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Abstract: The realization of a standard Adaptive Finite Element Method (AFEM) preserves the mesh
conformity by performing a completion step in the refinement loop: In addition to elements marked for
refinement due to their contribution to the global error estimator, other elements are refined. In the new
perspective opened by the introduction of Virtual Element Methods (VEM), elements with hanging
nodes can be viewed as polygons with aligned edges, carrying virtual functions together with standard
polynomial functions. The potential advantage is that all activated degrees of freedom are motivated by
error reduction, not just by geometric reasons. This point of view is at the basis of the paper [L. Beirão
da Veiga et al., “Adaptive VEM: stabilization-free a posteriori error analysis and contraction property”,
SIAM Journal on Numerical Analysis, vol. 61, 2023], devoted to the convergence analysis of an
adaptive VEM generated by the successive newest-vertex bisections of triangular elements without
applying completion, in the lowest-order case (polynomial degree k = 1). The purpose of this paper
is to extend these results to the case of VEMs of order k ≥ 2 built on triangular meshes. The problem
at hand is a variable-coefficient, second-order self-adjoint elliptic equation with Dirichlet boundary
conditions; the data of the problem are assumed to be piecewise polynomials of degree k − 1. By
extending the concept of global index of a hanging node, under an admissibility assumption of the
mesh, we derive a stabilization-free a posteriori error estimator. This is the sum of residual-type terms
and certain virtual inconsistency terms (which vanish for k = 1). We define an adaptive VEM of order
k based on this estimator, and we prove its convergence by establishing a contraction result for a linear
combination of (squared) energy norm of the error, (squared) residual estimator, and (squared) virtual
inconsistency estimator.

Keywords: diffusion-reaction problems; Virtual Element Methods; global index of a hanging node; a
posteriori error analysis; stabilization-free estimator; adaptivity; contraction property; convergence
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1. Introduction

Adaptive Finite Element Methods (AFEM) for self-adjoint coercive problems written in the form

u ∈ V : B(u, v) = F(v), ∀v ∈ V,

iterate the sequence
SOLVE→ ESTIMATE→ MARK→ REFINE

to produce better and better approximations of u. Their practical efficiency is corroborated by sound
theoretical results of convergence, complexity, and optimality, which in various cases (such as, e.g.,
conforming h-versions) completely explain the behaviour of the adaptive algorithms [11, 13–15, 18].

The standard AFEM realization preserves the conformity of the initial mesh, at the expense of
performing a completion step in REFINE: In addition to elements marked for refinement due to their
contribution to the global error estimator, other elements are refined. Without this step, one would
obtain nonconforming meshes, containing elements with hanging nodes.

In the new perspective opened by the introduction of Virtual Element Methods (VEM) [3, 4],
elements with hanging nodes can be viewed as polygons with aligned edges, carrying virtual (i.e.,
non-accessible) functions together with standard polynomial functions. The potential advantage is
that all activated degrees of freedom are motivated by error reduction, not just by geometric reasons.
On the other hand, in this transformation of an adaptive FEM into an adaptive VEM, one loses the
availability of a general convergence theory, which so far is lacking (although results on a posteriori
error estimates [8,12] have been obtained, together with efficient practical recipes for refining polytopal
meshes [2, 9, 10]).

Such a shift in perspective inspired the recent papers [5, 6], devoted to the analysis of an adaptive
VEM generated by the successive newest-vertex bisections of triangular elements without applying
completion, in the lowest-order case (polynomial degree k = 1). Despite the simple geometric setup,
the investigation faced some VEM-specific obstacles in the analysis, giving answers that could prove
useful in the study of more general adaptive VEM discretizations. For instance, a VEM solution
uT ∈ VT ⊂ V, defined by the Galerkin projection

uT ∈ VT : BT (uT , vT ) = FT (vT ), ∀vT ∈ VT ,

satisfies an a posteriori error bound of the type

‖u − uT ‖2V . η2
T (uT ) + S T (uT , uT ),

where ηT (uT ) is a residual-type error estimator, S T (uT , uT ) is the stabilization term that makes the
discrete bilinear form BT (uT , vT ) coercive in V, and for simplicity we assume piecewise constant
data on the mesh T . Unfortunately, the term S T (uT , uT ) need not reduce under a mesh refinement,
as η2

T
(uT ) does: This makes the convergence analysis problematic. However, one of the key results

obtained in [5] states that S T (uT , uT ) is dominated by η2
T

(uT ), i.e.,

S T (uT , uT ) . η2
T (uT ),

provided an assumption of admissibility of the non-conforming meshes generated by successive
refinements is fulfilled; such a restriction, which appears to have little practical impact, amounts to
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requiring the uniform boundedness of the global index of all hanging node, a useful concept introduced
in [5] to hierarchically organize the set of hanging nodes. Once the a posteriori error bound is
reduced to

‖u − uT ‖2V . η2
T (uT ),

the convergence analysis becomes feasible, and a contraction property is proven to hold for a linear
combination of the (squared) energy norm of the error and the (squared) residual estimator.

The purpose of this paper is to extend the results in [5] to the case of VEMs of order k ≥ 2 built
on triangular meshes. The problem at hand is again a variable-coefficient, second-order self-adjoint
elliptic equation with Dirichlet boundary conditions. The geometric concept of hanging node (a vertex
for some elements, contained inside an edge of some other elements) is replaced by a functional one,
referring to the degrees of freedom associated with the node; once the meaning of hanging node is
clarified, the definition of global index of a node, and its role in the analysis, is similar to the one given
in [5].

A significant difference with respect to the content of that paper concerns the control of the
stabilization term, which does not involve only the residual estimator, but a new term, called the virtual
inconsistency estimator and denoted by ΨT (uT ). It measures the projection error, upon local spaces of
polynomials, of certain expressions depending on the operator coefficients and the discrete solution;
it vanishes when k = 1 or when the coefficients are constant. The new stabilization bound, which we
derive under an admissibility assumption of the mesh, takes the form

S T (uT , uT ) . η2
T (uT ) + Ψ2

T (uT ),

which leads to the a posteriori, stabilization-free error control

‖u − uT ‖2V . η2
T (uT ) + Ψ2

T (uT ).

Correspondingly, we obtain the convergence of the adaptive VEM of order k by proving a contraction
result for a linear combination of (squared) energy norm of the error, (squared) residual estimator, and
(squared) virtual inconsistency estimator.

Similarly to [5], we assume here that the data D of our boundary-value problem are piecewise
polynomials of degrees related to k − 1, on the initial mesh T0 and consequently on each mesh T
derived by newest-vertex bisection. This is not a restriction, since we propose to insert the adaptive
VEM procedure just described, which we now consider as a module GALERKIN, into an outer loop
AVEM of the form

[T , uT ] = AVEM(T0, ε0, ω, tol)
j = 0
while ε j >

1
2 tol do

[T̂ j, D̂ j] = DATA(T j,D, ωε j)
[T j+1,D j+1] = GALERKIN(T̂ j, D̂ j, ε j)
ε j+1 ←

1
2ε j

j← j + 1
end while
return
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where the module DATA produces, via greedy-type iterations, a piecewise polynomial approximation
of the input data with prescribed accuracy, defined on a suitable refinement of the input partition.
Manifestly, the target accuracy is matched after a finite number of calls to DATA and GALERKIN.
Properties of complexity and quasi-optimality of this two-loop algorithm are investigated in [6] in the
linear case k = 1. We plan to do the same for the case k ≥ 2 in a forthcoming paper.

The outline of this paper is as follows. In Sections 2 and 3, we introduce the model boundary-value
problem, and its discretization by an enhanced version of the VEM ( [1]). In Section 4 we define the
global index of a node, and we formulate the admissibility assumption on the mesh. Two essential
properties for bounding the stabilization term are established in Section 5. The a posteriori error
estimators are defined in Section 6, whereas stabilization-free a posteriori error estimates are proven
in Section 7. In Section 8, we investigate how the a posteriori error estimators are reduced under
mesh refinement. These properties are needed to justify the refinement strategy in our adaptive module
GALERKIN, which is described in Section 9. In Section 10, we discuss the proof of convergence of
the loop GALERKIN. The paper ends with some numerical experiments, reported in Section 11.

2. VEM spaces of order k ≥ 2

We consider the following Dirichlet boundary value problem in a polygonal domain Ω,−∇ · (A∇u) + cu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where A ∈ (L∞(Ω))2×2 is symmetric and uniformly positive definite in Ω, c ∈ L∞(Ω) and non-negative
in Ω, f ∈ L2(Ω). Data will be denoted byD = (A, c, f ). The variational formulation of this problem is
written as find u ∈ V := H1

0(Ω) such that
B(u, v) = ( f , v), ∀ v ∈ V,

(2.2)

where (·, ·) is the scalar product in L2(Ω) and B(u, v) := a(u, v) + m(u, v) is the bilinear form associated
with Problem (2.1), i.e.,

a(u, v) := (A ∇u,∇v), m(u, v) := (c u, v).

We denote the energy norm as |||·||| =
√
B(·, ·), which satisfies

cB|v|21,Ω ≤ |||v|||
2
≤ cB|v|21,Ω, ∀v ∈ V, (2.3)

for suitable 0 < cB ≤ cB.

Remark 2.1. For the sake of simplicity, in (2.1) we consider the Poisson problem with vanishing
Dirichlet conditions on the whole boundary domain. The extension to generic Dirichlet and/or
Neumann/Robin boundary conditions does not pose conceptual difficulties. In the numerical examples,
we actually provide experiments with more general Dirichlet boundary conditions.
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In order to find a discrete approximation of the solution of Problem (2.2), we firstly introduce a
fixed initial partition T0 on the domain Ω made of triangular elements E. We will denote by T any
refinement of T0 obtained by a finite number of newest-vertex element bisections. We underline that
we are not requiring T to be a conforming mesh, since hanging nodes may arise in the refinement. The
classification of nodes, which will play a crucial role in the proofs presented in this paper, is postponed
in Section 4.

According to the Virtual Element theory [3], an element E of the triangulation can be viewed as a
polygon with more than three edges, if some hanging nodes are sitting on its boundary. We can then
denote by EE the set of edges e of element E and E :=

⋃
E∈T EE. We finally define the diameter of an

element E as hE = |E|1/2 and h = maxE∈T {hE}.
We introduce the functional spaces needed to apply the VEM. We start by defining the space of

functions on the boundary of E, V∂E,k, which is constituted by the functions that are continuous on the
boundary of E and that, when restricted to any edge of ∂E, are polynomials of degree k > 0, i.e.,

V∂E,k := {v ∈ C0 (∂E) : v|e ∈ Pk(e),∀e ⊂ ∂E}.

Then, we define the “enhanced” VEM space in E, as done in [1], such that

VE,k :=
{
v ∈ H1 (E) : v|∂E ∈ V∂E,k, ∆v ∈ Pk(E), (v − Π∇Ev, q)E = 0 ∀q ∈ Pk(E) \ Pk−2(E)

}
, (2.4)

where Pk(E) \ Pk−2(E) is the space spanned by the monomials of degree equal to k and k − 1, and
Π∇E : H1(E)→ Pk(E) is the projector defined by

(∇(v − Π∇Ev),∇q)E = 0, ∀q ∈ Pk(E),
∫
∂E

(v − Π∇Ev) = 0.

We remark that VE,k contains the polynomial space of degree k on E and its dimension is

dim(VE,k) = nE
e k +

k(k − 1)
2

, (2.5)

where nE
e is the number of edges of E. We notice that in the case k > 1 a function v in VE,k is uniquely

defined by

• the set of the values at the vertices of E;
• the set of the values at the k − 1 equally-spaced internal points on each edge of ∂E;
• the set of the moments 1

|E|

∫
E

v(x)m(x)dx ∀m ∈ Mk−2(E),

where the setMp(E), p ≥ 0, is defined as

Mp(E) =

{(
x − xE

hE

)s

, |s| ≤ p
}
. (2.6)

We will denote by µp(E, v) =
(

1
|E|

∫
E

v(x)m(x)dx : m ∈ Mp(E) \Mp−1(E)
)

the vector of the moments
of v of order p. By |µp(E, v)| we will denote the l2-norm of this vector.

We can now introduce the global discrete space as

VT := {v ∈ V : v|E ∈ VE,k ∀E ∈ T }.
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On T we need also to give the definition of the space of piecewise polynomial functions on T

Wk
T := {w ∈ L2(Ω) : w|E ∈ Pk(E) ∀E ∈ T }, (2.7)

and its subspace

V0
T := VT ∩Wk

T , (2.8)

which plays a crucial role in the forthcoming analysis.
We now introduce a series of projectors that will be used in the rest of the paper. For any E ∈ T , we

denote by Π0
p,E : L2(E)→ Pp(E) the L2(E)-orthogonal projector onto the space of polynomial of degree

p on E. Thanks to the choice of the enhanced space VE,k (2.4), we remark that Π0
k,Ev and Π0

k−1,E∇v can
be computed for any function v ∈ VE,k, see [1] for the details. To simplify the notation, in the following
we will drop the symbol E from Π0

k,E when no confusion arises. The global L2-orthogonal projector is
denoted by Π0

p,T : L2(Ω)→Wp
T

.
We can also define the Lagrange interpolation operator IE : VE,k → Pk(E) on E, which builds a

polynomial of degree k using the 3k degrees of freedom on the boundary of E and the moments of
order ≤ k − 3, since

dim(Pk(E)) = 3k +
(k − 1)(k − 2)

2
.

Moreover, we will denote by IT : VT → Wk
T

the Lagrange interpolation operator that restricts to IE

on each E ∈ T .

3. Discretization with data of degree k − 1

In the rest of this paper, we assume that data D = (A, c, f ) are piecewise polynomials of degree
k− 1 on the initial partition T0, hence on each partition T obtained by newest-vertex refinement. Their
values on each element of the triangulation will be denoted by

(AE, cE, fE) ∈ (Pk−1(E))2×2 × Pk−1(E) × Pk−1(E).

We here define the bilinear forms that we need for the Galerkin discretization problem, starting
from aE,mE : VE,k × VE,k → R, such that

aT (v,w) :=
∑
E∈T

∫
E

(
AEΠ0

k−1∇v
)
·
(
Π0

k−1∇w
)

=:
∑
E∈T

aE(v,w),

mT (v,w) :=
∑
E∈T

∫
E

cE Π0
kv Π0

kw =:
∑
E∈T

mE(v,w).

We also introduce the symmetric bilinear form sE : VE × VE → R as

sE(v,w) :=
NE∑
i=1

v(xi)w(xi),
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where {xi}
NE
i=1 indicates the set of the degrees of freedom on the boundary of E. Indeed, we remark that

in this case the stabilization term can be built without using the internal degrees of freedom, as shown
in [7]. We assume for sE the existence of two positive constant cs and Cs independent on E, such that

cs|v|21,E ≤ sE(v, v) ≤ Cs|v|21,E, ∀v ∈ VE \ Pk(E). (3.1)

We define the local stabilizing form as

S E(v,w) = sE(v − IEv,w − IEw), ∀v,w ∈ VE,

and the global stabilization form

S T (v,w) :=
∑
E∈T

S E(v,w), ∀v,w ∈ VT .

From (3.1), we get

S T (v, v) ' |v − IT v|21,T , ∀v ∈ VT ,

where | · |1,T denotes the broken H1-seminorm over T . Thus, we can now define the bilinear form
BT (·, ·), BT : VT × VT → R, as

BT (v,w) = aT (v,w) + mT (v,w) + γS T (v,w), (3.2)

with γ independent of T satisfying γ ≥ γ0 for some fixed γ0 > 0. For the loading term we introduce
FT : VT → R as

FT (v) :=
∑
E∈T

∫
E

fE Π0
kv =

∑
E∈T

∫
E

fEv, ∀v ∈ VT , (3.3)

since fE has been already approximated with a polynomial of degree k − 1. Note that the equality
in (3.3) remains true if fE is an approximation of f of degree k on E.

We have now defined all the forms that appear in the discrete formulation of the Problem (2.2). It
reads as find uT ∈ VT such that

BT (uT , v) = FT (v), ∀ v ∈ VT .
(3.4)

The bilinear form BT is continuous and coercive, hence, there exists a unique and stable solution of
the Problem (3.4). Furthermore, the following result extends Lemma 2.6 in [5].

Lemma 3.1 (Gakerkin quasi-orthogonality). For any v ∈ VT and w ∈ V0
T

, it holds

aT (v,w) = a(v,w) −
∑
E∈T

∫
E

(
AE(I − Π0

k−1)∇v
)
· ∇w,

mT (v,w) = m(v,w) −
∑
E∈T

∫
E

cE

(
(I − Π0

k)v
)

w,

S T (v,w) = 0.

Consequently,

|B(u − uT ,w)| . S T (uT , uT )1/2|w|1,Ω,

where u is the solution of (2.2) and uT the solution of (3.4).
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4. The index of a node

A crucial concept, firstly introduced in [5] for the case k = 1, is the global index of a node: It will
be used in the proofs of Section 5. In order to extend its definition to the case k > 1, we preliminarily
introduce some useful definitions.

Let

Ê := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x + y ≤ 1}

be the reference element and denote by R̂Ê,k the k-lattice built on Ê, i.e.,

R̂Ê,k :=
{( i

k
,

j
k

)
∈ R2 : i ≥ 0, j ≥ 0, i + j ≤ k

}
.

Considering the affine function FE : Ê → E mapping the reference element onto an element E ∈ T ,
we define the physical lattice on E by

RE,k := FE(R̂Ê,k),

and the set of proper nodes of E as the points of the physical lattice sitting on the boundary of E, i.e.,

PE := RE,k ∩ ∂E.

Observe that we implicitly assume that k ≥ 2 is sufficiently small so that interpolation on equally
spaced nodes is numerically stable.

Next, we denote by HE the set of hanging nodes of E, i.e., the set of points x ∈ ∂E that are not
proper nodes of E, but that are proper nodes of some other element E′, i.e.,

HE := {x ∈ ∂E : ∃E′ ∈ T such that x ∈ PE′} \ PE.

Finally, let NE := PE ∪HE be the set of all nodes sitting on E.
At the global level,N :=

⋃
E∈T NE will be the set of all nodes of the triangulation T , which we split

into the set P :=
{
x ∈ N : x ∈ PE ∀E containing x

}
of the proper nodes of T , and the setH := N \ P

of the hanging nodes of T .
Next, let us clarify what happens when a hanging node is created. Let S be an element edge that

is being refined, i.e., split into two contiguous edges S − and S +. Before the refinement, S contains
k + 1 equally-spaced nodes ξn, n = 1, . . . k + 1: The endpoints and the k − 1 internal ones. After the
refinement, S contains 2k + 1 nodes, precisely k + 1 equally-spaced nodes on each sub-edge S ±, with
the midpoint in common; see Figure 1. The spacing of the ‘old’ nodes on S was |S |k (where |S | denotes
the length of S ), whereas the spacing of the ‘new’ nodes is |S |2k . Consequently, k + 1 of these nodes
coincide with those initially on S , and the new nodes introduced in the refinement are only k. We will
denote these latter by ζi, i = 1, . . . , k.
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S

ξ1 ξk+1

(a)

S

S − S +

ζ1 ζk

(b)

Figure 1. Blue squares represent the k + 1 equally-spaced nodes ξn on the edge S before
refinement. Red circles represent the 2k + 1 nodes that arise after refinement. We have
denoted by ζi the new nodes that do not coincide with any ξn.

This suggests the following definition.

Definition 4.1 (closest neighbors of a node). With the previous notation, if x := ζi is created as the
midpoint of the segment [x′, x′′] := [ξni , ξni+1] for some ni, we define the set B(x) := {x′, x′′}.

We are ready to give the announced definition of global index of a node of the triangulation T .

Definition 4.2 (global index of a node). Given a node x ∈ N , we define its global index λ recursively
as follows:

• If x is a proper node, then λ(x) := 0;
• If x is a hanging node, with x′, x′′ ∈ B(x), then set

λ(x) := max{λ(x′), λ(x′′)} + 1.

Figure 2 shows the evolution of the global index after three refinements in the cases k = 2 (a) and
k = 3 (b). We remark that, for instance, the midpoint of the horizontal edge is a proper node in case
(a), and a hanging node in case (b).

0 0 01 12 2

(a)

0 0 0 01 1 12 22

(b)

Figure 2. Triangulation after the three refinements in the case k = 2 (a) and in the case k = 3
(b). Blue crosses represent the original degrees of freedom. Red squares, green circles and
orange triangles are used for the degrees of freedom of the first, second and third refinement,
respectively. All nodes are proper, except those on the horizontal line, whose global index is
reported.
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The largest global index in T will be denoted by ΛT := maxx∈N {λ(x)}. In this paper, as in [5],
we will consider sequences of successively refined triangulations {T } whose global index does not
blow up.

Assumption 4.3. There exists a constant Λ > 0 such that, for any triangulation T generated by
successive refinements of T0, it holds

ΛT ≤ Λ.

Any such triangulation will be called Λ-admissible.

5. Two key properties

In this section we discuss the validity of some results for the degree k > 1 that will be used in the
rest of the paper. We will highlight in particular the differences from the case k = 1.

Proposition 5.1 (scaled Poincaré inequality in VT ). There exists a constant CP > 0, independent of T ,
such that ∑

E∈T

h−2
E ‖v‖

2
0,E ≤ CP|v|21,Ω, ∀v ∈ VT such that v(x) = 0,∀x ∈ P. (5.1)

Proof. Let E ∈ T be an element of the triangulation. If E is an element of the original partition T0,
all its vertices are proper nodes. Otherwise, E has been generated after some refinements by splitting
an element Ẽ into two elements, E and E′. Let L be the common edge shared by E and E′. If L is not
further refined, then all the nodes on L are proper because they are shared by E and E′. If L is refined
and k is even, then the midpoint of L is a proper node.

So, let us consider the case k odd and let us assume that L is refined M ≥ 1 times. We focus in
particular on the internal node x̄ of L is at distance |L|k from one of the endpoints, Figure 3 shows the
case k = 3. This point belongs to one of the M + 1 intervals in which L is refined, having width |L|/2s,
for some 1 ≤ s ≤ M. We remark that s depends on how L has been refined (in the case of uniform
refinements of L, one has 2s = M + 1). We localize the chosen node x̄ in L by defining an m ≥ 0 such
that

|L| m
2s ≤

|L|
k
≤
|L|(m + 1)

2s ,

or, equivalently,

k m ≤ 2s ≤ k (m + 1). (5.2)

The interval going from |L| m
2s to |L|(m+1)

2s is an edge for a smaller element E′, thus it contains k−1 internal
nodes. Since they are equi-spaced, their positions are at

|L|
2s

(
m +

n
k

)
with n = 0, . . . , k.

By taking n = 2s−m k, which is compatible with conditions (5.2), we conclude that one of the internal
nodes of E′ coincides with x̄.
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This guarantees that E has at least one proper node x on its boundary. By hypothesis v(x) = 0, and
so we can apply the classical Poincaré inequality,

h−2
E ‖v‖

2
0,E . |v|

2
1,E,

that concludes the proof. �

|L|/3

E

L

Figure 3. The case k = 3 with 3 refinements of the edge L (in blue) is shown. Red, green
and orange lines are the lines needed to refine L the first, the second and the third time
respectively. Blue crosses are the degrees of freedom on L of the function living on E. Red
squares, green circles, orange diamonds are the degrees of freedom on L generated after the
first, the second and the third refinement of L.

Remark 5.2. The previous proof exploits the fact that when k > 1, each element of the triangulation
contains at least a proper node. This differs from the case k = 1 in which the edges do not contain
internal nodes, and then elements with all hanging nodes as vertices are admissible. As a further
difference from the case k = 1, we highlight that in Proposition 5.1 the constant CP does not depend
on the constant Λ, whose existence has been introduced in Assumption 4.3.

The next result we are going to establish is a hierarchical representation of the interpolation error
v − IEv on the boundary ∂E of an element E ∈ T . Assume that v ∈ VE,k, and let L be a side of the
triangle E; for simplicity, in the sequel the restriction of v to L, which is a piecewise polynomial of
degree k, will be still denoted by v. The subsequent bisections of L which generate the nodes inNE ∩L
allow us to write the difference (v − IEv)|L telescopically as

(v − IEv)|L =

JL∑
j=1

(I j − I j−1)v; (5.3)

here, I0 = IE |L, IJL is the identity operator, whereas I jv for 1 ≤ j ≤ JL−1 is the piecewise polynomial
of degree k which interpolates v on the partition of L of level j, namely the partition formed by sub-
edges of length ≤ |L|2 j .

In order to understand the structure of the detail (I j − I j−1)v, assume that S is a sub-edge of L of
length = |L|

2 j−1 , which is split into two sub-edges S ± of length = |L|
2 j (see Figure 1). On S we have two

interpolation operators, namely
I := I j−1 |S : C0(S )→ Pk(S )
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and
I∨ := I j |S : C0(S )→ Pk(S −, S +) =

{
v ∈ C0(S ) : v|S − ∈ Pk(S −) and v|S + ∈ Pk(S +)

}
,

which coincides with the interpolation operator I− : C0(S −) → Pk(S −) when restricted to S − and
with the analogous operator I+ when restricted to S +. With the notation introduced just before
Definition 4.1, we can quantify the discrepancy between the two interpolation operators by defining
the k basis functions

ψi ∈ Pk(S −, S +) such that ψi(x) =


1 if x = ζi,

0 if x = ζ j, j , i,

0 if x = ξn, n = 1, . . . , k + 1,

1 ≤ i ≤ k.

See Figure 4 for a graphical representation of these functions in the cases k = 1 (a), k = 2 (b),
k = 3 (c).

ψ1

(a)

ψ1 ψ2

(b)

ψ1 ψ2
ψ3

(c)

Figure 4. Blue squares are the k + 1 equi-spaced original nodes on the blue edge. Red points
represent the nodes added after the refinement of the interval. Black lines show the shapes of
the basis ψi, i = 1, . . . , k, in the case k = 1 (a), k = 2 (b), k = 3 (c).

Hence, the difference between the two interpolation operators on S can be written as

I∨v − Iv =

k∑
i=1

d(v, ζi)ψi,

where d is defined as

d(v, ζi) := (I∨v − Iv)(ζi) = (v − Iv) (ζi). (5.4)

The values of Iv at the k nodes ζi are a linear combination of the values of Iv at the k + 1 nodes ζn,
where Iv coincides with v. Thus, there exist coefficients αi,n such that

(Iv)(ζi) =

k+1∑
n=1

αi,nv(ξn), i = 1, . . . , k. (5.5)
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The explicit values of these coefficients in the case k = 2 for the two new nodes ζ1 and ζ2 are given in
these expressions:

(Iv)(ζ1) =
3
8

v(ξ1) +
3
4

v(ξ2) −
1
8

v(ξ3),

(Iv)(ζ2) = −
1
8

v(ξ1) +
3
4

v(ξ2) +
3
8

v(ξ3),

where ξi ≤ ζi ≤ ξi+1, i = 1, 2. Similarly, in the case k = 3, we get

(Iv)(ζ1) =
5

16
v(ξ1) +

15
16

v(ξ2) −
5

16
v(ξ3) +

1
16

v(ξ4),

(Iv)(ζ2) = −
1
16

v(ξ1) +
9
16

v(ξ2) +
9
16

v(ξ3) −
1
16

v(ξ4),

(Iv)(ζ3) =
1

16
v(ξ1) −

5
16

v(ξ2) +
15
16

v(ξ3) +
5

16
v(ξ4),

where again ξi ≤ ζi ≤ ξi+1, i = 1, 2, 3. Figure 5 shows both cases. We notice that the coefficients αi,n

depend only on the relative positions of the nodes on S , not on the level j of refinement.

ζ1 ζ2

ξ1 ξ2 ξ3

(a)

ζ2ζ1 ζ3

ξ1 ξ2 ξ3 ξ4

(b)

Figure 5. Black points are the proper nodes. Red points represent the hanging nodes
generated after a refinement. In (a) the case k = 2 is showed, ζ1 is the hanging node obtained
after the refinement of ξ1 and ξ3 and it is the midpoint of ξ1 and ξ2. We notice that if we
have called the other red point ζ2, ξ1 and ξ3 would have been switched. Analogously, (b)
represents the case k = 3.

Summarizing, at the level j of refinement of the edge L, we get

(I j − I j−1)v =
∑

x∈HL, j

d(v, x)ψx,

whereHL, j is the set of hanging nodes on L created at the level j of refinement, whereas

d(v, x) = (I jv − I j−1v)(x) =
(
v − I j−1v

)
(x).

Summing-up over the levels and recalling (5.3), we obtain

(v − IEv)|L =
∑
x∈HL

d(v, x)ψx.
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whereHL = HE ∩ L, whence
(v − IEv)|∂E =

∑
x∈HE

d(v, x)ψx.

We now introduce the subspace of VE,k

XE :=
{
w ∈ VE,k : w(x) = 0 ∀x ∈ PE, and µp(w, E) = 0, 0 ≤ p ≤ k − 3

}
,

which contains v − IEv by definition of IE. On XE, we have two norms, namely the seminorm |w|1,E
(which is a norm on XE due to the vanishing of w at the three vertices of E) and the norm

[[w]]XE :=

∑
x∈HE

d2(w, x) + |µk−2(E,w)|2


1/2

.

Note that, due to Assumption 4.3, the dimension of XE is uniformly bounded by a constant depending
on Λ; furthermore, the number of possible patterns of hanging nodes on ∂E, which determines the
details d(w, x), is also bounded in terms of Λ. As a consequence, the two norms are equivalent, with
equivalence constants depending on Λ. Therefore,∑

x∈HE

d2(w, x) ≤ [[w]]2
XE
' |w|21,E, ∀w ∈ XE.

Since v − IEv ∈ XE and d(v − IEv, x) = d(v, x) for any x ∈ HE, we obtain∑
x∈HE

d2(v, x) . |v − IEv|21,E.

Summing-up over all the elements of the triangulation, we arrive at the following result.

Lemma 5.3 (global interpolation error vs hierarchical errors). There exists a constant CD > 0
depending on Λ but independent of the triangulation T such that∑

x∈H

d2(v, x) ≤ CD|v − IT v|21,T , ∀v ∈ VT . (5.6)

Next, we introduce the interpolation operator

I0
T : VT → V0

T , (5.7)

where V0
T

is defined in (2.8), by the following conditions:

• (I0
T

v)(x) = v(x) for all x ∈ P,
• µp(E,I0

T
v) = µp(E, v) for all 0 ≤ p ≤ k − 3 and for all E ∈ T .

These conditions uniquely identify I0
T

v. Indeed, if x ∈ H is generated by a refinement of level j of an
edge L (say, x = ζi with the notation introduced before Definition 4.1), then (I0

T
v)(x) can be expressed

in terms of the values of I0
T

v at the k + 1 nodes (say, ξn) created at the previous levels of refinement of
L, using the same coefficients as in formula (5.5), i.e.,

(I0
T v)(ζi) =

k+1∑
n=1

αi,n(I0
T v)(ξn), i = 1, . . . , k; (5.8)

and so on recursively.
The following result provides a representation of the error IT v − I0

T
v.
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Lemma 5.4. It holds

|IT v − I0
T v|21,T '

∑
x∈H

δ2(v, x), ∀v ∈ VT ,

where δ(v, x) := v(x) − (I0
T

v)(x).

Proof. Consider an element E ∈ T . Recall that by construction it holds µp(E,IEv) = µp(E, v) =

µp(E,I0
T

v), whence µp(IEv − I0
T

v, E) = 0 for all 0 ≤ p ≤ k − 3. Consequently,

|IEv − I0
T v|21,E '

∑
x∈PE

|
(
IEv − I0

T v
)

(x)|2.

If x ∈ PE, (IEv)(x) = v(x), hence

|IEv − I0
T v|21,E '

∑
x∈PE

|
(
v − I0

T v
)

(x)|2.

Summing on all the elements of the partition, we get∑
E∈T

|IEv − I0
T v|21,E '

∑
x∈N

|
(
v − I0

T v
)

(x)|2 '
∑
x∈H

|
(
v − I0

T v
)

(x)|2,

since if x ∈ P, (I0
T

v)(x) = v(x). This concludes the proof. �

Concatenating Lemmas 5.3 and 5.4, we can prove the second key property of this section.

Proposition 5.5 (comparison between interpolation operators). Let T be Λ-admissible. Then, there
exists a constant CI > 0, depending on Λ, but independent of T , such that

|v − I0
T v|1,Ω ≤ CI |v − IT v|1,T , ∀v ∈ VT .

Proof. Given a function v ∈ VT , by the triangle inequality

|v − I0
T v|1,Ω = |v − I0

T v|1,T ≤ |v − IT v|1,T + |IT v − I0
T v|1,T ,

so it is enough to bound the last norm on the right-hand side. To this end, considering the vectors

δ = (δ(x))x∈H := (δ(v, x))x∈H , d = (d(x))x∈H := (d(v, x))x∈H ,

and recalling the two Lemmas, the proof can be concluded if we show that

‖δ‖l2(H) . ‖d‖l2(H).

Given x ∈ H , assume that it is generated by a refinement of level j of an edge L (say, x = ζi with the
notation introduced before Definition 4.1). Writing v∗ := I0

T
v for short, and exploiting formulas (5.4)

and (5.5), we get

δ(ζi) = v(ζi) − v∗(ζi) = v(ζi) −
k+1∑
n=1

αi,nv∗(ξn)

= v(ζi) −
k+1∑
n=1

αi,nv(ξn) −
k+1∑
n=1

αi,n (v∗(ξn) − v(ξn)))

= d(ζi) +

k+1∑
n=1

αi,nδ(ξn).

(5.9)
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Thus, we can build a matrix W : l2(H)→ l2(H) such that δ = Wd, and we just need to prove that

||W||2 . 1.

We now organize the hanging nodes with respect to the global index λ ∈ [1,ΛT ]. Calling Hλ = {x ∈
H : λ(x) = λ}, andH =

⋃
1≤λ≤ΛT

Hλ, the matrix W can be factorized in lower triangular matrices Wλ,
that change the nodes of level λ, leaving the others unchanged. In particular,

W = WΛTWΛT−1...W2W1,

where W1 is just the identity matrix I, whereas each other matrix Wλ differs from the identity only in
the rows of block λ. In each of these rows, all entries are zero, but the entries αi,n in the off-diagonal
part and 1 on the diagonal. In order to estimate Wλ, we use the Hölder inequality ||Wλ||

2
2 ≤ ||Wλ||1||Wλ||∞.

From the construction of Wλ have that

||Wλ||∞ ≤ max
n

 k+1∑
i=1

|αi,n|

 + 1 =: β1, ||Wλ||1 ≤ 5 k max
i,n
|αi,n| + 1 =: β2,

where in the last inequality it has been used the fact that a hanging node of global index < λ may
appear at most 5 times on the right-hand side of (5.9), since at most five edges meet at a node [5,
Proposition 3.2]. These bring us to the following bound

||W||2 ≤
∏

2≤λ≤ΛT

||Wλ||2 ≤ (β1 · β2)
Λ−1

2

and the proof is concluded. �

6. A posteriori error estimator

With the aim of discussing the a posteriori error analysis, and following [12], we define the a
posteriori error estimators, starting from the internal residual over an element E, i.e.,

rT (E; v,D) := fE + ∇ ·
(
AEΠ0

k−1∇v
)
− cEΠ0

kv, (6.1)

for any v ∈ VE,k. We highlight that in the case k = 1, with piecewise constant data, the diffusion term
in the residual vanishes. Furthermore, we define the jump residual over e, where e is an edge shared
by two elements E1 and E2 of the partition T , as

jT (e; v,T ) := [[AΠ0
k−1∇v]]e = (AE1Π

0
k−1∇v|E1) · n1 + (AE2Π

0
k−1∇v|E2) · n2,

where ni denotes the unit normal vector to e pointing outward with respect to Ei; we set jT (e; v) = 0
of e ∈ ∂Ω. Then, let the local residual estimator associated with E be

η2
T (E; v,D) := h2

E ||rT (E; v,D)||20,E +
1
2

∑
e∈EE

hE || jT (e; v,D)||20,e, (6.2)
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and the global residual estimator as the sum of the local residuals

η2
T (v,D) :=

∑
E∈T

η2
T (E; v,D).

In contrast to what has been done for the case k = 1, we also need to introduce the virtual inconsistency
terms, defined by

Ψ2
T ,A(E; v,D) := ||(I − Π0

k−1)(AEΠ0
k−1∇v)||20,E,

Ψ2
T ,c(E; v,D) := h2

E ||
(
I − Π0

k)(cEΠ0
kv

)
||20,E,

(6.3)

as well as their sum

Ψ2
T (v,D) :=

∑
E∈T

Ψ2
T (E; v,D) :=

∑
E∈T

Ψ2
T ,A(E; v,D) + Ψ2

T ,c(E; v,D). (6.4)

7. A posteriori error estimates

In this section we present one of the main results of this paper, a stabilization-free a posteriori error
bound. In this view, we firstly start by introducing the classical Clément operator upon the space V0

T
,

Ĩ0
T

: V→ V0
T

; it is defined at the proper nodes on the skeleton ofT as the average of the target function
on the support of the associated basis functions, whereas the internal moments (if any) coincide with
those of the target function.

The scaled Poincaré inequality (Proposition 5.1) and Proposition 5.5 guarantee the validity of the
error estimate for Ĩ0

T
. Given these propositions, its proof does not involve the polynomial degree k,

hence, it does not change with respect to the one presented in [5].

Lemma 7.1 (Clément interpolation estimate). ∀v ∈ V, it holds∑
E∈T

h−2
E ‖v − Ĩ

0
T v‖20,E . |v|

2
1,Ω,

where the hidden constant depends on Λ but not on T .

We can now prove the following results, which is similar to Theorem 13 in [12], but with a slightly
modified proof.

Proposition 7.2 (upper bound). There exists a constant Capost > 0, independent of u, T , uT and γ, such
that

|u − uT |21,Ω ≤ Capost

(
η2
T (uT ,D) + S T (uT , uT )

)
. (7.1)

Proof. For any v ∈ V, using the definition of Problem (2.2), we have that

B(u − uT , v) = B(u, v) − B(uT , v) − ( f , vT ) + B(u, vT )
= ( f , v − vT ) − B(uT , v) + B(u, vT ) − B(uT , vT ) + B(uT , vT )
= (( f , v − vT ) − B(uT , v − vT )) + B(u − uT , vT ) =: I + II,
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where vT := Ĩ0
T

v ∈ V0
T

. The first term can be written as

I =
∑
E∈T

{∫
E

fE(v − vT ) −
∫

E
AE∇uT · ∇(v − vT ) −

∫
E

cEuT (v − vT )
}

=
∑
E∈T

{∫
E

fE(v − vT ) −
∫

E

(
AEΠ0

k−1∇uT
)
· ∇(v − vT ) −

∫
E

(
cEΠ0

kuT
)

(v − vT )
}

+
∑
E∈T

{∫
E

(
AE(Π0

k−1 − I)∇uT
)
· ∇(v − vT ) +

∫
E

(
cE(Π0

k − I)uT
)

(v − vT )
}

=: I1 + I2.

The addend I1 can be expressed as

I1 =
∑
E∈T

{∫
E

(
fE + ∇ ·

(
AEΠ0

k−1∇uT
)
− cEΠ0

kuT
)

(v − vT )
}

+
∑
E∈T

∫
∂E

n ·
(
AEΠ0

k−1∇uT
)

(v − vT ),

which can be bounded by using Lemma 7.1,

|I1| . ηT (uT ,D)|v|1,Ω.

On the other hand, noting that

‖(I − Π0
k−1)∇uT ‖0,E = ‖(I − Π0

k−1)∇(I − Π0
k)uT ‖0,E

≤ ‖∇(I − Π0
k)uT ‖0,E (7.2)

and applying again Lemma 7.1 and the stability of the Clément operator in the H1 norm, the addend I2

can be bounded as follows:

|I2| ≤

∑
E∈T

||AE(I − Π0
k−1)∇uT ||20,E ||∇ (v − vT ) ||20,E +

∑
E∈T

h2
E ||cE(I − Π0

k)uT ||20,Eh−2
E ||v − vT ||20,E

1/2

.

∑
E∈T

||AE(I − Π0
k−1)∇uT ||20,E + h2

E ||cE(I − Π0
k)uT ||20,E

1/2

|v|1,Ω

.

∑
E∈T

||∇(uT − Π0
kuT )||20,E + h2

E ||(uT − Π0
kuT )||20,E

1/2

|v|1,Ω

. (S T (uT , uT ))1/2
|v|1,Ω.

Looking now at the term II, we have by Lemma 3.1

|B(u − uT , v)| . S T (uT , uT )1/2|v|1,Ω.

Finally, by taking v := u − uT ∈ V, we get

B(u − uT , u − uT ) .
(
ηT (uT ,D) + S T (uT , uT )1/2

)
|u − uT |1,Ω,

which, using the coercivity of B, concludes the proof. �
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We now report a bound for the local residual estimator, proved in [12, Theorem 16].

Proposition 7.3 (local lower bound). There holds

η2
T (E; uT ,D) .

∑
E′∈wE

(
|u − uT |21,E′ + S E′(uT , uT )

)
where wE := {E′ : |∂E ∩ ∂E′| , 0}. The hidden constant is independent of γ, h, u and uT .

Summing on all the elements of the partition, we get the following corollary.

Corollary 7.4 (global lower bound). There exists a constant capost > 0, independent of u, T , uT and γ,
such that

capost η
2
T (uT ,D) ≤ |u − uT |21,Ω + S T (uT , uT ).

In the following proposition we present a bound of the stabilization term. We remark that in the
case k = 1 the inconsistency term does not appear.

Proposition 7.5 (bound of the stabilization term). There exists a constant CB > 0 independent of T ,
uT and γ, such that

γ2S T (uT , uT ) ≤ CB

(
η2
T (uT ,D) + Ψ2

T (uT ,D)
)
. (7.3)

Proof. From the Definition (3.2) of the form BT and from (3.4), ∀w ∈ V0
T

it holds

γS T (uT , uT ) = γS T (uT , uT − w)
= BT (uT , uT − w) − aT (uT , uT − w) − mT (uT , uT − w)
= F (uT − w) − aT (uT , uT − w) − mT (uT , uT − w).

Defining eT := uT − w, we get

γS T (uT , eT ) =
∑
E∈T

{∫
E

f eT −
∫

E

(
AEΠ0

k−1 (∇uT )
)
· Π0

k−1 (∇eT ) −
∫

E
cEΠ0

kuT Π0
keT

}
. (7.4)

We notice that∫
E

(
AEΠ0

k−1 (∇uT )
)
· Π0

k−1 (∇eT ) =

∫
E

(
Π0

k−1

(
AEΠ0

k−1∇uT
))
· ∇eT

=

∫
E
(Π0

k−1 − I)(AEΠ0
k−1∇uT ) · ∇eT +

∫
E

(
AEΠ0

k−1∇uT
)
· ∇eT

(7.5)

and ∫
E

cEΠ0
kuT Π0

keT =

∫
E

Π0
k(cEΠ0

kuT ) eT

=

∫
E
(Π0

k − I)(cEΠ0
kuT )eT +

∫
E

cE(Π0
kuT )eT . (7.6)
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By substituting (7.5) and (7.6) into (7.4), it results

γS T (uT , uT ) =
∑
E∈T

∫
E

(
f + ∇ ·

(
AEΠ0

k−1∇uT
)
− cEΠ0

kuT
)

eT −
∑
E∈T

∫
∂E

n · ∇
(
AEΠ0

k−1∇uT
)

eT

+
∑
E∈T

∫
E
(I − Π0

k−1)(AEΠ0
k−1∇uT ) · ∇eT +

∑
E∈T

∫
E
(I − Π0

k)(cEΠ0
kuT ) eT

≤
∑
E∈T

hE ||rT (E; uT ,D)||0,Eh−1
E ||eT ||0,E +

1
2

∑
e∈E

h1/2
e || jT (e; uT ,D)||0,eh−1/2

e ||eT ||0,e

+
∑
E∈T

||(I − Π0
k−1)(AEΠ0

k−1∇uT )||0,E ||∇eT ||0,E +
∑
E∈T

hE ||(I − Π0
k)cEΠ0

kuT ||0,Eh−1
E ||eT ||0,E

≤
∑
E∈T

hE ||rT (E; uT ,D)||0,Eh−1
E ||eT ||0,E +

1
2

∑
e∈E

h1/2
e || jT (e; uT ,D)||0,eh−1/2

e ||eT ||0,e

+ Cinv

∑
E∈T

ΨA(E; uT ,D)h−1
E ||eT ||0,E +

∑
E∈T

Ψc(E; uT ,D)h−1
E ||eT ||0,E.

With the same strategy used in [5], for any δ > 0, we get

γS T (uT , uT ) ≤
1
2δ

(
η2
T (uT ,D) + Ψ2

T (uT ,D)
)

+
δ

2
ΦT (eT ),

where

ΦT (eT ) =
∑
E∈T

{
max{C2

inv, 1}h
−2
E ||eT ||

2
0,E +

1
2

∑
e∈EE

h−1
E ||eT ||

2
0,e

}
.

Posing now w = I0
T

uT and applying Proposition 5.1, we get

ΦT (uT − I0
TuT ) . |uT − I0

TuT |21,Ω,

whereas Proposition 5.5 yields

|uT − I0
TuT |21,Ω . |uT − ITuT |21,Ω ' S T (uT , uT ),

so we obtain

γ2S T (uT , uT ) ≤ CB

(
η2
T (uT ,D) + Ψ2

T (uT ,D)
)
,

for a suitable constant CB > 0. �

Combining Propositions 7.2 and 7.5, we arrive at the following key result.

Corollary 7.6 (stabilization-free a posteriori error upper bound). It holds

|u − uT |21,Ω ≤ CU1η
2
T (uT ,D) + CU2Ψ

2
T (uT ,D),

where CU1 = Capost

(
CB
γ2 + 1

)
and CU2 = Capost

CB
γ2 .

Remark 7.7. Note that the chosen stabilization affects the value of the constant capost, which in principle
may depend on the polynomial degree and the geometry of the mesh. However, this dependence is
under control; indeed, (i) we are not proposing a p-method, so the polynomial degree k is fixed, (ii)
the refinement procedure is obtained by newest-vertex bisection, which guarantees shape regularity on
the refined elements, (iii) Assumption 4.3 enforces an upper bound on the number of hanging nodes on
each edge.
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8. The effect of a mesh refinement

In view of the convergence analysis of the adaptive algorithm GALERKIN, in this section we analyse
the effect of refining the partition T by applying one or more newest-vertex bisections to some of
its elements. Specifically, in Sect. 8.1 we prove that the residual estimator (6.2) is reduced by a
fixed fraction (up to an addend proportional to the stabilization term) when the element E is split into
two elements by one bisection. We prove a similar result for the inconsistency term estimator (6.4),
provided a suitable number of bisections is applied to E. Next, in Sect. 8.2 we establish a quasi-
orthogonality property in the energy norm between the solutions on two partitions, one being a
refinement of the other.

8.1. Reduction of estimators under refinement

Let us consider an element E in T which is bisected into elements E1 and E2; the refined partition
containing these two elements will be denoted by T∗. Given v ∈ VT , we notice that v is known
on ∂E, and in particular at the new vertex of E1 and E2 produced by the bisection. Denoting by
e = E1 ∩ E2 the new edge, we associate a function v∗ ∈ VT∗ to v such that v∗|∂E = v|∂E, v∗|e ∈ P1(e), and
µp(Ei, v∗) = µp(E, v) for all 0 ≤ p ≤ k − 2 and for i = 1, 2. In the following we will write v instead of
v∗ when no confusion arises.

8.1.1. The residual estimator

Let ηT (E; v,D) be defined in (6.2) and ηT∗(E; v,D) be the sum of the local residual estimators on
the two newly formed elements , defined as follows:

η2
T∗

(E; v,D) :=
2∑

i=1

η2
T∗

(Ei; v,D) =

2∑
i=1

h2
Ei
||rT (Ei; v,D)||20,Ei

+
1
2

∑
e∈EEi

hEi || jT (e; v,D)||20,e

 ,
where we recall that hEi = 1

√
2
hE, i = 1, 2 We notice that, sinceD does not change under refinement, the

functions fEi = fE |Ei , cEi = cE |Ei and AEi = AE |Ei will be denoted again by fE, cE and AE, respectively.

Lemma 8.1 (local residual estimator reduction). There exist constants µr ∈ (0, 1) and cer,1 > 0 such
that for any v ∈ VT

ηT∗(E; v,D) ≤ µr ηT (E; v,D) + cer,1S 1/2
T (E)(v, v),

where S T (E)(v, v) :=
∑

E′∈T (E) S E′(v, v) with T (E) := {E′ ∈ T : EE ∩ EE′ , ∅}.

Proof. Recalling the Definition (6.1), we have the following residuals

rE := fE + ∇ ·
(
AEΠ0

k−1,E∇v
)
− cEΠ0

k,Ev,

rEi := fE + ∇ ·
(
AEΠ0

k−1,Ei
∇v

)
− cEΠ0

k,Ei
v.

Writing
rEi = rE − ∇ ·

(
AEΠ0

k−1,E∇v − AEΠ0
k−1,Ei
∇v

)
+ cEΠ0

k,Ev − cEΠ0
k,Ei

v,
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we get, for any ε > 0,

2∑
i=1

h2
Ei
||rEi ||

2
0,Ei
≤

2∑
i=1

h2
Ei

(1 + ε)||rE ||
2
0,Ei

+ 2
2∑

i=1

h2
Ei

(
1 +

1
ε

)
||∇ ·

(
AE

(
Π0

k−1,E∇v − Π0
k−1,Ei
∇v

))
||20,Ei

+ 2
2∑

i=1

h2
Ei

(
1 +

1
ε

)
||cE

(
Π0

k,Ev − Π0
k,Ei

v
)
||20,Ei

.

The second term can be bounded by using the inverse inequality and the minimality of Π0
k−1,Ei

as
follows:

2∑
i=1

h2
Ei
||∇ ·

(
AE

(
Π0

k−1,E∇v − Π0
k−1,Ei
∇v

))
||20,Ei
.

2∑
i=1

||Π0
k−1,E∇v − Π0

k−1,Ei
∇v||20,Ei

≤ 2||∇v − Π0
k−1,E∇v||20,E + 2

2∑
i=1

||∇v − Π0
k−1,Ei
∇v||20,Ei

≤ 4|∇v − Π0
k−1,E∇v|21,E . |v − IEv|21,E . S E(v, v),

while, for the last term, using the Poincaré inequality we have

2∑
i=1

h2
Ei
||cE

(
Π0

k,Ev − Π0
k,Ei

v
)
||20,Ei
. h2

E

2∑
i=1

||Π0
k,Ev − Π0

k,Ei
v||20,Ei

≤ h2
E ||v − Π0

k,Ev||20,E . h2
E |v − Π0

k,Ev|21,E . h2
ES E(v, v).

Finally, taking an appropriate value of ε and setting µ := 1+ε
2 ∈ (0, 1) (for instance, if ε = 1

2 , µ = 3
4 ) we

get

2∑
i=1

h2
Ei
||rEi ||

2
0,Ei
≤ µ h2

E ||rE ||
2
0,E + C(1 + h2

E)S E(v, v),

where C > 0 is a constant.
For the jump condition, we will essentially use the proof given in [5, Lemma 5.2]. In particular, we

write jT∗(e; v) = jT (e; v) +
(
jT∗(e; v) − jT (e, v)

)
and for any ε > 0

2∑
j=1

∑
e∈EEi

hEi‖ jT∗(e; v)‖20,e ≤ (1 + ε) T1 +

(
1 +

1
ε

)
T2,

with T1 :=
∑2

i=1
∑

e∈EEi
hEi‖ jT (e; v)‖20,e and T2 :=

∑2
i=1

∑
e∈EEi

hEi‖ jT∗(e; v)− jT (e; v)‖20,e. On the new edge
we notice that jT (e; v) = 0, then,

T1 ≤
1
√

2

∑
e∈EE

hE‖ jT (e; v)‖20,e.
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We now define T∗(Ei) := {E′ ∈ T∗ : EEi ∩ EE′ , ∅}; for any edge e ∈ EEi , we denote by Ei,e ∈ T∗(Ei)
the element such that e = ∂Ei ∩ ∂Ei,e. Then,

‖ jT∗(e; v) − jT (e; v)‖0,e = ‖ [[A(Π0
T∗
− Π0

T )∇v]] ‖0,e
≤ ‖AE(Π0

k−1,Ei
− Π0

k−1,E)∇v‖0,e + ‖AÊi,e
(Π0

k−1,Ei,e
− Π0

k−1,Êi,e
)∇v‖0,e,

where Êi,e indicates the parent of Ei,e. Using the trace inequality we have

T2 .
2∑

i=1

∑
E′∈T∗(Ei)

||(Π0
k−1,E′ − Π0

k−1Ê′
)∇v||20,E′

.
2∑

i=1

∑
E′∈T∗(Ei)

(
||∇v − Π0

k−1,E′∇v||20,E′ + ||∇v − Π0
k−1,Ê′

∇v||20,E′
)

Using now the minimality property of Π0
k−1,E′ and Π0

k−1,Ê′
, we easily get as above

T2 ≤
∑

E′∈T (E)

||∇(v − IE′v)||20,E′ .
∑

E′∈T (E)

S E′(v, v),

which, for a sufficiently small ε, concludes the proof. �

From this Lemma and the Lipschitz continuity of the residual estimator with respect to the argument
v (whose proof is independent of the used polynomial degree, so we refer to [5, Lemma 5.3]), we
immediately deduce the following result.

Proposition 8.2 (residual estimator reduction on refined elements). There exist constants µr ∈ (0, 1),
cer,1 > 0 and cer,2 > 0 independent of T such that for any v ∈ VT and w ∈ VT∗ , and any element E ∈ T
which is split into two children E1, E2 ∈ T∗, one has

ηT∗(E; w,D) ≤ µr ηT (E; v,D) + cer,1 S 1/2
T (E)(v, v) + cer,2 |v − w|1,T (E). (8.1)

8.1.2. The virtual inconsistency estimator

Given v ∈ VT and E ∈ T , consider the two virtual inconsistency terms ΨT ,A(E, v,D) and
ΨT ,c(E, v,D) introduced in (6.3). When E is bisected into E1 and E2, the term ΨT ,c(E, v,D) is reduced
by a factor µc < 1 up to an addend proportional to the stabilization term, i.e., there exists cvi,c > 0 such
that  2∑

i=1

ΨT∗,c(Ei, v,D)2

1/2

≤ µc ΨT ,c(E, v,D) + cvi,cS E(v, v)1/2. (8.2)

This stems from the presence of the factor hE in front of the norm ||
(
I − Π0

k)(cEΠ0
kv

)
||0,E, with an

argument similar to the one used in the proof of Lemma 8.1.
Due to the lack of the factor hE, a reduction result similar to (8.2) does not hold for ΨT ,A(E, v,D).

Indeed, since AEΠ0
k−1,E∇v ∈ P2k−2(E), one may ask whether a constant µ < 1 esists such that

2∑
i=1

‖(I − Π0
k−1,Ei

)q‖20,Ei
≤ µ2‖(I − Π0

k−1,E)q‖20,E ∀q ∈ P2k−2(E). (8.3)
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Unfortunately, the answer is no, as it can be seen numerically, working on the reference element Ê
by affinity and identifying µ2 as the largest eigenvalue of a generalized eigenvalue problem. However,
the same numerics indicates that if Ê is split into 2m triangles of equal area by m successive levels of
uniform bisections, then µ2 becomes < 1 for m large enough, as seen in Table 1.

Table 1. Value of µ2 in (8.3) for different values of the polynomial degree k and the level of
refinement m.

m = 1 m = 2
k = 2 1.0000 0.3153
k = 3 1.0000 0.6648

This is indeed predicted by the following result.

Lemma 8.3. Let E ∈ T . For any polynomial degree k ≥ 1 there exists a minimal m ∈ N and a constant
µ = µm < 1 independent of E such that, if E is partitioned into 2m elements Ei of equal area by m levels
of uniform newest vertex bisection, it holds

2m∑
i=1

‖(I − Π0
k−1,Ei

)q‖20,Ei
≤ µ2‖(I − Π0

k−1,E)q‖20,E ∀q ∈ P2k−2(E). (8.4)

Proof. Since by construction hEi = 2−m/2hE, classical approximation results give

2m∑
i=1

‖(I − Π0
k−1,Ei

)q‖20,Ei
≤ Ck2−mh2

E |q|
2
1,E

for some constant Ck depending on k. Replacing q by q −Π0
k−1,Eq leaves the left-hand side unchanged,

whereas on the right-hand side an inverse inequality yields

2m∑
i=1

‖(I − Π0
k−1,Ei

)q‖20,Ei
≤ CkCinv,k2−m‖q − Π0

k−1,Eq‖20,E.

One concludes taking as m the smallest integer such that µ2
m := CkCinv,k2−m < 1. �

Based on these results, let T∗m be a refinement of T in which the element E has undergone m levels
of uniform refinements by newest vertex bisection, and has been replaced by 2m subelements Ei. Given
v ∈ VT , let us set

Ψ2
T∗

m,A(E; v,D) =

2m∑
i=1

‖(I − Π0
Ei,k−1)(AEΠ0

Ei,k−1∇v)‖20,Ei
.

Lemma 8.4. There exist constants ρA < 1 and cvi,A > 0 such that for any v ∈ VE,k

ΨT∗m,A(E; v,D) ≤ ρAΨT ,A(E; v,D) + cvi,AS 1/2
E (v, v).

Proof. Write

‖(I − Π0
Ei,k−1)(AEΠ0

Ei,k−1∇v)‖0,Ei ≤ ‖(I − Π0
Ei,k−1)(AEΠ0

E,k−1∇v)‖0,Ei

+ ‖AE(Π0
Ei,k−1∇v − Π0

E,k−1∇v)‖0,Ei ,
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sum over i, and conclude using (8.4) and the usual arguments based on the minimality of the L2-
orthogonal projections. �

Let us set
Ψ2
T∗

m(E, v,D) := Ψ2
T∗

m,A(E; v,D) + Ψ2
T∗

m,c(E; v,D)

with

Ψ2
T∗

m,c(E; v,D) =

2m∑
i=1

h2
Ei
‖(I − Π0

Ei,k)(cEΠ0
Ei,kv)‖20,Ei

.

Applying a bound similar to (8.2) to the successive level of refinements, we arrive at the following
result.

Lemma 8.5. There exist constants µvi < 1 and cvi,1 > 0 such that for any v ∈ VE,k

ΨT∗m(E; v,D) ≤ µvi ΨT (E; v,D) + cvi,1 S 1/2
E (v, v).

Combining this estimate with the Lipschitz continuity property of the virtual inconsistency
estimator, we obtain the following result.

Proposition 8.6 (virtual inconsistency estimator reduction on refined elements). There exist constants
µvi ∈ (0, 1), cvi,1 > 0 and cvi,2 > 0 independent of T such that for any v ∈ VT and w ∈ VT∗m , and any
element E ∈ T which is split into 2m children Ei ∈ VT∗m , one has

ΨT∗m(E; w,D) ≤ µvi ΨT (E; v,D) + cvi,1 S 1/2
E (v, v) + cvi,2 |v − w|1,E. (8.5)

8.2. Quasi-orthogonality property

Let uT∗ ∈ VT∗ be the solution of Problem (3.4) on the refined mesh T∗. Hereafter we establish
relations between the two energy errors |||u − uT ||| and

∣∣∣∣∣∣∣∣∣u − uT∗
∣∣∣∣∣∣∣∣∣. The first result follows from

Proposition 5.5 and Lemma 3.1; the proof is independent of the used polynomial degree, so we refer
to [5, Proposition 5.7].

Proposition 8.7 (comparison of the energy error under refinement). For any δ ∈ (0, 1] there exists a
constant CE > 0 independent of T and δ such that∣∣∣∣∣∣∣∣∣u − uT∗

∣∣∣∣∣∣∣∣∣2 ≤ (1 + δ)|||u − uT |||2 −
∣∣∣∣∣∣∣∣∣uT∗ − uT

∣∣∣∣∣∣∣∣∣2 + CE

(
1 +

1
δ

) (
S T (uT , uT ) + S T∗(uT∗ , uT∗)

)
.

Next result extends Corollary 5.8 in [5].

Proposition 8.8 (quasi-orthogonality of energy errors without stabilization). Given any δ ∈
(
0, 1

4

]
,

there exists γδ > 0 such that for any γ > γδ, it holds∣∣∣∣∣∣∣∣∣u − uT∗
∣∣∣∣∣∣∣∣∣2 ≤ (1 + 4δ)|||u − uT |||2 −

∣∣∣∣∣∣∣∣∣uT∗ − uT
∣∣∣∣∣∣∣∣∣2 + 2δ

(
Ψ2
T (uT ,D) + Ψ2

T∗
(uT∗ ,D)

)
.

Proof. Let e := |||u − uT |||, e∗ :=
∣∣∣∣∣∣∣∣∣u − uT∗

∣∣∣∣∣∣∣∣∣, S := S T (uT , uT ), S ∗ := S T∗(uT∗ , uT∗), η := ηT (uT ,D),
Ψ := ΨT (uT ,D), Ψ∗ := ΨT∗(uT∗ ,D) and E :=

∣∣∣∣∣∣∣∣∣uT − uT∗
∣∣∣∣∣∣∣∣∣. From Corollary 7.4 and (2.3), we get

η2 ≤ S
capost

+ e2

capost cB
, while, from Proposition 7.5, S ≤ CB

γ2

(
η2 + Ψ2

)
. Combining them, we have(

1 −
CB

γ2 capost

)
S ≤

CB

γ2

(
e2

capost cB
+ Ψ2

)
.
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Doing the same on T∗ and defining

C :=
(
1 −

CB

capost

)−1

CB max
{

1,
1

capost cB

}
≤

(
1 −

CB

γ2 capost

)−1

CB max
{

1,
1

capost cB

}
provided γ2 ≥ 1, we get

S ≤
C
γ2

(
e2 + Ψ2

)
, S ∗ ≤

C
γ2

(
e2
∗ + Ψ2

∗

)
.

Employing Proposition 8.7, we obtain

e2
∗ ≤ (1 + δ)e2 − E2 + CE

(
1 +

1
δ

)
C
γ2 (e2 + e2

∗ + Ψ2 + Ψ2
∗).

If we define D := CE

(
1 + 1

δ

)
C,(

1 −
D
γ2

)
e2
∗ ≤

(
1 + δ +

D
γ2

)
e2 − E2 +

D
γ2 (Ψ2 + Ψ2

∗).

By choosing γ such that
1
γ2 ≤

δ

D
, (8.6)

we get

(1 − δ)e2
∗ ≤ (1 + 2δ)e2 − E2 + δ(Ψ2 + Ψ2

∗),

which concludes the proof by observing that 1+2δ
1−δ ≤ 1 + 4δ and δ

1−δ ≤ 2δ, when δ ≤ 1
4 . �

9. The module GALERKIN

Let us consider a Λ-admissible input mesh T0, a set of approximated data D which consist of
piecewise polynomials of degree k − 1 on T0, and a tolerance ε > 0. The call

[T , uT ] = GALERKIN(T0,D, ε)

produces a Λ-admissible refined mesh T and the Galerkin approximation uT ∈ VT , such as

|||u − uT ||| ≤ CGε,

where u is the solution of Problem (2.2) and CG =
√

cBmax
{
CU1 ,CU2

}
, with cB is defined in (2.3) and

CU1 ,CU2 in Corollary 7.6. We obtain it by iterating the sequence

SOLVE→ ESTIMATE→ MARK→ REFINE.

At each step, a Λ−admissible mesh T j and the associated solution u j of the discrete Problem (3.4) are
produced. The process stops when the condition η2

T j
(u j,D) + Ψ2

T j
(u j,D) ≤ ε2 is reached.

In particular, the modules are defined as follows:

Mathematics in Engineering Volume 5, Issue 6, 1–33.



27

• [uT ] = SOLVE(T ,D) produces the solution of Problem (3.4) with dataD;
• [{ηT (·; uT ,D)}, {ΨT (·; uT ,D)}] = ESTIMATE(T , uT ) computes the local estimators on T ;
• [M] = MARK(T , {ηT (·; uT ,D)}, {ΨT (·; uT ,D)}], θ) implements the Dörfler criterion [15] and

finds an almost minimal setM of elements in T such that

θ
(
η2
T (uT ,D) + Ψ2

T (uT ,D)
)
≤

∑
E∈M

(
η2
T (E; uT ,D) + Ψ2

T (E; uT ,D)
)
, (9.1)

for a given parameter θ ∈ (0, 1);
• [T∗] = REFINE(T ,M,Λ) returns a Λ-admissible refined mesh obtained from T by suitable

newest-vertex bisections of the elements in M, and possibly of other elements to fullfil the Λ-
admissibility condition.

It is worth adding some details about the procedure REFINE. Let E ∈ M be an element marked
for refinement. For simplicity, hereafter let us set η := ηT (E; uT ,D) and Ψ := ΨT (E; uT ,D). The
refinement of E is performed as follows:

• If η ≥ Ψ, then E is bisected once;
• If η < Ψ, then E is bisected m-times, where m has been introduced in Section 8.1.2 (see

Lemma 8.3).

Denote by P(E) the partition of E so obtained, and set η2
∗ :=

∑
E′∈P(E) η

2
P(E)(E

′; uT ,D) and Ψ2
∗ :=∑

E′∈P(E) Ψ2
P(E)(E

′; uT ,D). Then, recalling Lemmas 8.1 and 8.5, one gets when η ≥ Ψ

η∗ + Ψ∗ ≤
µr + 1

2
(η + Ψ) + c S 1/2

T (E)(uT , uT ).

Indeed, Ψ can be written as Ψ = λη for a certain λ ∈ [0, 1] and

η∗ + Ψ∗ ≤ µrη + λη + c S 1/2
T (E)(uT , uT )

=
µr + λ

1 + λ
(1 + λ)η + c S 1/2

T (E)(uT , uT )

=
(µr + λ)

1 + λ
(η + Ψ) + c S 1/2

T (E)(uT , uT ).

In the case η < Ψ,
η∗ + Ψ∗ ≤ max(µm

r , µvi)(η + Ψ) + c S 1/2
T (E)(uT , uT ).

In all cases, it holds

η∗ + Ψ∗ ≤ max
(µr + 1

2
, µvi

)
(η + Ψ) + c S 1/2

T (E)(uT , uT ), (9.2)

which shows that in each marked element the sum of the two estimators is reduced under refinement,
up to the stabilization term. Note that for values k = 2 or 3 of the polynomial degree of practical use,
two bisections (m = 2) are enough when η < Ψ.

This refinement may create non-admissible hanging nodes, i.e., hanging nodes with global index
larger than Λ. To remove them and guarantee Λ-admissibility of T∗, further refinements should be
applied. For the realization of this technical part, we refer to Section 11.1 in [6].

The following section proves the convergence of the GALERKIN algorithm.
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10. Convergence property of GALERKIN

Proposition 10.1 (global estimators reduction). Let uT ∈ VT be the solution of the discrete variational
Problem (3.4). There exist constants ρ ∈ (0, 1) and Cger,1,Cger,2 > 0 independent of T such that, if T∗
is the refinement of T obtained by applying REFINE, one has for any w ∈ VT∗

η2
T∗

(w,D) + Ψ2
T∗

(w,D)

≤ ρ
(
η2
T (uT ,D) + Ψ2

T (uT ,D)
)

+ Cger,1S T (uT , uT ) + Cger,2|uT − w|21,Ω .
(10.1)

Proof. One can reach the conclusion e.g., as in [5, proof of Proposition 5.5], using the bound (9.2) in
each element E marked for refinement. �

Theorem 10.2 (contraction property of GALERKIN). LetM ⊂ T be the set of the marked elements
relative to the solution uT ∈ VT of the discrete variational Problem (3.4). If T∗ is the refinement of T
obtained by applying REFINE, then for γ sufficiently large there exist α ∈ (0, 1) and β > 0, ζ > 0 such
that ∣∣∣∣∣∣∣∣∣u − uT∗

∣∣∣∣∣∣∣∣∣2 + β η2
T∗

(uT∗ ,D) + ζ Ψ2
T∗

(uT ,D) ≤ α
(
|||u − uT |||2 + βη2

T (uT ,D) + ζΨ2
T (uT ,D)

)
.

Proof. To simplify notation, we set again e = |||u − uT |||, e∗ =
∣∣∣∣∣∣∣∣∣u − uT∗

∣∣∣∣∣∣∣∣∣, S = S T (uT , uT ), S ∗ =

S T∗(uT∗ , uT∗), η = ηT (uT ,D), η = ηT∗(uT∗ ,D), Ψ = ΨT (uT ,D), Ψ∗ = ΨT∗(uT∗ ,D) and E =
∣∣∣∣∣∣∣∣∣uT − uT∗

∣∣∣∣∣∣∣∣∣.
From Proposition 8.8,

e2
∗ ≤ (1 + 4δ)e2 − E2 + 2δ(Ψ + Ψ∗),

whereas using Proposition 10.1 and Proposition 7.5, we get

η2
∗ + Ψ2

∗ ≤ ρ(η2 + Ψ2) + Cger,1S +
Cger,2

cB
E2 ≤

(
ρ +

Cger,1CB

γ2

)
(η2 + Ψ2) +

Cger,2

cB
E2.

Combining them, we get

e2
∗ + βη2

∗ + (β − 2δ) Ψ2
∗ ≤ (1 + 4δ)e2 +

(
βCger,2

cB
− 1

)
E2

+ β

(
ρ +

Cger,1CB

γ2

)
η2 + β

(
ρ +

Cger,1CB

γ2 +
2δ
β

)
Ψ2,

which suggests choosing β such that
βCger,2

cB
= 1. (10.2)

Next, we write

e2
∗ + βη2

∗ + (β − 2δ) Ψ2
∗ ≤ (1 − δ)e2 + 5δ e2

+ β

(
ρ +

Cger,1CB

γ2

)
η2 + β

(
ρ +

Cger,1CB

γ2 +
2δ
β

)
Ψ2,

and we invoke Corollary 7.6 to write

e2 ≤ cBCapost

(
1 +

CB

γ2

)
η2 + cBCapost

CB

γ2 Ψ2,
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which gives

e2
∗ + βη2

∗ + (β − 2δ) Ψ2
∗ ≤ (1 − δ)e2 + β

(
ρ +

Cger,1CB

γ2 +
5δ
β

cBCapost

(
1 +

CB

γ2

))
η2

+ β

(
ρ +

Cger,1CB

γ2 +
2δ
β

+
5δ
β

cBCapost
CB

γ2

)
Ψ2.

We now choose γ and δ such that

ρ +
Cger,1CB

γ2 +
5δ
β

cBCapost

(
1 +

CB

γ2

)
≤

1 + ρ

2

which holds true if

Cger,1CB

γ2 ≤
1 − ρ

4
and

5δ
β

cBCapost(1 + CB) ≤
1 − ρ

4
(10.3)

(recall that we already assumed γ2 ≥ 1). Similarly, we choose γ and δ such that

β

(
ρ +

Cger,1CB

γ2 +
2δ
β

+
5δ
β

cBCapost
CB

γ2

)
≤ (β − 2δ)

1 + ρ

2
,

which holds true if γ satisfies the first condition in (10.3), whereas δ satisfies(
2 + 5cBCapostCB +

1 + ρ

β

)
δ ≤

1 − ρ
4

. (10.4)

This proves the result, if we define ζ := β − 2δ, with β defined by (10.2) and δ < β

2 , and

α := min
(
1 − δ,

1 + ρ

2

)
. (10.5)

The conditions on γ and δ which lead to the desired estimate are given in (8.6), (10.3) and (10.4). �

11. Numerical experiments

The aim of this numerical test is to confirm the convergence of our GALERKIN algorithm. We
consider a classical test with an L−shaped domain Ω = (−1, 1)2 \ (−1, 0)2 and the reaction-diffusion
problem (2.1), with polynomial coefficients of order one for the case k = 2, i.e.,

A =

[
2 + y 0

0 2 + x

]
, c = x + y + 3,

and polynomials of order two for the case k = 3,

A =

[
2 + y2 0

0 2 + x2

]
, c = x2 + y2.
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The forcing term f and the Dirichlet boundary conditions are chosen so that the solution of the problem
results

uex(r, β) = r2/3 sin
(
2
3

(
β +

π

2

))
, (11.1)

where r and β are the polar coordinates. It is possible to prove that there exists a p with p ∈
(

2
k+1 ,

2
k+2/3

)
such that uex ∈ Wk

p(Ω) when p ≥ 1, and uex ∈ Lk
p(Ω) when p ∈ (0, 1), where Wk

p(Ω) and Lk
p(Ω)

indicate respectively Sobolev and Lipschitz spaces. Then, according to the theory of approximation
classes [16, 17], we expect the maximal rate of convergence, i.e., Ndofs∧−k/2, where Ndofs is the
number of the degrees of freedom. We apply the adaptive algorithm as described in Section 9 and for
the marking strategy (9.1) we consider θ = 0.5. In order to compute the VEM error, we consider the
computable quantity:

H∧1 − error :=

(∑
E∈T ‖∇(uex − Π∇EuT )‖20,E

)1/2

‖∇uex‖0,Ω
.

In Figure 6, we represent the evolution of H∧1 − error and the estimator terms ηT (uT ,D) and
ΨT (uT ,D), which confirms the results of Corollary 7.6. Furthermore, we notice that after a transient
phase, the error and the estimator terms decays reach asymptotically the theoretical optimal rate
Ndofs∧−1.0 (for the case k = 2) and Ndofs∧−1.5 (for the case k = 3). In Figure 7, we depict the
meshes after 20, 35 and 50 loops of the adaptive algorithm in the case k = 2. We highlight the presence
of hanging nodes in the different meshes loops.

(a) (b)

Figure 6. H∧1 − error (red), the residual type term ηT (uT ,D) (blue), the inconsistency
term ΨT (uT ,D) (green), and the expected optimal decay (dashed) in the case k = 2 (a) and
k = 3 (b).
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Figure 7. The partition of the domain after 20 loops (first), 35 loops (second), and 50 loops
(third) of the adaptive algorithm of order k = 2.

12. Conclusions

In this paper, we presented an adaptive VEM of order k ≥ 2 on nonconforming triangular meshes.
In the analysis, the space V0

T
of continuous, piecewise polynomials functions of degree k on the

triangulation T plays a fundamental role. Indeed, it is contained in the global VEM space, V0
T
⊆ VT ,

and guarantees a quasi-orthogonality property for any refinement T∗ of T , since V0
T
⊆ V0

T∗
. By

pivoting on this space, we proved an a posteriori error estimate which does not contain the stabilization
term appearing in the VEM discrete formulation. Consequently, we established the convergence of the
adaptive VEM algorithm, by a contraction argument.

Extensions of our work include:

• The complexity and optimality analysis of the two step algorithm AVEM mentioned in the
Introduction to account for non-polynomial data;
• The study of a variant of the adaptive algorithm in which the polynomial degree k may take large

values, in the spirit of a p-version;
• The treatment of more general polygonal meshes which, as remarked in [5], seems non-trivial.

The main difficulties lay in the choice of a suitable refinement strategy in replacement of the
newest-vertex bisection used here, and in the lack of a conforming spaceV0

T
for general polygonal

meshes.
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