
13 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Resource-aware Deployment of Dynamic DNNs over Multi-tiered Interconnected Systems / Singhal, C.; Wu, Y.;
Malandrino, F.; Levorato, M.; Chiasserini, C. F.. - ELETTRONICO. - (2024). (Intervento presentato al  convegno IEEE
INFOCOM 2024 tenutosi a Vancouver (Canada) nel May 2024).

Original

Resource-aware Deployment of Dynamic DNNs over Multi-tiered Interconnected Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984337 since: 2024-03-05T13:37:46Z

IEEE



Resource-aware Deployment of Dynamic DNNs
over Multi-tiered Interconnected Systems

C. Singhal1, Y. Wu2, F. Malandrino3,4, M. Levorato2, C. F. Chiasserini5,4,6

1: Indian Institute of Technology Kharagpur, India – 2: UC Irvine, USA – 3: CNR-IEIIT, Italy
4: CNIT, Italy – 5: Politecnico di Torino, Italy – 6: Chalmers University of Technology, Sweden

Abstract—The increasing pervasiveness of intelligent mobile
applications requires to exploit the full range of resources offered
by the mobile-edge-cloud network for the execution of inference
tasks. However, due to the heterogeneity of such multi-tiered net-
works, it is essential to make the applications’ demand amenable
to the available resources while minimizing energy consumption.
Modern dynamic deep neural networks (DNN) achieve this
goal by designing multi-branched architectures where early exits
enable sample-based adaptation of the model depth. In this paper,
we tackle the problem of allocating sections of DNNs with early
exits to the nodes of the mobile-edge-cloud system. By envisioning
a 3-stage graph-modeling approach, we represent the possible
options for splitting the DNN and deploying the DNN blocks on
the multi-tiered network, embedding both the system constraints
and the application requirements in a convenient and efficient
way. Our framework – named Feasible Inference Graph (FIN)
– can identify the solution that minimizes the overall inference
energy consumption while enabling distributed inference over the
multi-tiered network with the target quality and latency. Our
results, obtained for DNNs with different levels of complexity,
show that FIN matches the optimum and yields over 65%
energy savings relative to a state-of-the-art technique for cost
minimization.

I. INTRODUCTION

Deep Neural Networks (DNN) are a pervasive paradigm that
empowers a wide range of applications with advanced data
analysis and decision making capabilities. Examples include
computer vision [1], speech recognition [2], natural language
processing [3], and mobile health care [4]. However, the
complexity and energy consumption [5] of modern DNNs
clashes with the limited computing power and energy reservoir
of mobile platforms and embedded devices.

Two main technical strategies attempt to address this issue:
model compression [6] and edge computing [7]. In the former,
the size and complexity of large DNN models are reduced
using techniques such as pruning, quantization, and knowledge
distillation. However, compression often results in a noticeable
loss of inference performance, and in many mobile settings
the execution of even compressed models necessitates a con-
siderable amount of power. In edge computing, a compute-
capable node positioned at the network edge takes over the
execution of the DNN. Edge computing suffers from the need
to transfer information-rich signals over a volatile wireless
channel, often under tight latency constraints. Additionally,
in real-world systems, edge servers likely need to support a
multitude of applications and users, which may overload their
computing and communications capabilities.

Recently, a variant of edge computing emerged where DNN
models are divided into sections that are distributed over
mobile-edge-cloud systems. This approach is often referred

Fig. 1. Our framework allocates blocks of layers of DNNs with early-exits
(EEs) to mobile-edge-cloud systems so that energy expenditure is minimized.
Multiple applications coexist, and an orchestrator controls the execution
of DNN blocks and information flow across them based on application
requirements (accuracy and latency) and system constraints (bandwidth,
computing capacity). For Application 1, the orchestrator allocates two blocks
with early exits (EE1 and EE2) to a mobile node and an edge server, while
for Application 2 the target performance is achieved by using the first two
early exits.

to as “split computing” or “split DNN” [8]. By controlling
the splitting points defining the sections of the DNN, one
can control the computing load allocated to the different
devices/servers as well as the amount of data transmitted on
the communication links connecting them. In fact, each node
is tasked with the execution of a portion of the DNN, and is
thus in charge of a fraction of the overall operations. Moreover,
instead of the input, the sections transmit their output tensors,
whose size is a function of the splitting point. Relevant work
in this direction includes [9]–[13], as discussed in Sec. VI.

In this paper, we tackle the split DNN problem in the context
of dynamic DNNs – and, specifically, multi-branched DNNs
equipped with early exits [8], [14], [15] – and multi-tiered
mobile-edge-cloud systems (Fig. 1). The motivation behind
these architectures is that, to achieve high performance in
complex tasks, DNNs have to deal with the most challenging
samples in a dataset. This results in models that are over-
parametrized for a large set of the input samples. Early exits
are model-tails attached to some layers of the original model
designed to produce an analogous output as that of the full
DNN, with a smaller computing effort. By deciding which
branches to execute sample-by-sample, early-exit models can
dynamically adapt the number of operations needed to produce
an output to the input “complexity”. An overview on early-exit
DNNs and related challenges can be found in [8], [16].



Our work focuses on the problem of allocating “blocks”
of layers of DNNs with early exits to the nodes composing
the overall mobile-edge-cloud system. Notably, unlike most of
the existing studies on split DNNs, we consider a setting with
multiple data sources, applications, and nodes at all the tiers of
the infrastructure (see Fig. 1). Also, it is worth remarking that
the presence of early exits influences the flow of information
throughout the blocks, and some executions may be terminated
early, further complicating the allocation problem. The overall
allocation problem we formulate minimizes the energy needed
to complete inference under latency and accuracy application
requirements, as well as bandwidth and computing resource
constraints. To resolve this challenging – NP-hard – problem,
we adopt an approach based on graph optimization, where we
manipulate an initial graph capturing the relationship between
system nodes and DNN layers to create a specialized graph
which we can be used to compute feasible low-cost paths
(corresponding to allocation strategies).

In summary, the contributions of this work are as follows:
1) We formulate an allocation problem where the blocks

of DNNs layers with early exits required by mobile
applications are allocated to the nodes of a mobile-
edge-cloud system. The objective is to minimize energy
consumption while satisfying application-specific infer-
ence requirements, under computing power and channel
capacity constraints.

2) We devise a new solution framework – named Feasible
Inference Graph (FIN) – for the allocation problem.
By manipulating the graph describing the DNN block
allocation problem, we build a graph model amenable
to optimization, which only contains paths representing
feasible solutions and where the optimal allocation is the
minimum-cost path.

3) We explore the impact on the inference energy consump-
tion of different allocation configurations for three DNN
models with early exits (B-LeNet, B-AlexNet and B-
ResNet, pre-trained on multiple datasets), over nodes with
different computing and communication capabilities.

4) Our results show that models equipped with early exits
can dramatically decrease the overall energy consumption
when some of these exits are allocated to mobile or edge
devices under system and application-level constraints,
by reducing the involvement of larger-scale nodes in the
completion of the inference. We also show how FIN
performs close to the optimum computed by brute force.
Compared to the state-of-the-art approach in [17] for
cost minimization, FIN yields dramatic energy savings,
exceeding 90% of the computational energy and 80%
of the communication one. Furthermore, such gains are
consistent under different branchy DNN architectures,
from the small-scale B-LeNet to the much larger B-
AlexNet.

II. ENERGY-AWARE INFERENCE THROUGH DYNAMIC NNS

First, we introduce the mobile-edge-cloud system, along
with the structure of the DNN models and applications. We

TABLE I
NOTATION

Symbol Definition
s∈S Data sources
n∈N Multi-tiered network nodes
h∈H Applications (or, equivalently, DNN models)

G̃={Ṽ, Ẽ} Two-dimensional two-plane graph modeling the
overall system

G={V, Ec} Single-plane extended graph
ℓhi i-th block of application h’s DNN
σh Inference rate for application h

αh Target inference quality of application h

δh Target inference latency of application h

ϕh(ℓhi ) Fraction of input samples that are output by ℓhi
Th(v, v′), Data transfer time, computing time, and energy
Ch(v, v′), consumption weights of the edge v→v′∈E , with
Eh(v, v′) v=(n, ℓhi ) and v′=(n′, ℓhj )

πh Path on G representing a configuration of appli-
cation h

γ Resolution of the feasibility graph

also describe the corresponding two-plane graph capturing the
possible allocation of DNN blocks (Plane 1) to the system
nodes (Plane 2), along with the nodes computing and commu-
nication resources (Sec. II-A). Then we translate the two-plane
graph into a single-plane extended graph (Sec. II-B), used
to optimally configure dynamic DNNs for energy-efficient
inference tasks (Sec. II-C). We later develop a low complexity
solution using this extended graph that gives performance
close to optimum.

A. System model

We consider a multi-tiered communication and computing
infrastructure composed of mobile nodes, edge servers, and
cloud servers. The objective of the overall system is to
support a set of mobile applications whose central component
is a DNN performing the analysis of the information that
the mobile nodes acquire through co-located data sources.
Examples include computer vision models for object detection
and image classification, as well as speech recognition tasks.
The edge of the infrastructure hosts a Machine Learning (ML)
orchestrator that possesses knowledge of the applications, as
well as some essential information about the capabilities of
the mobile nodes and the data they can acquire.

Formally, the main elements defining the system are:
• A set S of data sources (e.g., sensors) indexed with

s∈{1, . . . , S}; each data source samples a physical phe-
nomenon extracting information that serves as input to an
inference task for application h at rate σh ≥ 0.
• A set N of computationally-capable network nodes,

including (i) mobile nodes connected to data sources, (ii) edge
servers, and (iii) cloud servers.
• A set H of applications h∈{1, . . . ,H}, each associated

with a DNN model equipped with early-exits. We describe the
overall architecture of the DNN associated with application
h as composed of a set of layer blocks Lh={ℓh1 , . . . , ℓhN},
where each block corresponds to a portion of the network
backbone and at most one early exit. Although the input



rate of the application is σh, early exits may “capture” some
input and terminate execution; we thus define ϕh(ℓhi ) as the
fraction of input samples that are output after block ℓhi .
Each application h has specific requirements defined as the
target inference quality (e.g., target accuracy value) αh, and
maximum inference latency δh. In the following, we often
refer to applications and the DNN representing their essential
component interchangeably.

Given application h, the ML orchestrator determines which
blocks of the DNN should be executed and assigns them to
network nodes in such a way that the application inference
requirements are fulfilled. Specifically, according to the split
computing paradigm, the network nodes can cooperatively
execute the overall DNN: a node assigned a DNN block or a
set of blocks will execute all the corresponding layers and send
the output coefficients of their cut layer (tensor) to the nodes
hosting the subsequent block(s). Note that a node may be
allocated zero, one, or multiple exits, which are all executed.

We represent the overall system by means of a directed two-
dimensional load-resource, two-plane graph model [18]–[20],
with one plane capturing the network nodes and the other
the blocks of the DNN layers. We establish a relationship
between these two planes to represent the possible mapping
between the communication and compute resource demand
of the applications in H onto the resources made available
by the multi-tiered network nodes in N . Also, the two-
dimensional load-resource model matches the communication
and computing resources handled by the system, i.e., offered
by the network nodes and required by the applications.

More formally, we denote such graph, illustrated in the left
panel of Fig. 2, with G̃ = {Ṽ, Ẽ} where Ṽ are the vertices
and Ẽ are the edges. The two graph planes are as follows (the
notation is summarized in Table I).
Plane 1: The vertices Ṽ1⊂Ṽ of this plane correspond to the
system nodes in S ∪ N . A slicing setting is in place, where
applications and nodes are assigned separate portions of com-
puting resources and bandwidth. Thus, we associate with the
edges Ẽ1⊂Ẽ bidimensional weights [bh(n1, n2), c

h(n1, n2)],
n1, n2∈N , where bh(n1, n2) corresponds to the bandwidth of
the communication link between nodes n1 and n2 allocated to
application h, and ch(n1, n2) is the computing power of n1 al-
located to application h. The existence of the edge determines
whether or not two nodes can communicate, and the self loop
n→n has infinite capacity, i.e., bh(n, n)=∞. Further, the edge
between a network node n∈N and a co-located data source
s∈S has weight [bh(s, n), ch(s, n)] = [∞, 0], i.e., we consider
the bandwidth between the two s and n as unlimited and that
the data source does not have any compute capability.
Plane 2: The vertices Ṽ2⊂Ṽ of this plane correspond to DNN
layers’ blocks L={Lh}h. The edges Ẽ2 in this plane capture
the connectivity structure of the DNNs, where edges exist
only between consecutive blocks of the same application. The
weights [dh(ℓh1 , ℓ

h
2 ), o

h(ℓh1 , ℓ
h
2 )], ℓ

h
1 , ℓ

h
2∈Lh, represent the size

(in bits) of the data output by block ℓh1 (dh(ℓh1 , ℓ
h
2 )) and the

number of operations needed to execute block ℓh1 (oh(ℓh1 , ℓ
h
2 )).

Inter-plane edges: A set of edges Ẽℓ→n unidirectionally

connects Plane 2 to Plane 1, with the generic edge representing
that a layers’ block of a DNN is deployed at a network node.

B. From the two-plane to the single-plane extended graph

We now transform the two-dimensional load-resource, two-
plane graph G̃ into a directed single-plane extended graph G =
{V, E} (second panel of Fig. 2). The vertices of G correspond
to joint nodes and DNN blocks that are connected by inter-
plane edges in G̃, that is, in G the two planes are collapsed
following the connecting edges. Furthermore, an edge in G
exists only if the corresponding nodes and DNN blocks are
connected in G̃. Consider the vertices v=(n, ℓhi ) and v′ =
(n′, ℓhj ), where n, n′∈N are network nodes and ℓhi , ℓ

h
j∈Lh are

DNN blocks. Notably, vertices corresponding to data sources
in G are not bound with any DNN block.

In G, edges exist only between nodes embedding con-
secutive blocks of the same DNN (which may deployed
also on the same node), and are associated with the set
of weights [Th(v, v′), Ch(v, v′), Eh(v, v′)], where Th(v, v′)
and Ch(v, v′) are the data transfer time and the computing
time, respectively, and Eh(v, v′) is the per-inference energy
consumption. We then define Th(v, v′) and Ch(v, v′) as:

Th(v, v′)=
dh(ℓhi , ℓ

h
j )

bh(n, n′)
, Ch(v, v′)=

oh(ℓhi , ℓ
h
j )

ch(n, n′)
. (1)

We recall that bh(n, n′)=∞ if n=n′, that is, the communi-
cation time is equal to 0 if the vertices are associated with
different (and necessarily contiguous) DNN blocks allocated
on the same node. The weight Eh(v, v′) instead compounds
the computing, transmission, and receiving energy associated
with edge v→v′, i.e.,

Eh(v, v′) = (ξt + ξr)
dh(ℓhi , ℓ

h
j )

bh(n, n′)
+ ξc

oh(ℓhi , ℓ
h
j )

ch(n, n′)
, (2)

where ξt, ξr and ξc are the power consumption spent, respec-
tively, by node n to transmit, and by node n′ to receive and
compute, a data unit.

C. Energy-efficient inference: Problem formulation

First, given application h, we denote with πh the generic
configuration indicating (i) the sources feeding data to the
application as well as (ii) which DNN blocks with early exits
should be deployed (hence used) for inference, and (iii) where
(i.e., on which network nodes). We then define binary selection
variables phπ(v)∈{0, 1} based on the configuration πh, where
v∈V . If phπ(v)=1, then the vertex v is selected by the con-
figuration πh, i.e., v∈πh; if phπ(v)=0, v is not selected, i.e.,
v/∈πh. The configuration πh is controlled by the orchestrator.
Note that the configuration needs to build a path from the
sources to the DNN output for all the applications. Further, we
remark that a node may be allocated multiple blocks, and even
multiple exits. In the graph representation, this corresponds to
a configuration that selects multiple vertices representing the
same node and separate DNN blocks (like the red path in
Fig. 2(center)).



mobile edge cloudsources

Fig. 2. The graphs used in our solution strategy: two-dimensional, two-plane system model (left); single-plane extended graph (center); feasible graph (right).

We adopt here a performance metric that is a function of the
configuration and cannot be decoupled as a per-edge measure:
the configuration inference quality. In fact, the configuration
may suppress the execution of the blocks/exits after a certain
index, for instance due to latency constraints. We thus define
the inference quality of application h given configuration πh

as the quality associated with the whole sequence of DNN
blocks in πh, and denote it with a(πh).

The objective of the orchestrator is to minimize the overall
energy consumption to support σh (tasks per second) infer-
ences per second (3a), subject to latency, quality, network re-
source, and compute-resource constraints (3b)–(3e). Recalling
that v=(n, ℓhi ) and v′=(n′, ℓhj ), and ϕh(ℓhi ) is the fraction of
input samples output by ℓhi , the resulting optimization problem
(specified here for application h) is:

min
πh

∑
v,v′∈V

σhϕh(ℓhi )E
h(v, v′)phπ(v)p

h
π(v

′) (3a)

s.t.
∑

v,v′∈V

(
Th(v, v′) + Ch(v, v′)

)
phπ(v)p

h
π(v

′) ≤ δh (3b)

a(πh) ≥ αh (3c)

σhϕh(ℓhi )o
h(ℓhi , ℓ

h
j ) ≤ ch(v, v′), ∀v, v′ ∈ πh (3d)

σhϕh(ℓhi )d
h(ℓhi , ℓ

h
j ) ≤ bh(v, v′), ∀v, v′ ∈ πh . (3e)

Problem complexity. The above problem is very complex to
solve, owing to its combinatorial nature and to the overwhelm-
ing number of existing solutions. Specifically, we prove that
the problem is NP-hard.

Property 1: The problem of optimizing (3a) subject to
constraints (3b)–(3e) is NP-hard.

Proof: To prove NP-hardness, we perform a reduction
from a known NP-hard problem to the one under study. In par-
ticular, we show that any instance of the Steiner tree problem
(STP) [21] can be transformed into a simplified instance of the
problem introduced above. The STP is a generalization of the
minimum spanning tree problem: given a weighted, undirected
graph and a subset of nodes therein, the goal is to select the
minimum-weight tree connecting all nodes in the subset. Given
an instance of the STP, we build an instance of the problem in
(3a)–(3e) by creating: (i) a data source for all the vertices to
connect except one, and imposing that all such sources must
be used for inference; (ii) one DNN layer, corresponding to

the remaining vertex to connect; (iii) physical nodes for all
intermediate vertices in the STP instance; (iv) only one of
the physical nodes has enough capabilities to run the DNN
layer. Also, the connectivity between nodes and data sources
reproduces that of the STP instance, and one component of the
weights in our problem instance is set to match the weights
in the STP instance while all others are set to zero.

Solving our problem to optimality also yields an optimal
solution to the STP instance, hence, the two problems are
equivalent. Since the reduction takes polynomial (linear) time
(each edge and vertex of the STP instance is processed once)
and the STP problem is NP-hard [21], the thesis is proved.
It is also worth remarking that the instance of our problem
created in the proof above is very simple (only one DNN layer,
only one non-zero weight for the edges, etc.). This suggests
that, on top of being NP-hard, our problem is significantly
more complex than an already NP-hard problem like the STP.
In light of the problem complexity, we propose below an
algorithmic solution, leveraging a graph representation that, ef-
ficiently and very conveniently, embeds all possible decisions,
the application requirements, and the system constraints.

III. THE FIN SOLUTION

Here, we introduce our proposed heuristic, called Feasible
Inference Graph (FIN). We first describe how to build a
feasible graph – i.e., a graph summarizing all feasible solutions
to the energy-aware inference problem – starting from the ex-
tended one we used to formulate the optimization problem. By
construction, the feasible graph includes only those decisions
(i.e., which data sources and DNN blocks are used and where
such blocks should be deployed) that meet all constraints on
inference latency and quality as well as on data, computational,
and network resources. The second part of the section then
describes how the most energy-efficient DNN configuration
can be found by identifying the minimum-cost path traversing
the feasible graph, as the edge weights represent the energy
consumption (computation and communication) incurred by
the nodes.

Specifically, the feasible graph built by FIN summarizes all
feasible solutions through two complementary strategies:

• the additive constraint, namely, the inference latency, is
guaranteed by the graph topology itself;



• the other constraints related to system capability and
application requirements, e.g., inference quality and data
requirements as well as bandwidth limits, are guaranteed
by pruning the edges and vertices that would violate them.

The vertices of the feasible graph are then the same as in
the extended one, but each vertex is replicated a number γ of
times. Let us denote the g-th replica of a vertex v=(n, lhi )∈G
with vg , g=1, . . . , γ, and define index g as depth of a vertex.
The vertices depth is what allows us to track the additive
constraints – in our case, inference latency. Indeed, different
replicas vg of the same vertex v correspond to situations that
are equivalent except for the accumulated inference latency:
intuitively, the deeper a vertex, the closer it is to violating the
additive constraint on the inference latency. Importantly, as
mentioned earlier, all vertices correspond to solutions that do
honor the latency limit; for vertices whose depth is exactly γ
the constraint (3b) is met with an equality sign.

Once the vertices are in place, we proceed to creating the
edges connecting them. Specifically, we create an edge from
vertex vg1 to vertex v′g2 , with v′=(n′, lhj ) and g2>g1, if:

• it is possible to place layer ℓhi at node n and layer ℓhj at
node n′;

• doing so incurs a combined processing time and network
delay such that:

g2 − g1 =

⌈
γ · T

h(v, v′) + Ch(v, v′)

δh

⌉
. (4)

In the numerator of the fraction above, the first term corre-
sponds to the computing time, and the second to the data
transfer delay.

Let us then define the steepness of an edge as the difference
between the depth of the target and the source vertices, and
the steepness of a path as the sum of the steepness values of its
edges. Intuitively, steeper edges (and steeper paths) correspond
to solutions with a longer inference latency; also, any path
arriving to a vertex corresponding to an exit layer before
depth γ represents, by construction, a solution conforming
with the latency limit constraint.

Next, we prune all the vertices and edges that do not
conform with the local constraints, i.e.,

• edges that would not reach the target inference quality,
i.e., they belong to a configuration πh s.t. a(πh)<αh, or

• edges that would exceed the available bandwidth or
computational capability of the node represented by the
vertex tail of the edge, i.e., σhϕh(ℓhi )d

h(ℓhi , ℓ
h
j )>bh(v, v′)

or σhϕh(ℓhi )o
h(ℓhi , ℓ

h
j )>ch(v, v′).

Surviving edges are assigned a weight corresponding to the
energy consumption they incur, as defined in (2). Thanks to the
way the feasible graph is built and pruned, any path going from
a data source vertex to any vertex corresponding to an exit
layer corresponds to a feasible solution. To find the optimal
one, it is thus sufficient to compute the minimum-cost path.

For instance, the right panel of Fig. 2 depicts a feasible
graph with γ=5. The red and green paths have steepness 3
and the purple one has steepness 4; they are all feasible and
one of them will be selected as optimal solution. The blue

path, instead, would have a steepness of 5 and terminate at
node (n4, l4, 6); but this node does not exist in the feasible
graph. The blue path as a whole is thus infeasible (hence, it
is dotted in the figure), and is dropped from the graph.

As for parameter γ, this indicates the resolution with which
the inference latency is represented by the feasible graph: the
smaller the γ values, the fewer the quantization levels (hence,
the possible values of vertex depth and path steepness), and the
larger the quantization error. As shown in Property 2, such an
error can be arbitrarily reduced by increasing γ, thus getting
arbitrarily close to the optimum.

Property 2: The competitive ratio of FIN (i.e., the ratio
of the cost of FIN’s solution to the cost of the optimal one)
is 1+ 1

γ .
Proof: FIN consists of two steps: (a) building the feasible

graph and (b) finding a minimum-cost path on it. Step (b)
can be solved to optimality, e.g., through the Bellman-Ford
algorithm. Step (a) can use the result of [22, Th. 4.3], proving
that creating γ replicas of the vertices in the feasible graph
results in a cost increase of at most 1

γ times the optimum.
On the negative side, a high value of γ results in a higher

complexity as the minimum-cost traversal will search for more
edges in the feasible graph. It is thus essential to set a value of
γ that effectively trades off quantization error with complexity.
Furthermore, given γ, we envision a λ-proximity approach
to reduce the complexity in searching for the vertices and
edges to include in the output configuration. Specifically, as
the vertices with small depth have a lower number of outgoing
feasible edges, searching among vertices with depth close to
1 may not help. We thus limit the search to a λ-proximity
(1≤λ≤γ) index on the maximum depth vertices, i.e., with
index g∈[(γ−λ), γ], and λ=γ corresponding to the exhaustive
search among all nodes.

The steps involved in FIN are described in Alg. 1 and
depicted in Fig. 3; the figure also shows how FIN is integrated
with the construction of the two-plane system graph and the
single-plane extended graph.

Layers 

Nodes 

Constraints
, , 

System model
graph 

Extended
graph 

Feasible
graph

Shortest
path

the FIN approach

Fig. 3. Solution strategy and steps within FIN.

IV. REFERENCE SCENARIO

Branched DNNs with early-exits. To evaluate the perfor-
mance of our FIN solution, we consider six different appli-
cations corresponding to three DNN models with early-exits,
namely, B-LeNet, B-AlexNet, and B-ResNet, each trained with
two popular datasets. We summarize such mapping in Table II
and detail the three models below. We also underline that we
consider accuracy as measure of the inference quality.



Algorithm 1: FIN: Feasible graph and configuration
selection

Input: G, αh, δh, γ, λ
Function I: Create feasible graph(G,γ):

1) Create replica vertices
for each vertex v ∈ V do

for g = 0 : 1 : γ do
Create vg and include in feasible vertex set

2) Create directed edges
for each edge (v, v′) ∈ E do

for g1 = 0 : 1 : γ do
for g2 = i : 1 : γ do

if (4) holds true then
Create edge (vg1 , v

′
g2);

Include it in feasible edges set;
Compute edge weight Eh(vg1 , v

′
g2)

using (2);

return feasible graph
Function II: Configuration solution(feasible graph, λ, γ):

1) Minimum-cost path traversal on feasible graph,
over λ-proximity vertices (i.e., vg with g ∈ [(γ − λ), γ])
Initialize g1 = 1
Include vg1 = (n, lh1 ) in πh

for i = 2 : |Lh| do
for g2 = (γ − λ) : γ do

if edge (vg1 , v
′
g2) : vg1 = (n, lhi−1) then

Include v′g2 in πh if min
v′

Eh(v, v′);
Set g1 = g2;

return πh as FIN output configuration

TABLE II
DETAILS OF THE PRE-TRAINED DNN MODELS WITH EARLY EXITS USED

BY THE SIX APPLICATIONS

Application DNN Training
dataset

# exits Exit output
ϕh [%]

h1 B-AlexNet CIFAR100 3 [65.6, 25.2, 9.2]
h2 CIFAR10 3
h3 B-ResNet CIFAR100 3 [41.5, 13.8, 44.7]
h4 CIFAR10 3
h5 B-LeNet MNIST 2 [94.3, 5.63]
h6 EMNIST 2

B-AlexNet is a branchy version of AlexNet [23] DNN
architecture with early-exits. It has 5 convolution, 1 max-
pooling, 3 fully connected, and 3 early-exit blocks. It can
be used for image classification [23], video summarization
[24], and human activity classification [14], [25]–[27]. The
input to the B-AlexNet model is RGB format images, scaled
to size 227×227×3. The feature map and complexity of the
B-AlexNet architecture is given in Table III; when trained with
datasets from different sources and with different sample rate
(i.e., samples/category in CIFAR10 and CIFAR100) [15], it
results in an accuracy level as given in Table IV.

B-ResNet is a branchy version of ResNet110 [28] DNN with
early-exits used for image recognition and classification tasks.
ResNet110 consists of 3 stages, with each stage comprising
a series of residual blocks. The first stage has 18 residual

TABLE III
NUMBER OF INPUT FEATURES AND COMPLEXITY OF THE DNN MODEL

BLOCKS

Block [Number of features, Complexity [MOPs]]
B-AlexNet B-ResNet B-LeNet

1 [290400, 0.043] [16384, 0.004] [4704, 0.118]
2 [186624, 6.711] [16384, 0.021] [1600, 0.040]
3 [64896, 10.145] [16384, 0.021] [120, 0.048]
4 [64896, 13.523] [4096, 0.083] -
5 [43264, 29.045] [4096, 0.664] -

Exit-1 [64896, 22.579] [4096, 0.748] [120, 0.05]
Exit-2 [43264,9.056] [4096, 0.665] [10, 0.022]
Exit-3 [1000, 0.039] [10, 0.001] -

TABLE IV
INFERENCE ACCURACY OF THE PRE-TRAINED DNN MODELS WITH EARLY

EXITS USED BY THE APPLICATIONS

Exit Accuracy [%]
block h1 h2 h3 h4 h5 h6

Exit-1 39.56 56.37 29.97 38.97 91.18 93.54
Exit-2 54.22 78.04 39.93 51.93 96.70 99.20
Exit-3 60.32 85.95 72.21 93.91 - -

TABLE V
COMMUNICATION (DOWNLINK (DL)/UPLINK (UL)) CAPACITY AND

ENERGY CONSUMPTION OF THE SYSTEM NODES

Node Power [W] Traffic DL/UL Energy DL/UL
Idle Max [Gbps] [nJ/bit]

Mobile 3.1 3.7 0.1 30
Edge 4,096 4,550 560 37
Cloud 11,070 12,300 4,480 12.6

blocks with 16 filters in each block, while the second and
third stages have 36 residual blocks, each with 32 and 64
filters in each block (resp.). The residual blocks consist of 2 or
3 convolutional layers, each followed by batch normalization
and ReLU activation. The input is size 32×32×3, while the
feature map and complexity of B-ResNet architecture layers
are given in Table III. The inference accuracy of pretrained B-
ResNet using CIFAR10 and CIFAR100 is given in Table IV.

B-LeNet is a branchy version of LeNet-5 CNN architecture
[29] that can recognize handwritten digits using datasets like
MNIST [30] and EMNIST [31]. B-Lenet consists of 8 layers (2
convolutional, 2 subsampling, 3 fully-connected, 1 early-exit).
Its feature map and complexity are given in Table III, while
the inference accuracy of pretrained B-Lenet using MNIST
[30] and EMNIST [31] is given in Table IV.

Network system. We use three types of nodes, i.e.,
mobile, edge, and cloud nodes [32], respectively, associ-
ated with the following values of computational capability
in trillions operations per second (TOPS) and power con-
sumption in watt (W): [11 TOPS, 6 W]; [153.4 TOPS, 140 W],
[312 TOPS, 400 W]. The capability of the communication in-
terface of such nodes are given in Table V [33]–[35]. We recall
that such parameters define the bandwidth and computing
resource weights of the edges between the vertices in Plane
1 of graph G̃, and the corresponding power consumption.
Further, in our experiments, we initially consider one node
for each network tier, and then we let the number of mobile
nodes increase with the number of users.



V. PERFORMANCE EVALUATION

In this section, we first show the impact of different DNN
configurations on the inference latency, quality, and energy
cost. Then, we introduce the alternatives against which we
compare FIN, and present the performance obtained for the
applications and network system described earlier.

A. Impact of the DNN configurations

We start by investigating the trade-off among energy con-
sumption, inference accuracy, and inference latency while
dynamically orchestrating a DNN model on the multi-tiered
network for various user applications. To this end, we consider
three example configurations for B-AlexNet and B-ResNet, in
which the DNN blocks are deployed on the mobile, edge, and
cloud nodes as indicated in Table VI.

Fig. 4 shows that, as expected, both Config-2 (involving
mobile and edge) and Config-3 (involving all tiers) reduce
the inference latency overall compared to Config-1 (involving
the mobile only). However, it is interesting to observe that
the benefit of involving the cloud in the inference task (i.e.,
Config-3) is negligible when compared to Config-2 where only
the edge is added in support to the mobile node.

Looking instead at the energy consumption and the accuracy
performance together, while Config-2 and Config-3 make the
computing burden at the mobile nodes lighter, they may
imply a higher overall cost due to the communication energy
expenditure. Such an expenditure appears whenever exit-2 and
exit-3 are enabled (i.e., a higher accuracy is required). The
increase in communication energy is especially noticeable for
B-AlexNet, which has indeed the largest size, resulting in a
significant surge (87.6%) in the overall cost when transitioning
from Config-1 to Config-2, and a further increase of 28% when
shifting from Config-2 to Config-3. Instead, whenever a lower
accuracy is acceptable, we can exploit the splits corresponding
to exit-1 for all DNNs, and, so doing, reduce both inference
latency (from 6.56 ms to 2.67 ms), and energy consumption
(from 39.4 mJ with all three exits active to just 16.4 mJ when
only exit-1 is activated in Config-1).

In summary, whenever the mobile nodes are used, even for
a subset of the DNN blocks, the inference latency grows to
such an extent that the reduction in computing time brought
by cloud nodes is negligible. Furthermore, whenever we aim
at the maximum accuracy, using cloud nodes may lead to very
high communication energy costs. Remarkably, however, there

TABLE VI
EXAMPLE TEST DEPLOYMENT CONFIGURATIONS OF B-ALEXNET AND

B-RESNET

Configuration Mobile Edge Cloud

B
-A

le
xN

et
B

-R
es

N
et Config-1 All blocks - -

Config-2 ℓh1 ,exit-1,ℓh2 , ℓh3 ,exit-2,ℓh4 , ℓh5 ,exit-3 -

Config-3 ℓh1 ,exit-1,ℓh2 , ℓh3 ,exit-2,ℓh4 ℓh5 ,exit-3

exist configurations involving nodes from the different network
tiers that can reduce the total as well as the mobile node
energy expenditure. It follows that it is possible to identify
DNN allocation strategies that improve the sustainability of
inference tasks when the application requirements warrant it.

B. FIN performance

Benchmarks. We compare FIN against:
• Multi-constrained path selection (MCP), a solution to

our problem based on the multi-constrained path selection in
[17]. We select [17] because no scheme exists that specifically
tackles the problem at hand. [17] finds a path between source
and destination nodes in a graph such that it satisfies the
multiple end-to-end constraints on the additive edge weights.
MCP applies such an approach to our extended graph G
to find a feasible solution for the optimization problem in
Sec. II-C. To this end, we assign to edge v→v′∈E the auxiliary
weight: Ω(v, v′)=(T

h(v,v′)+Ch(v,v′)
δh

+a(v′)
αh ), where a(v′) is

the accuracy associated with the whole sequence of DNN
blocks till v′. Then, the minimum-cost path is selected using
the auxiliary edge weights in the extended graph.

• Optimum (Opt), obtained through exhaustive search.
Performance of DNN deployments. The total energy con-
sumption of the B-AlexNet deployment configurations ob-
tained using MCP, FIN, and Opt is presented in Fig. 5,
as the inference accuracy and latency constraints vary. The
corresponding breakdown into communication and computa-
tion energy consumption is depicted instead in Fig. 6. Fig. 5
shows that the energy consumption of the DNN configurations
yielded by FIN (γ=10) is very close to the optimum and much
less than MCP, while meeting the accuracy target αh=80%
and the latency target δh=5ms. Also, for an extremely low
value of γ (namely, 3), FIN still outperforms MCP. Our ex-
periments have also revealed that such performance (αh=80%,
δh=5ms) is achieved by MCP, FIN (γ=10), and Opt de-
ploying (resp.) a set of [3,1,1], [2,1,2], and [1,2,2] blocks on

Fig. 4. Impact of the configurations listed in Table VI: inference latency (left) and energy consumption (center) for the B-AlexNet and B-ResNet; inference
accuracy for B-AlexNet-based h1, h2 and B-ResNet-based h3, h4 (right).



5 10 15
Inference latency constraint [ms]

0

0.05

0.1

0.15

0.2
E

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

(a) αh =80%

20 40 60 80
Accuracy constraint [%]

0

0.05

0.1

0.15

0.2

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
] Opt

MCP

FIN, =3

FIN, =10

(b) δh =5 ms

Fig. 5. Total energy consumption of the B-AlexNet configurations obtained
through Opt, MCP, and FIN (γ=3, 10), as the target inference latency and
accuracy vary.

[mobile, edge, cloud] nodes, and each employs exit-3 to meet
the target accuracy. In this case, the deployment of the last two
DNN blocks on the cloud reduces the energy consumption in
FIN and Opt configuration as compared to MCP. For a less
stringent latency requirement (αh=80%, δh=12ms), MCP
deploys [1,4,0] while FIN (γ=10) and Opt both deploy [5,0,0]
blocks, as the larger target latency allows keeping all blocks on
the mobile, which reduces energy consumption. In summary,
meeting a smaller inference latency target requires a split
deployment that increases energy expenditure.

TABLE VII
EXECUTION-TIME [MS] TAKEN BY MCP AND FIN (γ = 3, 10) FOR

FINDING THE DEPLOYMENT CONFIGURATION OF EACH DNN

Model MCP FIN
γ=3 γ=10

B-AlexNet 0.591 0.892 2.450
B-ResNet 0.545 0.657 1.158
B-LeNet 0.243 0.461 0.816

This is confirmed by Fig. 6(a)(c): for a lower target inference
latency, communication energy consumption grows, as a split
deployment is needed. Similarly, Fig. 6(b)(d) underline that,
with a higher value of accuracy constraint, the best configu-
rations incur higher computation and communication energy:

5 10 15
Inference latency constraint [ms]

0

0.05

0.1

0.15

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

(a) αh=80%, commun. energy

20 40 60 80
Accuracy constraint [%]

0

0.05

0.1

0.15

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
] Opt

MCP

FIN, =3

FIN, =10

(b) δh=5 ms, commun. energy

5 10 15
Inference latency constraint [ms]

0

0.02

0.04

0.06

0.08

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

(c) αh=80%, compute energy

20 40 60 80
Accuracy constraint [%]

0

0.02

0.04

0.06

0.08

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

(d) δh=5 ms, compute energy

Fig. 6. Computation and communication energy consumption of MCP, FIN,
Opt for B-AlexNet configurations, as the constraints vary.

0 0.2 0.4 0.6
Inference time constraint [ms]

0

0.2

0.4

0.6

0.8

1

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

10
-3

(a) αh=85%

60 70 80 90 100
Accuracy constraint [%]

0

0.2

0.4

0.6

0.8

1

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [
J
]

10
-3

Opt

MCP

FIN, =3

FIN, =10

(b) δh=0.1 ms

Fig. 7. Total energy consumption of the B-LeNet configurations obtained
through Opt, MCP, and FIN (γ=3, 10), as the target inference latency and
accuracy vary.

indeed, inspecting the resulting deployments, it emerges that
they require later exit (exit-3) and split deployment. Compar-
ing FIN to its benchmarks, two main aspects are evident.
First, even for a moderate value of γ=10, FIN virtually
always matches the optimum and significantly outperforms
MCP in all cases. When γ drops to 3, the communication
and computation energy expenditures diverge: the former
(Fig. 6(a)(b)) deteriorates significantly; the latter (Fig. 6(c)(d))
remains remarkably low and stays close to the optimum. This
suggests that communication energy is harder to minimize
than computation energy, owing to the complexity of the
scenarios we target. Importantly, even when γ=3 – which,
it is worth remarking, is extremely low – FIN can match
MCP. We have similarly evaluated the B-ResNet (omitted for
brevity) and the B-LeNet deployments (Fig. 7). Looking at
FIN’s energy consumption, a similar effect to Fig. 5 emerges,
with FIN now matching the optimum for sufficiently high γ
even more closely than in the case of B-AlexNet.

Table VII lists the overall execution times taken (on average)
by MCP and FIN (γ=3, 10) for obtaining the deployment con-
figuration of the B-AlexNet, B-ResNet, and B-LeNet models,
using a Lenovo ThinkPad P1 Gen 3 with i7-10750H CPU
(2.6 GHz, 32 GB RAM). The execution time of FIN is shorter
than twice that of MCP for γ=3 and shorter than 5 times for
γ=10. Overall, the execution time of FIN is less than 2.5 ms.
Multi-application scenario. We now apply FIN to the de-
ployment of the six applications listed in Table II. Using
the pre-trained DNN models for inference, we investigate
the impact of an increasing number of users on the system
performance. We consider that 0.5% of the edge and cloud
computing resources are available for each of the applications’
inference execution. The application requirements, [inference
latency [ms], accuracy [%]], are set to [5,55], [5, 55], and
[0.1, 93] for h1−2, h3−4, and h5−6 applications, respectively.
The energy consumption (computing and communication)
gain provided by FIN (γ=10) and MCP, for the running
applications h1−6 that require one-inference-per-second-per-
user, is shown in Fig. 8 (the size of this scenario renders
obtaining the optimum impractical). Notice how FIN deploys
the DNN model configuration that entails an overall energy
consumption that is 65%–70% of the benchmark for all the
considered DNNs (Fig. 8(left)). Also, the MCP approach leans



B-AlexNet B-ResNet B-LeNet
0

20

40

60

80

100
E

n
e
rg

y
 c

o
n
s
. 
g
a
in

 [
%

]
compute commun. total

MCP FIN MCP FIN MCP FIN
0

0.2

0.4

0.6

0.8

P
ro

b
a
b
ili

ty

mobile edge cloud

B-AlexNet B-ResNet B-LeNet

1 2 3
0

0.1

0.2

0.3

0.4

F
a
ilu

re
 p

ro
b
a
b
ili

ty

MCP FIN

B
-A

le
x
N

e
t

B
-R

e
s
N

e
t

B
-L

e
N

e
t

MCP FIN MCP FIN MCP FIN MCP FIN MCP FIN MCP FIN
0

0.5

1

P
ro

b
a
b
ili

ty

exit-1 exit-2 exit3

Fig. 8. Performance in the multi-application scenario: Energy consumption gain through FIN over MCP (left); probability of DNN block deployment on the
multi-tier nodes in MCP and FIN (center-left), that the selected configuration fails to meet the constraints (center-right), and of DNN exit point for inference
(right). For FIN, we set γ=10.

towards more deployment on the mobile and cloud side,
whereas FIN takes full advantage of all tiers and, in particular,
of the edge (Fig. 8(center-left)). Not only does FIN achieve
better energy efficiency, but it also surpasses MCP in terms
of success probability across all applications (Fig. 8(center-
right)). In contrast to MCP’s high failure probability (over
30% for B-Alexnet and B-Lenet and 20% for B-Resnet), FIN
sees less than 5% of users failing to meet the latency and
accuracy constraints. Consistently, Fig. 8(right) shows that,
with high probability and unlike MCP, FIN can deploy the
applications blocks all the way to exit-3 whenever required,
while it rightfully enables the earliest exit split whenever the
accuracy constraint allows it (e.g., for h2 and h6).

VI. RELATED WORK

Our work lies at the intersection of two major fields, namely,
model split (or, partitioning) and resource-aware ML.
Early exit and model splitting [8]: Early exit models have
been introduced in [14], which also raises the issue of how
to place the early-exit layers, i.e., how to make the DNN
topology branchy. In the same context, [9] tackles distributed
scenarios and seeks to adapt the placement of exit layers
to the available resources in the near-edge, edge, and cloud
segments of the network. [10] pursues a similar approach in
IoT scenarios, minimizing the usage of edge resources. More
recent work [12] performs DNN splitting in real time, with the
aim of adapting to changes in channel conditions. The recent
work [13] widens the focus and accounts for the location of
the users that need the inference task.

Earlier approaches seek to split DNNs at naturally-occurring
suitable locations, a.k.a. bottlenecks [36], [37]. If no bottleneck
is available, the related problem of bottleneck injection arises.
The goal is to change the topology of the DNN with the aim
of creating suitable points to insert an early-exit layer. These
techniques have been pioneered by [38], [39], and often use
pairs of encoder and decode layers. Bottleneck injection can be
performed in a content-aware fashion, as in [40], [41]. Also,
[5] underlines that collaborative DNN partitioning and task
offloading in resource-constrained edge-IoT network can meet
the DNN inference deadline requirements.
Resource-aware ML is, broadly speaking, concerned with
adapting the distributed ML task to perform (whether it is
training or inference) and the available resources. Works in
this field often focus on selecting the best nodes to exploit,
accounting for their speed [42], size of local dataset [43], and
feature-richness thereof [44], as well as any communication

issues they may experience [45]. A more recent trend, closer in
spirit to model partitioning, consists in changing the learning
task to fit the available resources, e.g., by selecting the most
appropriate model [46].

A related trend is reliability in distributed ML. The main
goal of this line of work is ensuring that all nodes involved in
the ML task provide timely and high-quality updates, despite
communication issues [47] and the presence of malicious
nodes [48]. Reliability might be at odd with fairness issues,
and a balance between the two goals is sought in [49].

In summary, to the best of our knowledge, our work is the
first to jointly tackle (i) how ML model splitting should be
performed and (ii) where the different model blocks should
be deployed, (iii) for models with early exits as well as in
the presence of inference requirements and constraints on the
computational and networking resources in multi-tier systems.

VII. CONCLUSIONS

This paper addresses the problem of allocating sections
of multi-branched dynamic DNNs to nodes in mobile-edge-
cloud systems. By means of a multi-stage graph-modeling
approach, we solve the problem of minimizing the inference
energy cost while matching the inference target requirements
to the constrained nodes’ resources. Our algorithmic solution,
named FIN, to this (NP-hard) problem leverages a further
manipulation of the graph model to yield a low-complexity,
yet effective, solution strategy. The results show that FIN
closely matches the optimum and, by enabling effective split
deployments and leveraging at best the nodes of the multi-
tiered network, reduces by over 65% the inference energy
consumption with respect to our benchmark. Future work
will optimize the allocation of bandwidth and computational
resources across different DNN-based applications in a multi-
tier system.

ACKNOWLEDGMENTS

This work was supported by the European Commission
through Grant No. 101095890 (PREDICT-6G project), Grant
No. 101096379 (CENTRIC project), and Grant No. 101095363
(ADROIT6G project), and by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of
NextGenerationEU, partnership on “Telecommunications of
the Future” (PE0000001 - program “RESTART”).



REFERENCES

[1] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: analysis, applications, and prospects,” IEEE transac-
tions on neural networks and learning systems, 2021.

[2] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech
recognition using deep neural networks: A systematic review,” IEEE
access, vol. 7, pp. 19 143–19 165, 2019.

[3] Y. Goldberg, Neural network methods for natural language processing.
Springer Nature, 2022.

[4] I. Azimi, A. Anzanpour, A. M. Rahmani, T. Pahikkala, M. Levorato,
P. Liljeberg, and N. Dutt, “Hich: Hierarchical fog-assisted computing
architecture for healthcare iot,” ACM Transactions on Embedded Com-
puting Systems, 2017.

[5] X. Zhang, M. Mounesan, and S. Debroy, “EFFECT-DNN: energy-
efficient edge framework for real-time DNN inference,” in Proc. IEEE
WoWMoM, Boston, MA, USA, June 2023, pp. 10–20.

[6] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[7] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in
edge computing: A survey,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2131–2165, 2021.

[8] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Computing Surveys, vol. 55, no. 5, pp. 1–30, 2022.

[9] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, 2017.

[10] Y.-T. Yang and H.-Y. Wei, “Edge–iot computing and networking re-
source allocation for decomposable deep learning inference,” IEEE
Internet of Things Journal, vol. 10, no. 6, pp. 5178–5193, 2022.

[11] W. Miao, Z. Zeng, L. Wei, S. Li, C. Jiang, and Z. Zhang, “Adaptive dnn
partition in edge computing environments,” in IEEE ICPADS, 2020.

[12] J. Lee, H. Lee, and W. Choi, “Wireless channel adaptive dnn split
inference for resource-constrained edge devices,” IEEE Communications
Letters, 2023.

[13] W. Fan, L. Gao, Y. Su, F. Wu, and Y. Liu, “Joint dnn partition
and resource allocation for task offloading in edge-cloud-assisted iot
environments,” IEEE Internet of Things Journal, 2023.

[14] S. Teerapittayanon et al., “Branchynet: Fast inference via early exiting
from deep neural networks,” in IEEE ICPR, 2016.

[15] R. Dong, Y. Mao, and J. Zhang, “Resource-constrained edge ai with
early exit prediction,” Journal of Communications and Information
Networks, vol. 7, no. 2, pp. 122–134, Jun. 2022.

[16] S. Laskaridis, A. Kouris, and N. D. Lane, “Adaptive inference through
early-exit networks: Design, challenges and directions,” in Proceedings
of the 5th International Workshop on Embedded and Mobile Deep
Learning, 2021, pp. 1–6.

[17] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman, “Finding a
path subject to many additive QoS constraints,” IEEE/ACM Transactions
on Networking, vol. 15, no. 1, pp. 201–211, Feb. 2007.

[18] L. Gouveia, M. Leitner, and M. Ruthmair, “Layered graph approaches
for combinatorial optimization problems,” Computers & Operations
Research, vol. 102, pp. 22–38, Feb. 2019.

[19] ——, “Extended formulations and branch-and-cut algorithms for the
black-and-white traveling salesman problem,” European Journal of
Operational Research, vol. 262, no. 3, pp. 908–928, Nov. 2017.

[20] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, “Delay-
aware virtual network function placement and routing in edge clouds,”
IEEE Transactions on Mobile Computing, 2021.

[21] F. K. Hwang et al., “Steiner tree problems,” Networks, 1992.
[22] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman, “Finding a

path subject to many additive qos constraints,” IEEE/ACM Transactions
on networking, 2007.

[23] O. Elharrouss, Y. Akbari, N. Almaadeed, and S. Al-Maadeed,
“Backbones-review: Feature extraction networks for deep learning
and deep reinforcement learning approaches,” Jun. 2022. [Online].
Available: https://arxiv.org/abs/2206.08016

[24] J. Lei, Q. Luan, X. Song, X. Liu, D. Tao, and M. Song, “Action parsing-
driven video summarization based on reinforcement learning,” IEEE
Transactions on Circuits and Systems for Video Technology, 2019.

[25] F. Serpush and M. Rezae, “Complex human action recognition using
a hierarchical feature reduction and deep learning-based method,” SN
Computer Science, vol. 2, no. 94, pp. 1–15, Feb. 2021.

[26] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, “Action
recognition in video sequences using deep bi-directional LSTM with
CNN features,” IEEE Access, vol. 6, pp. 1155–1166, 2018.

[27] S. Darafsh, S. S. Ghidary, and M. S. Zamani, “Real-time activity
recognition and intention recognition using a vision-based embedded
system,” CoRR.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[30] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
ATT Labs, 2010.

[31] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an extension
of mnist to handwritten letters,” arXiv preprint arXiv:1702.05373, 2017.

[32] F. Malandrino, C. F. Chiasserini, and G. di Giacomo, “Efficient dis-
tributed DNNs in the mobile-edge-cloud continuum,” IEEE/ACM Trans-
actions on Networking (early access), pp. 1–15, Nov. 2022.

[33] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog
computing may help to save energy in cloud computing,” IEEE Journal
on Selected Areas in Communications, 2016.

[34] Y. Li, A.-C. Orgerie, I. Rodero, B. L. Amersho, M. Parashar, and J.-M.
Menaud, “End-to-end energy models for edge cloud-based IoT plat-
forms: Application to data stream analysis in IoT,” Future Generation
Computer Systems, vol. 87, pp. 667–678, Oct. 2018.

[35] L. Sun, H. Deng, R. K. Sheshadri, W. Zheng, and D. Koutsonikolas,
“Experimental evaluation of WiFi active power/energy consumption
models for smartphones,” IEEE Transactions on Mobile Computing,
vol. 16, no. 1, pp. 115–129, Mar. 2017.

[36] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in ACM SIGKDD, 2006.

[37] C.-H. Chiang, P. Liu, D.-W. Wang, D.-Y. Hong, and J.-J. Wu, “Optimal
branch location for cost-effective inference on branchynet,” in IEEE Big
Data, 2021.

[38] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh, “Dis-
tilled split deep neural networks for edge-assisted real-time systems,” in
ACM HotEdgeVideo, 2019.

[39] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep
learning architecture for intelligent mobile cloud computing services,”
in IEEE/ACM ISLPED, 2019.

[40] J. C. Lee, Y. Kim, S. Moon, and J. H. Ko, “A splittable dnn-based object
detector for edge-cloud collaborative real-time video inference,” in IEEE
AVSS, 2021.

[41] Y. Matsubara, D. Callegaro, S. Singh, M. Levorato, and F. Restuccia,
“Bottlefit: Learning compressed representations in deep neural networks
for effective and efficient split computing,” in IEEE WoWMoM, 2022.

[42] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
2019.

[43] F. Malandrino and C. F. Chiasserini, “Federated learning at the network
edge: When not all nodes are created equal,” IEEE Communications
Magazine, 2021.

[44] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive
weighting,” IEEE Transactions on Cognitive Communications and Net-
working, 2021.

[45] Y. Zhou, Q. Ye, and J. C. Lv, “Communication-Efficient Federated
Learning with Compensated Overlap-FedAvg,” IEEE Transactions on
Parallel and Distributed Systems, 2021.

[46] F. Paissan, A. Ancilotto, A. Brutti, and E. Farella, “Scalable neural
architectures for end-to-end environmental sound classification,” in IEEE
ICASSP, 2022.

[47] F. Ang, L. Chen, N. Zhao, Y. Chen, W. Wang, and F. R. Yu, “Robust
federated learning with noisy communication,” IEEE Transactions on
Communications, 2020.

[48] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to de-
tect malicious clients for robust federated learning,” arXiv preprint
arXiv:2002.00211, 2020.

[49] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust federated
learning through personalization,” in ICML, 2021.


