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Abstract 

This PhD thesis pioneers an innovative approach, merging physics-based models 

with data science techniques to efficiently define and predict the mechanical properties 

of advanced materials. Focusing on composite materials and additive manufactured 

metals with intricate microstructures, we aim to bridge the gap between microstructural 

features and material properties, vital for enhancing the design of advanced materials. 

Traditional Machine Learning (ML) approaches often prioritize accuracy over 

physics compliance. In response, this thesis introduces the concept of Mechanistic Data 

Science (MDS), which combines the predictive power of ML with the grounding in 

physics laws. At its core, MDS integrates physics knowledge with advanced machine 

learning methods, offering a solution to a longstanding challenge: efficiently predicting 

the mechanical properties of complex materials with intricate microstructures. While 

the objective is clear—to establish a link between microstructural features and material 

properties—the true achievement lies in the methodology itself. The thesis unfolds in 

a series of interconnected chapters, each contributing to the overarching goal. 

A Physics-Informed Neural Network (PINN) with a customized architecture is 

developed to learn the constitutive behaviour of orthotropic materials from the 

distributed strain measurements acquired with the Digital Image Correlation (DIC). 

Being the Neural Network (NN) a universal approximator, the proposed 

architecture can learn arbitrary constitutive models avoiding the definition of 

parametric models and defining the constitutive properties of the materials from the 

experimental data. With the proposed approach the full elastic constitutive model 

of an orthotropic material can be defined with a single test, and different damaging 



 

laws can be inferred using the same architecture. The model is validated on artificial 

data - i.e., generated with a Finite Element Model (FEM) - and later applied to 

experimental data. This PINN approach eliminates the need for defining parametric 

models, allowing for rapid characterization of material properties. 

Moving forward, the thesis combines DIC data with microstructural 

reconstructions from Fiber Reinforced Polymer (FRP) samples to characterize 

composite material stiffness, accounting for manufacturing-induced defects and fiber 

misalignment. This information contributes to the development of a Stochastic Volume 

Element (SVE), a mesoscale representation of the FRP, which have a microstructure 

sampled from the experimental reconstructions and variable material properties 

statistically calibrated from the experiments. When the SVE is integrated into a 

multiscale Finite Element Model (FEM), offers a unique capability to provide 

probabilistic predictions of structural responses. 

The thesis further extends the application of MDS to predict the crushing behavior 

of origami-shaped carbon FRP structures at the part scale, optimizing design processes 

with a significant reduction in computational cost. The model evaluates the crushing 

force and the absorbed energy of the thin-walled structure by preserving the physics 

relationship between the two quantities, which is governed by the energy 

conservation law. The good accuracy of the method and the reduced computational 

cost, permit to perform an optimization study of the origami tube with a full 

exploration of the design space reducing the optimization time by 30 times. The 

results of the PINN are compared with the FEM, showing a remarkable accuracy of 

the surrogate model. 

The final chapter focuses on the fatigue response of aluminium alloys produced 

through Additive Manufacturing (AM). By combining experimental observations 

of manufacturing parameters with a damage-tolerant model developed by 

Murakami, a customized Neural Network (NN) architecture is employed. This 

chapter demonstrates remarkable accuracy in predicting the fatigue response, 



 

offering designers a potent tool to assess the influence of manufacturing processes 

on material properties and avoid impractical experimental investigations. 

The MDS methods presented in this thesis puts its roots in the governing laws 

of the mechanics, leveraging on the increasing data that are nowadays available 

thanks to innovative experimental techniques (e.g., micro-CT, DIC) and shared 

database, or can be reliably generated through experimentally calibrated models 

(e.g., FEM).  

In summary, this thesis showcases the novel MDS framework, effectively 

combining empirical and theoretical knowledge with abundant data to advance 

materials science and design. While the abstracted methodology connects various 

chapters, it is the transformative potential of MDS that unites these diverse 

investigations, paving the way for future research to refine and expand upon this 

innovative approach. 


