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Assessing Curl-Conforming Bases for Pyramid Cells
Roberto D. Graglia , Life Fellow, IEEE, and Paolo Petrini , Member, IEEE

Abstract—Successful three-dimensional finite element codes for
Maxwell’s equations must include and deal with all four types of
geometrical shapes: tetrahedra, bricks, prisms, and quadrangular-
based pyramids. However, pyramidal elements have so far been
used very rarely because the basis functions associated with them
have complicated expression, are complex in derivation, and have
never been comprehensively validated. We recently published a
simpler procedure for constructing higher-order vector bases for
pyramid elements, so here we fill a gap by discussing a whole set of
test case results that not only validate our new curl-conforming
bases for pyramids, but which enable validation of other codes
that use pyramidal elements for finite element method applications.
The solutions of the various test cases are obtained using either
higher order elements or multipyramidal meshes or both. Further-
more, the results are always compared with the solutions obtained
with classical tetrahedral meshes using higher order bases. This
allows us to verify that purely pyramidal meshes and elements
give numerical results of comparable accuracy to those obtained
with multitetrahedral meshes that use elements of the same order,
essentially requiring the same number of degrees of freedom. The
various results provided here also show that higher order vector
bases always guarantee a superior convergence of the numerical
results as the number of degrees of freedom increases.

Index Terms—Electromagnetic fields, finite-element methods,
higher order vector elements, pyramidal elements, numerical
analysis.

I. INTRODUCTION

A LMOST all practitioners of computational electromagnet-
ics (CEM) avoid using pyramidal cells because the related

vector bases are very complicated and never extensively tested;
in fact very few authors have used pyramids so far, as can be seen
from [1], [2], [3] and references therein. This has hindered the
development of codes that use hybrid meshes smoothly; that is,
meshes that employ higher-order pyramidal elements in addition
to tetrahedra, bricks, and prisms, despite the fact that a reason-
ably extensive scientific literature on higher-order pyramidal
elements has developed over the past twenty years [4]-[11].
Things may now change, firstly because the method in [1], [2] to
obtain conforming bases of arbitrarily high order for pyramids is,
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in our opinion, decidedly simpler than those previously available
in the literature. Secondly because this paper fills the lack of
useful test cases for validating numerical codes that use pyramid
cells, or at least their curl-conforming bases for Finite Element
Method (FEM) applications.

In fact, this paper assesses the modeling capabilities of the
higher order bases for pyramid cells reported in [1], which
differ from those in [3], presenting several results for pyramidal
and rectangular cavity resonators useful for validating computer
codes that use these cells and bases. This is done because cavity
problems are the best benchmark for immediately checking
whether a (new) basis avoids spurious modes or not. More
specifically, this paper considers rectangular electromagnetic
resonators for two very good reasons: first because they have
a known and very simple solution, and second because their
geometry can be meshed using only pyramids. The results ob-
tained here add to those in [1] where we modeled a few pyramidal
cavities with a single cell.

The fields inside the volume V of a closed metal cavity and
the corresponding wavenumbers k are modeled by the vector
Helmholtz equation whose discretization produces a general-
ized matrix eigenvalue equation Ae= k2Be with entries [12,
Sections 6.5, 6.6]

Amn =

∫∫∫
V

1

μr
∇×Bm · ∇ ×BndV (1)

and

Bmn =

∫∫∫
V

εrBm ·BndV (2)

Bm and Bn being vector basis functions. In the following we
assume the material inside the cavity to be homogeneous with
unitary relative permeability μr and relative permittivity εr.

The wavenumbers k are computed by means of a FORTRAN
code that uses the LAPACK library and the routine DSPGV. In
common with standard finite element implementations, the sys-
tem of equations is usually constructed in a cell-by-cell manner
where the integrals in (1) and (2) are evaluated throughout a
single cell for all combinations of basis and testing functions,
stored in a temporary “element matrix,” and systematically
transferred to the global system of equations.

This FEM technique can be applied to any conforming mesh
made with a mixture of cells of different size and shape (that is
tetrahedrons, prisms, bricks and pyramids), provided that curl-
conforming bases are used, as required by (1). Obviously, we
refer to implementations that use also higher order bases.

Recall that all elements have shape functions and basis func-
tions of polynomial form in the so-called “parent” space [12],
with the exception of pyramid elements which must have shape-
functions and basis functions of fractional form for conformity
with the other cells and to guarantee cell-to-cell tangential
continuity, even in the case of curved cells [1]. (In the parent
space, the divergence-conforming basis functions of the pyramid
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TABLE I
FIRST SIX WAVENUMBERS OF THE EQUILATERAL PYRAMID-SHAPED CAVITY

element have fractional form to guarantee the continuity of the
normal component of the field from cell to cell [2]).

For pyramids, the shape functions and basis functions take
polynomial form in a different space, called “grandparent”
space, where all the pyramid cells are mapped by a cube of
unit side [1], [2]. The polynomial order of the functions in the
grandparent domain for the pyramid elements and in the parent
domain for the other non-pyramidal elements is denoted by the
integer p. For any polynomial order p, the curl-conforming func-
tions are tangentially continuous on the boundaries in common
to adjacent cells of different shape [1].

For greater clarity we recall that the use of pyramidal ele-
ments requires two mappings. The first from parent space to
the observer’s space (the so-called child space). The second
from grandparent space to parent space. The Jacobian of the
first mapping depends on the shape of the pyramidal cell in the
child space, that of the second does not and is always given
by the same polynomial term; see [1, eq. (11)]. As happens for
other elements, the unitary basis vectors of the pyramidal cell
are obtained by differentiating the element position vector r
with respect to three independent parent coordinates [1]. From
these vectors, as shown in [1 Table I], one gets the gradient
vectors and the edge vectors that appear in the expression of the
vector basis functions and their curls. Now, unlike what is usually
done with the other elements, the FEM-matrix entries (1, 2)
associated to pyramids are always computed by integrating poly-
nomials in the grandparent domain [1], and not by integrating
the “corresponding” fractional functions in the parent domain.
However, the software used to produce the results presented
in this paper is not optimized; that is, we trivially compute the
volume FEM integrals by numerical integration on the unit cube
of the grandparent domain along three directions, in cascade,
without using sophisticated integration schemes that can reduce
computation times [9], [13].

The rest of the paper is structured as follows. Section II
provides several results related to a pyramid-shaped cavity res-
onator with unit sides, meshed with a single cell or multiple
pyramidal cells of different aspect ratios. The numerical results
are validated against those of a different code that uses higher-
order tetrahedral elements. Section III reports several results for

Fig. 1. Condition Number (CN) of the mass-matrix versus the number of
degrees of freedom obtained using bases of order p from 0 to 6 by meshing
an equilateral pyramid with a single pyramidal element (in blue), or with four
identical tetrahedral elements (in red).

rectangular cavity resonators meshed by pyramidal cells and
compares them with the well-known exact analytical solution.
Also, in Section III, the accuracy of the results obtained using
only pyramidal cells is compared with that obtained from the
code using higher order tetrahedral elements. In summary, in
this paper we use meshes formed only by quadrangular-based
pyramidal cells; unlike what happens when pyramids are used
(albeit rarely) as “fillers” of hybrid meshes; that is, as gluing
elements inserted between other non-pyramidal cells. Readers
may find it helpful to review [1], [2], for a detailed introduction
to the notation and other background information. Preliminar
results of this work were presented in [14].

II. RESULTS FOR THE EQUILATERAL PYRAMID

Table I reports the first six wavenumbers of an equilateral
pyramid-shaped cavity obtained with bases of order p from 0 to
6, while Fig. 1 shows the trend of the condition number of the
mass-matrix as the order used varies. The results obtained by
meshing the cavity with a single pyramidal cell are compared
in Table I with those obtained using four identical tetrahedral
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Fig. 2. Percentage errors for the first 6 wavenumbers of an equilateral pyramid versus the number of degrees of freedom. Errors refer to Table I results obtained
for p between 0 and 6, and are computed against the WN result reported in bold in the middle column of Table I. The second and third modes of the cavity have
identical wavenumbers, as do the fourth and fifth modes. For p = 0, a single pyramid cell yields only four non-zero eigenvalues; for this p = 0 case we show with
a blue square marker the errors of the first three modes only.

cells, as done in [1 Table VII] for bases up to third order. The
Table results show that
� for p ≥ 3 we can sort the first six wavenumbers of the

cavity in ascending order and with the correct multiplicity,
regardless of the mesh we have used;

� for p ≥ 5 the number of zero eigenvalues obtained with
a single pyramid cell is higher than that obtained with 4
tetrahedral cells;

� for p ≥ 6 the number of degrees of freedom (DoF) obtained
by meshing the structure with a single pyramidal cell is
higher than that required by meshing with four identical
tetrahedrons.

In essence, Table I makes it clear that to obtain good results
for simply shaped cavities we must use at least third-order
bases when using very few cells. Furthermore, in our case, the
mesh composed of 4 identical tetrahedra does not destroy the
symmetry of the modes and is therefore able to use the DoFs in an
optimal way, provided that bases of order higher than the fifth are
used. In principle we can expect to obtain results as good as those
shown in Table I (for p = 6) by using many more cells than done
here, and bases of order lower than the third. Unfortunately, this
turns out to be completely inconvenient because tens or hundreds
of thousands of DoFs would be needed precisely because the
number of DoFs that guarantees good results does not depend
linearly on the order of the base used. On the other hand, we
cannot think to improve the results simply by increasing the
order of the bases used beyond the sixth because, as shown in
Fig. 1, the condition number of the mass matrix (CN) grows
exponentially with the order of the bases in use (regardless of
the shape of the cells), and is already of the order of 106 for
sixth-order bases. To improve the accuracy of the results of

Table I (for p = 6) it becomes necessary to refine the mesh
rather than further increase the order of the base used.

In any case, we are not interested in determining whether the
best results in Table I for sixth-order bases are those obtained
with the single pyramidal cell model rather than those obtained
with four tetrahedral cells. What really matters is that we have
never detected spurious modes using a single pyramidal cell.
Since an analytical result is missing, we assume that for p = 6
the two meshes lead to results of equal accuracy; that is, the
reference wavenumber (WN) in the central column of Table I
is simply the average of the two values obtained using the two
different meshes with p = 6. As shown in Fig. 2, the results
obtained using a single cell and those obtained with four identical
tetrahedral cells converge similarly to the reference WN as p and
the number of DoFs increase.

The absence of spurious modes using a single cell needs to
be verified considering structures meshed with multiple cells.
Therefore, let us now consider the equilateral pyramid of Fig. 3,
meshed with four pyramids of different aspect ratio which varies
by varying the parameter sv defined in the figure caption. The
base of the yellow pyramid of Fig. 3 is always a square for
0 < sv ≤ 1/2, therefore its Jacobian is constant at all points
inside it. Conversely, the Jacobian inside the other three pyra-
mids is polynomial (not constant), unless sv = 1/2. Note that
the yellow pyramid disappears for sv = 0. This limiting case is
not considered in the sequel because it relates to a mesh formed
by one pyramid (the one in blue in Fig. 3) and two tetrahedrons
(in white).

Fig. 4 reports, versus sv , different results for the pyramidal
cavity obtained with the meshes described in Fig. 3. The figure
at top shows the percentage error on k for the first three modes,
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Fig. 3. On the left, an equilateral pyramid is meshed in various ways by four
rectilinear pyramids of different aspect ratios that we define by assigning the
position of their five vertices in the observer’s space. The central column shows
the pyramids seen from above, the right one the bases of the pyramids. In addition
to the common apex, the four pyramids of the mesh also share a vertex located
at the coordinate point s = sv along the diagonal going from southwest to
northeast in the figures of the right column. The pyramid in yellow has a square
base whatever the value of sv , for sv between 0 and 1/2. The meshes in the
upper and lower row are obtained with sv = 1/2 and sv = 1/8, respectively.
(The coordinate sv is normalized w.r.t. the length of the diagonal of the base of
the equilateral pyramid).

obtained with the base of order p = 4. In the center the percent-
age error on k for the first mode only, obtained with bases of
order 2, 3 and 4. Fig. 4 at bottom shows the condition number
of the mass matrix as sv varies, obtained with bases of order 2,
3 and 4.

The results of Fig. 4 show that the wavenumbers of the second
and third modes coincide for sv = 0.5 (symmetric mesh), and
therefore have the same percentage error. This no longer hap-
pens if the mesh loses symmetry (sv < 0.5) while, for sloppier
meshes (sv < 0.1) the errors increase, albeit slightly, and the
CN increases (worsens) by a factor of the order of 103. These
results prove the robustness of our pyramid bases.

III. RESULTS FOR RECTANGULAR CAVITY RESONATORS

Let us consider a rectangular cross-sectional waveguide of
length d closed by metal walls at both ends, that is the cavity
resonator {x, y, z: 0 ≤ x ≤ a; 0 ≤ y ≤ b; 0 ≤ z ≤ d}. For this
kind of cavities, the cartesian components of the eigenfields e
and h are the product of three sinusoidal functions, one for
each Cartesian variables x, y, z [15], [16]. For example, the
longitudinal components ez , hz are

ez = 0, hz = cos
(mπx

a

)
cos

(nπy
b

)
sin

(pπz
d

)
(3)

hz = 0, ez = sin
(mπx

a

)
sin

(nπy
b

)
cos

(pπz
d

)
(4)

for the TE and the TM mode, respectively. Regardless of whether
it is a TE or TM mode, the mode wavenumber

k = kmnp =

√(mπ

a

)2

+
(nπ

b

)2

+
(pπ

d

)2

(5)

depends on the integer mode-numbers m, n, p, although there
are no TE modes with mode index p equal to zero, nor TM
modes with mode index m or n equal to zero, while there are

Fig. 4. Results obtained with the meshes in Fig. 3 by varying the sv parameter.

both modes TEmnp and TMmnp with identical k if m, n and p
are all non-zero.

Table II reports the wavenumbers k for two different cavities
having dimensions a, b, d as in the Table. The results are ob-
tained using the base of order p = 4 with a structured mesh
made of only six pyramids, one for each face of the cavity,
having a common apex at (x, y, z) = (a2 ,

b
2 ,

d
2 ). This model

produces 2,020 DoFs and 640 zero eigenvalues, with a mass
matrix condition number of the order of 1.1× 105 after diagonal
preconditioning. The percentage error for the first 20 modes is
shown in Fig. 5. The error is less than 0.1% for the first 18 modes
and less than 0.5% for the first 37 modes. No spurious modes
are observed. (We show the results for order p = 4 because this
is a good compromise to obtain reduced computation times and
achievable precision.)

Since each face of the cavity is the quadrilateral surface on
which only one pyramid rests, the quality of the results depends
on how well the basis functions approximate, inside each pyra-
mid, the sinusoidal trend of the eigenfields in the three Cartesian
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Fig. 5. Results for the rectangular cavities of Table II obtained with the pyramidal base of order four and a mesh of six pyramids. The figure reports the percentage
error on the computed wavenumber with respect to the exact wavenumber (5), identified by the mode numbers m,n, p. These indices are reported only for some
modes simply to clarify the trend of the error as their value increases.

TABLE II
RECTANGULAR CAVITY RESONATORS

directions, that is on the intervals [0 ≤ x ≤ mπ], [0 ≤ y ≤ nπ],
and [0 ≤ z ≤ pπ]. In fact, Fig. 5 clearly shows that every time
the index m, n, or p increases by one unit, the accuracy of the
results degrades.

To obtain results of quality close to that of Fig. 5 with zero-
order basis functions and a structured mesh made up of pyramids
we would need at least 107 unknowns which we may obtain by
subdividing the cavity into N × N × N bricks, with N ≈ 100
(see [12, §1.3]), and then define the usual 6 pyramids in each
brick. (It goes without saying that if you are looking for quality
results for the modes of an arbitrarily shaped cavity it is generally
more convenient, in terms of CPU time, to immediately use brick
or tetrahedral elements rather than pyramid cells everywhere.)

Fig. 6. A cube is meshed in different ways by six square-based rectilinear
pyramids by varying the position of their common apex. In the figure the
pyramids resting on the east and west faces of the cube are in yellow, the others
are transparent. The common apex is located at the normalized coordinate point
s on the diagonal joining the southwest vertex of the cube, where s = 0, to the
northeast vertex, where s = 1. The six pyramids are identical if s = 1/2, as
shown in the center. The left and right figures show the cases of s = 1/4 and
s = 3/4, respectively.

The results that follow refer only to the cube-shaped cavity and
are obtained with meshes of the type shown in Fig. 6, obtained
by moving the apex in common to the 6 pyramids along the
diagonal of the cavity of length

√
3. This model continues to have

2,020 DoF, but now the precision of the results is a function of
the distance t between the apex and the corner, measured along
the aforementioned diagonal by the normalized coordinate s =
t/
√
3. Fig. 7 at top shows the error on k for the three fundamental

modes of the cubic cavity (i.e., modes 101, 011, and 110), and
for the next two modes (TE and TM 111). At bottom we show
the mass-matrix condition number versus s.

So far we have shown results for the cube-shaped cavity
obtained with a few cells in the mesh. As mentioned, we can
increase the number of cells by replicating the “basic cube”
several times, after having divided it into 6 pyramids, or into
5 tetrahedra as in Fig. 8. If we use sub-cubes divided into
5 tetrahedra, we must rotate each of them appropriately to
guarantee mesh conformity. The average percentage error of
the first 5 modes of the cubic cavity vs the number of DoFs
is shown in Fig. 9 for varying base order. The straight-lines in
Fig. 9 indicate the speed of convergence as the number of DoFs
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Fig. 7. Figure considers the cube cavity meshed with six pyramids having
a common apex that varies along the diagonal of the cube of length

√
3, as

described in Fig. 6. The results obtained with the fourth order base are shown
with respect to the normalized apex-corner distance s. At top we show the
percentage error on k for the first five modes; at bottom the CN mass matrix
after diagonal preconditioning.

Fig. 8. A unit cube is divided into five tetrahedra by cutting off every other
vertex; that is, four out of eight vertices, as shown in the figure on the left. On
the left, the blue colored tetrahedron in the center of the cube is regular; that is,
its edges have equal length. In the center and on the right we show the remaining
tetrahedra two at a time, in different colors.

and the polynomial order of the elements used increase. Fig. 9
shows that the numerical solutions with tetrahedral or pyramidal
mesh are more or less equivalent. However, we point out that,
given the same order and (almost the same) number of DoFs, the
CPU times required by a pyramidal mesh are higher than those
required by a mesh entirely made up of tetrahedra.

Finally, for completeness, Fig. 10 shows the mass-matrix
condition numbers relative to the cases in Fig. 9 versus the
number of degrees of freedom. Note that in this case the CN
obtained with the pyramidal meshes essentially depend only
on the order of the base used because they relate to structured
meshes formed by perfectly identical pyramids arranged in a
perfectly symmetrical way, as shown in Fig. 6 in the center.
Conversely, the CNs obtained with tetrahedral meshes increase
as the number of degrees of freedom increases since these
meshes are formed by tetrahedra of different aspect ratios, as
shown in Fig. 8.

Fig. 9. Average percentage error for the first five modes of a cubic cavity
obtained with elements of different order p. Meshes of different densities
are obtained by first dividing the cavity into cubes, and then each cube into
five tetrahedra (top figure) or six pyramids (bottom figure). The straight lines
indicate the speed of convergence as the number of degrees of freedom and the
polynomial order of the elements increase. The results at top were first presented
in [17].

Fig. 10. Mass-matrix condition number related to the cases in Fig. 9. On the
left the results obtained with tetrahedral cells, on the right those with pyramidal
cells.

IV. CONCLUSION

This paper presents a whole set of test case results validating
the new higher-order curl-conforming bases for pyramidal cells
we have recently published. These basis functions are built to
guarantee the continuity of the tangential components between
adjacent elements of the same order but different shape, so
that it is possible to build more efficient computer codes that
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use hybrid meshes made with tetrahedra, bricks, prisms and
quadrangular-based pyramids. The solutions of the various test
cases discussed here are obtained using higher order elements
or multipyramidal meshes or both, and the results are always
compared with the solutions obtained with classical tetrahedral
meshes using higher order bases. This allows us to verify that
purely pyramidal meshes and elements give numerical results
of comparable accuracy to those obtained with multitetrahedral
meshes that use elements of the same order, essentially requiring
the same number of degrees of freedom. The reported numerical
examples show once again that higher order functions provide
more accurate results than those obtainable with lower order
elements. It is hoped that these results will facilitate the de-
velopment of new electromagnetic solvers based on the use of
hybrid meshes.
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