
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit / Manca, Edward; Urbinati, Luca; Casu, Mario
R.. - ELETTRONICO. - 1113:(2024), pp. 43-53. (Intervento presentato al convegno 54th Annual Meeting of the Italian
Electronics Society tenutosi a Noto (SR), Italia nel September 6-8, 2023) [10.1007/978-3-031-48711-8_6].

Original

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-031-48711-8_6

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-48711-8_6

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984332 since: 2023-12-07T08:27:28Z

Springer Nature

Accelerating Quantized DNN Layers on RISC-V

with a STAR MAC Unit

Edward Manca[0009�0006�1342�2677], Luca Urbinati[0000�0001�5317�1960], and
Mario R. Casu[0000�0002�1026�0178]

Dept. Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
{luca.urbinati,mario.casu}@polito.it

Abstract. To support quantized neural networks in low-end CPUs,
we propose STAR MAC, a reconfigurable multiply-and-accumulate unit
based on a modified Baugh-Wooley architecture that operates at a vari-
able reduced precision. We integrated it in a small RISC-V processor
called Ibex obtaining an acceleration up to 5.8⇥ in Fully-Connected (FC)
layers, 3.7⇥ in 2D-Convolution (2DConv) layers, and 2.8⇥ in Depth-
Wise Convolution (DWConv) layers, with respect to the original Ibex
core (Orig.), and up to 4.5⇥ in FC layers, 3.0⇥ in 2DConv layers, and
2.3⇥ in DWConv layers, against a modified Ibex core supporting stan-
dard 32-bit MAC operations (Orig.+MAC). Area and power in a 28-nm
technology with 200 and 600 MHz target clock frequency are 0.015 and
0.017mm2, and 1.5 and 4.3mW, respectively, with a limited overhead
within 10% and 3% with respect to Orig., and within 3% and 3% against
Orig.+MAC.

Keywords: Variable-precision MAC Unit · RISC-V · Deep Learning

1 Introduction

Deep Neural Networks (DNNs) can run in devices with very low power, memory,
and silicon resources, thanks to quantization and training methods that allow
using low-precision computation at negligible accuracy loss. To fully leverage this
paradigm in low-end CPUs, there is a need to support low-precision arithmetic
instructions with dedicated Multiply-and-Accumulate (MAC) units.

The Sum Apart (SA) and Sum Together (ST) approaches exploit a typical
multiplier to perform sub-word parallel multiplications or multiplication and
additions, respectively [1]. Being valid in di↵erent contexts, we merge them in
our new Sum-Together/Apart Reconfigurable (STAR) MAC unit based on a
Baugh-Wooley (BW) multiplier [2]. We embed it in the Ibex core, a small RISC-
V, formerly zero-riscy [3], adding MAC instructions with reduced precision.

Close to our work in terms of supported operations, but di↵erent in goal
and implementation, is the Ri5cy processor [4]. In fact, Ri5cy aims to high per-
formance using many low-precision functional units (FUs) to support specific
operations at reduced precision, while we aim to reuse the same FU via recon-
figuration to reduce resources. The XMPI processor [5] follows the approach of

This	 preprint	 has	 not	 undergone	 any	 post-submission	 improvements	 or	 correc6ons.	 The	
Version	 of	 Record	 of	 this	 contribu6on	 is	 published	 in	 Proceedings	 of	 SIE	 2023,	 and	 is	
available	online	at	hDps://doi.org/10.1007/978-3-031-48711-8_6.

2 E. Manca et al.

A

C

SHIFTER

••••••
8-bit adder

STAR BW Multiplier

10-bit adder

•••

O

ALU REG
34 bit

ALU REG
UPDATE

MAC REG
UPDATE

MAC REG
64 bit

CONCAT

STAGE
CONF

MAC_CTRL

OUTHLn

AH=A[31:16] AL=A[15:0]

B

BH=B[31:16] BL=B[15:0]

C
GEN

SIGN

2b

1b2b

3b

2b

1b

32b

34b

32b32b

34b

1b

R

S 32b

32-bit and
16-bit ST/SA

16

R

32b

(CONF=MUL32,
MUL16{ST/SA})

8-bit SA

8

8

R2 R1

16b16b

(CONF=MUL8SA)
4-bit SA

R4 R3 R2 R1

8b 8b 8b 8b

(CONF=MUL4SA)

8-bit ST

8

8

R X

24b 8b

(CONF=MUL8ST)
4-bit ST

20b 12b

R X

(CONF=MUL4ST)

4

4
4

4

4
4

4
4

A_int B_int

CONCAT_out

Fig. 1. The STAR MAC unit implemented in the Ibex core (left side) and the five
operating modes of the STAR multiplier (right side), where the top square of each
configuration is the BW PPM and the bottom rectangle is the multiplier’s output.

[4] of more dedicated resources, but adds support for operations at even lower
precision. Di↵erent approaches than SA/ST, for low-precision operation MAC
units in RISC-V cores, are divide-and-conquer [6] and bit-serial [7]. However,
the first one results in a larger multiplier structure than the BW one, while the
second one, being serial in nature, is inherently low-performance.

2 Hardware Design

The Multiplier/Divider (MULT/DIV) unit of the Ibex core [3] is a multiplication
and division block controlled by a state machine. In this paper we use the Small
version of the Ibex processor1, which uses the Fast MULT/DIV unit to extend
the base RISC-V instruction set with the RV32M ISA extension. In the original
design, the Fast MULT/DIV unit computes 32-bit MUL operations (namely
MUL, MULH, MULHSU, and MULHU) in 3/4 clock cycles by iteratively using
a behaviorally described 17-bit multiplier along with a 34-bit adder and the ALU
register ALU REG defined in the ALU unit.

In this work we replaced this 17-bit multiplier with our sub-word paral-
lel Sum-Together/Apart Reconfigurable (STAR) multiplier, described in detail
in Sec. 2.1, obtaining the proposed STAR MAC unit shown in the left side of
Fig. 1. The STARmultiplier executes one 16-bit multiplication, or N=2, 4 parallel
low-precision multiplications with 16/N-bit operands for both SA/ST operating
modes. The STAR MAC unit still supports all RV32M instructions and preserves
the iterative approach of the original MULT/DIV unit, requiring multiple clock
cycles—i.e., iteration cycles (ICs)—to complete all the instructions. Moreover, it

1 The Ibex processor version used in our work can be found at: https://github.com/
lowRISC/ibex/tree/8db89a9dfc0cb08371d079cfc76e83d9↵c66480

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit 3

Table 1. New MAC instructions and number of required clock cycles.

Instruction Operation
Clock

cycles

MAC O[31:0] = A[31:0]⇥B[31:0] + C[31:0] 3

MAC16ST O[31:0] = A[15:0]⇥B[31:16] + A[31:16]⇥B[15:0] + C[31:0] 2

MAC8ST
O[23:0] = A[7:0]⇥B[31:24] + A[15:8]⇥B[23:16] +

+ A[23:16]⇥B[15:8] + A[31:24]⇥B[7:0] + C[31:8]
2

MAC4ST

O[19:0] = A[3:0]⇥B[31:28] + A[7:4]⇥B[27:24] +
+ A[11:8]⇥B[23:20] + A[15:12]⇥B[19:16] +
+ A[19:16]⇥B[15:12] + A[23:20]⇥B[11:8] +
+ A[27:24]⇥B[7:4] + A[31:28]⇥B[3:0] + C[31:12]

2

MAC16SA O[15:0] = A[15:0]⇥B[31:16] + C[31:0] 2

MAC8SA O[15:0] = A[7:0]⇥B[23:16] + C[15:0]; O[31:16] = A[15:8]⇥B[31:24] + C[31:16] 2

MAC4SA
O[7:0] = A[3:0]⇥B[19:16] + C[7:0]; O[15:8] = A[7:4]⇥B[23:20] + C[15:8]

O[23:16] = A[11:8]⇥B[27:24] + C[23:16]; O[31:24] = A[15:12]⇥B[31:28] + C[31:24]
2

MAC16SAH O[31:0] = A[31:16]⇥B[15:0] + C[63:32] 2

MAC8SAH O[15:0] = A[23:16]⇥B[7:0] + C[47:32]; O[31:16] = A[31:24]⇥B[15:8] + C[63:48] 2

MAC4SAH
O[7:0] = A[19:16]⇥B[3:0] + C[39:32]; O[15:8] = A[23:20]⇥B[7:4] + C[47:40]

O[23:16] = A[27:24]⇥B[11:8] + C[55:48]; O[31:24] = A[31:28]⇥B[15:12] + C[63:56]
2

MACSET MAC REG[63:0] = {A[31:0], B[31:0]} 1

supports MAC operations, which were not available in the original MULT/DIV
unit: we added a standard 32-bit MAC instruction, which takes 3 clock cycles,
and custom low-precision ST/SA MAC instructions (MACxSA and MACxST,
x 2 {4, 8, 16}), which exploit the STAR multiplier and take 2 clock cycles. All
the new instructions are reported in Table 1, where A and B are the two-input
operands, C is the value to accumulate, and O is the output of the STAR MAC
unit. Low-precision instructions support signed operands only. We also defined
the equivalent MAC instructions (MACH, MACHSU, and MACHU) of the cor-
responding MUL instructions (MULH, MULHSU, and MULHU). However, since
these six instructions will not be used in the our benchmarks of quantized DNN
layers of Sec. 3, we do not comment any further on them.

2.1 STAR multiplier

The core of our STAR MAC unit is the 16-bit STAR multiplier, whose BW
architecture is depicted in Fig. 2. It consists of a 16⇥16 partial product matrix
(PPM) that works as a typical BW multiplier [2]: each block receives a pair of
bits from the two input operands, computes the partial product (PP) between
them using an AND gate; then it generates the output sum So and carry Co bits
by compressing the PP, along with the input sum Si and input carry Ci bits,
using a Full Adder (FA). The sum bits propagate diagonally, while the carry
bits propagates vertically, connecting all the blocks of the PPM (not shown in
Fig. 2(a) for better clarity).

To support low-precision SA and ST operating modes, in addition to the
standard full-precision 16-bit multiplication, the PPM requires to be reconfigured

4 E. Manca et al.

[]

8-bit RCA8-bit RCA

HA

C31

C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

C29

C30

C28

C25

C26

C27

C24

C21

C22

C23

C20

C17

C18

C19

C16

FA

FA

FAFA

FAHA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

HA

FA

C33 C32

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16R17R18R19R20R21R22R23R24R25R26R27R28R29R30R31R32R33

[]

FULL ADDER

AND

AB

AND

Ci PSi

Co So []

FULL ADDER

AND

AB

XOR

P

AND

SiCi

Co So

I

[]

FULL ADDER

AND

AB

Co

OR

P

AND

So

SiCi I

[]

FULL ADDER

So

AND

AB PSi

AND
M

Ci

Co

Fig. 2. PPM of the STAR BW multiplier (a), three versions of PPM blocks (b-d), and
carry propagation blocking strategy (e).

in one of the five ways illustrated in the right box of Fig. 1, where the top square
of each configuration represents the PPM and the bottom rectangle corresponds
to the final 32-bit result R of the STAR multiplier. The PPs in the yellow areas
of the PPM contribute to generate the yellow bits of R, while the PPs in the
grey areas are gated and do not contribute to it. To obtain this behavior, we
created three configurable blocks (green, red and blue, Fig. 2(b)-(d)) by adding
few logic gates controlled by signals P (propagate) and I (invert), and we placed
them in specific positions in the STAR PPM.

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit 5

As shown in Fig. 1, depending on the STAR configuration, any block of the
PPM could be potentially be gated. Thus, each block of the STAR PPM must
have the possibility of blocking the PP propagation. For this reason all the three
configurable blocks have an AND gate which stops the propagation of the PP
towards the FA when P =0.

To support signed operations, we need to take into account two aspects. The
first is that the PPs belonging to the blocks in the left-most column and bottom
row of a typical BW PPM have to be inverted. Since in any ST/SA configuration
of STAR each yellow square of Fig. 1 behaves like an independent low-precision
BW multiplier, we need to guarantee the PP inversion in all the left and bottom
blocks of these sub-precision multipliers, as well. For this task, we conceived the
red block (Fig. 2(c)), which inverts the output of the PP when I =1 via an XOR
gate. The second aspect is the insertion of logic 1s in specific positions of the
PPM to accomplish the BW algorithm [2]. Typically, the insertion of these 1s
occurs through the Si inputs of the top and left-most blocks of the BW PPM.
However, we decided to use those inputs to add the third operand of the MAC
operation, i.e. the 34-bit signal C. Hence, when possible, we generate these 1s
using the inactive red blocks (with P =0 and I =1) inside the PPM. When not
possible, we inserted the blue blocks (Fig. 2(d)), which use an OR gate to force
the PP to be logic 1 (again with P =0 and I =1).

To guarantee that R is separated in two or four independent subwords for
8-bit and 4-bit SA operations, we have to interrupt the propagation of the carry
between two consecutive low-precision multiplications. Therefore, we inserted
a few AND gates, controlled by signal M (Fig. 2(e)), between two vertically
adjacent blocks, as shown in Fig. 2(a) by the X symbols. We also added an AND
gate between the two 8-bit Ripple-Carry Adders (RCAs).

To compute MULH, MULHU, and MULHSU 32-bit instructions, as well as
MACH, MACHU, and MACHSU, the STAR MAC unit requires 4 cycles. Thus,
to prevent overflow while adding the intermediate multiplication results, the
RCA on the left needs to be extended to 34 bits (see the two pink FAs at the
bottom left corner of Fig. 2(a)). Moreover, the column of yellow Full-Adders
(FA) on the left side of the PPM is necessary to add the two most significant
bits of the 34-bit RCA, which in some cases have to be sign extended (namely,
for MULH instructions at cycle 2 and 3, for MULHSU instructions at cycle 3).
The final output becomes the concatenation of the eighteen bits at the output of
the RCA (R [33:16]), which compresses the So and carry Co bits of the last row
of the PPM, and the sixteen So bits exiting from the rightmost column of the
PPM (R [15:0]). As already stated in Sec. 1, MULH instructions are not used in
the experiments of this paper, thus further details on this matter are reserved
for future work.

Finally, signals P and I are generated by a combinational logic that uses the
following control signals: CONF, a 3-bit signal indicating the actual operation
type (SA/ST at 32/16/8/4 bits); OUTHLn, a single bit indicating which part
(32-bit high/low) of the 64-bit final result has to be returned by the instruction
(note: SA operations can have multiple separate results in the 32-bit high/low of

6 E. Manca et al.

ALU REG UPDATEINPUT MULTIPLEXERS

(a) (b)

1

0

R[31:0]

ALU_REG_q[15:0]

R[15:0]
[31:16]

[15:0]

OUTHLn

1

0

== MUL16SA ? 1 : 0

== MUL8SA ? 1 : 0

== MUL4SA ? 1 : 0

== MUL32 ? 1 : 0

STAGE

[1:0]

0

1
R[31:0]

ALU_REG_q[31:0]
1

0 R[33:32]

[33:32]

[31:0]

00

01

10

11

CONF

CONF

OR

S[31:0]

ALU_REG_d[33:0]

R[31:0]

1

0

== MUL32 ? 1 : 0

STAGE

00

01

10

11

CONF

A_int[15:0]

A[15:0]

A[31:16]

00

01

10

11

B_int[15:0]

[1:0]

B[15:0]

B[31:16]

Fig. 3. Schematics describing the input multiplexers (of Fig. 1) (a) and the ALU REG

UPDATE block (b). These are actually described in Verilog and synthesized, thus the
resulting logic might be di↵erent yet functionally equivalent to these schematics.

the result, according to Table 1); SIGN, a bit indicating if the instruction works
with signed or unsigned operands; STAGE, 2 bits indicating the current clock
cycle of the Finite State Machine (FSM) inside the MULT/DIV unit. Moreover,
the first three signals come directly from the instruction opcode.

2.2 STAR MAC unit

Like in the original MULT/DIV unit, the 32-bit input operands A and B come
from the register file. The proper upper and lower 16-bit chunks from A and B
are selected by a couple of multiplexers depending on the IC. However, in our
MAC STAR unit these multiplexers are controlled not only by STAGE, but also
by CONF because we have to deal with ST and SA instructions (Fig. 3(a)).

For MUL instructions, at each IC the combinational logic ALU REG UP-
DATE in Fig. 1 selects which subword of R to store in the register ALU REG
for the next iteration. In fact, the content of ALU REG is used by the mul-
tiplier in the subsequent cycle to continue the iterative multiplication process.
ALU REG UPDATE takes as inputs the multiplier’s output R, the SHIFTER’
output S and the content of ALU REG, and is controlled by STAGE, OUTHLn
and CONF (the first two are present also in the original MULT/DIV unit), as
reported in Fig. 3(b).

For MAC instructions, while ALU REG serves the same purpose as in the
MUL instructions case, which is to temporarily store R to use it in the next
IC, we introduced the 64-bit accumulation register MAC REG along with the
combinational logic MAC REG UPDATE responsible for its updating. In par-
ticular, for 32-bit MAC instructions the result is accumulated in MAC REG up
to 32-bit precision, while for 32-bit MACH, MACHSU, MACHU instructions the
result is accumulated up to 64-bit precision. For SA instructions, instead, MAC
REG stores the accumulated results in separate data chunks of 32 (MAC16SA),

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit 7

MAC REG UPDATE C GEN

(a) (b)

1

0
[63:16]

[15:0]

== MUL16SA ? 1 : 0

== MUL8SA ? 1 : 0

== MUL4SA ? 1 : 0

== MUL32 ? 1 : 0

STAGE

[1:0]

0

1

1

0R[31:0]

00

01

10

11

CONF OR

CONCAT_out[63:0]

R[15:0]

MAC_REG_q[63:16]

1

0

MAC_REG_q[31:0]

[63:32]R[31:0]

MAC_REG_q[63:32]
[31:0]

MAC_REG_q[31:0]

== MUL32 ? 1 : 0

MAC_REG_q[15:0]

[63:32]

[31:16]0

1R[15:0]

MAC_REG_q[31:16]

[15:0]

MAC_REG_q[63:32]

MAC_CTRL[0]

0

1R[31:0]

MAC_REG_q[63:32]

[31:0]

MAC_REG_q[31:0]

[63:32]

CONF

MAC_CTRL[0]
MAC_CTRL[1]

MAC_REG_q[63:0]

MAC_REG_q[63:32]

[31:0]

[63:32]

CONF

MAC_REG_d[63:0]

1

0

1

0

== MUL32 ? 1 : 0

STAGE
[1:0]

0

1

00

01

10

11

CONF

0

1

32'h00000000

MAC_REG_q[63:32]

0

1

== MUL32 ? 1 : 0CONF

0

1

1

0

MAC_REG_q[31:0]

ALU_REG_q[31:0]

[15:0]
ALU_REG_q[31:16]

[31:16]
16'h0000

MAC_REG_q[47:32]

1

0
[31:16]

[15:0]ALU_REG_q[31:16]

ALU_REG_q[31:0]

16'h0000

OUTHLn1

0
16'h0000

MAC_REG_q[63:48]
ALU_REG_q[33:32]

[33:32]

[31:0]
C[33:0]

[15:0]

ALU_REG_q[31:16]

[31:16]

MAC_CTRL[0]

MAC_REG_q[31:0]

== MUL16SA ? 1 : 0

== MUL8SA ? 1 : 0

== MUL4SA ? 1 : 0

CONF

OR

MAC_CTRL[0]

Fig. 4. Schematics of MAC REG UPDATE (a) and C GEN (b) blocks. These are
actually described in Verilog and synthesized, thus the resulting logic might be di↵erent
yet functionally equivalent to these schematics.

16 (MAC8SA), or 8 bits (MAC4SA). For ST instructions results are accumu-
lated and stored with a precision of 32 (MAC16ST), 24 (MAC8ST), and 20 bits
(MAC4ST). MAC REG UPDATE, whose schematic is reported in Fig. 4(a), be-
haves similarly to ALU REG UPDATE : it takes R, the content of ALU REG
and the concatenation of A and B (i.e. the output of the CONCAT block,
called CONCAT out) to update the register itself according to STAGE, CONF
and MAC CTRL control signals. MACSET is commonly used to initialize MAC
REG, with the value of CONCAT out , at the beginning of a software routine
that requires a series of MAC instructions.

For both MUL and MAC instructions, the third input C to the STAR BW
multiplier comes from the combinational logic C GEN. Through control signals
MAC CTRL, STAGE and CONF, C GEN selects ALU REG in case of standard
MUL operations, or the proper sub-words of MAC REG and ALU REG in case
of MAC operations, as shown in the schematic of Fig. 4(b). MAC CTRL is a 2-
bit signal which indicates if the current instruction is a MAC (01b), a MACSET
(11b), or a MUL (00b). The final output O of the STAR MAC unit corresponds
to the 32 LSBs of the output of ALU REG UPDATE, which can be: R for all
non-ST operations and for the MAC16ST operation, or S for MAC8ST and
MAC4ST operations. In fact, in this latter case the SHIFTER is used to get rid
of the 8 or 12 invalid LSBs of R (as reported in grey in Fig. 1, right side, and in
Fig. 3(b)).

8 E. Manca et al.

 16b

IC1

IC2

IC3

IC4

(a) MAC (b) MACH (c) MACxSA (d) MACxST

16b16b 16b

AL x BL

AL x BH

AH x BL

AH x BH

AL x BL

AL x BH

AH x BL

AH x BL

AL x BH

AH x BL

AL x BH

Fig. 5. Visual representation of the ICs for the MAC instructions of the STAR MAC
unit.

Fig.,5 illustrates the sequence in which operands are sent to the STAR mul-
tiplier at each IC, for MAC (Fig. 5(a)), MACH (Fig. 5(b)), MACxSA (Fig. 5(c))
and MACxST (Fig. 5(d)) instructions. The blue rectangle shows the 16-bit sub-
words of A and B processed by the STAR multiplier at the corresponding IC.
The sharp-edge rectangle is a “virtual” register used only for the sake of this
explanation, which contains the bits generated by STAR at each IC. The green
bits are already the final bits of the result, while the orange bits represent partial
results that, through the third input C, are accumulated by STAR at the next
IC with the product between A and B. In the STAR MAC unit the green bits
are actually stored in MAC REG, while the orange bits are stored in ALU REG.

3 Experimental Results

The possibility to perform parallel low-precision MAC operations, due to the
STAR MAC unit, enables the acceleration of quantized DNN layers on the Ibex
core. We call STAR-based the new Ibex with the STAR MAC unit. To have a fair
comparison in area, power and execution latency of DNN layers, we decided to
slightly modify the original Ibex (Orig.) to add the support to MAC instructions,
resulting in a third Ibex implementation (Orig.+MAC).

We synthesized all the three Ibex versions on a 28-nm technology (0.9V)
at 200 and 600MHz, two tight constraints for this processor [3]. The results of
area and estimated power are reported in Table 2. As we can see, STAR-based
has limited area and power overheads compared to Orig.; when compared to
Orig.+MAC, the area overhead decreases even further.

Then, we evaluated the performance of STAR-based vs Orig.+MAC on these
quantized layers: fully-connected (FC), 128-256 input and 32 output neurons; 2D
convolutional (2DConv), 32-128 input channels (inch.), 8x8 feature map (fmap.),
3x3 kernel (kern.) and 4 output channels (outch.); depth-wise convolutional
(DWConv), 16-64 channels (ch.), 16x16 feature map size and 3x3 kernel. We

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit 9

Table 2. Logic synthesis results of Orig., Orig.+MAC and STAR-based.

Ibex type

@ clk. freq.

[MHz]

Area

[µm2
]

Power

[mW]

Ibex type

@ clk. freq.

[MHz]

Area

[µm2
]

Power

[mW]

Orig.

@ 200
14241 1.46

Orig.

@ 600
15135 4.17

Orig.+MAC

@ 200
14658
(+2.9%)

1.50
(+2.3%)

Orig.+MAC

@ 600
15588
(+3.0%)

4.27
(+2.6%)

STAR-based

@ 200
15299
(+7.4%)

1.50
(+2.3%)

STAR-based

@ 600
16528
(+9.2%)

4.29
(+2.9%)

16b16b 16b
16b

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

STAR MAC in ST mode: 2DConv STAR MAC in SA mode: DWConv

(a) (b)

8x8
ST

SHIFTER

STAR BW

8b
8b

8b
8b

8b
8b

16x16
ST

SHIFTER

STAR BW

16b16b 16b
16b

8x8
SA

STAR BW

8b
8b

8b
8b

8b
8b

16x16
SA

STAR BW

Fig. 6. Two examples of STAR MAC used in 2DConv and DWConv layers:
MAC16{ST/SA} in the upper part, MAC8{ST/SA} in the lower part.

assume that the low-precision operands are already packed/prearranged in mem-
ory in such a way that the instructions listed in Table 1 can be directly executed
without incurring any costs due to operand reordering. To exploit the acceler-
ation provided by STAR at reduced precision, we coded these layers with an
output-stationary dataflow [8]. We used MACxST instructions for FC/2DConv
and MACxSA instructions for DWConv (x 2 {4, 8, 16}) because the former lay-
ers require the accumulation along the input channels/neurons dimension, while
the latter does not [9]. In this regard, Fig. 6 shows two examples, for 2DConv
(MAC16ST and MAC8ST, Fig. 6a) and DWConv (MAC16SA and MAC8SA,
Fig. 6b), on how low-precision input features (light blue) and weights (orange)
are read from the corresponding tensors and packed in the two 32-bit input reg-
isters of the STAR MAC unit to produce the output features (green). Both the

10 E. Manca et al.

Table 3. (a) Average speedup (i.e. ratio between clock cycles) of STAR-based vs Orig.

and (b) of STAR-based vs Orig.+MAC, for three DNN layers for di↵erent features
and weights bitwidths.

DNN layers

@ Instruction

Avg. Speedup

STAR-based vs.

Orig.

(y= 16, 8, 4)

Avg. Speedup

STAR-based vs.

Orig.+MAC

(y= 16, 8, 4)

FC (128-256 input,
32 output) @ MACyST

2.0x, 3.3x, 5.8x 1.7x, 2.7x, 4.5x

2DConv (32-128 inch., 8x8 fmap.,
3x3 kern., 4 outch.) @ MACyST

1.6x, 2.3x, 3.7x 1.4x, 1.9x, 3.0x

DWConv (16-64 ch., 16x16 fmap.,
3x3 kern.) @ MACySA

1.4x, 1.9x, 2.8x 1.3x, 1.6x, 2.3x

approaches can be easily extended to MAC4{ST/SA} instructions and to the
FC layer [9]. Furthermore, to have a fair comparison between the STAR-based
and Orig.,+,MAC approaches, we ensured that the code of each DNN layer for
both Ibex cores featured an equal number of memory accesses. As a result, the
comparison exclusively highlights the computational advantages stemming from
the new STAR MAC unit.

[table]skip=4pt The results of the average speedup, i.e. the ratio between
the clock cycles, of STAR-based vs Orig.+MAC for these three DNN layers at
di↵erent features and weights precision is reported in the last column of Table 3.
For the 16, 8, and 4-bit cases, respectively, the average speedup for FC is 1.7⇥,
2.7⇥ and 4.5⇥; for 2DConv is 1.4⇥, 1.9⇥ and 3.0⇥; for DWconv is 1.3⇥, 1.6⇥
and 2.3⇥. We also report the average speedup of STAR-based vs Orig. for the
same DNN layers in the second column of Table 3. We ensured, once again, that
the code of these DNN layers had the same number of memory accesses for both
processors for a fair comparison. For this comparison, the average speedup for
the 16, 8, and 4-bit cases is, respectively, 2.0⇥, 3.3⇥ and 5.8⇥ for FC; 1.6⇥,
2.3⇥ and 3.7⇥ for 2DConv; is 1.4⇥, 1.9⇥ and 2.8⇥ for DWconv.

4 Conclusions

Our proposed STARMAC represents a promising solution for enabling quantized
neural networks on low-end CPUs. With substantial acceleration gains for typical
DNN layers and minimal overhead in terms of area and power consumption, it
o↵ers a viable option for e�cient deep learning inference in resource-constrained
environments.

References

1. Camus, V., Mei, L., Enz, C., and Verhelst, M.: Review and Benchmarking of
Precision-Scalable Multiply-Accumulate Unit Architectures for Embedded Neural-

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit 11

Network Processing. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems (JESTCS), 9(4), 697–711 (2019).

2. Weste, N. H. E., and Harris, D. M.: CMOS VLSI Design. 4th edn. Addison-Wesley
(Pearson), Boston (2011).

3. Schiavone, P. et al.: Slow and steady wins the race? A comparison of ultra-low-
power RISC-V cores for Internet-of-Things applications. In: Proceedings 27th IEEE
International Symposium on Power and Timing Modeling, Optimization and Sim-
ulation (PATMOS), pp. 1–8. IEEE, Thessaloniki, Greece (2017).

4. Gautschi, M. et al.: Near-threshold RISC-V core with DSP extensions for scalable
IoT endpoint devices. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(10), 2700–2713 (2017).

5. Ottavi, G., Garofalo, A., Tagliavini, G., Conti, F., Benini, L., and Rossi, D.: A
mixed-precision RISC-V processor for extreme-edge DNN inference. In: Proceed-
ings IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 512–517.
IEEE, Limasson, Cyprus (2020).

6. Devic, G., France-Pillois, M., Salles, J., Sassatelli, G., and Gamatié, A.: Highly-
adaptive mixed-precision MAC unit for smart and low-power edge computing.
In: Proceedings 19th IEEE International New Circuits and Systems Conference
(NEWCAS), pp. 1–4. IEEE, Toulon, France (2021).

7. RK, R., Sinha, S., and Rao, N.: Variable Bit-Precision Vector Extension for RISC-V
Based Processors. In: Proceedings 14th IEEE International Symposium on Embed-
ded Multicore/Many-core Systems-on-Chip (MCSoC), pp. 114–121. IEEE, Singa-
pore (2021).

8. Chen, Y. -H., Emer, J., and Sze, V.: Eyeriss: A Spatial Architecture for Energy-
E�cient Dataflow for Convolutional Neural Networks. In: Proc. ISCA, pp. 367–379.
ACM/IEEE, Seoul, South Korea (2016).

9. Urbinati, L., and Casu, M. R.: Design-Space Exploration of Mixed-precision DNN
Accelerators based on Sum-Together Multipliers. In: Proceedings 18th Interna-
tional Conference on PhD Research in Microelectronics and Electronics (PRIME),
pp. 377–380. IEEE, Valencia, Spain (2023).

