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Abstract –Here we show that the Fourier transform of the q-exponential Tsallis functions (also known 

as q-Gaussians) are generating time correlation functions based on the modified Bessel functions of the 

second kind. For the q parameter ranging from 2 to 1, we pass from a correlation which is an exponential 

decaying with time to a Gaussian-like behavior.  
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The q-Gaussians, also known as "Tsallis functions", are probability distributions derived from the 

Tsallis statistics (Tsallis, 1988, 1995, Hanel et al., 2009). The q-Gaussians are based on a generalized 

form of the exponential function (see discussion in Sparavigna, 2022), characterized by a continuous 

parameter q in the range 1 < q < 3.  As given by Umarov et al., 2008, the q-Gaussian is based on function  

𝑓(𝑥) = 𝐶𝑒𝑞(−𝛽𝑥2) , where 𝑒𝑞(. ) is the q-exponential function and 𝐶 a constant. The q-exponential 

has expression:  𝑒𝑥𝑝𝑞(𝑢) = [1 + (1 − 𝑞)𝑢]1 (1−𝑞)⁄  . The function 𝑓(𝑥) possesses a bell-shaped profile, 

and, in the case that we have the peak at position 𝑥𝑜, the q-Gaussian is given as: 

q-Gaussian = 𝐶𝑒𝑥𝑝𝑞(−𝛽(𝑥 − 𝑥𝑜)2) = 𝐶[1 − (1 − 𝑞)𝛽(𝑥 − 𝑥𝑜)2]1 (1−𝑞)⁄    (1) 

Here we will consider (1) in the following form, with dimensionless variable 𝑤 about 𝑤𝑜 = 0: 

q-Gaussian = 𝐶𝑒𝑥𝑝𝑞(−𝑤2) = 𝐶[1 − (1 − 𝑞)𝑤2]1 (1−𝑞)⁄    (2) 

For q equal to 2, the q-Gaussian is the Cauchy-Lorentzian distribution (Naudts, 2009). For q close to 1, 

the q-Gaussian is a Gaussian. Consequently, for the q-parameter between 1 and 2, the shape of the q-

Gaussian function is intermediate between the Gaussian and the Lorentzian profiles. Due to this feature, 

the q-Gaussians turn out to be suitable for being used as line shape in the Raman spectroscopy (see 

Sparavigna, 2023; for instance ChemRxiv1, ChemRxiv2, ChemRxiv3, ChemRxiv4, SSRN). In Zenodo, 

in discussing the time correlation functions related to Raman line profiles, we started using the Fourier 

transform of the q-Gaussians. Let us remember that the Fourier transform of a Lorentzian lineshape is 

producing a time correlation function which is an exponential decaying with time. In the case of the 

Gaussian lineshape, we have a correlation with is a Gaussian function of time. Being the q-Gaussian a 

lineshape which is intermediate between Lorentzian and Gaussian profiles, the related time correlation 

function must be intermediate between exponential and Gaussian functions. 

Rodrigues and Giraldi, 2015, have considered in detail the Fourier transform of the q-Gaussian 

functions. Here we use a more phenomenological approach. Let us start from the link between the q-

Gaussians and the Bessel functions.  
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In Wikipedia it is told that the “Bessel functions can be described as Fourier transforms of powers of 

quadratic functions”. Function 𝐾𝑣 is a modified Bessel function of the second kind, order 𝑣. For 

instance: 

 

To have further cases, we can use the on-line Fourier transform calculator, at 

https://www.wolframalpha.com . Following the notation in Wikipedia, we can find, for instance: 

1

√2𝜋
∫ (1 + (𝐴𝑡)2)−1 2⁄

∞

−∞
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Note that, in this example, we can see evidenced the time/frequency scaling. 

Here, in the following, let us consider some cases of Fourier transform (WolframAlpha) with exponent 

−1 (𝑞 − 1)⁄ , that is  1 (1 − 𝑞)⁄  as in (2). Let us consider the Fourier transform from the frequency 

domain w to the time domain t (dimensionless variables): 

𝐹𝑤[(1 + 𝑤2)−1 (𝑞−1)⁄ ](𝑡)=
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Posing 𝜉 = 1 (𝑞 − 1)⁄ : 

𝐹𝑤[(1 + 𝑤2)−𝜉](𝑡)=
1

𝛤(𝜉)
⋅ 2(𝑞−2)𝜉 ⋅ |𝑡|𝜉−

1

2 ⋅ 𝐾
𝜉−

1

2
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To illustrate the behavior of the Fourier transform, let us consider different values of q, starting from 

q=3, including q=2 (Lorentzian), to find the corresponding time correlations (see Zenodo for discussion 

about time correlation in Raman spectroscopy). From WolframAlpha, we have: 

𝐹𝑤[(1 + 𝑤2)−1 (3−1)⁄ ](𝑡) = √
2

𝜋
𝐾0(𝑡 sgn(𝑡)) 

By the way, the q-Gaussian is defined for q ranging from 1 to 3. 

 

 

Fourier transform in the case q=3 

 

𝐹𝑤[(1 + 𝑤2)−1 (2.5−1)⁄ ](𝑡) = 0.930437 ⋅ |𝑡|0.166667 ⋅ 𝐾0.166667(𝑡 sgn𝑡)    (b) 

𝐹𝑤[(1 + 𝑤2)−1 (2−1)⁄ ](𝑡) = √
𝜋

2
𝑒−|𝑡|   (a) (Fourier transform of the Lorentzian function) 

𝐹𝑤[(1 + 𝑤2)−1 (1.9999−1)⁄ ](𝑡) = 0.999988 ⋅ |𝑡|0.5001 ⋅ 𝐾0.5001(𝑡 sgn𝑡)    (a’) 

https://en.wikipedia.org/wiki/Bessel_function
https://www.wolframalpha.com/
https://zenodo.org/records/10251695
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We can deduce that the exponential is equal to a K Bessel function multiplied by a square root, so 

that:𝐾0.5(𝑡sgn𝑡) = √
𝜋

2

1

√|𝑡|
𝑒−|𝑡|. 

𝐹𝑤[(1 + 𝑤2)−1 (1.9−1)⁄ ](𝑡) = 0.977728 ⋅ |𝑡|0.611111 ⋅ 𝐾0.611111(𝑡 sgn𝑡)    (b) 

𝐹𝑤[(1 + 𝑤2)−1 (1.7−1)⁄ ](𝑡) = 0.838525 ⋅ |𝑡|0.928571 ⋅ 𝐾0.928571(𝑡 sgn𝑡)   (c) 

𝐹𝑤[(1 + 𝑤2)−1 (1.5−1)⁄ ](𝑡) =
0.626657

𝑡2 ⋅ 𝑒−|𝑡| ⋅ |𝑡|2 ⋅ (|𝑡| + 1)=0.626657 ⋅ 𝑒−|𝑡| ⋅ (|𝑡| + 1)   (d) 

𝐹𝑤[(1 + 𝑤2)−1 (1.4999−1)⁄ ](𝑡) = 0.499777 ⋅ |𝑡|1.5 ⋅ 𝐾1.5(𝑡 sgn𝑡)    

We have, as given by WoframAlpha, that: 𝐾1.5(𝑡) =
1.253314137

√𝑡
⋅ 𝑒(−𝑡) ⋅ (

1

𝑡
+ 1), and therefore (d). 

𝐹𝑤[(1 + 𝑤2)−1 (1.4−1)⁄ ](𝑡) = 0.265962 ⋅ |𝑡|2 ⋅ 𝐾2(𝑡 sgn𝑡) 

𝐹𝑤[(1 + 𝑤2)−1 (1.3−1)⁄ ](𝑡) = 0.0714233 ⋅ |𝑡|2.83333 ⋅ 𝐾2.83333(𝑡 sgn𝑡)    

𝐹𝑤[(1 + 𝑤2)−1 (1.15−1)⁄ ](𝑡) = 0.000050 ⋅ |𝑡|6.16667 ⋅ 𝐾6.16667(𝑡 sgn𝑡)     

 

 

Fourier transforms of four cases given above. 

 

Let us add some further screenshots.  
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Using the results given above and considering the scaling (𝑞 − 1)𝑤2 into  𝑡 √(𝑞 − 1)⁄ , we can plot 

some time correlations as in the Figure 1 and Figure 2 (semi logarithmic scale). 

 

 

 

Figure 1: Fourier transforms of some q-Gaussians as given by WolframAlpha, for some values of the q 

parameter. 

 

 

Figure 2: The same as in the Figure 1, in semi-logarithmic scale. For q=2, we have a correlation which 

is an exponential function (straight red line). For q closer to 1, the curve is Gaussian-like (parabolic 

behavior in the semi-log plot). 
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