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CONTINUITY OF THE NON-CONVEX PLAY OPERATOR

IN THE SPACE OF RECTIFIABLE CURVES

Jana Kopfová, Opava, Vincenzo Recupero, Torino

Abstract. In this paper we prove that the vector play operator with a uniformly prox-
regular characteristic set of constraints is continuous with respect to the BV-norm and to the
BV-strict metric in the space of rectifiable curves, i.e. in the space of continuous functions
of bounded variation. We do not assume any further regularity of the characteristic set.
We also prove that the non-convex play operator is rate independent.

Keywords: Evolution variational inequalities, Play operator, Sweeping processes, Func-
tions of bounded variation, Prox-regular sets

MSC 2020: 34G25, 34A60, 47J20, 49J52, 74C05

1. Introduction

Several phenomena in elasto-plasticity, ferromagnetism, and phase transitions are

modeled by the following evolution variational inequality in a real Hilbert space H
with the inner product 〈·, ·〉:

〈z − u(t) + y(t), y′(t)〉 ≤ 0 ∀z ∈ Z, t ∈ [0, T ] ,(1.1)

u(t)− y(t) ∈ Z ∀t ∈ [0, T ] .(1.2)

Here u : [0, T ] −→ H is a given “input” function, T > 0 being the final time of

evolution, and y : [0, T ] −→ H is the unknown function, y′ being its derivative. It is

assumed that the set Z in the constraint (1.2) is a closed convex subset of H, and it is

usually called the characteristic set. We refer to the monographs [20, 27, 37, 5, 22, 28]

for surveys on these physical models. It is well-known (see, e.g., [22]), that if u is
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absolutely continuous, then there exists a unique absolutely continuous solution y of

(1.1)-(1.2) together with the given initial condition

(1.3) u(0)− y(0) = z0 ∈ Z.

If we set P(u, z0) := y we have defined a solution operator P : W1,1([0, T ] ;H)×Z −→
W1,1([0, T ] ;H) which is called the play operator. Here W1,1([0, T ] ;H) denotes the

space of H-valued Lipschitz continuous functions defined on [0, T ] (precise definitions

will be given in Sections 2 and 3). An important feature of P is its rate independence,

i.e.

(1.4) P(u ◦ φ, z0) = P(u, z0) ◦ φ,

whenever φ : [0, T ] −→ [0, T ] is an increasing surjective Lipschitz continuous

reparametrization of time. The play operator can be extended to the space of rec-

tifiable curves in H, i.e. to the space of continuous H-valued functions of bounded

variation C([0, T ] ;H) ∩ BV([0, T ] ;H) ([22]). This can be done by reformulating

(1.1) as an integral variation inequality:

(1.5)

∫ T

0

〈z(t)− u(t) + y(t),dy(t)〉 ≤ 0, ∀z ∈ BV([0, T ] ;Z),

where the integral can be interpreted as a Riemann-Stieltjes integral (see e.g. [22]),

but also as a Lebesgue integral with respect to the differential measure Dy, the

distributional derivative of y (see [32] for the equivalence of the two formulations). By

[22] for every u ∈ C([0, T ] ;H)∩BV([0, T ] ;H) there exists a unique y ∈ C([0, T ] ;H)∩
BV([0, T ] ;H) such that (1.5), (1.2), (1.3) hold. Therefore the play operator can be

extended to the operator P : C([0, T ] ;H) ∩ BV([0, T ] ;H) × Z → C([0, T ] ;H) ∩
BV([0, T ] ;H). Its domain of definition is naturally endowed with the strong BV-

norm defined by

(1.6) ‖u‖BV := ‖u‖∞ + V(u, [0, T ]), u ∈ BV([0, T ] ;H),

where ‖u‖∞ is the supremum norm of u and V(u, [0, T ]) is the total variation of

u. For absolutely continuous inputs the BV-norm is exactly the standard W1,1-

norm, and the continuity of P on W1,1(0, T ;H) in this special case was proved in

[21] for finite dimensional H and in [22] for separable Hilbert spaces. For such

spaces H, assuming Z having a smooth boundary, the BV-norm continuity of P

on BV([0, T ] ;H) ∩ C([0, T ] ;H) (respectively on BV([0, T ] ;H)) was proved in [6]

(respectively in [25]). Under this additional regularity of Z, in [6, 25] it is also shown

2



that P is locally Lipschitz continuous. In [19] we were able to drop the regularity of

Z and we proved that P is BV-norm continuous on BV([0, T ] ;H) for an arbitrary

characteristic set Z.

Another relevant topology in BV is the one induced by the so-called strict metric,

which is defined by

(1.7) ds(u, v) := ‖u− v‖∞ + |V(u, [0, T ])−V(v, [0, T ])|, u, v ∈ BV([0, T ] ;H).

Indeed every u ∈ BV([0, T ] ;H) can be approximated by a sequence un ∈ AC([0, T ] ;H)

converging to u in the strict metric. In [22] it is proved that P is continuous on

C([0, T ] ;H)∩BV([0, T ] ;H) with respect to the strict metric (shortly, “strictly con-

tinuous”), provided Z has a smooth boundary. In [32] this regularity assumption is

dropped and it is proved that P is continuous on C([0, T ] ;H) ∩ BV([0, T ] ;H) with

respect to the strict metric for every characteristic convex set Z. In [32] it is also

proved that in general P is not strictly continuous on the whole BV([0, T ] ;H). For

other results on the continuity properties of P we refer to [31, 33, 18].

Previous results are concerned with the case of a convex set Z, but the character-

istic set of constraints can be non-convex in some applications, e.g. in problems of

crowd motion modeling (see [38]).

In the following we will restrict ourselves to uniform prox-regular sets - these are

closed sets having a neighborhood where the projection exists and is unique. For

the notion of prox-regularity we refer the reader to [16, 39, 8, 29, 12]. Following e.g.

[11, 24], we see that the proper formulation of (1.5) in the case of a prox-regular set

Z reads

(1.8)∫ T

0

〈z(t)−u(t)+y(t),dy(t)〉 ≤ 1

2r

∫ T

0

‖z(t)−u(t)+y(t)‖2 dVy(t) ∀z ∈ BV([0, T ] ;Z),

where Vy(t) = V(y, [0, t]) for t ∈ [0, T ] and ‖ · ‖ is the norm in H. It is well-known

(cf., e.g., [15] or [24]) that for every u ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H) there exists a

unique y = P(u, z0) ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H) which satifies (1.8), (1.2), (1.3).

Thus also in the non-convex case the solution operator

P : C([0, T ] ;H) ∩ BV([0, T ] ;H)×Z → C([0, T ] ;H) ∩ BV([0, T ] ;H),

of problem (1.8), (1.2), (1.3) can be defined, which we will call non-convex play

operator. In [23] it is proved that in W1,1([0, T ] ;H) the operator P is continuous

(and also local Lipschitz continuous) with respect to the strong BV-norm under the

assumption that Z satisfies a suitable regularity assumption, to be more precise it is

required that Z is the sublevel set of a Lipschitz continuous function. In the present
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paper we prove that P is BV-norm continuous on the larger space C([0, T ] ;H) ∩
BV([0, T ] ;H) and for every characteristic prox-regular set Z. We also prove that it

is continuous with respect to the strict metric on the space of continuous functions

of bounded variation. The technique of our proof is obtained via a reparametrization

method by the arc length. In order to perform this reparametrization we use the rate

independence of P, which, to the best of our knowledge is proved here for the first

time for the non-convex case. The question of the BV-norm continuity on the whole

space BV([0, T ] ;H) will be addressed in a future paper: in that case the presence

of jumps makes the problem considerably more difficult and the reparametrization

method studied in [34, 35] is needed.

The plan of the paper is the following: In Section 2 we recall the preliminaries

needed to prove our results, which are stated in Section 3. In Section 4 we perform

all the proofs.

2. Preliminaries

The set of integers greater or equal to 1 will be denoted by N.

2.1. Prox-regular sets. Throughout this paper we assume that

(2.1)


H is a real Hilbert space with the inner product 〈x, y〉,
H 6= {0},
‖x‖ := 〈x, x〉1/2 for x ∈ H.

If S ⊆ H and x ∈ H we set dS (x) := inf{‖x− s‖ : s ∈ S}.

Definition 2.1. If K is a closed subset of H, K 6= ∅, and y ∈ H, we define the

set of projections of y onto K by setting

(2.2) ProjK(y) :=

{
x ∈ K : ‖x− y‖ = inf

z∈K
‖z − y‖

}
and the (exterior) normal cone of K at x by

(2.3) NK(x) := {λ(y − x) : x ∈ ProjK(y), y ∈ H, λ ≥ 0}.

We recall the notion of prox-regularity (see [8, Theorem 4.1-(d)]) which can also

be called “mild non-convexity”.

Definition 2.2. If K is a closed subset of H and if r ∈ ]0,∞[, we say that K is

r-prox-regular if for every y ∈ {v ∈ H : 0 < dK(v) < r} we have that ProjK(y) 6= ∅
and

x ∈ ProjK

(
x+ r

y − x
‖y − x‖

)
, ∀x ∈ ProjK(y).
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It is well-known and easy to prove that if x ∈ ProjK(y0) for some y0 ∈ H, then

ProjK(y) = {x} for every y lying in the segment with endpoints y0 and x. Thus it

follows that if K is r-prox-regular for some r > 0, then ProjK(y) is a singleton for

every y ∈ {v ∈ H : 0 < dK(v) < r}.
Prox-regularity can be characterized by means of a variational inequality, indeed

in [29, Theorem 4.1] and in [12, Theorem 16] one can find the proof of the following:

Theorem 2.1. Let K be a closed subset of H and let r ∈ ]0,∞[. Then K is

r-prox-regular if and only if for every x ∈ K and n ∈ NK(x) we have

〈n, z − x〉 ≤ ‖n‖
2r
‖z − x‖2, ∀z ∈ K.

2.2. Functions of bounded variation. Let I be an interval of R. The set of

H-valued continuous functions defined on I is denoted by C(I;H). For a function

f : I −→ H and for S ⊆ I we write Lip(f, S) := sup{‖f(t) − f(s)‖/|t − s| : s, t ∈
S, s 6= t}, Lip(f) := Lip(f, I), the Lipschitz constant of f , and Lip(I; X) := {f :

I −→ H : Lip(f) <∞}, the set of H-valued Lipschitz continuous functions on I.

Definition 2.3. Given an interval I ⊆ R, a function f : I −→ H, and a subinterval

J ⊆ I, the variation of f on J is defined by

V(f, J) := sup


m∑
j=1

‖(f(tj−1)− f(tj)‖ : m ∈ N, tj ∈ J ∀j, t0 < · · · < tm

 .

If V(f, I) <∞ we say that f is of bounded variation on I and we set

BV(I;H) := {f ∈ I :−→ H : V(f, I) <∞}.

It is well known that the completeness of H implies that every f ∈ BV(I;H)

admits one sided limits f(t−), f(t+) at every point t ∈ I, with the convention that

f(inf I−) := f(inf I) if inf I ∈ I, and that f(sup I+) := f(sup I) if sup I ∈ I. If I is

bounded we have Lip(I;H) ⊆ BV(I;H).

2.3. Differential measures. Given an interval I of the real line R, the family of

Borel sets in I is denoted by B(I). If µ : B(I) −→ [0,∞] is a measure, p ∈ [1,∞],

then the space of H-valued functions which are p-integrable with respect to µ will

be denoted by Lp(I, µ;H) or simply by Lp(µ;H). For the theory of integration of

vector valued functions we refer, e.g., to [26, Chapter VI]. When µ = L1, where L1

is the one dimensional Lebesgue measure, we write Lp(I;H) := Lp(I, µ;H).

We recall that a H-valued measure on I is the map ν : B(I) −→ H such that

ν(
⋃∞
n=1Bn) =

∑∞
n=1 ν(Bn) for every sequence (Bn) of mutually disjoint sets in
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B(I). The total variation of ν is the positive measure
ν : B(I) −→ [0,∞] defined

by

ν(B) := sup

{ ∞∑
n=1

‖ν(Bn)‖ : B =

∞⋃
n=1

Bn, Bn ∈ B(I), Bh ∩Bk = ∅ if h 6= k

}
.

The vector measure ν is said to be with bounded variation if
ν(I) < ∞. In this

case the equality ‖ν‖ :=
ν(I) defines a complete norm on the space of measures

with bounded variation (see, e.g. [14, Chapter I, Section 3]).

If µ : B(I) −→ [0,∞] is a positive bounded Borel measure and if g ∈ L1(I, µ;H),

then gµ : B(I) −→ H denotes the vector measure defined by

gµ(B) :=

∫
B

g dµ, B ∈ B(I).

In this case we have that

(2.4)
gµ(B) =

∫
B

‖g(t)‖ dµ ∀B ∈ B(I)

(see [14, Proposition 10, p. 174]).

Assume that ν : B(I) −→ H is a vector measure with bounded variation and

f : I −→ H and φ : I −→ R are two step maps with respect to ν, i.e. there exist

f1, . . . , fm ∈ H, φ1, . . . , φm ∈ H and A1, . . . , Am ∈ B(I) mutually disjoint such

that
ν(Aj) < ∞ for every j and f =

∑m
j=1 1Ajfj , φ =

∑m
j=1 1Ajφj . Here 1S

is the characteristic function of a set S, i.e. 1S(x) := 1 if x ∈ S and 1S(x) := 0

if x 6∈ S. For such step maps we define
∫
I
〈f, dν〉 :=

∑m
j=1〈fj , ν(Aj)〉 ∈ R and∫

I
φ dν :=

∑m
j=1 φjν(Aj) ∈ H.

If St(
ν;H) (resp. St(

ν)) is the set of H-valued (resp. real valued) step maps

with respect to ν, then the maps St(
ν;H) −→ H : f 7−→

∫
I
〈f, dν〉 and St(

ν) −→
H : φ 7−→

∫
I
φdν are linear and continuous when St(

ν;H) and St(
ν) are endowed

with the L1-seminorms ‖f‖L1(
ν;H) :=

∫
I
‖f‖ d

ν and ‖φ‖L1(
ν) :=

∫
I
|φ|dν.

Therefore they admit unique continuous extensions Iν : L1(
ν;H) −→ R and Jν :

L1(
ν) −→ H, and we set∫

I

〈f, dν〉 := Iν(f),

∫
I

φ dν := Jν(φ), f ∈ L1(
ν;H), φ ∈ L1(

ν).

If µ is a bounded positive measure and g ∈ L1(µ;H), arguing first on step func-

tions, and then taking limits, it is easy to check that∫
I

〈f, d (gµ)〉 =

∫
I

〈f, g〉dµ, ∀f ∈ L∞(µ;H).
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The following results (cf., e.g., [14, Section III.17.2-3, p. 358-362]) provide the con-

nection between functions with bounded variation and vector measures which will

be implicitly used in this paper.

Theorem 2.2. For every f ∈ BV(I;H) there exists a unique vector measure of

bounded variation νf : B(I) −→ H such that

νf (]c, d[) = f(d−)− f(c+), νf ([c, d]) = f(d+)− f(c−),

νf ([c, d[) = f(d−)− f(c−), νf (]c, d]) = f(d+)− f(c+).

whenever inf I ≤ c < d ≤ sup I and the left hand side of each equality makes sense.

Conversely, if ν : B(I) −→ H is a vector measure with bounded variation, and if

fν : I −→ H is defined by fν(t) := ν([inf I, t[ ∩ I), then fν ∈ BV(I;H) and νfν = ν.

Proposition 2.1. Let f ∈ BV(I;H), let g : I −→ H be defined by g(t) := f(t−),

for t ∈ int(I), and by g(t) := f(t), if t ∈ ∂I, and let Vg : I −→ R be defined by

Vg(t) := V(g, [inf I, t] ∩ I). Then νg = νf and
νf(I) = νVg (I) = V(g, I).

The measure νf is called the Lebesgue-Stieltjes measure or differential measure of

f . Let us see the connection between the differential measure and the distributional

derivative. If f ∈ BV(I;H) and if f : R −→ H is defined by

(2.5) f(t) :=


f(t) if t ∈ I,
f(inf I) if inf I ∈ R, t 6∈ I, t ≤ inf I,

f(sup I) if sup I ∈ R, t 6∈ I, t ≥ sup I,

then, as in the scalar case, it turns out (cf. [32, Section 2]) that νf (B) = Df(B) for

every B ∈ B(R), where Df is the distributional derivative of f , i.e.

−
∫
R
ϕ′(t)f(t) dt =

∫
R
ϕdDf, ∀ϕ ∈ C1

c(R;R),

where C1
c(R;R) is the space of continuously differentiable functions on R with com-

pact support. Observe that Df is concentrated on I: Df(B) = νf (B ∩ I) for every

B ∈ B(I), hence in the remainder of the paper, if f ∈ BV(I,H) then we will simply

write

(2.6) Df := Df = νf , f ∈ BV(I;H),

and from the previous discussion it follows that

(2.7) ‖Df‖ =
Df
(I) = ‖νf‖ = V(f, I), ∀f ∈ BV(I;H).
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If I is bounded and p ∈ [1,∞], then the classical Sobolev space W1,p(I;H) consists

of those functions f ∈ C(I;H) for which Df = gL1 for some g ∈ Lp(I;H) and

W1,∞(I;H) = Lip(I;H). Let us also recall that if f ∈W1,1(I;H) then the derivative

f ′(t) exists L1-a.e. in t ∈ I, Df = f ′L1, and V(f, I) =
∫
I
‖f ′(t)‖ dt (see e.g. [4,

Appendix]).

3. Main results

From now on we will assume that

(3.1) Z is a r-prox-regular subset of H for some r > 0, T > 0.

We will consider on BV([0, T ] ;H) the classical complete BV-norm defined by (1.6),

where

‖f‖∞ := sup{‖f(t)‖ : t ∈ [0, T ]}.

The norm (1.6) is equivalent to the norm defined by

9f9BV := ‖f(0)‖ + V(f, [0, T ]), f ∈ BV([0, T ] ;H).

From (2.7) it also follows that

‖f‖BV = ‖f‖∞ + ‖Df‖ = ‖f‖∞ +
Df
([0, T ]), ∀f ∈ BV([0, T ] ;H).

where Df is the differential measure of f and
Df
 is the total variation measure of

Df . We also have

‖f‖BV = ‖f‖∞ +

∫ T

0

‖f ′(t)‖ dt ∀f ∈W1,1([0, T ] ;H).

On BV([0, T ] ;H) we will consider also the so-called strict metric defined by (1.7).

We say that fn → f strictly on [0, T ] if ds(fn, f)→ 0 as n→∞. Let us recall that

ds is not complete and the topology induced by ds is not linear. We now define the

so-called “non-convex play operator”.

Definition 3.1. Assume that (2.1) and (3.1) hold. We call (non-convex) play

operator the mapping

P : C([0, T ] ;H) ∩ BV([0, T ] ;H)×Z −→ C([0, T ] ;H) ∩ BV([0, T ] ;H)
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associating with every (u, z0) ∈ C([0, T ] ;H)∩BV([0, T ] ;H)×Z the unique function

y = P(u, z0) ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H) such that

u(t)− y(t) ∈ Z ∀t ∈ [0, T ] ,(3.2) ∫
[0,T ]

〈z(t)− u(t) + y(t),dDy(t)〉 ≤ 1

2r

∫
[0,T ]

‖z(t)− u(t) + y(t)‖2 d
Dy
(t)(3.3)

∀z ∈ BV([0, T ] ;H), z([0, T ]) ⊆ Z,
u(0)− y(0) = z0.(3.4)

The existence and uniqueness of such a function y = P(u, z0) is well-known and is

guaranteed by Theorem 3.1 below.

The integrals in (3.3) are Lebesgue integrals with respect to the measures Dy andDy
. The inequality can be equivalently written using Riemann-Stieltjes integrals,

by virtue of [32, Lemma A.9] and the discussion in Section 2.3.

Here is the existence and uniqueness theorem mentioned in Definition 3.1.

Theorem 3.1. Assume that (2.1) and (3.1) hold, u ∈ C([0, T ] ;H)∩BV([0, T ] ;H)

and z0 ∈ Z. Then there exists a unique function y ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H)

such that (3.2)–(3.4) hold, in other words the non-convex play operator is well defined

in C([0, T ] ;H) ∩ BV([0, T ] ;H).

As we pointed out in the previous definition the existence and uniqueness of solu-

tion to problem (3.2)–(3.4) is well-known. The reader can refer for instance to [24],

where the problem is dealt with exclusively within the framework of the integral

formulation. But the result could also be inferred by a careful comparison of [11,

Proposition 3.1] and of [15, Corollary 3.1]. However, since the literature contains

different formulations, and the equivalence of those is not always explicitly proved,

for the sake of completeness we show here how the existence and uniqueness of a

solution to (3.2)–(3.4) can be derived from [15], which to the best of our knowledge

contains the first proof of the existence of solution to the non-convex problem (3.5)–

(3.8) (see also [7, 10, 1, 2]). We will need the following auxiliary result showing that

(3.3) can be equivalently stated as a differential inclusion. We will prove it in the

next section.

Proposition 3.1. Assume that (2.1) and (3.1) hold and that u ∈ C([0, T ] ;H) ∩
BV([0, T ] ;H) and z0 ∈ Z. Then a function y ∈ C([0, T ] ;H)∩BV([0, T ] ;H) satisfies

(3.2)–(3.4) if and only if there exists a measure µ : B([0, T ]) −→ [0,∞[ and a

9



function v ∈ L1(µ,H) such that

Dy = vµ,(3.5)

u(t)− y(t) ∈ Z ∀t ∈ [0, T ](3.6)

− v(t) ∈ Nu(t)−Z(y(t)) for µ-a.e. t ∈ [0, T ](3.7)

u(0)− y(0) = z0.(3.8)

Now let observe that thanks to [15, Corollary 3.1] we have that under the assump-

tions of Proposition 3.1 there exists a unique solution to (3.5)–(3.8). Thus by virtue

of Proposition 3.1 we infer Theorem 3.1.

When the “input” function u of the play operator is more regular, we have the

following characterization of solutions (see, e.g., [24, Corollary 6.3]).

Proposition 3.2. Assume that (2.1) and (3.1) hold. If u ∈ W1,p([0, T ] ;H),

z0 ∈ Z, and if y = P(u, z0) satisfies (3.2)–(3.4), then y ∈W1,p([0, T ] ;H) and

u(t)− y(t) ∈ Z ∀t ∈ [0, T ] ,

(3.9)

〈z − u(t) + y(t), y′(t)〉 ≤ ‖y
′(t)‖
2r

‖z(t)− u(t) + y(t)‖2 for L1-a.e. t ∈ [0, T ], ∀z ∈ Z,

(3.10)

u(0)− y(0) = z0.

(3.11)

Moreover y is the unique function in W1,p([0, T ] ;H) such that (3.10)–(3.11) hold.

Now we can state our main theorems. The first result states that P is continuous

with respect to the BV-norm on C([0, T ] ;H) ∩ BV([0, T ] ;H).

Theorem 3.2. Assume that (2.1) and (3.1) hold. The play operator

P : C([0, T ] ;H) ∩ BV([0, T ] ;H)× Z −→ C([0, T ] ;H) ∩ BV([0, T ] ;H) is continuous

with respect to the BV-norm (1.6), i.e. if

‖u− un‖BV → 0, ‖z0 − z0n‖ → 0 as n→∞,

then

‖P(u, z0)− P(un, z0n)‖BV → 0 as n→∞
whenever u, un ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H) and z0, z0,n ∈ Z for every n ∈ N.

We will also prove that the play operator is continuous with respect to the strict

metric.
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Theorem 3.3. Assume that (2.1) and (3.1) hold. The play operator P :

C([0, T ] ;H) ∩ BV([0, T ] ;H) × Z −→ C([0, T ] ;H) ∩ BV([0, T ] ;H) is continuous

with respect to the strict metric ds defined by (1.7), i.e. if

ds(u, un)→ 0, ‖z0 − z0n‖ → 0 as n→∞,

then

ds(P(u, z0),P(un, z0n))→ 0 as n→∞
whenever u, un ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H) and z0, z0,n ∈ Z for every n ∈ N.

The proofs of our main theorems are strongly based on the fact that the play

operator is rate independent, which is the property (3.12) of P proved in the following

theorem.

Theorem 3.4. Assume that (2.1) and (3.1) hold, u ∈ C([0, T ] ;H)∩BV([0, T ] ;H),

and z0 ∈ Z. If φ : [0, T ] −→ [0, T ] is a continuous function such that (φ(t)−φ(s))(t−
s) ≥ 0 and φ([0, T ]) = [0, T ], and if y := P(u, z0) satisfies (3.2)–(3.4), then

(3.12) P(u ◦ φ, z0) = P(u, z0) ◦ φ.

We will prove Theorems 3.2, 3.3, and 3.4 in Section 4.

4. Proofs

Let us start with an integral characterization of the differential inclusion (3.7).

Lemma 4.1. Assume that r > 0, T > 0, µ : B([0, T ]) −→ [0,∞[ is a measure. If

u ∈ C([0, T ] ;H)∩BV([0, T ] ;H), v ∈ L1(µ;H), y ∈ C([0, T ] ;H)∩BV([0, T ] ;H), and

u(t)− y(t) ∈ Z for every t ∈ [0, T ], then the following two conditions are equivalent.

(i) −v(t) ∈ Nu(t)−Z(y(t)) for µ-a.e. t ∈ [0, T ].

(ii) For every z ∈ BV([0, T ] ;H) such that z([0, T ]) ⊆ Z one has∫
[0,T ]

〈z(t)− u(t) + y(t), v(t)〉dµ(t) ≤ 1

2r

∫
[0,T ]

‖v(t)‖‖z(t)− u(t) + y(t)‖2 dµ(t).

Proof. Assume first that (i) holds and let z ∈ BV([0, T ] ;H) be such that z(t) ∈ Z
for every t ∈ [0, T ]. Then it follows that

〈z(t)− u(t) + y(t), v(t)〉 ≤ ‖v(t)‖
2r
‖z(t)− u(t) + y(t)‖2 for µ-a.e. t ∈ [0, T ],

and after integrating with respect to µ over [0, T ] we infer the condition (ii).

Now assume that (ii) is satisfied. Let L be the set of µ-Lebesgue points of v, according
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to the definition given in Theorem 5.2 of the Appendix. If we fix t ∈ L, and choose

ζ ∈ Z and f ∈ C([0, T ] ;H) arbitrarily, it is trivially seen that t is a µ-Lebesgue

point of f , and we have∫
[t−h,t+h]∩[0,T ]

|〈f(τ), v(τ)〉 − 〈f(t), v(t)〉|dµ(τ)(4.1)

≤
∫
[t−h,t+h]∩[0,T ]

(‖f‖∞‖v(τ)− v(t)‖ + ‖v(t)‖‖f(τ)− f(t)‖) dµ(τ),

therefore

(4.2) lim
h↘0

1

µ([t− h, t+ h] ∩ [0, T ])

∫
[t−h,t+h]∩[0,T ]

〈f(τ), v(τ)〉dµ(τ) = 〈f(t), v(t)〉.

An analogous argument also shows that t is a µ-Lebesgue point of the real function

τ 7−→ ‖v(τ)‖‖f(τ)‖2, indeed∣∣‖v(τ)‖‖f(τ)‖2 − ‖v(t)‖‖f(t)‖2
∣∣

≤ ‖v(τ)− v(t)‖‖f‖2∞ + ‖v(t)‖
∣∣‖f(τ)‖2 − ‖f(t)‖2

∣∣
and τ 7−→ ‖f(τ)‖2 is continuous. Therefore

lim
h↘0

1

µ([t− h, t+ h] ∩ [0, T ])

∫
[t−h,t+h]∩[0,T ]

‖v(τ)‖‖f(τ)‖2 dτ = ‖v(t)‖‖f(t)‖2.

For any h > 0 we define the function z : [0, T ] −→ H by

z(τ) := 1[0,T ]∩[t−h,t+h](τ)ζ + 1[0,T ]r[t−h,t+h](τ)(u(τ)− y(τ)), τ ∈ [0, T ] .

We have that z is of bounded variation and that z(τ) ∈ Z for every τ ∈ [0, T ], thus

we can take such a z in the condition (ii) and we get∫
[t−h,t+h]∩[0,T ]

〈ζ − u(τ) + y(τ), v(τ)〉dµ(τ)

≤ 1

2r

∫
[t−h,t+h]∩[0,T ]

‖v(τ)‖‖ζ − u(τ) + y(τ)‖2 dµ(τ).

Dividing this inequality by µ([t− h, t+ h] ∩ [0, T ]) and taking the limit as h ↘ 0,

and taking the continuous function f(t) = ζ−u(t) + y(t), by the previous discussion

we get 〈ζ − u(t) + y(t), v(t)〉 ≤ ‖v(t)‖‖ζ − u(t) + y(t)‖2/(2r). Therefore, as µ(L) =

0, we have proved that

〈ζ − u(t) + y(t), v(t)〉 ≤ ‖v(t)‖
2r
‖ζ − u(t) + y(t)‖2 ∀ζ ∈ Z, for µ-a.e. t ∈ [0, T ],

i.e. the condition (i) holds using Theorem 2.1. �
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Now we can prove Proposition 3.1.

Proof of Proposition 3.1. Let us first assume that (3.5)–(3.8) hold for some measure

µ : B([0, T ]) −→ [0,∞[ and some function v ∈ L1(µ,H). In particular it follows thatDy
= ‖v‖µ, hence

Dy
 is µ-absolutely continuous, thus by the Radon-Nicodym

theorem there exists h ∈ L1(µ;R) such that |h(t)| ≤ 1 for µ-a.e. t ∈ [0, T ], andDy
= hµ. On the other hand, thanks to Theorem 5.3 from the Appendix there

exists g ∈ L1(
Dy
;H) such that ‖g(t)‖ = 1 for µ-a.e. t ∈ [0, T ], and Dy = g

Dy
,

therefore Dy = hgµ. In particular it follows (see (2.4)) that
Dy
 = |h|‖g‖µ and

v(t) = h(t)g(t) for µ-a.e. t ∈ [0, T ]. Hence, applying also Lemma 4.1, we obtain that∫
[0,T ]

〈z(t)− u(t) + y(t),dDy(t)〉 =

∫
[0,T ]

〈z(t)− u(t) + y(t), v(t)〉dµ(t)

≤ 1

2r

∫
[0,T ]

‖v(t)‖‖z(t)− u(t) + y(t)‖2 dµ(t)

=
1

2r

∫
[0,T ]

‖h(t)g(t)‖‖z(t)− u(t) + y(t)‖2 dµ(t)

=
1

2r

∫
[0,T ]

‖z(t)− u(t) + y(t)‖2|h(t)|‖g(t)‖ dµ(t)

=
1

2r

∫
[0,T ]

‖z(t)− u(t) + y(t)‖2 d
Dy
(t)

and (3.3) is proved. Vice-versa let us assume that (3.2)–(3.4) hold. Then the condi-

tion (ii) of Lemma 4.1 is obtained by taking µ =
Dy
 and v equal to the density of

Dy with respect to
Dy
, and we are done. �

Now we prove that P is rate independent.

Proof of Theorem 3.4. Set y := P(u, z0), and recall that Vy(t) = V(y, [0, t]) for every

t ∈ [0, T ]. Hence
Dy
= DVy, and by the vectorial Radon-Nikodym theorem ([26,

Corollary VII.4.2]) there exists v ∈ L1(
Dy
;H) such that Dy = vDVy. Let us fix

z ∈ BV([0, T ] ;H) such that z([0, T ]) ⊆ [0, T ] and recall the following well-known

formula holding for any measure µ : B([0, T ]) −→ [0,∞[, g ∈ L1(µ;H), and A ∈
B([0, T ]): ∫

φ−1(A)

g(φ(t)) dµ(t) =

∫
A

g(τ) d(φ∗µ)(τ),

where φ∗µ : B([0, T ]) −→ [0,∞[ is the measure defined by φ∗µ(B) := µ(φ−1(B))

for B ∈ B([0, T ]) (this formula can be proved by approximating g by a sequence of

step functions and then taking the limit). If 0 ≤ α ≤ β ≤ T we have

φ∗D(Vy ◦ φ)([α, β]) = D(Vy ◦ φ)(φ−1([α, β])) = DVy([α, β]),

13



hence

φ∗D(Vy ◦ φ) = DVy,

and for 0 ≤ a ≤ b ≤ T we find that

D(y ◦ φ)([a, b]) = y(φ(b))− y(φ(a)) = Dy([φ(a), φ(b)])

=

∫
[φ(a),φ(b)]

v(τ) dDVy(τ) =

∫
[φ(a),φ(b)]

v(τ) dφ∗(D(Vy ◦ φ))(τ)

=

∫
[a,b]

v(φ(t)) dD(Vy ◦ φ)(t) = (v ◦ φ) D(Vy ◦ φ)([a, b]),

so that

D(y ◦ φ) = (v ◦ φ) D(Vy ◦ φ),
D(y ◦ φ)

= ‖v ◦ φ‖D(Vy ◦ φ).

If ψ(τ) := inf φ−1(τ), then ψ is increasing and τ = φ(ψ(τ)). Therefore, since D(Vy ◦
φ) = 0 on every interval where φ is constant, we find that for every h ∈ C(R2) we

have

∫
[0,T ]

h(z(t), φ(t)) dD(Vy ◦ φ)(t) =

∫
[0,T ]

h(z(ψ(φ(t)), φ(t)) dD(Vy ◦ φ)(t).

Hence

∫
[0,T ]

〈z(t)− u(φ(t)) + y(φ(t)),dD(y ◦ φ)(t)〉(4.3)

=

∫
[0,T ]

〈z(t)− u(φ(t)) + y(φ(t)), v(φ(t))〉dD(Vy ◦ φ)(t)

=

∫
[0,T ]

〈z(ψ(φ(t)))− u(φ(t)) + y(φ(t)), v(φ(t))〉dD(Vy ◦ φ)(t)

=

∫
[0,T ]

〈z(ψ(τ))− u(τ) + y(τ), v(τ)〉dDVy(τ)

=

∫
[0,T ]

〈z(ψ(τ))− u(τ) + y(τ),dDy(τ)〉,
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and ∫
[0,T ]

‖z(t)− u(φ(t)) + y(φ(t))‖2 d
D(y ◦ φ)

(t)(4.4)

=

∫
[0,T ]

‖z(t)− u(φ(t)) + y(φ(t))‖2‖v(φ(t))‖ dD(Vy ◦ φ)(t)

=

∫
[0,T ]

‖z(ψ(φ(t))− u(φ(t)) + y(φ(t))‖2‖v(φ(t))‖ dD(Vy ◦ φ)(t)

=

∫
[0,T ]

‖z(ψ(τ))− u(τ) + y(τ)‖2‖v(τ)‖ dDVy(τ)

=

∫
[0,T ]

‖z(ψ(τ))− u(τ) + y(τ)‖2 d
Dy
(τ).

Since y = P(u, z0) we have that the right hand side of (4.3) is less or equal to the

right hand side of (4.4) times 1
2r and this implies that∫

[0,T ]

〈z(t)− u(φ(t)) + y(φ(t)),dD(y ◦ φ)(t)〉(4.5)

≤ 1

2r

∫
[0,T ]

‖z(t)− u(φ(t)) + y(φ(t))‖2 d
D(y ◦ φ)

(t),

which is what we wanted to prove. �

In the next result, we prove a normality rule for the non-convex play operator,

thereby we generalize to the non-convex case the result in [22, Proposition 3.9]. The

idea of the proof is analogous to the one of [22, Proposition 3.9].

Proposition 4.1. Assume that (2.1) and (3.1) hold, u ∈ Lip([0, T ] ;H), z0 ∈ Z,

and that y = P(u, z0). Let x = S(u, z0) : [0, T ] −→ H and w = Q(u, z0) : [0, T ] −→ H
be defined by

x(t) := S(u, z0)(t) := u(t)− y(t), t ∈ [0, T ],(4.6)

w(t) := Q(u, z0)(t) := y(t)− x(t), t ∈ [0, T ].(4.7)

Then w = Q(u, z0) ∈ Lip([0, T ] ;H), x = S(u, z0) ∈ Lip([0, T ] ;H), x(t) ∈ Z for every

t ∈ [0, T ], and

(4.8) 〈y′(t), x′(t)〉 = 0 for L1-a.e. t ∈ [0, T ],

and

(4.9) ‖w′(t)‖ = ‖u′(t)‖ for L1-a.e. t ∈ [0, T ].
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Proof. Let t ∈ [0, T ] be a point where x is differentiable. Taking z(t) = x(t+h) ∈ Z
for every h > 0 sufficiently small, we have

1

h
〈y′(t), x(t)− x(t+ h)〉 ≥ −‖y

′(t)‖
2rh

‖x(t)− x(t+ h)‖2

therefore letting h↘ 0 we get

(4.10) 〈y′(t),−x′(t)〉 ≥ 0.

Taking z(t) = x(t− h) for every h > 0 we also have

1

h
〈y′(t), x(t)− x(t− h)〉 ≥ −‖y

′(t)‖
2rh

‖x(t)− x(t− h)‖2

therefore letting h↘ 0 we get

〈y′(t), x′(t)〉 ≥ 0,

which together with (4.10) yields (4.8). This formula implies that

(4.11) ‖w′(t)‖2 = ‖y′(t)−x′(t)‖2 = 〈y′(t)−x′(t), y′(t)−x′(t)〉 = ‖y′(t)‖2+‖x′(t)‖2,

and

(4.12) ‖u′(t)‖2 = ‖y′(t)+x′(t)‖2 = 〈y′(t)+x′(t), y′(t)+x′(t)〉 = ‖y′(t)‖2 +‖x′(t)‖2,

therefore (4.9) follows. �

Let us observe that, in the previous proposition, the geometrical meaning of (4.11)-

(4.12), is that w′(t) and u′(t) are the diagonals of the rectangle with sides x′(t) and

y′(t), so that we have (4.9).

In order to prove the BV-norm continuity of P on C([0, T ] ;H)∩BV([0, T ] ;H) we

need the following two auxiliary results. The first is the following:

Proposition 4.2. Assume that (2.1) holds. For every f ∈ C([0, T ] ;H) ∩
BV([0, T ] ;H), let `f : [0, T ] −→ [0, T ] be defined by

(4.13) `f (t) =


T

V(f, [0, T ])
V(f, [0, t]) if V(f, [0, T ]) 6= 0,

0 if V(f, [0, T ]) = 0,
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which we call normalized arc-length of f . Then there exists f̃ ∈ Lip([0, T ] ;H), the

reparametrization of f by the normalized arc-length, such that

(4.14) f = f̃ ◦ `f .

Moreover there exists a L1-representative f̃ ′ of the distributional derivative of f̃ such

that

(4.15) ‖f̃ ′(σ)‖ =
V (f, [0, T ])

T
, ∀σ ∈ [0, T ] .

Proof. The existence of a function f̃ ∈ Lip([0, T ] ;H) satisfying (4.14) is easy to prove

(see e.g. [30, Proposition 3.1]). Moreover we know from [32, Lemma 4.3] that if g is a

L1-representative of the distributional derivative of f , then ‖g(σ)‖ = V (f, [0, T ])/T

for every σ ∈ F , for some F ⊆ [0, T ] with full measure in [0, T ]. Thus (4.15) follows

if we define the following Lebesgue representative of the derivative of f̃ :

f̃ ′(σ) :=


g(σ) if σ ∈ F ,

(V (f, [0, T ])

T
e0 if σ 6∈ F ,

where e0 ∈ H is chosen so that ‖e0‖ = 1. �

Then, as for the Lipschitz case, we need to introduce the operator Q defined by

Q(v) = 2P(v)− v for v ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H).

Lemma 4.2. Assume that v ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H), z0 ∈ Z, and let

Q : C([0, T ] ;H)∩BV([0, T ] ;H)×Z −→ C([0, T ] ;H)∩BV([0, T ] ;H) be defined by

(4.16) Q(v, z0) := 2P(v, z0)− v, v ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H).

Then Q is rate independent, i.e.

(4.17) Q(v ◦ φ, z0) = Q(v, z0) ◦ φ ∀v ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H)

for every continuous function φ : [0, T ] −→ [0, T ] such that (φ(t) − φ(s))(t − s) ≥ 0

and φ([0, T ]) = [0, T ]. Moreover if `v is the arc-length defined in (4.13), then

(4.18) DQ(v, z0) = ((Q(ṽ, z0))′ ◦ `v) D`v,

i.e.

(4.19) DQ(v, z0)(B) =

∫
B

(Q(ṽ, z0))′(`v(t)) dD`v(t), ∀B ∈ B([0, T ]),
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where formulas (4.18)–(4.19) hold with any L1-representative (Q(ṽ, z0))′ of the dis-

tributional derivative of Q(ṽ, z0). Finally we can take such an L1-representative so

that

(4.20) ‖(Q(ṽ, z0))′(σ)‖ =
V(v, [0, T ])

T
, ∀σ ∈ [0, T ] .

Proof. From Theorem 3.4 it follows that

Q(v ◦ φ, z0) = 2P(v ◦ φ, z0)− v ◦ φ = 2P(v, z0) ◦ φ− v ◦ φ = Q(v, z0) ◦ φ,

which is (4.17). Moreover, since ṽ is Lipschitz continuous, we have that Q(ṽ, z0) ∈
Lip([0, T ] ;H), therefore by [32, Theorem A.7] we infer that, if Q(ṽ, z0)′ is any L1-

representative of the distributional derivative of Q(ṽ, z0), then the bounded measur-

able function Q(ṽ, z0)′ ◦ `v is a density of Q(v, z0) with respect to the measure D`v,

i.e. (4.18) holds. Finally (4.20) follows from (4.9) of Proposition 4.1 and from (4.15)

of Proposition 4.2. �

Now we can prove our first main result.

Proof of Theorem 3.2. Let us consider u ∈ BV([0, T ] ;H) and un ∈ BV([0, T ] ;H)

for every n ∈ N, and assume that ‖un − u‖BV([0,T ];H) → 0 as n → ∞. Then let

` := `u and `n := `un be the normalized arc-length functions defined in (4.13), so we

have

u = ũ ◦ `, un = ũn ◦ `n ∀n ∈ N.

Let us also set

(4.21) w := Q(u, z0), wn := Q(un, z0,n), n ∈ N,

where the operator Q is defined in Lemma 4.2. By the proof of [24, Theorem 5.5]

we have that P(un, z0n) → P(u, z0) uniformly on [0, T ], because ‖un − u‖∞ → 0 as

n→∞. Therefore from formula (4.16) it follows that

(4.22) wn → w uniformly on [0, T ].

Let us observe that Q(ũ, z0) and Q(ũn, z0) are Lipschitz continuous for every n ∈ N
and let us define the bounded measurable functions h : [0, T ] −→ H and hn :

[0, T ] −→ H by

(4.23) h(t) := (Q(ũ, z0))′(`u(t)), hn(t) := (Q(ũn, z0n))′(`n(t)), t ∈ [0, T ] ,
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where, by Lemma 4.2, formula (4.20), we have that the L1-representatives of the

distributional derivatives of Q(ũ, z0) and Q(ũn, z0) can be chosen in such a way that

‖(Q(ũ, z0))′(σ)‖ =
V(u, [0, T ])

T
, ‖(Q(ũn, z0))′(σ)‖ =

V(un, [0, T ])

T
, ∀σ ∈ [0, T ] .

Therefore

(4.24) ‖h(t)‖ =
V(u, [0, T ])

T
, ‖hn(t)‖ =

V(un, [0, T ])

T
, ∀t ∈ [0, T ] , ∀n ∈ N.

Since un → u in BV([0, T ] ;H), from the inequality

(4.25) |V(u, [a, b])−V(un, [a, b])| ≤ V(u− un, [a, b]),

holding for 0 ≤ a ≤ b ≤ T , we infer that V(un, [0, T ]) → V(u, [0, T ]) as n → ∞,

hence the sequence {V(un, [0, T ])} is bounded. Therefore from (4.24) we infer that

there exists C > 0 such that

(4.26) sup{‖hn(t)‖ : t ∈ [0, T ]} ≤ C ∀n ∈ N

and

(4.27) lim
n→∞

‖hn(t)‖ = lim
n→∞

V(un, [0, T ])

T
=

V(u, [0, T ])

T
= ‖h(t)‖, ∀t ∈ [0, T ] .

It follows that

lim
n→∞

∫
[0,T ]

‖hn(t)‖2 dD`(t) = lim
n→∞

∫
[0,T ]

(
V(un, [0, T ])

T

)2

dD`(t)

=

∫
[0,T ]

(
V(u, [0, T ])

T

)2

dD`(t)

=

∫
[0,T ]

‖h(t)‖2 dD`(t),

hence

(4.28) lim
n→∞

‖hn‖2L2(D`;H) = ‖h‖2L2(D`;H).

Now let us observe that from Lemma 4.2 and formulas (4.19), (4.21) and (4.23), we

have that

(4.29) Dw = hD`, Dwn = hn D`n.
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Let us also recall that the vector space of (vector) measures ν : B([0, T ]) −→ H
can be endowed with the complete norm ‖ν‖ :=

ν([0, T ]), where
ν is the total

variation measure of ν. Moreover from the definition of variation, inequality (4.25),

and the triangle inequality, we infer that

(4.30) ‖D`−D`n‖ =
D(`− `n)

([0, T ]) = V(`− `n, [0, T ])→ 0 as n→∞.

From (4.26) it follows that

(4.31)
Dwn

(B) =

∫
B

‖hn(t)‖ dD`n(t) ≤ C
D`n

(B), ∀B ∈ B([0, T ]),

therefore, since D`n → D` in the space of real measures, we infer that for every ε > 0

there exists δ > 0 such that

D
̀(B) < δ =⇒ sup

n∈N

Dwn
(B) < ε

for every B ∈ B([0, T ]). This allows us to apply the weak sequential compactness

Dunford-Pettis theorem for vector measures (cf. Theorem 5.1 of the Appendix)

and we deduce that, at least for a subsequence, Dwn is weakly convergent to some

measure ν : B([0, T ]) −→ H. On the other hand, by (4.22), we have that wn → w

uniformly, therefore invoking Lemma 5.1 of the Appendix we can identify the weak

limit ν with Dw and we infer that

(4.32) Dwn converges weakly to Dw.

In particular for every bounded Borel function ϕ : [0, T ] −→ H, the functional ν 7−→∫
[0,T ]
〈ϕ(t),dν(t)〉 is linear and continuous on the space of measures with bounded

variation and

lim
n→∞

∫
[0,T ]

〈ϕ(t),dDwn(t)〉 =

∫
[0,T ]

〈ϕ(t),dDw(t)〉,

that is

(4.33) lim
n→∞

∫
[0,T ]

〈ϕ(t), hn(t)〉dD`n(t) =

∫
[0,T ]

〈ϕ(t), h(t)〉dD`(t).

On the other hand, by (4.26) there exists η ∈ L2(D`;H) such that hn is weakly

convergent to η in L2(D`;H), therefore if we set ψn(t) := 〈ϕ(t), hn(t)〉 and ψ(t) :=
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〈ϕ(t), η(t)〉 for t ∈ [0, T ], ψn is weakly convergent to ψ in L2(D`;R), and∣∣∣∣∣
∫
[0,T ]

ψn(t) dD`n(t)−
∫
[0,T ]

ψ(t) dD`(t)

∣∣∣∣∣
≤
∫
[0,T ]

|ψn(t)|d
D(`n − `)

(t) +

∣∣∣∣∣
∫
[0,T ]

(ψn(t)− ψ(t)) dD`(t)

∣∣∣∣∣
≤ ‖ϕ‖∞‖hn‖∞

D(`n − `)
([0, T ]) +

∣∣∣∣∣
∫
[0,T ]

(ψn(t)− ψ(t)) dD`(t)

∣∣∣∣∣→ 0(4.34)

as n → ∞, because (4.26) and (4.30) hold, and ψn is weakly convergent to ψ in

L2(D`;R). Therefore we have found that

lim
n→∞

∫
[0,T ]

〈ϕ(t), hn(t)〉dD`n(t) =

∫
[0,T ]

〈ϕ(t), η(t)〉dD`(t),

hence, by (4.33),

(4.35)

∫
[0,T ]

〈ϕ(t),d(hD`)(t)〉 =

∫
[0,T ]

〈ϕ(t),d(ηD`)(t)〉.

The arbitrariness of ϕ and (4.35) implies that ηD` = hD` (cf. [14, Proposition 35,

p. 326]), hence η(t) = h(t) for D`-a.e. t ∈ [0, T ] and we have found that

(4.36) hn ⇀ h in L2(D`;H).

Since L2(D`;H) is a Hilbert space, from (4.28) and (4.36) we deduce that

(4.37) hn → h in L2(D`;H),

and, since D`([0, T ]) is finite,

(4.38) hn → h in L1(D`;H).

Hence, at least for a subsequence which we do not relabel, hn(t) → h(t) for D`-a.e.

t ∈ [0, T ], thus

V (wn − w, [0, T ]) = ‖D(wn − w)‖ = ‖Dwn −Dw‖ = ‖hn D`n − hD`‖
≤ ‖hn D(`n − `)‖ + ‖(hn − h) D`‖

≤ C‖D(`n − `)‖ +

∫
[0,T ]

‖hn(t)− h(t)‖ dD`(t)→ 0

as n→∞, which proves that ‖w−wn‖BV → 0 as n→∞. We can conclude recalling

(4.21) and that Q(v) = 2P(v)− v for every v ∈ C([0, T ] ;H) ∩ BV([0, T ] ;H). �
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We can finally infer the strict continuity of the play operator on C([0, T ] ;H) ∩
BV([0, T ] ;H).

Proof of Theorem 3.3. The proof of Theorem 3.3 is now a consequence of Theorem

3.2 and [32, Theorem 3.4]. �

5. Appendix

In this appendix we collect some results on vector measures which are needed in

some proofs of the paper. As we pointed out in Section 2.3, if I ⊆ R, then the vector

space of H-valued measures ν : B(I) −→ H with bounded variation is a real Banach

space when endowed with the norm ‖ν‖ :=
ν(I). Therefore we can define on it

the notion of weak convergence.

Definition 5.1. Assume that (2.1) hold and that I ⊆ R is an interval. Let

M(I;H) denote the real Banach space ofH-valued measures on B(I) having bounded

variation according to Section 2.3. If ν, νn ∈ M(I;H) for every n ∈ N, then we

say that νn is weakly convergent to ν if limn→∞〈T, νn〉 = 〈T, ν〉 for every linear

continuous function T belonging to the topological dual space of M(I;H).

For the reader’s convenience we restate the Dunford-Pettis weak compactness the-

orem for measures [13, Theorem 5, p. 105] in a form which is suitable to our purposes.

Theorem 5.1. Assume that (2.1) hold and that I ⊆ R is an interval and let B

be a bounded subset of M(I;H). Then B is weakly sequentially precompact if and

only if there exists a bounded positive measure ν : B(I) −→ [0,∞[ such that for

every ε > 0 there is a δ > 0 which satisfies the implication

(5.1) ∀ε > 0 ∃δ > 0 :

(
B ∈ B(I), ν(B) < δ =⇒ sup

µ∈B

µ(B) < ε

)
.

Theorem 5.1 is stated in [13, Theorem 5, p. 105] as a topological precompactness

result. An inspection of the proof easily shows that this is actually a sequential

precompatness theorem, since an isometric isomorphism reduces it to the well-known

Dunford-Pettis weak sequential precompactness theorem in L1(ν;H) (see, e.g., [13,

Theorem 1, p. 101]).

The following lemma is a vector measure counterpart of a well-known weak derivative

argument and is proved in [19, Lemma 7.1].

Lemma 5.1. Assume that (2.1) hold and that I ⊆ R is an interval. Let w,wn ∈
BV(I;H) for every n ∈ N and let ν : B(I) −→ H be a measure with bounded

variation. If wn → w uniformly on I and Dwn ⇀ ν, then Dw = µ.
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Now are going to state the theorem concerning Lebesgue point of vector value

functions with respect to a Borel measure.

Theorem 5.2. Assume that (2.1) hold, that I ⊆ R is an interval, and let µ :

B(I) −→ [0,∞[ be a finite Borel measure on I. If f ∈ L1(µ;H) then there exists

L ∈ B(I) such that µ(IrL) = 0, µ([t− h, t+ h] ∩ I) > 0 for every h > 0, and

lim
h↘0

1

µ([t− h, t+ h] ∩ I)

∫
[t−h,t+h]∩I

‖f(τ)− f(t)‖ dµ(τ) = 0 ∀t ∈ L.(5.2)

The points t satisfying (5.2) are called µ-Lebesgue points of f .

A proof of this theorem can be found in [17] in a much more general framework. In

order to help the reader we show how derive it. The family V := {(t, [t− h, t+ h] ∩
I) : t ∈ I, h > 0} satisfies the definition of Vitali relation given in [17, Section

2.8.16, p. 151]. In [17, Section 2.9.1, p. 153] the left hand side of (5.2) is called

V-derivative of ψ : τ 7−→ ‖f(τ) − f(t)‖ with respect to µ at t. Since there exists

a µ-zero measure set Z such that f([0, T ]rZ) is separable (see, e.g., [26, Property

M11, p. 124]), we can repeat “mutatis-mutandi” the proof of [17, Corollary 2.9.9.,

p. 156] (where it is formally assumed that H is separable), and we infer the result

of Theorem 5.2. We conclude with the following result which is proved e.g. in [26,

Section VII, Theorem 4.1].

Theorem 5.3. Assume that (2.1) hold, that I ⊆ R is an interval and let ν :

B(I) −→ H is a Borel measure with bounded variation. Then there exists g ∈
L1(
ν;H) such that ‖g(t)‖ = 1 for µ-a.e. t ∈ [0, T ], and ν = g

ν (cf. (2.4)).
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[24] P. Krejč́ı, G. A. Monteiro, V. Recupero: Non-convex sweeping processes in the space of regu-
lated functions. Commun. Pure Appl. Anal. 21 (2022), 2999-3029. Zbl 07606668, MR4484114
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