 256 × 3

Encoder

1
Convolution 4 × 4 2/1 64
Batch norm - - -

ReLU - - -

2
Convolution 4 × 4 2/1 128
Batch norm - - -

ReLU - - -

3
Convolution 4 × 4 2/1 256
Batch norm - - -

ReLU - - -

Convolution 3 × 3 1/1 256
Residuals 1–6 Batch norm - - -

ReLU - - -

Decoder

1–2

Transposed
convolution 4 × 4 2/ 128

Barch norm - - -
ReLU - - -

3
Transposed
convolution 4 × 4 2/ 3

Tanh - - -

Table A2. Architecture of cycleGAN discriminators.

Layer Filter Size Stride/
Padding Channels

Image input layer 256 × 256 × 3

Convolution 4 × 4 2/1 80
ReLU - - -

Convolution 4 × 4 2/1 160
Batch norm - - -

ReLU - - -

Convolution 4 × 4 2/1 320
Batch norm - - -

ReLU - - -

Convolution 1 × 1 1/0 1
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