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Abstract
Modal flexibility-based methods are effective tools for vibration-based structural damage detection, including in the output-
only case. These methods are typically characterized by two stages: first, the modal parameters are identified, thus obtain-
ing a certain number of modes; second, these modal parameters are used to assemble the modal flexibility matrix. This 
paper proposes a method for estimating a matrix that approximates a proportional flexibility matrix, termed proportional 
flexibility-resembling (PFR) matrix, and shows that this matrix can be used for damage detection and localization purposes. 
This matrix is obtained through signal processing operations to be executed after applying the first steps of the frequency-
domain decomposition (FDD) technique—i.e., after the singular value decomposition of the spectral density matrix. The 
defining aspect of the PFR matrix is that, differently from the traditional formulation of modal flexibility and proportional 
flexibility matrices, it can be assembled without the need of an explicit identification of the modal parameters. In fact, the 
matrix is estimated by processing all first singular vectors and also all first singular values in a selected frequency range. In 
the proposed method, the typical two stage approach of traditional modal flexibility methods is avoided, and the intervention 
of an operator is limited to setting the values of a few parameters in the initial phase of the process. Numerical simulations 
and experimental data from a testbed structure were used to show the effectiveness of the proposed approach, and the analyses 
were performed by considering structures with different damage scenarios and damping properties.

Keywords Structural health monitoring · Damage detection · Modal flexibility · Output-only modal identification · 
Frequency-domain decomposition

1 Introduction

The applications of dynamic monitoring to civil engineering 
structures, like bridges and buildings, are rapidly spreading, 
and they are currently complementing the more traditional 
applications based on static monitoring. Typically, the ambi-
ent vibration responses due to unmeasured inputs, such as 
microtremors from the ground, wind or traffic loads, are 

measured, and the analysis of the recorded data is carried 
out in the so-called output-only conditions [1, 2]. One of the 
main objectives of this type of applications is to track rel-
evant parameters over time to detect eventual changes which 
could be associated with structural degradation and damage 
[3]. These monitoring approaches and techniques could be 
applied not only to civil engineering structures, but also to 
aerospace structures and large mechanical systems [3, 4].

Among the different techniques for vibration-based dam-
age detection, the most used methods are the ones based 
on modal parameters or based on quantities derived from 
the modal parameters themselves [3]. Thus, for structures 
monitored under ambient vibrations, the output-only modal 
identification techniques [1, 2] typically play a major role. 
The identification can be performed either in time domain 
or in frequency domain. The main advantage of frequency-
domain methods is that a “natural modal decomposition” 
emerges in the frequency band where a mode dominates 
with respect to the other modes [1]. One of the simplest 

 * Giacomo Bernagozzi 
 giacomo.bernagozzi2@unibo.it

1 Department of Structural, Geotechnical and Building 
Engineering, Politecnico di Torino, Corso Duca Degli 
Abruzzi 24, 10129 Turin, Italy

2 Department DICAM, University of Bologna, Viale del 
Risorgimento 2, 40136 Bologna, Italy

3 Department of Physics and Astronomy “Augusto Righi”, 
University of Bologna, Viale Berti Pichat 8, 40127 Bologna, 
Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13349-023-00716-2&domain=pdf
http://orcid.org/0009-0007-9772-0096
http://orcid.org/0000-0001-7899-8892
http://orcid.org/0000-0001-7714-7041
http://orcid.org/0000-0001-7259-1186
http://orcid.org/0000-0001-5118-1700


402 Journal of Civil Structural Health Monitoring (2024) 14:401–429

123

frequency-domain techniques is the basic frequency domain 
(BFD) approach, also known as peak picking technique. 
This technique is more user friendly and simpler to use than 
time domain methods [4]. A more advanced method is the 
frequency-domain decomposition (FDD) technique [4, 5]. 
This method preserves the user friendliness, and all infor-
mation related to the different spectral density functions 
are condensed in one single plot, which is the plot of the 
singular values computed from the spectral density matrix 
[1]. In general, the FDD method is one of the most widely 
used methods for output-only modal identification. Other 
existing techniques for vibration-based damage identification 
are nonparametric techniques, such as the ones presented 
in [6–9].

The damage types that are typically detected using vibra-
tion-based techniques are those associated with a reduction 
in the stiffness of the structural elements being monitored, 
and effective techniques are those based on the estimation 
of the modal flexibility (MF) [10–31]. In these approaches 
a sort of a “modal synthesis” is performed, since the modal 
parameters (in terms of natural frequencies and mode 
shapes) are combined to obtain an estimate, from dynamic 
measurements, of the static flexibility matrix of the structure. 
The modal flexibility matrix can be directly used for damage 
detection and localization [10]. Alternatively, a more con-
venient approach is to apply some virtual inspection loads 
to the experimentally-derived modal flexibility model and 
use the estimated deflections for the condition assessment. 
In this way, all information of the modal flexibility matrix is 
condensed in a deflection vector, which can then be used to 
estimate the damage-sensitive features that are most appro-
priate for the considered structural typologies [11]. These 
deflection-based methods have been specifically developed 
and applied for different types of structures, including for 
example bridges [12–14] or buildings [11, 15–17].

The modal flexibility is based on cumulating the contri-
bution from the different modes, and an important feature 
of the modal flexibility matrix is that it generally converges 
to an accurate solution using only the first few modes [10]. 
In any case, the modal truncation effects (even if small) are 
effects to deal with and effects that are expected whenever 
the modal flexibility matrix is estimated from an experi-
mental test. Moreover, in the traditional formulation of the 
modal flexibility, derived from structural dynamics, mass-
normalized mode shapes are required. However, in the con-
text of output-only vibration tests with unmeasured inputs, 
the modal identification only provides arbitrarily-scaled 
mode shapes, and thus in this context the traditional formu-
lation of the modal flexibility is not readily applicable [18].

Most of the research related to the modal flexibility-based 
methods has thus addressed the above-mentioned features, 
and limitations, and modifications to the traditional formu-
lation of the modal flexibility have been proposed in the 

literature. In many cases even approximate techniques for 
estimating the modal flexibility have been accepted in litera-
ture, in favor of a wider applicability of the technique with 
a limited number of identified modes and in the context of 
output-only vibration tests.

In [19] a generalized flexibility matrix has been pro-
posed, and, compared to the traditional formulation of the 
modal flexibility, the effect of truncating high-order modes 
can be considerably reduced with the proposed generalized 
approach. In [20] approaches have been proposed to predict 
and to reduce the truncation effects on the modal flexibility-
based deflections. In the works [13, 14] the concept of the 
pseudomodal flexibility was introduced, leading to the appli-
cability of the modal flexibility in the context of output-only 
dynamic tests. According to the mentioned works, the pseu-
domodal flexibility is estimated by assigning a unit scaling 
to each mode. The approaches presented in [16–18, 21, 22] 
aim at estimating a flexibility matrix that is proportional to 
the corresponding true matrix, which is termed as Propor-
tional Flexibility Matrix (PFM). The underlying idea behind 
the mentioned approaches is to extract information about the 
mass distribution and/or about the mass normalization fac-
tors directly from the arbitrarily-scaled mode shapes, identi-
fied from an output-only test. As shown in [17], the higher 
the number of identified modes, the more accurate are the 
obtained estimates. In [23] the mode shapes, to be used for 
assembling the modal flexibility matrix, are estimated as the 
singular vectors computed from the decomposition of the 
acceleration response matrix measured for the considered 
structural system. Damage detection techniques based on 
the use of the modal flexibility are also applicable starting 
from dynamic strain measurements, as shown, for example, 
in [24–26].

All the mentioned approaches related to the use of the 
modal flexibility are typically characterized by two stages: 
first, the modal parameters, in terms of natural frequencies 
and mode shapes, are identified, thus obtaining a certain 
number of modes; second, these modal parameters are used 
to assemble the modal flexibility matrix. The search for an 
alternative approach that do not require an explicit iden-
tification of the modal parameters is the main reason that 
motivated the present study.

This paper proposes a vibration-based method for esti-
mating a matrix that approximates a proportional flexibility 
matrix, hereinafter referred to as proportional flexibility-
resembling (PFR) matrix. This matrix is estimated through 
signal processing operations to be performed after applying 
the first steps of the frequency-domain decomposition tech-
nique—i.e., after the singular value decomposition (SVD) 
of the spectral density matrix. The defining aspect of the 
proportional flexibility-resembling matrix is that it can be 
assembled without the need of an explicit identification of 
the modal parameters of the structure. This PFR matrix can 
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then be used for damage detection and localization purposes. 
In the method proposed for estimating the PFR matrix the 
typical two stage approach of traditional modal flexibility 
methods is avoided, and the intervention of an operator is 
limited to setting the values of a few parameters in the ini-
tial phase of the process. These few parameters are solely 
related to data acquisition and to the selection of the fre-
quency range of interest.

The paper is organized as follows: Sect. 2 introduces the 
necessary theoretical background and an overview of how 
modal flexibility matrices can be estimated from vibration 
data. Section 3 presents the proposed method for estimating 
the PFR matrix, while Sect. 4 shows how such a matrix can 
be used for damage detection and localization purposes. The 
basic principles behind the estimation of the PFR matrix are 
explained in Sect. 5, while Sect. 6 shows how the procedure 
for PFR matrix estimation was derived and calibrated. Sec-
tion 7 proves that the PFR matrix can be effectively used for 
damage detection, and this is shown through both numerical 
simulations (Sect. 7.1) and using experimental data from a 
testbed structure (Sect. 7.2).

2  Theoretical background

The modal flexibility matrix of a multi degree-of-freedom 
(MDOF) structure can be estimated from modal parameters, 
identified from a vibration test, as follows [18, 22, 27]:

where Φp =
[
�1,�2,… ,�p

]
 is the R × p modal matrix 

holding the mass-normalized mode shape vectors 
and �p = diag(�2

1
,�2

2
,… ,�2

p
 ) is a p × p diagonal matrix 

holding the natural angular frequencies squared. In the pre-
vious expressions, R is the number of the DOFs measured 
on the structure and p is the number of the identified modes. 
The generic element of Fp is so expressed:

In Eq. (2), �jr and �kr are the j-th and k-th components 
of the mass-scaled r-th mode shape, �jr and �kr are the cor-
responding unscaled components. The term �r in Eq. (2) 
is the modal mass of mode r, which can be calculated as 
follows: �r = �T

r
M� r , where M is the mass matrix of the 

structure. In practical tests, it is generally not possible to 
estimate all the modes of the structure, and using a limited 
number of modes in the calculation leads to the estimation 
of a truncated modal flexibility matrix (as the one shown in 
Eq. 1). In any case, this truncated matrix is typically a good 
approximation of the true flexibility of the structure, even 

(1)Fp = �p�
−1
p
�

T
p

(2)fp,jk =

p∑
r=1

�jr�kr

�2
r

=

p∑
r=1

�jr�kr

�r�
2
r

when considering only few of the first lowest modes. This is 
because, as shown in Eq. (2), the contribution of each mode 
to the matrix is proportional to the term 1∕�2

r
.

To estimate the modal flexibility matrix from output-only 
vibration data, mode shape scaling techniques can be used 
[1], such as the added mass method [32] or by perform-
ing the scaling using a finite element model [33]. Other 
approaches, specifically related to the flexibility estimation 
from output-only data, are based on determining an unscaled 
flexibility matrix that differs from the true flexibility by an 
unknown scaling factor [16–18, 21]. Different strategies 
have been developed for assembling this proportional flex-
ibility matrix, using the following generic expression:

where �r is a mode shape normalization factor. According 
to [16, 17, 21], the distribution of the masses can be esti-
mated from the data, and the mode shapes in Eq. (3) can be 
normalized by considering the estimated proportional mass 
matrix. According to [18], the factor �r in Eq. (3) is the ratio 
between the modal mass of the r-th mode and the modal 
mass of the first mode.

As evident in Eqs. (1–3), each formulation of the modal 
flexibility matrix requires the estimation of the modal 
parameters, in terms of mode shapes and natural angular 
frequencies (Fig. 1a). If for instance the frequency domain 
decomposition method [4, 5] is applied, first a singular value 
decomposition of the power spectral density (PSD) matrix 
is performed, and then the above-mentioned modal param-
eters can be estimated as the first singular vectors and the 
frequencies that correspond to the peaks in the plot of the 
singular values (as outlined in Fig. 1b, c). The modal flex-
ibility matrix can then be estimated as shown in this section. 
The search for an alternative approach is the main reason 
that motivated the present study. Specifically, as outlined 
in Fig. 1d, the initial research question was the following: 
is it possible, starting from frequency domain decomposi-
tion, to estimate a matrix akin to a proportional flexibility 
matrix using all first singular vectors and all first singular 
values in a selected frequency range and without the need 
of an explicit identification of the modal parameters of the 
structure?

3  Proposed method for estimating 
the proportional flexibility‑resembling 
matrix

The method proposed in this paper for estimating a propor-
tional flexibility-resembling matrix, without the need of an 
explicit identification of the modal parameters, is applicable 

(3)F̂p =

p∑
r=1

� r�
T
r

�r�
2
r
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starting from the output-only vibration responses of the 
structure and is based on signal processing operations to 
be performed after applying the first steps of the frequency 
domain decomposition technique [4, 5]. The defining equa-
tion of the proportional flexibility-resembling matrix and 
all the steps of the method for estimating this matrix are 
presented in this section. The proposed proportional flexi-
bility-resembling matrix is a matrix that approximates a pro-
portional flexibility matrix, as shown in Sect. 5 and through 
the numerical analyses of Sect. 6. The proposed method is 
formulated for structures that can be modeled as plane struc-
tures, whose structural behavior is analyzed in one direction, 
and that have a regular distribution of the masses.

Let us consider the displacement response time his-
tories related to the DOFs measured on a structure tested 
under ambient vibrations (where the unmeasured inputs 
are assumed as white-noise excitations). Assuming that the 
length of the signal is T = NΔt (where Δt is the sampling 
interval and N  is the even total number of samples), the 
discrete-time sampled displacement vector is y(nΔt) , where 
the signal vector has R components.

The first step of the proposed method implies to process 
the signal to calculate its power spectral density matrix 
Gy(nΔ�) , where Δ� is the angular frequency resolution, 

i.e., Δ� =
2�

NΔt
 , and n is the index related to the frequency 

bins. The next step is to perform a singular value decomposi-
tion of the PSD matrix, according to the frequency domain 
decomposition technique [4]:

where Gy(nΔ�) , Un and Sn are R × R matrices which vary 
from frequency line to frequency line, and the superscript H 
denotes the conjugate (or Hermitian) transpose. In Eq. (4), 
Sn is a diagonal matrix holding the singular values, while 
Un is a unitary matrix holding the singular vectors (i.e., 
UnU

H
n
= I , where I is the identity matrix, thus the Euclid-

ean norm of the singular vectors is equal to 1). It is implied 
that in the present method the DC values are excluded, as it 
can be observed in Eq. (4). In Eq. (4), the maximum value 
of the index n (i.e., N

2
 ) is related to the Nyquist frequency. 

Of course, this frequency (and thus the sampling frequency) 
must be selected by ensuring that the significant modes of 
the structure are included in the established frequency range.

The first column of Un is defined as the first singular 
vector u1n = u1(nΔ�) and can be assumed as the best fit-
ting representation of the operational deflection shape 
(ODS) for the frequency nΔ� . In general, singular vectors 

(4)Gy(nΔ�) = UnSnU
H
n
, n = 1…

N

2

Fig. 1  Theoretical background: a main steps for modal flexibility 
estimation; b main steps of the FDD method for output-only modal 
identification; c a schematic exemplification of the peak-picking prin-

ciple; d a schematic exemplification of the alternative approach of the 
proposed method that uses all the first singular values and singular 
vectors in a selected frequency range
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have complex components: assuming that the structure is 
lightly and proportionally damped, it is possible to repre-
sent the ODSs as vectors vn with real components accord-
ing to the principles of the Standard Technique [34]. Thus, 
vjn is the j-th component of vector vn and is given by:

Then, the R ×
N

2
 matrix V  is assembled, which is 

denoted as the matrix of the first singular vectors. The 
columns of such a matrix are the vectors vn , i.e.,

In a similar way, the diagonal N
2
×

N

2
 matrix Zd is deter-

mined, which is denoted as the matrix of the weighted first 
singular values, and which is defined as follows:

where sdn = sd(nΔ�) is the first singular value of the dis-
placement power spectral density matrix for the n-th fre-
quency line. For each frequency bin, the first singular values 
are modified by the value of the corresponding angular fre-
quency �n , so to obtain the weighted first singular values zn.

Based on the quantities defined in Eqs. (6,7), the pro-
portional flexibility-resembling matrix F∗ proposed in this 
paper is expressed as:

Though the previous expressions derive from process-
ing a displacement signal, the estimation process of F∗ is 
also possible starting from a recorded velocity or accelera-
tion signal. In fact, the displacement PSD matrix Gy(�) can 
be calculated by dividing the velocity PSD matrix Gẏ(𝜔) 
or the acceleration PSD matrix Gÿ(𝜔) by specific powers 
of the angular frequency �:

It is worth noting that the division by these specific 
powers of the angular frequency affects the way in which 
the displacement, velocity and acceleration spectra appear, 
as already discussed in [35].

Since the singular vectors are always unit vectors, it 
can be proven that the only change in the singular value 
decomposition of Gẏ(𝜔) or Gÿ(𝜔) and the SVD of Gy(�) 
resides in the singular values. Namely, the following equa-
tion expresses the relation between the first singular value 
of the displacement PSD matrix, sd(�) , and its counter-
parts sv(�) and sa(�) , i.e., the first singular value of the 
velocity and acceleration PSD matrices:

(5)vjn =
|||u1jn

||| ∙ sgn
(
ℜ(u1jn)

)

(6)V =
[
v1, v2, … , vN∕2

]

(7)Z
d
= diag

(
zn
)
= diag

(
�nsdn

)
, n = 1…

N

2

(8)F∗ = VZdV
T

(9)Gy(𝜔) =
1

𝜔2
Gẏ(𝜔) =

1

𝜔4
Gÿ(𝜔)

While Eq. (9) is always true in analytical, noise-less, 
and continuous-time models, it must be noticed that it rep-
resents the frequency domain integrations of Gẏ(𝜔) and 
Gÿ(𝜔) , and so a high-pass filter is required to avoid the 
amplification of the noise that usually governs the signal 
for frequencies close to DC. To avoid the aforementioned 
noise amplification when using integrated forms of singu-
lar values, a discriminant function �n = �(nΔ�) is intro-
duced in the diagonal N

2
×

N

2
 matrix of the weighted first 

singular values, which takes this new expression:

In Eq. (11), sn = s(nΔ�) is the first singular value of the 
PSD matrix (regardless of whether the vibrational output 
was recorded as a displacement, velocity, or acceleration 
signal); c is a coefficient that varies depending on the sig-
nal type, as it follows:

• c = −1 if y(nΔt) is a displacement signal;
• c = 1 if y(nΔt) is a velocity signal;
• c = 3 if y(nΔt) is an acceleration signal.

The calibration of the procedure used to weigh the first 
singular values through the corresponding angular fre-
quencies represented a fundamental step in the definition 
of the PFR matrix, and Sect. 6 of the paper shows how 
such values of the coefficient c have been defined.

The introduced discriminant function �n must be deter-
mined by the operator in the initial phase of the process 
and through a first analysis of the data. The general for-
mula is:

The parameter n̂ is directly related to the cutoff frequency, 
which is �̂ = n̂Δ� . If y(nΔt) is a displacement signal, the 
parameter n̂ is set to 1 and thus the cutoff frequency is equal 
to Δ� (in such a case, the discriminant function is substan-
tially not altering the function of the weighted first singular 
values). Otherwise, if y(nΔt) is a velocity or acceleration 
signal, the cutoff frequency can be chosen as the frequency 
for which the weighted first singular value function zn =

sn

�c
n

 
presents the first minimum point, namely between the first 
descending branch of the curve and the first mode spectral 
bell, as shown in the example of Fig. 2.

Considering what stated above, the following equation 
can be considered as the generalized expression of the pro-
portional flexibility-resembling matrix F∗:

(10)sd(�) =
sv(�)

�2
=

sa(�)

�4

(11)Z = diag
(
zn�n

)
= diag

(
sn�n
�c
n

)
, n = 1…

N

2

(12)𝜀(nΔ𝜔) =

{
0 if n < �n

1 if n ≥ �n
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It is worth noting that the PFR matrix that can be 
obtained from Eq. (13) for a velocity or acceleration sig-
nal with the use of the discriminant function is almost 
the same that can be estimated from Eq. (8) using a dis-
placement signal. This is true especially for structures 
with a sufficiently high first modal frequency, such that 
the majority of the points of the first mode spectral bell are 
related to angular frequencies higher than 1 rad/s.

The generalized expression of F∗ reported in Eq. (13) 
is characterized by a strong formal resemblance to the 
expression of the modal flexibility matrix expressed in 
Eq. (1): the modal matrix �p is replaced by the matrix of 
the first singular vectors V , while the inverse of the matrix 
of the squared natural frequencies � is replaced by the 
matrix of the weighted first singular values Z . However, 
while the modal flexibility matrix is assembled using the 
set of the identified modal parameters, the PFR matrix 
is constructed using all first singular vectors and all first 
singular values of the selected frequency range.

Lastly, it should be noted that a statistical approach 
is required to get a good estimation of the proportional 
flexibility-resembling matrix; namely, acquired data can 
be characterized by measurement errors and noise that can 
adversely affect the results. At the same time, the power of 
the input signal is rarely equally distributed at all the sam-
pled frequencies during all the measurement time. These 
issues can be solved by segmenting the recorded signal 
y(nΔt) into a statistically relevant number ϑ of segments 
yk(nΔt) , and each segment should have the same length 
Tϑ that is required for performing an output-only modal 
identification. According to [36], this length is typically 
taken in the following range:

(13)F∗ = VZVT

where T1 is the natural period of the first mode. Thus, the 
total length of the measurements required to estimate the 
proposed PFR matrix is equal to T = ϑTϑ . Proceeding this 
way, it is possible to apply the aforementioned steps to each 
k-th segment and calculate the corresponding proportional 
flexibility-resembling matrix F∗

k
 through Eq. (13). In the end, 

the best estimate of F∗ can be obtained as the average of the 
resulting F∗

k
 matrices:

Of course, the longer is Tϑ and the higher is � , the more 
accurate the estimate of the matrix F∗ is.

4  Damage localization using the proposed 
PFR matrix

To show that the proposed PFR matrix can be used for 
damage detection purposes, existing flexibility-based 
damage detection methods have been considered, and 
the proposed PFR matrix has been used in place of the 
traditional modal flexibility matrix. Comparisons have 
also been made between the results obtained using the 
traditional modal flexibility matrix and the proposed PFR 
matrix, as shown in Sect. 7.1. One of the selected exist-
ing methods is the Positive Shear Inspection Load (PSIL) 
method [15]. The method is formulated for structures that 
can be modeled as shear building structures, and the con-
sidered damage-sensitive features are the interstory drifts 
(i.e., lateral interstory displacements) computed from 

(14)Tϑ ≈ [100… 500]T1

(15)F∗ =
1

ϑ

ϑ∑
k=1

F∗

k

Fig. 2  Exemplification of a 
plot of weighted first singular 
values obtained from a velocity 
PSD (i.e., s

v(�)∕� ), with the 
indication of the chosen cutoff 
frequency �̂ and the first mode 
natural frequency �1
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flexibility-based deflections. In the original formulation 
of the method [15] the modal flexibility is assembled from 
output-only data using an a-priori estimate of system mass 
matrix to perform the modal scaling; then, in [16, 17] it 
was shown that the method can also be applied using pro-
portional flexibility matrices. A second existing method 
that was considered is the Positive Bending Inspection 
Load (PBIL) method [12]. This method was formulated 
for flexure-type beam-like structures. For those structures 
different damage-sensitive features can be estimated from 
the flexibility-based deflections. Among these DSFs, the 
most common approach is to adopt the curvature of the 
deflections [28, 29]. It is expected that the proposed PFR 
matrix could be used for damage detection in different 
types of structures using different strategies and damage-
sensitive features, but this will be tested in future research.

The PSIL method for damage detection can be applied 
if horizontal vibration measurements are available at each 
story of the considered shear building structure. According 
to the method, the modal flexibility of the structure is esti-
mated, and then to compute the deflections a positive shear 
inspection load is applied—i.e., a load such that the shear 
force is positive in each story and all the story displacements 
are induced in the same direction. Among the different PSIL 
loads that can be selected, in [15] it is suggested to use a set 
of unitary forces applied to each story—i.e., a load vector 
b = [1 1… 1]T (Fig. 3a). The PBIL method is applicable 
starting from vibration measurements that are recorded in 
the direction that is orthogonal to the longitudinal axis of the 
beam. The virtual inspection load to be applied according 
to the method (i.e., the PBIL load) is a load that creates no 
inflection points and positive bending moments is a selected 
inspection region of the beam [12]. For a simply supported 
beam, for example, a PBIL load that can be applied is a set 

of unitary forces applied to each measured DOF (Fig. 3b)—
i.e., the same type of load vector considered in the PSIL 
method.

The theory and the assumptions behind the PSIL method 
and the PBIL method represents the backbone of the dam-
age detection procedure that was used in this paper to test 
the effectiveness of the PFR matrix. Such a procedure is 
composed by the following steps, also shown in the flow-
chart of Fig. 4.

4.1  Step 0

The data acquisition should be performed to have a training 
dataset (which is related to the baseline structure) and testing 
datasets (which are related to the possibly damaged states). 
According to the used procedure, the vibration output of the 
baseline structure state must be recorded for a period equal 
to LT  , so that it can be segmented in number of L segments 
of length T  . As shown in the following steps this is required 
to set a threshold for the used damage index, and it is evi-
dent that the higher the number L , the more accurate will be 
the estimation of the statistical variability of the damage-
sensitive features related to the baseline structure. Referring 
to the testing dataset, the length of the measurements should 
be at least equal to T  for each possibly damaged state.

4.2  Step 1

The proportional flexibility-resembling matrices F∗

B
 and 

F∗

I
 are estimated for the baseline and the inspection states, 

respectively. It is important to underline that, to make a 
proper comparison between the different structural states, 
the PFR matrices for the baseline and the inspection states 
should be estimated by considering the same sampling 

Fig. 3  Structural models with 
applied inspection loads: a 
shear building structure with a 
set of unitary forces applied to 
each story (i.e., a positive shear 
inspection load); b beam-like 
structure with a set of unitary 
forces applied to each measured 
DOF (i.e., a positive bending 
inspection load)
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frequency, the same frequency resolution, and the same 
cutoff frequency. Each PFR matrix can be estimated using 
the steps described in Sect. 3, which can be summarized as 
follows:

(a) Each k-th segment of the response signal (with length 
Tϑ ) is processed to estimate its power spectral den-
sity matrix Gy(nΔ�) . A singular value decomposi-
tion of the PSD matrix is performed, according to the 
frequency domain decomposition technique—i.e., 
Gy(nΔ�) = UnSnU

H
n

.
(b) For all the sampled frequencies, the first singular vector 

of Gy(nΔ�) , namely the first column of Un , is converted 
into the real vector vn . Then, all the resulting vectors 
are assembled into the matrix of the first singular vec-

tors V—i.e.,V =
[
v1, v2, … , vN∕2

]
 . At the same time, 

the first singular values sn are used to form the diagonal 
matrix Z = diag

(
sn�n
�c
n

)
 . This matrix thus contains the 

weighted first singular values, and through the discrim-
ination function �n (Eq. 12) all the terms that corre-
spond to frequencies below the cutoff frequency �̂ are 
set to be 0. In the matrix Z the frequency exponent c is 
dependent on the type of the recorded signal ( c = −1 
for displacement, c = 1 for velocity, c = 3 for accelera-
tion). It is expected that the proposed PFR matrix could 
be estimated and used starting from other types of 
measurements, such as dynamic strain measurements. 
This, however, requires dedicated analyses, and it will 
be tested in future research.

Fig. 4  Damage detection 
method based on the proposed 
PFR matrix
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(c) The proportional flexibility-resembling matrix is calcu-
lated for the considered k-th segment of the response 
signal as F∗

k
= VZVT.

(d) The PFR matrix F∗ for the considered state (e.g., base-
line or inspected state) is given by the average of all the 
resulting F∗

k
 matrices.

4.3  Step 2

Considering that F∗ resembles a proportional flexibility 
matrix, virtual inspection loads can be applied to the esti-
mated flexibility-based model to calculate the deflections 
�∗ . Specifically, after having estimated the proportional 
flexibility-resembling matrices F∗

B
 and F∗

I
 , which are 

related to the baseline state and to the inspection state, 
respectively, the corresponding deflections �∗

B
 and �∗

I
 are 

calculated by applying the load b for each considered 
state:

When considering shear building structurers, accord-
ing to the PSIL method, the interstory drifts are estimated 
from the deflections and considered as damage-sensitive 
features. The j-th component of the interstory drift vector 
d∗ can be calculated as follows:

where �∗
j
 is the j-th component of the deflection vector �∗ . 

The drift vectors related to the baseline and inspection state 
are indicated as d∗

B
 and d∗

I
 , respectively. When considering 

beam-like structures, according to the PBIL method, the 
curvature of the deflections can be estimated using the finite 
difference approach for the numerical derivation and con-
sidered as damage-sensitive feature. The curvature at a 
generic DOF can be determined as follows:

The approach of Eq.  (18) can be applied when the 
measured DOFs are positioned at a constant spacing 
Δl , and this layout with a constant spacing is the most 
common layout of instrument locations typically used 
in practice. Equation (18) can be directly derived from 
the approach for curvature estimation valid in the more 
general case of instrument locations that are unevenly 
distributed, shown in [11]. The curvature vectors related 
to the baseline and inspection state are indicated as �∗

B
 

and �∗

I
 , respectively.

(16)�∗ = F∗b

(17)d∗
j
=

{
�∗
j
− �∗

j−1
, for j = 2…R

�∗
j
, for j = 1

(18)�∗
j
=

�∗
j+1

− 2�∗
j
+ �∗

j−1

Δl2

4.4  Step 3

This final step is related to the evaluation of the damage 
index and to the execution of statistical tests for damage 
localization. To this purpose, it is important to underline 
that, since F∗ is directly estimated from the measured 
response through signal processing operations, the scaling 
factors (present between estimated PFR matrices and true 
modal flexibility matrices) could be dependent on the 
amplitude of the ambient excitation. Such an amplitude 
could vary between two different measurements (for exam-
ple related to the baseline and inspection state), and as a 
result this may lead to damage-sensitive features (i.e., 
interstory drift vectors or curvature vectors) with different 
scaling factors. A similar problem has already been 
addressed in [16, 17], to deal with proportional flexibility 
matrices and drift vectors of shear building structures that 
are characterized by different and unknown scaling factors. 
Specifically, in [16, 17] it is shown that such quantities 
cannot be compared using traditional metrics, such as the 
metrics based on the difference between the DSFs in the 
inspection and baseline state used in the original formula-
tion of the PSIL method. Instead, a specific damage index, 
termed h* index, has been introduced in [16, 17] for per-
forming the damage localization using DSFs with different 
scaling factors. This index presented in [16, 17] is thus 
also employed in the damage detection procedure applied 
in this paper using the proportional flexibility-resembling 
matrix F∗ . When considering shear building structures, 
the h∗

j
 index has to be evaluated for each j-th story using 

the interstory drifts (Eq. 17) as DSFs. When considering 
flexure-type beam-like structures, the h∗

j
 index has to be 

evaluated for each j-th measured DOF using the values of 
the curvature (Eq. 18) as DSFs. The h∗

j
 index is defined as 

follows:

The j-th portion of the structure is undamaged if h∗
j
= 0 , 

where this generic portion corresponds to a generic story for 
shear building structures and to a generic measured DOF for 
flexure-type beam-like structures. Otherwise, damage is 
localized at the j-th portion of the structure if h∗

j
> 0 . To deal 

with the uncertainties that affect the damage-sensitive fea-
tures, it is necessary to define a threshold h∗TH so that dam-
age is localized at the portions of the structure for which 
h∗
j
> h∗TH . The threshold is empirically calculated from the 

training data set, through the following steps. At first, the h* 
index is evaluated by comparing the DSFs estimated from 
the first segment of the training dataset with the DSFs 
obtained for each of the other L − 1 data segments, by 

(19)h∗
j
=

DSF∗
I,j
∕DSF∗

B,j

min
j=1…R

(DSF∗
I,j
∕DSF∗

B,j
)
− 1
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applying the following expression for each j-th portion of 
the structure:

where DSF∗
1,j

 is the damage-sensitive feature obtained from 
the first data segment (i.e., i = 1 ) and DSF∗

i,j
 is the dam-

age-sensitive feature calculated for the i-th segment with 
i = 2…L . Then, starting from the values obtained using 
Eq. (20), the threshold h∗TH is estimated as follows:

It is worth noting that, as stated in [16], the h∗
j
 index is 

suitable for detecting localized damage (either single or mul-
tiple damage), while the index is theoretically not sensitive 
to a uniformly distributed damage pattern (e.g., a uniform 
stiffness reduction in all the stories of the shear building). 
According to the formulation shown in [16], this last damage 
scenario (which is not common in practice) can be addressed 
by performing more advanced scaling operations on the pro-
portional flexibility matrices or using more traditional 
approaches not based on proportional unscaled damage-
sensitive features.

5  Basic principles behind the PFR matrix 
estimation

Let us consider, for simplicity, the displacement signal-
based formula of F∗ , as it is shown in Eq. (8), so that the 
results are not affected by the choice of the cutoff frequency 
�̂ . This way, the generic element of F∗ can be written as:

(20)h∗
ij
=

DSF∗
i,j
∕DSF∗

1,j

min
j=1…R

(DSF∗
i,j
∕DSF∗

1,j
)
− 1

(21)h∗TH = max
i=2…L

(
max
j=1…R

h∗
ij

)

In general, if the structure is lightly damped and with 
well separated modes, the spectrum of the response can be 
divided in bands where a single mode only is dominating, 
with no gaps between two consecutive bands. Such divi-
sion can be done by following the theory behind the FDD 
technique [1]. Given the natural frequency �r = nrΔ� of 
the r-th mode, sd

(
nrΔ�

)
 will be a relative maximum point 

and the first singular vector u1r of Gy

(
nrΔ�

)
 can be con-

sidered as a good estimation of the corresponding mode 
shape � r . When moving away from the peak, the influence 
of the eigenvalues of the other modes start to interfere, but, 
as long as only the first singular value sdn is significantly dif-
ferent from zero, the correlation between the first singular 
vectors of the PSD matrix and u1r is high, and sdn can be 
considered as the auto spectral density function g2

r
(nΔ�) 

of the r-th modal coordinate. Thus, it is possible to con-
sider the boundaries of the band dominated by mode r as the 
frequencies for which sdn presents the first local minimum 
points, before and after �r . In other words, it is possible to 
state that the r-th mode band is limited to the left by the 
boundary frequency �r−1,r = nr−1,rΔ� and to the right by 
frequency �r,r+1 = nr,r+1Δ� , so that sd

(
�r−1,r

)
 and sd

(
�r,r+1

)
 

are two consecutive minimum points of the discrete function 
sd(nΔ�) ; the division of the spectrum applied in Fig. 5 can 
be taken as an example. Considering this, and highlighting 
that singular vectors (and consequently all vectors vn ) are 
unit scaled, Eq. (22) implies that:

• inside the r-th mode frequency band, the closer the fre-
quency �n is to �r , the higher is the correlation between 
the corresponding vector vn and � r;

(22)f ∗
jk
=

N∕2∑
n=1

vjnvknzn

Fig. 5  Exemplification of a plot 
of weighted first singular values 
�s

d
 where the areas underneath 

the function for frequencies 
between �

r,r−i and �
r,r+i are 

highlighted
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• inside the r-th mode frequency band, the closer the fre-
quency �n is to �r , the higher is the corresponding first 
singular value sdn.

These two statements are the basis of the theoretical 
approach related to the formulation of the proportional 
flexibility-resembling matrix F∗ : first singular vectors with 
high correlation to mode shapes have higher contribution 
to F∗ , being multiplied by a higher first singular value; on 
the contrary, first singular vectors with low correlation are 
almost neglected, being multiplied by vanishing singular 
values.

As shown in Appendix A, it is possible to state that for 
a structure with perfectly regular distribution of masses 
the contribution ratio between generic modes r and s to 
the flexibility matrix is given by:

A similar index can be defined for the PFR matrix F∗ , 
considering the aforementioned division of the spectrum 
of the response. While in the MF matrix the contribu-
tion of the r-th mode is proportional to the term 1∕�2

r
 , 

in the proposed PFR matrix the different contributions 
are associated to the different mode frequency bands, and 
for a generic r-th band the contribution is proportional to 
the sum of all the weighted first singular values that are 
inside the band itself. It follows that the contribution ratio 
�rs between modes r and s to the proportional flexibility-
resembling matrix F∗ is given by:

By multiplying both the numerator and the denomina-
tor of Eq. (24) by the frequency resolution Δ� , and con-
sidering the continuous spectrum (i.e., Δ� → 0 ), Eq. (24) 
expresses the ratio between the areas Ar and As under-
neath the curve of the continuous function z(�) = �sd(�) , 
in frequency bands where modes r and s are respectively 
dominating, as it is shown in Fig. 5. This way, the �rs ratio 
can be expressed as:

The �rs index is directly derived from Eq.  (8) of F∗ 
and from Eq. (22). Specifically, all the weighted singular 
values describing the r-th modal bell in the spectrum are 
cumulated to determine the contribution of the r-th mode 
in the PFR matrix.

(23)�rs =
�2
s

�2
r

(24)�rs =

∑nr,r+1
n=nr−1,r

zn∑ns,s+1
n=ns−1,s

zn

(25)�rs =
∫

�r,r+1

�r−1,r
z(�)d�

∫
�s,s+1

�s−1,s
z(�)d�

=
Ar

As

6  PFR matrix: derivation and calibration 
of the procedure

The expressions of the PFR matrix which were introduced 
beforehand have been derived through a parametric analy-
sis, aimed at calibrating the procedure used to weigh the 
first singular values through the corresponding angular 
frequencies (i.e., matrices Z and Zd of Eqs. (11) and (7), 
respectively). Specifically, the parametric analysis was 
performed to find out which value of the exponent of � 
can maximize the level of resemblance between the PFR 
matrix and the modal flexibility matrix, and thus the prob-
lem was addressed as an optimization problem.

Since singular values of acceleration, velocity and dis-
placement PSD matrices are related as shown in Eq. (10), 
there is no need to analyze the spectra of all these different 
quantities. The analyses were performed by considering 
acceleration signals, and at the end the findings of this 
study were extended to the case of the displacement and 
velocity signals by considering the time-differentiation 
rules in the frequency domain.

The first step in the process was made by introduc-
ing a generalized expression of the modal contribution 
ratio �rs(� ), where the first singular values sa(�) of the 
PSD matrix of an acceleration signal are considered. The 
�rs(� ) indexes are function of the exponent � of the angu-
lar frequency, and the exponent � is the main parameter 
that characterizes the parametric study presented in this 
section. Moreover, the �rs(� ) indexes are calculated as the 
average results over a number � of segments of the signal 
(so that, for the k-th segment, sak(�) is the first singular 
value):

Similarly to Eq.  (25), �rs(�) is the averaged ratio 
between the areas underneath the curves of the functions 
sak(�)∕�

� , inside of frequency bands where modes r and s 
are, respectively, dominating.

Three different structures were considered in the 
numerical simulation:

1. A 10-story shear-type building, modeled using 10 DOFs, 
equal floor masses m = 22.50 × 10

3kg and interstory 
stiffness of each story equal to kj = 4.23 × 10

5kN∕m;
2. A simply supported beam, modeled using 10 DOFs (so 

that 10 discrete masses m are placed with a regular dis-
tance interval of 5 m, replacing the continuous distribu-
tion of the mass in this model), rectangular transversal 
section (3 m in height, 0.2 m in width), Young modulus 
E = 33.02 × 10

6kN∕m2;

(26)�rs(�) =
1

�

�∑
k=1

[
∫

�r,r+1

�r−1,r

(
sak(�)∕�

�
)
d�

∫
�s,s+1

�s−1,s

(
sak(�)∕�

�
)
d�

]
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3. A cantilever beam, modeled using 10 DOFs, so that 
masses m are placed with a regular distance interval of 
3 m, rectangular transversal section (3 m in height, 0.3 m 
in width), and the same Young modulus of the previous 
structure.

All the considered structures are classically damped, so 
that the modal damping ratio � = 5% is constant for each 
mode. All the models were excited by white noise inputs at 
all the DOFs, simulating the ideal type of excitation present 
in structures subjected to ambient vibrations, and the output 
dynamic response was recorded using a sample frequency 
fs = 128Hz , with a total duration of 1920s. Once the struc-
tural responses were collected, the signal was divided in 
� = 30 segments. For all three planar models, the direction 
of the applied inputs and of the recorded responses is the 
transverse direction.

In Fig. 6, the response of the shear-type building is con-
sidered to plot the functions sa(�)∕�� for integer values of 
� between 0 and 4. These functions were divided by their 

respective maximum value to ease the comparison. It is pos-
sible to observe that only for � = 0 (i.e., considering the 
first singular values of the acceleration PSD matrix), there 
is not a descending trend in the amplitude of the peaks of the 
curve. For all the other values of � , instead, the amplitude 
of the peaks decreases when frequency increases; further-
more, it is clearly shown that the higher is the value of � , the 
lower are the peaks of the high-order modes in comparison 
to the peaks of the low-order modes. For instance, in case of 
� = 4 (i.e., the displacement power spectrum of the signal is 
considered) only the first two modes can be distinguished, 
while the third and the fourth peaks cannot be perceived in 
linear scale.

The modal contribution ratios �12(�) and �13(�) have been 
evaluated for the three structures and for the aforementioned 
values of � , and the results are reported in Tables 1 and 2. It 
is clearly shown that the considered modal contribution ratios 
increase when � is increased: the trend is confirmed for both 
�12(�) and �13(�) . This fact can be explained as follows: con-
sidering that each modal bell is multiplied by the term 1∕�� , 

Fig. 6  Functions of weighted 
first singular values s

a(�)∕�
� 

evaluated for different values 
of γ (10-story shear building 
model; functions normalized to 
the maximum value)

Table 1  Comparison between the modal contribution ratios in the MF matrix �12 and the modal contribution ratios in the PFR matrix �12(�) 
evaluated for different values of γ (structures modeled using 10 DOFs; first and second modes are considered)

Structure �12 =
�2

2

�2

1

Ratio of areas underneath modal bells, �12(�)

� = 0 � = 1 � = 2 � = 3 � = 4

Shear-type building 8.9 0.4 1.0 3.6 8.9 26.9
Simply supported beam 16.1 0.3 1.1 4.6 16.7 71.3
Cantilever beam 40.1 0.2 1.2 6.7 42.6 278.5

Table 2  Comparison between the modal contribution ratios in the MF matrix �13 and the modal contribution ratios in the PFR matrix �13(�) 
evaluated for different values of γ (structures modeled using 10 DOFs; first and third modes are considered)

Structure �13 =
�2

3

�2

1

Ratio of areas underneath modal bells, �13(�)

� = 0 � = 1 � = 2 � = 3 � = 4

Shear-type building 23.9 0.3 1.0 7.4 28.6 134.6
Simply supported beam 81.6 0.2 1.1 14.4 88.0 915.6
Cantilever beam 316.6 0.1 1.2 26.0 349.0 7176.5
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the areas underneath the spectral bells of higher modes will 
reduce as far as � is increased.

In Tables 1 and 2, the most noticeable fact emerges by 
comparing the �rs(�) indexes related to the PFR matrix with 
the corresponding �rs index related to the MF matrix: con-
sidering � = 3 , the two indexes tend to converge to the same 
number, so that for the analyzed cases it is possible to state that 
�rs(3) ≅ �rs . This is one of the most important results that were 
obtained in the process of deriving the proposed PFR matrix. 
Specifically, it has been obtained that dividing the first singular 
value of the PSD matrix of the acceleration response by the 
angular frequency with an integer exponent equal to � = 3 , 
the areas underneath the spectral bells (in the function of the 
weighted first singular values) tend to be directly proportional 
to the contribution of the corresponding modes in the modal 
flexibility matrix.

In the previous analysis, the considered modal damping 
ratios are constant for all the modes. To evaluate if damping 
variations have an influence on the obtained results, a correla-
tion analysis between different values of the modal damping 
and the modal contribution ratios was performed. A propor-
tional damping model was considered [34], so that the modal 
damping matrix can be expressed as:

where �r is the modal damping ratio related to the r-th mode. 
The numerical simulation of the dynamic response of the 
previously described shear-type building was considered, 
and the resulting value � = 3 from the previous analysis was 
maintained. In the analysis, 50 different values of the first 
modal damping ratio �1 were introduced to vary the quantity 
�2∕�1 . For each value of �2∕�1 , the modal contribution ratio 

(27)� = diag
(
2�r�r

)
, r = 1…R

�12(3) was estimated as the average over a number � = 5 of 
segments, and the results are gathered in Fig. 7. The results 
show a noticeably high level of correlation between the two 
variables, and the resulting 50 points of the plot are almost 
perfectly aligned. This fact, together with the results of 
Tables 1 and 2, have led to the following deductions:

• The modal contribution ratios �rs given by Eq. (25) can 
be considered equal to the respective �rs from Eq. (23) 
as far as �s∕�r = 1;

• The ratios �rs and �s∕�r can be assumed as directly pro-
portional;

• From the statement above, it is evident that the modal 
contribution of the r-th mode to F∗ is inversely propor-
tional to its corresponding damping ratio.

Consequently, from the performed correlation analysis 
it is recognized that the influence of damping to the level 
of resemblance between Fp and F∗ has to be studied. Spe-
cifically, the calibration of the procedure used to weigh 
the first singular values in the PFR matrix estimation was 
performed by considering structures with different damp-
ing models.

Let us now introduce F∗(�) , which is the expression of 
the PFR matrix in function of the � exponent that was used 
in the following analyses:

where the matrix of the weighted singular values Z(�) is now 
expressed specifically in function of the acceleration first 
singular values san and the parameter �:

Of course, the considered F∗(�) matrix is obtained by 
averaging the results of the � segments, as shown in 
Sect. 3, and the generic term of such a matrix is f ∗

jk
(�).

To analyze the effects of damping, and consequently to 
define the value of � that maximizes the level of resem-
blance between F∗(�) and Fp , five damping models were 
used. The first implemented damping model is the one 
that was already considered in the first analysis—i.e., a 
proportional damping model with all the modal damping 
ratios that are equal to 5%. The other four cases rely on 
Rayleigh-damping models [37]: thus, the assumption is 
that the damping matrix C can be assumed as a linear com-
bination of the mass matrix M and the stiffness matrix K:

In Eq. (30), C , M and K are R × R matrices, while � and 
� are scalar combination coefficients.

(28)F∗(�) = VZ(�)VT

(29)Z(�) = diag

(
san�n

�
�
n

)
, n = 1…

N

2

(30)C = �M + �K

Fig. 7  Correlation analysis between the modal contribution ratios 
�12(3) and the modal damping ratios
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While matrices M and K do not vary in the performed 
simulation, the definition process and properties of matrix 
C are described for each case, as follows:

• Case 1: Modal damping ratio � = 5% is equal for 
each mode. This way, the damping matrix is given by 
C = �

−T
��

−1;
• Case 2: An only mass-proportional damping is consid-

ered and formulated with Eq. (30) by assuming � = 2 
and � = 0;

• Case 3: An only stiffness-proportional damping is 
considered and formulated with Eq. (30) by assuming 
� = 0 and � = 0.002;

• Case 4: The complete form of Rayleigh damping is 
taken, assuming � = 1 and � = 0.001;

• Case 5: The complete form of Rayleigh damping is 
taken, similarly to Case 4, but in this case � = 2 and 
� = 0.0005.

Combining Eqs.  (27) and (30), the general formula 
of the modal damping ratio of a generic mode r is the 
following:

where the damping ratio is expressed as a function of the 
natural angular frequency and the scalar combination coef-
ficients � and � of the Rayleigh-damping model. From 
Eq. (31), it is clear that the modal damping ratios decrease 
as the mode order increases in the case of only mass-pro-
portional damping, while the opposite happens for only 
stiffness-proportional damping models. In other words, it is 
possible to state that only mass- and only stiffness-propor-
tional damping models can be assumed as extreme theoreti-
cal cases, while models in which both � and � differ from 
0 do not present a unique trend of the modal damping in 
function of the mode order. Given this, the four Rayleigh-
damped cases were modeled by setting the coefficients � and 
� in a way that they are associated to realistic values of the 
damping ratios of the first three modes (i.e., around 5%), so 
that the structure can be considered as lightly damped.

Two different approaches were implemented to evalu-
ate the best fitting value of � , considering the simulated 
dynamic response of the aforementioned shear-type 
structure.

The first approach follows directly what has already 
been presented and is based on a comparison in terms 
of modal contribution ratios. Specifically, the index �rs(�) 
was introduced in the analyses to measure the difference 
between the modal contribution ratios related to the PFR 
and the MF matrices ( �rs(�) and �rs , respectively):

(31)�r =
1

2

(
�

�r

+ ��r

)

The �rs(�) index was separately evaluated for all five 
cases with different damping models that are mentioned 
above, considering values of � between 0 and 5. The index 
tends to 0 for values of � that make �rs(�) equal to �rs , while 
it assumes its maximum of 1 for the value of � that maxi-
mizes the discrepancy between �rs(�) and �rs . The results 
for all five cases are shown in Fig. 8a–e, by considering 
the values of the index �12(�) – i.e., the first two modes are 
considered. For all these cases, the minimum of �12(�) is 
found for the considered range of � and always assumes 
values that are close to 0. This implies that for these mini-
mum values, the contribution ratios �rs(�) and �rs of the 
first two modes are very similar.

Figure 8a confirms 3 is the best fitting value of � in case 
of constant modal damping ratios; on the contrary, Fig. 8b 
and c show the limit values of � for a Rayleigh-damping 
modeled structure. Specifically, these figures illustrate that 
�12(4) and �12(2) are, respectively, the minimum values in 
case of only mass- and only stiffness-proportional damp-
ing, pointing out that the best fitting value of � in case of 
proportional damping can assume values between 2 and 4. 
Other analyses were performed by changing the values of 
� and � , as well as by changing the value of the constant 
modal damping ratio, and the obtained results are similar 
to the ones that have just been presented. Figure 8d and e 
clearly shows that for the chosen cases of both mass and 
stiffness proportional damping, the minimum values of 
�12(�) occur for values of � that are close to 3 (i.e., � = 3 
and � = 3.4 for case 4 and 5, respectively). It is also worth 
noting that, for all the considered cases, the value �12(3) 
is far below 0.1, with the only exception of Case 2, where 
the value �12(3) is slightly lower than 0.3.

The last step of this analysis implied the evaluation of 
the summation plot 

∑
�12(�) , where the values of �12(�) 

of the five cases are summed. The bar graph is shown 
in Fig. 8f. As it is evident in the plot, the value � = 3 is 
the one that minimizes the summation of �12(�) for all the 
considered cases, thus giving the lowest discrepancies 
between the modal contribution ratios of the MF and the 
PFR matrices. It is worth noting that � = 3 is also the mid-
dle point value between the mentioned limit values � = 2 
and � = 4.

In the second approach adopted to find the best fitting 
value of � , the level of resemblance between F∗(�) and 
the MF matrix Fp was globally evaluated, and this was 
done using a specific matrix norm operator, as described 
in the following. In this analysis, all modes are considered 
in Fp (i.e., p = 10 ), to exclude the effects of the modal 
truncation in the results; in the same way, the sampling 

(32)�rs(�) =
||�rs(�) − �rs

||
max

(||�rs(�) − �rs
||
)
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frequency was chosen so that all mode spectral bells can 
contribute to the assemblage of F∗(�).

In the performed analysis, the element-wise 1-norm 
operator was used, which for a generic R × R matrix A is 

defined as ‖A‖1,1 = ∑R

j=1

∑R

k=1

���ajk
��� . This matrix norm 

operator was used to evaluate the unit-normalized MF 
matr ix Fp =

1

‖Fp‖1,1
Fp (whose gener ic element is 

Fig. 8  Difference between the modal contribution ratio in the PFR 
matrix and the modal contribution ratio in the MF matrix; parametric 
study with the quantity �12 expressed as a function of γ; results for 

five different models of damping: a case 1; b case 2; c case 3; d case 
4; e case 5; f total summation for the different cases
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f p,jk =
1

‖Fp‖1,1
fp,jk ) and the unit-normalized PFR matrix in 

function of the parameter � , F
∗

(�) = 1

‖F∗(�)‖1,1F
∗(�) (whose 

generic element is f
∗

jk(�) =
1

‖F∗(�)‖1,1 f
∗
jk
(�) ). Since these two 

matrices have a common norm, the difference matrix ΔF 

was computed and used to evaluate the level of resem-
blance between Fp and F∗(�):

The norm ‖ΔF(�)‖1,1 of the difference matrix was then 
calculated.

(33)ΔF(�) = Fp − F
∗

Fig. 9  Norm of the difference between the PFR matrix and the MF matrix; parametric study as a function of γ; results for five different models 
of damping: a case 1; b case 2; c case 3; d case 4; e case 5; f sum of the normalized distributions
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Figure 9a–e shows the variation of ‖ΔF(�)‖1,1 obtained 
for all five cases with different damping models and for 
values of � between 1.6 and 4.4 (referring to the values 
of � , the plot is focused on the range of interest that has 
been discussed for the previous results shown in Fig. 8). 
As it happens by examining the �rs(�) indexes, the mini-
mum value of ‖ΔF(�)‖1,1 is reached for the value of � that 
maximizes the level of resemblance between F∗(�) and 
Fp ; on the other hand, the higher is the norm of the dif-
ference matrix, the higher are the discrepancies between 
F∗(�) and Fp.

First of all, by comparing Figs. 9 and 8, it is evident 
that, for all the five cases, the minimum of ‖ΔF(�)‖1,1 
occurs for the same values of � that minimize the index 
�12(�) evaluated for the first two modes. This confirms that, 
as expected, the contribution of these two low-order modes 
to the MF matrix is higher than the contribution of the 
high-order modes, and the performed analysis shows that 
the same occurs in the proposed PFR matrix. Figure 9 also 
shows that ‖ΔF(�)‖1,1 tends to 0 for all the minimum points 
of the graphs.

Figure  9 illustrates that ‖ΔF(�)‖1,1 exponentially 
decreases when � increases, until the minimum value is 
reached; on the other hand, the norm of the difference 
matrix slowly increases after that point. Specifically, for 
values of � on the left of the minimum point, the contribu-
tion of the higher modes in the PFR matrix tends to exceed 
the respective contribution in the MF matrix; the oppo-
site happens to the right of the aforementioned minimum 
point. From the figure, it is clear that the major discrepan-
cies between the two matrices occur in the former case. It 
is also relevant to notice that in Fig. 8, for each of the five 
cases, the distribution of the �12(�) values appears mirrored 
with respect to the distribution of the ‖ΔF(�)‖1,1 values. 
This is due to the fact that �12(�) is proportional to the 
first mode contribution, which is amplified for increasing 
values of � (as already shown in Table 1).

The last step of this analysis was performed by evalu-
ating the summation of the aforementioned norms of the 
difference matrices, for all five cases. A further normali-
zation has been introduced in the distributions shown in 
Fig. 9a–e, so that all the cases can have the same weight in 
the summation. Specifically, the mentioned distributions 
were normalized to their respective maximum value for the 
considered range of � , and then the resulting distributions 
for the different cases were summed. This way, the follow-
ing quantity was evaluated, and the results are shown in 
Fig. 9f for the different values of �:

(34)Σ
ND(�) =

�
case i=1,2,3,4,5

⎡
⎢⎢⎣

‖ΔF(�)‖1,1
max
�=0…5

‖ΔF(�)‖1,1
⎤
⎥⎥⎦
i

As evident in Fig. 9f, the summation of the normal-
ized distributions has a minimum value for � = 3 , which 
is again the best fitting value of � obtained by considering 
all the different damping models.

Considering the analyses performed in terms of both 
modal contribution ratios and difference matrices, it 
is finally possible to state that � = 3 is the best value to 
implement in the definition of F∗ because, as shown in the 
analyses, it tends to minimize the discrepancies between 
F∗ and an actual proportional flexibility matrix, despite 
of the unknown damping model of the structure. This is 
the reason that supports the choice of the value of c = 3 in 
Eq. (11) for an acceleration signal, while the other values 
of c [as well as the terms of matrix Zd presented in Eq. (7)] 
were directly derived considering the time-differentiation 
rules in the frequency domain.

The last step of the parametric study consisted in evalu-
ating the degree of proportionality, between PFR and MF 
matrices, that is obtained considering the chosen expres-
sion of F∗(�) (this means setting � = 3 ). The analysis was 
conducted for all the five cases with different damping 
models, by estimating the so-called normalized multipliers 
between the single elements of F∗ and Fp:

In Eq. (35), all the multipliers fp,jk∕f ∗jk related to the j-th 
row and the k-th column of the matrices are divided by 
their average value. In case of perfect proportionality, all 
the values of �jk are equal to 1, so that it is possible to 
assume that a scalar value �∗ = R2

∑R

j=1

∑R

k=1

�
fp,jk∕f

∗
jk

� exists, so 

that F∗ = �∗Fp ; on the contrary, the more the values differ 
from unity, the less is the degree of proportionality 
between F∗ and Fp.

Figure 10 presents all the values that �jk assumes for all 
the considered damping models. It is evident that, for Case 
1 (i.e., damping ratios that are equal for all the modes), the 
�jk multipliers are substantially all equal to 1, confirming 
the almost perfect proportionality between the two matri-
ces. The results for Cases 4 and 5 show that, for the chosen 
models of both mass and stiffness proportional damping, 
the PFR matrix has a good level of proportionality with 
respect to the MF matrix (in Case 4, the values of �jk are 
mostly unit valued, with only one exception; in Case 5, 
all the values are between 0.7 and 1.3). Damping models 
used in Cases 2 and 3 are the ones that result in the lowest 
level of proportionality among the considered cases. This 
is expected because the two cases are the extreme theo-
retical cases (i.e., only mass- and only stiffness-propor-
tional damping), and it has already been observed that the 

(35)�jk =
R2

�
fp,jk∕f

∗
jk

�

∑R

j=1

∑R

k=1

�
fp,jk∕f

∗
jk

�
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corresponding values of � that minimize the norm of the 
difference matrix ΔF(�) are � = 4 and � = 2 , respectively.

This section has shown that the chosen formulation of the 
PFR matrix is the one that minimizes the discrepancies with 
respect to the modal flexibility matrix. The next section will 

show that, regardless of the considered damping model, the 
PFR matrix can be taken as a reliable tool to implement in 
damage detection strategies.

Fig. 10  Normalized multipliers between the PFR matrix and the MF matrix; results for five different models of damping: a case 1; b case 2; c 
case 3; d case 4; e case 5
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7  Verification of the effectiveness of the PFR 
matrix for damage localization

7.1  Application using simulated data

7.1.1  Shear building structure

The damage localization procedure based on the PFR 
matrix (Sect. 4) was tested through numerical simulations 
performed using the 10-story shear-type building structure 
described in Sect. 6. All the five damping models presented 
in the previous section were considered, to evaluate how the 
damage detection algorithm works in different and unknown 
damping scenarios.

The PFR matrix was calculated for the three structural 
configurations that are reported in Table 3. State 1 is the 
original configuration of the structure, and it represents an 
undamaged condition. In States 2 and 3 damage was intro-
duced as localized stiffness reductions: in State 2 the damage 
was imposed at the 6th interstory of the shear building (30% 
story stiffness reduction), while in State 3 a multiple damage 
was imposed at the 2nd and 7th interstory (30% and 15% 
story stiffness reduction, respectively). For each state, the 
structure was excited by white noise inputs at all the DOFs, 
and the output was recorded in terms of displacement (this 
way, the cutoff frequency is �̂ = Δ� ). The chosen sample 
frequency is fs = 64Hz , with total duration of the signals 
equal to T = 1920s . Once the structural responses have been 
collected, the signal was divided in � = 30 segments (this 
way, T� = 64s ), and a 5% Root Mean Square (RMS) additive 
Gaussian noise was applied. The process was repeated for 
each structural state and for each damping model.

Furthermore, the same damage detection strategy was 
implemented using the truncated MF matrix Fp in place of 
F∗ . This way, the procedure based on the proposed PFR 
matrix was compared to the one based on a traditional MF 
matrix assembled using a selected number of structural 
modes. Specifically, referring to the analyses presented in 
this section, Fp was constructed for each state of the struc-
ture using natural frequencies and mass-scaled mode shapes 
that were analytically obtained by solving the eigenvalue 
problem 

(
K − �2

r
M
)
� r = 0 . Since only the first six natural 

frequencies of the structure in the baseline state are below 
the Nyquist frequency (so that only the first six modes will 

contribute to the assemblage of F∗ ), the chosen truncation 
mode of Fp is the sixth mode (i.e., p = 6) . This was done to 
make a proper comparison, in terms of modal contributions, 
between the two procedures based on the PFR and the MF 
matrices.

The weighted first singular values related to each k-th seg-
ment for State 1 and damping Case 1 are shown in Fig. 11, 
where the average is also reported. It appears that the maxi-
mum deviation from the average happens for frequencies that 
are close to the peaks, and that the deviation itself decreases 
when the mode order increases. Since the contribution to 
F∗ of a generic mode is assumed to be proportional to the 
area underneath the corresponding averaged modal bell, it 
is evident that the modal contribution decreases rapidly with 
the mode order.

Figure 12 shows, for the considered baseline State 1 and 
the inspection States 2 and 3, the max-normalized deflec-
tions ( �B and �I , respectively) and the story drifts ( dB and 
dI ). The quantities are normalized to their maximum value 
to ease the comparison. Overall, it must be noted that, for 
all the considered states, the deflections computed from F∗ 
for damping Cases 1 and 4 almost perfectly superpose on 
the one obtained by Fp ; referring to story drifts, the three 

Table 3  Configurations used 
in the numerical simulation for 
damage localization (10-story 
shear building)

State Condition Description

1 Undamaged Baseline
2 Damaged 30% stiffness reduction in the columns of the 6th interstory
3 Damaged 30% stiffness reduction in the columns of the 2nd interstory 

and 15% stiffness reduction in the columns of the 7th 
interstory

Fig. 11  Weighted first singular values—numerical simulation for 
damage localization (10 story shear building); baseline state for Case 
1 (gray line: result for the single segments; black line: average values)
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diagrams are very close, confirming the high level of pro-
portionality between the MF matrix and the PFR matrix 
for the mentioned damping models, as it has already been 
observed in Sect. 6. In all the diagrams, the quantities related 

to Case 5 place midway between the quantities from Fp and 
the quantities derived for Case 2. Cases 2 and 3 (i.e., only 
mass- and only stiffness-proportional damping, respectively) 
are again proven to be the extreme cases: for all considered 

Fig. 12  Deflections and story drifts computed from the PFR matrix—
numerical simulation for damage localization (10 story shear build-
ing; max-normalized values)—comparison between the approach 

based on the traditional modal flexibility matrix F
p
 and the approach 

based on the proposed PFR matrix F∗ : a, b state 1; c, d state 2; e, f 
state 3
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states of the structure, Case 2 is the one that minimizes the 
story drifts, while Case 3 is the one that maximizes these 
quantities. Nevertheless, it is mostly important to notice that, 
by comparing story drift diagrams of State 1 and State 2, the 
drift of the sixth story increases for all the considered cases, 
altering the trends that characterize the baseline states, as 
an effect of the introduced damage. A similar pattern can be 
observed for the drifts at the 2nd and 7th stories (i.e., dam-
aged stories) when comparing State 1 and State 3 for all the 
considered cases.

The damage localization technique was applied for both 
the inspection States 2 and 3, and the h∗

r
 index values are 

reported in Fig. 13 for all the considered cases. The dashed 
line represents the threshold h∗TH , which is equal to 0.18 and 
was set by repeating the procedure illustrated in Sect. 4 for 

all the considered damping cases. Overall, it must be noticed 
that the introduced damages are all localized using the pro-
posed PFR matrix, with the damage index that exceeds the 
threshold at the corresponding damaged story. This result 
was obtained for both inspection states and for all the con-
sidered damping models. Furthermore, it can be observed 
in Fig. 13 that the values of the damage index at the dam-
age stories obtained using the PFR matrix are comparable 
to those determined using the traditional MF matrix Fp . It 
is, however, important to underline the differences in the 
procedures used for assembling the two matrices: while the 
natural frequencies and mass-scaled mode shapes of six 
structural modes were used to calculate the MF matrix, the 
proposed PFR matrix was assembled by processing all the 

Fig. 13  Damage localization using the  h* index—numerical simulation for damage localization (10 story shear building)—comparison between 
the approach based on the traditional modal flexibility matrix F

p
 and the approach based on the proposed PFR matrix F∗ : a state 2; b state 3

Fig. 14  Damage localization on the shear building model (case 1)—
approach based on the proposed PFR matrix: a different scenarios 
with progressive damage and evaluation of the minimum detectable 

damage (5% additive noise); b scenarios with different levels of addi-
tive Gaussian noise (RMS values) applied on the structural responses 
(30% stiffness reduction imposed in the columns of the 4th interstory)
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weighted first singular values shown in Fig. 11, together with 
the corresponding singular vectors.

A specific analysis was carried out to evaluate the mini-
mum amount of damage for which a certain damaged story 
of the considered shear building structure can be identified 
using the proposed PFR matrix. For this analysis Case 1 
was selected, and the analysis was performed under the 
same conditions of the analyses described in previous par-
agraphs (i.e., by considering the same signal length, the 
same sampling frequency, and the same amount of additive 
noise to be applied on the structural responses). Different 
scenarios with progressive damage were considered—i.e., 
increasing stiffness reductions imposed in the columns of 
the  4th interstory of the structure. The results of this analy-
sis are presented in Fig. 14a. As shown in the figure, the 
minimum amount of story stiffness reduction that leads to 
a correct damage localization is equal to a story stiffness 
reduction of 5%. Such value is comparable to the values of 
minimum detectable damage severity that were obtained in 
previous studies where the original existing PSIL method 
or variants of the same method were applied [30, 31]. In 
Fig. 14a, it can also be observed that the h∗

r
 index values at 

the damaged story progressively increase when consider-
ing the different scenarios with increasing amounts of the 
imposed damage. The analyses for the evaluation of the 
minimum amount of detectable damage were repeated by 
imposing stiffness reductions in different interstories of 
the structure (other than the  4th interstory), and similar 
results were obtained.

To investigate how the results are affected by the level 
of noise, the damage localization process through the 
proposed PFR matrix was repeated by considering dif-
ferent RMS levels of additive noise to be applied on the 
structural responses of the shear building structure. The 
selected RMS levels of additive noise are: 0%, 1%, 3%, 
5%, 7.5%, and 10%. For this analysis, Case 1 was selected, 
and the analysis was performed under the same conditions 
of the analyses described in previous paragraphs (i.e., by 
considering the same signal length and the same sampling 

frequency). In this analysis, a 30% stiffness reduction was 
imposed in the columns of the 4th interstory of the struc-
ture. The results of this analysis are presented in Fig. 14b, 
where the threshold h∗TH = 0.051 (dashed line) was set by 
repeating the procedure illustrated in Sect. 4 for all the 
considered levels of additive noise. As shown in the figure, 
no substantial differences in the values of the h∗

r
 index and 

a correct damage localization were observed for all the 
different levels of additive noise.

7.1.2  Beam‑like structure

The damage localization procedure based on the proposed 
PFR matrix was also tested through numerical simulations 
on a flexure-type beam-like structure. The 10-DOF simply-
supported beam described in Sect. 6 was selected for this 
purpose, thus its curvature was assumed to be the damage-
sensitive feature. For this analysis, the first damping model 
(case 1) presented in the previous sections was considered 
(i.e., modal damping is constant over the different modes 
of the structure). The PFR matrix was calculated for two 
structural configurations. Namely, the Baseline State is the 
original configuration of the structure and represents an 
undamaged condition, while damage was introduced in the 
Inspection State as localized 30% stiffness reduction between 
the  2nd and the  3rd mass. In both the states, the structure was 
excited by white noise inputs at all the DOFs, while the 
response was recorded in terms of displacement for a dura-
tion T = 1920s , with sample frequency fs = 64Hz . Once the 
structural responses have been collected, the signal was sub-
sequently divided in � = 30 segments (this way, T� = 64s ), 
and a 5% RMS additive Gaussian noise was applied.

The weighted first singular values related to each k-th 
segment for the Baseline State, as well as their average, are 
reported in Fig. 15. As already observed for the shear build-
ing structure, the maximum deviation from the average hap-
pens for frequencies that are close to the peaks.

Figure 16 shows, for both the considered Baseline State 
and the Inspection State, the max-normalized deflections ( �∗

B
 

Fig. 15  Weighted first singular 
values—numerical simulation 
for damage localization (simply-
supported beam modeled using 
10 DOFs); baseline state for 
Case 1 (gray line: result for the 
single segments; black line: 
average values)
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and �∗
I
 , Fig. 16a) and the max-normalized curvatures ( �∗

B
 and 

�∗
I
 , Fig. 16b). Overall, it appears that the deflection shapes 

are almost perfectly superposed, while the presence of dam-
age becomes evident while comparing �∗

B
 and �∗

I
 . In fact, 

the calculated curvature in the 2nd and 3rd DOFs strongly 
increases for the Inspection State, indicating a decrease in 
the flexural stiffness of the structure in the portions that are 
adjacent to these two DOFs. The obtained h∗

r
 index values 

are reported in Fig. 16c, where the dashed line represents the 
threshold h∗TH = 0.08 . It is evident that the damage index 
exceeds the threshold for the 2nd and 3rd DOFs only, cor-
rectly detecting the presence of damage which was imposed 
in the portion of the structure between the aforementioned 
DOFs.

7.2  Application using experimental data

The damage localization procedure based on the PFR matrix 
(Sect. 4) was also applied using the datasets of experimental 
tests performed on a laboratory three-story frame structure 
(Figs. 17 and 18) [38, 39]. This frame structure is made of 
aluminum and is composed of columns and plates, assem-
bled through bolted connections. The columns have a rec-
tangular cross-section with dimensions 2.5 × 0.6 cm, while 
the thickness of the plates is 2.5 cm. The structure is sup-
ported on a baseplate with rails, and the sliding between the 
structure and the baseplate is allowed in the x direction only. 
Including the base floor that slides on the rails, the structure 
can thus be considered as a four degree-of-freedom system.

In the experimental tests, the input excitation was pro-
vided in the centerline of the base floor through an elec-
trodynamic shaker, while the response of the structure was 
measured by four accelerometers positioned in the centerline 

Fig. 16  Damage localization on the 10 DOF simply-supported beam—approach based on the proposed PFR matrix (numerical simulation): a 
deflections; b curvatures; c  h* index
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of each floor, on the opposite side from the shaker. The 
used sampling frequency was 320 Hz, and the input pro-
vided by the shaker was a band-limited random excitation 
in the range 20–150 Hz. As stated in [38, 39], this range 
was selected to avoid the rigid body modes of the structure 
present below 20 Hz. The modal parameters of the structure 
were estimated in [38] using the rational-fraction polynomial 
method. As shown in [38], the natural frequencies of the first 
three modes (excluding the rigid body modes) are 30.7 Hz, 
54.2 Hz, 70.7 Hz, while the modal damping ratios that cor-
respond to these modes are 6.3%, 2.0%, 0.97%, respectively. 
For a more detailed description of the structure and the per-
formed vibration tests, the reader is referred to [38, 39].

Only the output responses of the structure were consid-
ered in the analyses of the present paper. Moreover, four 
structural configurations related to the performed tests were 
used to apply the damage detection procedure, and these 
configurations are described in Table 4. On one side, con-
figuration 1 is the original configuration of the structure, 
and it represents the baseline or “healthy” condition. On the 
other side, stiffness modifications were introduced in con-
figurations 2–4, and these configurations represent the dam-
aged conditions. Specifically, story stiffness reductions were 
imposed by replacing two columns with other columns with 
a reduced cross section. Compared to the original columns, 
the modified columns are characterized by a 50% reduc-
tion in the cross-sectional thickness in x direction (which 
is the direction of the excitation induced by the shaker). In 
configurations 2, 3, and 4 these modifications were intro-
duced at the 1st, 2nd, and 3rd interstory, respectively. As 
highlighted in [38, 39], a 50% reduction in the thickness of 

one column corresponds to an 87.5% reduction in the stiff-
ness of such a column. Overall, considering that two out of 
the four columns present at each story were replaced, the 
introduced modifications resulted in an approximately 43.8% 
reduction in the story stiffness in the direction of the applied 
base excitation.

In the analyses, the acceleration recorded at the base 
floor (i.e., channel 2 according to Fig. 18) was subtracted 
from the acceleration measured at the other floors, to obtain 
relative measurements. The length of the signals that were 
used to estimate the proposed PFR matrix was equal to 
T = �T� = 51.2s , where � = 8 and T� = 6.4s . The selected 
cutoff frequency was �̂ = 78.5rad∕s , which correspond to 
12.5 Hz. The total length of the measurements related to the 
training dataset was equal to LT = 1280s , where L = 25 ; the 
calculated damage index threshold was h∗TH = 0.6.

Figure 19 shows the weighted first singular values related 
to the baseline state and to all the considered signal seg-
ments. The average values are also shown in the figure. It 
is evident that the modal bells of the first and the second 
mode have similar amplitudes: this implies that the modal 
contribution ratio �12 is close to unity, marking the fact that 
the first two modes will give almost the same contribution to 
F∗ . This fact is expected, since, according to the results that 
are shown in [38], the first modal damping ratio (i.e., 6.3%) 
is more than three times higher than the second (i.e., 2%).

The damage localization strategy presented in Sect. 4 was 
applied, considering both the undamaged and the damaged 
conditions of the structure as inspection states. In Fig. 20, 
the damage indexes h∗

r
 are reported for all the four configura-

tions of Table 4. Figure 20a shows the resulting indexes of 
the case where the structure related to the inspection phase 
is undamaged and equal to the baseline structure. It is clearly 
shown that h∗

r
 does not exceed the threshold (represented 

with the dashed line) for any of the measured stories. Fig-
ure 20b–d show the indexes that were extracted for the other 
three states: it is possible to observe that the index h∗

r
 exceeds 

the threshold h∗TH only at the actually damaged stories, thus 
proving that the damage localization based on the proposed 
PFR matrix has been performed correctly.

8  Conclusions

This paper proposes a method for estimating a proportional 
flexibility-resembling matrix. Such a matrix can be esti-
mated for structures subjected to output-only vibration tests, 
and it is shown in the paper that this matrix can be used 
for damage detection and localization purposes. The PFR 
matrix is obtained through signal processing operations to 
be executed after applying the first steps of the Frequency-
Domain Decomposition technique—i.e., after the singular 
value decomposition of the spectral density matrix. The 

Fig. 17  Three-story testbed structure [38, 39]
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defining aspect of the PFR matrix is that, differently from 
the traditional formulation of modal flexibility and propor-
tional flexibility matrices, it can be assembled without the 
need of an explicit identification of the modal parameters of 
the structure. In fact, the PFR matrix is estimated by pro-
cessing all first singular vectors and all first singular val-
ues in a selected frequency range. The PFR matrix can be 
equally obtained from displacement, velocity or acceleration 
responses, and specific measures have been introduced in the 
method to avoid the amplification of the noise that typically 

occurs at the frequencies close to DC when integrating time 
signals in frequency domain.

The calibration of the procedure used to weigh the first 
singular values through the corresponding angular frequen-
cies represented a fundamental step in the definition of the 
PFR matrix. Such a procedure is crucial to guarantee that 
the contribution in the PFR matrix of the weighted singular 
values that belong to a particular mode frequency band is 
similar to the contribution of the corresponding mode in 
the traditional flexibility matrix. As shown in Sect. 6, the 

Fig. 18  Three-story testbed structure: geometry and locations of the sensors (dimensions in cm) [38, 39]

Table 4  Configurations related to the experimental test and used for damage localization (three-story testbed structure)

State Condition Description

1 Undamaged Baseline
2 Damaged Two columns at the 1st interstory with a 50% reduction in the cross-sectional thickness in x direction
3 Damaged Two columns at the 2nd interstory with a 50% reduction in the cross-sectional thickness in x direction
4 Damaged Two columns at the 3rd interstory with a 50% reduction in the cross-sectional thickness in x direction
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mentioned calibration was performed through parametric 
studies executed for different structural models (i.e., shear 
building, simply supported beam, and cantilever beam mod-
els), and by defining specific indicators able to quantify the 
level of resemblance between the proposed PFR matrix and 
the traditional flexibility matrix. The analyses also revealed 
that the contribution in the PFR matrix of the weighted sin-
gular values that belong to a particular mode frequency band 
is affected by the damping properties. Moreover, the analy-
ses showed that the highest level of resemblance between the 
PFR matrix and the traditional flexibility matrix is obtained 
in the case of modal damping ratios that are constant for 
all the modes. Based on these observations, structures with 
different types of damping models were considered in the 
mentioned parametric analyses, including cases of both uni-
form and non-uniform modal damping ratios. These analyses 
showed that, overall, the selected procedure for obtaining 
the weighted singular values is the one that minimizes the 
discrepancies between the proposed proportional flexibility-
resembling matrix and the traditional flexibility matrix.

Fig. 19  Weighted first singular values; baseline state (state 1) of the 
three-story testbed structure; gray line: result for the single segments; 
black line: average values

Fig. 20  Damage localization using the  h* index—approach based on the proposed PFR matrix (three-story testbed structure): a state 1; b state 2; 
c state 3; d state 4
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To show that the proposed PFR matrix can be used for 
damage detection purposes, existing flexibility-based dam-
age detection methods developed for shear building struc-
tures and flexure-type beam-like structures have been con-
sidered, and the proposed PFR matrix has been used in place 
of the traditional flexibility matrix. Referring to shear build-
ing structures, the resulting damage detection method was 
tested both through numerical simulations performed on a 
10-story shear building model and using the experimental 
data of vibration tests that were executed on a laboratory 
three-story frame structure. In both cases and for the dif-
ferent damage scenarios that were considered (for example, 
either single or multiple damage scenarios), the performed 
analyses showed the ability of the used method, based on 
the PFR matrix, to detect the stories of the structure that 
have been affected by the damage. This result of a correct 
localization of the damage was obtained for all the consid-
ered structures, including structures with different types of 
damping models and the general case of non-uniform modal 
damping ratios associated to the different modes. Referring 
to flexure-type beam-like structures, numerical simulations 
performed on a simply-supported beam modeled using 10 
DOFs showed the applicability and effectiveness of the 
proposed PFR matrix for localizing damage in this type of 
structures.

In future research an attempt could be made to develop 
an enhanced version of the PFR matrix estimation proce-
dure, with the objective of understanding if the estimates 
of such a matrix can be further improved in the case of 
non-uniform modal damping ratios. One potential option 
that could be examined is to include the identification of 
the damping properties in the PFR matrix estimation pro-
cedure. This, however, will surely lead to a more complex 
procedure, and it has to be carefully evaluated if, for the 
case of non-uniform modal damping ratios, this increased 
complexity is appropriately justified by a potential further 
improvement in the accuracy of the estimated proportional 
flexibility-resembling matrix.

Appendix A: Modal contribution 
in the flexibility matrix

This appendix shows how Eq. (23) was derived. Starting 
from Eqs. (1,2), the portion of the modal flexibility matrix 
that is due to a single mode is expressed as follows:

where the r-th mode has been considered. The overall con-
tribution to the flexibility matrix of this r-th mode is evalu-
ated herein by applying the Frobenius norm to the matrix 

(A1)F(r) =
�r�

T
r

�2
r

=
� r�

T
r

�r�
2
r

F(r) , where for a generic m × n matrix A the Frobenius norm 

is ‖A‖F =

�∑m

i=1

∑n

j=1

���aij
���
2

 . Specifically, it can be demon-

strated that the Frobenius norm of the matrix F(r) is equal to 
the following expression:

where ‖ ∙ ‖2 is the Euclidean norm operator to be applied 
on a generic vector. Eq. (A2) is valid because the generic 
r-th mode shape vector satisfies the following relationship 
‖� r�

T
r
‖
F
= ‖� r‖22 , and this last expression can be derived 

by considering the following property of the Frobenius 
norm: ‖A‖F =

√
tr(AAT ) , where tr(∙) denotes the trace 

operator (i.e., for a square matrix the trace is the sum of the 
elements of the main diagonal).

Using the Frobenius norm and Eq. (A2), the contri-
bution ratio in the modal flexibility matrix between two 
generic modes (i.e., the r-th and the s-th mode) can thus be 
expressed as:

If the considered structure has a perfectly regular distri-
bution of masses, such that the diagonal mass matrix M has 
values that are all equal to m (i.e., M = mI , where I is the 
identity matrix), it can be demonstrated that the contribu-
tion ratio of Eq. (A3) depends only on the angular frequency 
squared, as shown in Eq. (23).
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