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Abstract: Nonlinear Model Predictive Control (NMPC) is a powerful control method, used
in many industrial contexts. NMPC is based on the online solution of a suitable Optimal
Control Problem (OCP) but this operation may require high computational costs, which may
compromise its implementation in “fast” real-time applications. In this paper, we propose a novel
NMPC approach, aiming to improve the numerical efficiency of the underlying optimization
process. In particular, a Set Membership approximation method is applied to derive from data
tight bounds on the optimal NMPC control law. These bounds are used to restrict the search
domain of the OCP, allowing a significant reduction of the computation time. The effectiveness of
the proposed NMPC strategy is demonstrated in simulation, considering an overtaking maneuver
in a realistic autonomous vehicle scenario.

Keywords: Nonlinear Predictive Control; Numerical methods for optimal control; Search
Domain Reduction; Set Membership; Nonlinear system identification.

1. INTRODUCTION

Model Predictive Control (MPC) is widely recognized as a
flexible and powerful control approach for a large number
of industrial and technological applications, thanks to its
capability to design control algorithms for multivariable
systems under state, input, and output constraints (see,
e.g., Richalet et al. (1978), Qin and Badgwell (2000),
Mayne (2014) and Franzè et al. (2019)). To cope with
nonlinear dynamics and constraints, as well as with non-
convex performance indexes, Nonlinear MPC (NMPC)
techniques have been introduced (see, e.g., Allgöwer et al.
(2004), Diehl et al. (2005) and references therein). These
control techniques are based on suitable Optimal Control
Problems (OCPs), whose solution must be obtained within
a sufficiently short time interval, depending on the appli-
cation of interest.

In general, MPC and its nonlinear version require the
availability of efficient optimization algorithms, able to
meet the time constraints of real-time closed-loop control
applications. In the case of linear MPC, since it can often
be formulated as a structured convex quadratic program-
ming (QP) problem, a wide range of fast algorithms have
been developed (see, e.g., Wright (1997) and Wang and
Boyd (2010)). On the other hand, NMPC deals in general
with nonconvex optimization and therefore mainly relies
on sophisticated algorithms with higher computational
costs than linear MPC. Nevertheless, thanks to progress
in nonlinear optimization algorithms, efficient implemen-
⋆ This work was supported by the NewControl project, within
the Electronic Components and Systems For European Leadership
Joint Undertaking (ESCEL JU) in collaboration with the European
Union’s Horizon2020 Framework Programme and National Author-
ities, under grant agreement N° 826653-2.

tations of NMPC can be found also in “fast” applications
(see, e.g., Houska et al. (2011), Gros et al. (2012), and
Albin et al. (2015)).

In this paper, we propose a novel NMPC approach based
on an optimal reduction of the search domain of the under-
lying optimization process. Thanks to this operation, we
obtain a significant reduction of the required computation
time, thus enabling the real-time NMPC implementation
in many situations where a high sampling rate is necessary.
It must be remarked that the domain reduction technique
is not restricted to a specific optimization algorithm, but it
can be used in combination with any algorithm to increase
its numerical efficiency.

In general, a nonlinear optimization algorithm consists
of two mechanisms for the search process, namely explo-
ration and exploitation. Exploration refers to the process
of investigating the search domain looking for the possible
optimal solutions. Exploitation refers to the process of
finding the feasible solution around the candidate solutions
obtained during the exploration phase. The larger the
search domain, the more computationally intensive the
exploration phase is, since more evaluations of the cost
function are required to find an optimal solution. In this
perspective, the proposed approach aims to restrict, in
an optimal way, the search domain, allowing a significant
reduction of the computation time. In particular, a Set
Membership (SM) approximation method is used to derive
from data tight bounds on the optimal NMPC control law,
reducing accordingly the search range of the optimization
process. Unlike many classical estimation methods, the SM
approach makes use of the so-called interval bounds to
compute the estimate of an unknown function, also ensur-
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(2004), Diehl et al. (2005) and references therein). These
control techniques are based on suitable Optimal Control
Problems (OCPs), whose solution must be obtained within
a sufficiently short time interval, depending on the appli-
cation of interest.

In general, MPC and its nonlinear version require the
availability of efficient optimization algorithms, able to
meet the time constraints of real-time closed-loop control
applications. In the case of linear MPC, since it can often
be formulated as a structured convex quadratic program-
ming (QP) problem, a wide range of fast algorithms have
been developed (see, e.g., Wright (1997) and Wang and
Boyd (2010)). On the other hand, NMPC deals in general
with nonconvex optimization and therefore mainly relies
on sophisticated algorithms with higher computational
costs than linear MPC. Nevertheless, thanks to progress
in nonlinear optimization algorithms, efficient implemen-
⋆ This work was supported by the NewControl project, within
the Electronic Components and Systems For European Leadership
Joint Undertaking (ESCEL JU) in collaboration with the European
Union’s Horizon2020 Framework Programme and National Author-
ities, under grant agreement N° 826653-2.

tations of NMPC can be found also in “fast” applications
(see, e.g., Houska et al. (2011), Gros et al. (2012), and
Albin et al. (2015)).

In this paper, we propose a novel NMPC approach based
on an optimal reduction of the search domain of the under-
lying optimization process. Thanks to this operation, we
obtain a significant reduction of the required computation
time, thus enabling the real-time NMPC implementation
in many situations where a high sampling rate is necessary.
It must be remarked that the domain reduction technique
is not restricted to a specific optimization algorithm, but it
can be used in combination with any algorithm to increase
its numerical efficiency.

In general, a nonlinear optimization algorithm consists
of two mechanisms for the search process, namely explo-
ration and exploitation. Exploration refers to the process
of investigating the search domain looking for the possible
optimal solutions. Exploitation refers to the process of
finding the feasible solution around the candidate solutions
obtained during the exploration phase. The larger the
search domain, the more computationally intensive the
exploration phase is, since more evaluations of the cost
function are required to find an optimal solution. In this
perspective, the proposed approach aims to restrict, in
an optimal way, the search domain, allowing a significant
reduction of the computation time. In particular, a Set
Membership (SM) approximation method is used to derive
from data tight bounds on the optimal NMPC control law,
reducing accordingly the search range of the optimization
process. Unlike many classical estimation methods, the SM
approach makes use of the so-called interval bounds to
compute the estimate of an unknown function, also ensur-

Nonlinear Model Predictive Control:
an Optimal Search Domain Reduction ⋆

Mattia Boggio ∗ Carlo Novara ∗ Michele Taragna ∗

∗ Politecnico di Torino, Dept. of Electronics and Telecommunications
Corso Duca degli Abruzzi 24, 10129 Turin, Italy (e-mail:

mattia.boggio@polito.it; carlo.novara@polito.it;
michele.taragna@polito.it)

Abstract: Nonlinear Model Predictive Control (NMPC) is a powerful control method, used
in many industrial contexts. NMPC is based on the online solution of a suitable Optimal
Control Problem (OCP) but this operation may require high computational costs, which may
compromise its implementation in “fast” real-time applications. In this paper, we propose a novel
NMPC approach, aiming to improve the numerical efficiency of the underlying optimization
process. In particular, a Set Membership approximation method is applied to derive from data
tight bounds on the optimal NMPC control law. These bounds are used to restrict the search
domain of the OCP, allowing a significant reduction of the computation time. The effectiveness of
the proposed NMPC strategy is demonstrated in simulation, considering an overtaking maneuver
in a realistic autonomous vehicle scenario.

Keywords: Nonlinear Predictive Control; Numerical methods for optimal control; Search
Domain Reduction; Set Membership; Nonlinear system identification.

1. INTRODUCTION

Model Predictive Control (MPC) is widely recognized as a
flexible and powerful control approach for a large number
of industrial and technological applications, thanks to its
capability to design control algorithms for multivariable
systems under state, input, and output constraints (see,
e.g., Richalet et al. (1978), Qin and Badgwell (2000),
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ing that the true value is contained inside the resulting
uncertainty band (see Milanese and Novara (2004)).

Taking advantage of this property, the method proposed
in this paper, called Reduced Domain Nonlinear Model
Predictive Control (RD-NMPC), is based on two basic op-
erations: (i) approximation of the NMPC control law, i.e.,
the nonlinear function that links the state of the system
to the optimal command and using this approximation for
the warm start of the nonlinear optimization algorithm;
(ii) computation of tight bounds on the NMPC control
law, allowing a reduction of the search domain. To our
knowledge, this is a novelty with respect to previously
developed methods, where the approximating function was
used just to reproduce the MPC/NMPC law (see, e.g.,
Parisini and Zoppoli (1995) and Canale et al. (2006))
or directly to find an optimal open-loop solution (see,
e.g., Canale et al. (2014)). In our case, the approximat-
ing function gives a “warm” start point of the NMPC
optimization algorithm. This yields a further improvement
of the controller performance and a better generalization
capability in the case that the approximating function is
not accurate in some regions of the controller domain.
Moreover, no reductions of the search domain are per-
formed in those previous methods and, in general, in the
majority of NMPC techniques.

The proposed RD-NMPC strategy is tested in simulation,
considering an overtaking maneuver in an autonomous
vehicle scenario. The performance of the strategy is shown
to be significantly better compared to a standard NMPC
approach, in terms of computation time and optimality of
the solutions found.

The paper is organized as follows. Section 2 introduces the
NMPC mathematical formulation. In Section 3, the RD-
NMPC approach is presented. The obtained results and
comparison with a standard NMPC are shown in Section
4. Finally, the conclusions are drawn in Section 5.

2. NONLINEAR MODEL PREDICTIVE CONTROL

Consider a Multiple-Input-Multiple-Output (MIMO) non-
linear system described by the following state equations:

ẋ =f(x, u)

y =h(x, u)
(1)

where x ∈ Rnx is the state, u ∈ Rnu is the command input
and y ∈ Rny is the output; f : Rnx × Rnu → Rnx and
h : Rnx × Rnu → Rny are two functions characterizing
the system dynamics and output variables, respectively.
Assume that the state is measured in real-time, with a
sampling time Ts, according to

x(tk), tk = Tsk, k = 0, 1 . . . .

If the state is not measured, an observer or a model of (1)
in input-output form has to be employed.

Suppose that the system output y(t) is required to track a
desired reference signal r(t). The state, output and input
variables may be subject to constraints, and it may be of
interest to have a suitable trade-off between performance
and command effort. NMPC is a suitable approach to
tackle such a control problem and is based on two key
operations: prediction and optimization. At each time t =
tk, the system state and output are predicted over the time

interval [t, t + Tp], where Tp ≥ Ts is called the prediction
horizon. The prediction is obtained by integration of (1).
For any τ ∈ [t, t + Tp], the predicted output ŷ (τ) is a
function of the “initial” state x(t) and the input signal:

ŷ (τ) ≡ ŷ (τ, x(t), u(t : τ)) (2)

where u(t : τ) denotes the input signal in the interval
[t, τ ]. The basic idea of NMPC (and of the most predictive
approaches) is to look for an input signal u∗(t : τ) at each
time t = tk, such that the prediction ŷ (τ, x(t), u∗(t : τ))
has the desired behavior in the time interval [t, t+Tp]. The
concept of desired behavior is formalized by defining the
objective function

J (u(t : t+ Tp))
.
=

∫ t+Tp

t

(
∥ep(τ)∥2Q + ∥u(τ)∥2R

)
dτ+∥ep(t+ Tp)∥2P

(3)

where ep(τ)
.
= r(τ)− ŷ(τ) is the predicted tracking error,

r(τ) ∈ Rny is the reference to track, and ∥·∥∗ is a weighted
Euclidean norm. For example, if Q is a positive definite
weight matrix, the norm of a vector w is defined as
∥w∥2Q

.
= w⊤Qw.

The input signal u∗(t : t + Tp) is the minimizer of the
objective function J (u(t : t+ Tp)). In particular, at each
time t = tk, for τ ∈ [t, t + Tp], the following optimization
problem is solved:

u∗(t : t+ Tp) = argmin
u(·)

J (u(t : t+ Tp))

subject to:
˙̂x(τ) = f (x̂(τ), u(τ)) , x̂(t) = x(t)
ŷ(τ) = h (x̂(τ), u(τ))
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc.

(4)

The first two constraints in this problem ensure that
the predicted state and output are consistent with the
system equations (1). The setsXc and Yc account for other
constraints that may hold for the predicted state/output
(e.g., obstacles or barriers). The set Uc accounts for input
constraints (e.g., input saturation).

The NMPC closed-loop command is obtained according to
a so-called receding horizon strategy (RHS). At time t = tk,
the input signal u∗(t : t+ Tp) is computed by solving (4).
Then, only the first optimal input value u(τ) = u∗(tk) is
applied to the plant (1), keeping it constant ∀τ ∈ [tk, tk+1].
The complete procedure is repeated at the subsequent time
steps t = tk+1, tk+2. . . .

The optimization problem (4) is in general non-convex.
Moreover, the decision variable u(·) is a signal, and opti-
mizing a function with respect to a signal is a difficult
task. To overcome these issues, the command signal is
parametrized as follows: The prediction interval [t, t+ Tp]
is divided into ns sub-intervals, and u and r are kept
constant on each sub-interval. The command and reference
values at time k in the ith sub-interval are denoted by
uki and rki, respectively. The command and reference se-
quences in the prediction interval are uk

.
= (uk1, . . . , ukns

)
and rk

.
= (rk1, . . . , rkns

), respectively. In this way, the
optimization problem reduces to a finite-dimension prob-
lem, which can be solved using an efficient numerical
optimization algorithm.
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ing that the true value is contained inside the resulting
uncertainty band (see Milanese and Novara (2004)).

Taking advantage of this property, the method proposed
in this paper, called Reduced Domain Nonlinear Model
Predictive Control (RD-NMPC), is based on two basic op-
erations: (i) approximation of the NMPC control law, i.e.,
the nonlinear function that links the state of the system
to the optimal command and using this approximation for
the warm start of the nonlinear optimization algorithm;
(ii) computation of tight bounds on the NMPC control
law, allowing a reduction of the search domain. To our
knowledge, this is a novelty with respect to previously
developed methods, where the approximating function was
used just to reproduce the MPC/NMPC law (see, e.g.,
Parisini and Zoppoli (1995) and Canale et al. (2006))
or directly to find an optimal open-loop solution (see,
e.g., Canale et al. (2014)). In our case, the approximat-
ing function gives a “warm” start point of the NMPC
optimization algorithm. This yields a further improvement
of the controller performance and a better generalization
capability in the case that the approximating function is
not accurate in some regions of the controller domain.
Moreover, no reductions of the search domain are per-
formed in those previous methods and, in general, in the
majority of NMPC techniques.

The proposed RD-NMPC strategy is tested in simulation,
considering an overtaking maneuver in an autonomous
vehicle scenario. The performance of the strategy is shown
to be significantly better compared to a standard NMPC
approach, in terms of computation time and optimality of
the solutions found.

The paper is organized as follows. Section 2 introduces the
NMPC mathematical formulation. In Section 3, the RD-
NMPC approach is presented. The obtained results and
comparison with a standard NMPC are shown in Section
4. Finally, the conclusions are drawn in Section 5.

2. NONLINEAR MODEL PREDICTIVE CONTROL

Consider a Multiple-Input-Multiple-Output (MIMO) non-
linear system described by the following state equations:

ẋ =f(x, u)

y =h(x, u)
(1)

where x ∈ Rnx is the state, u ∈ Rnu is the command input
and y ∈ Rny is the output; f : Rnx × Rnu → Rnx and
h : Rnx × Rnu → Rny are two functions characterizing
the system dynamics and output variables, respectively.
Assume that the state is measured in real-time, with a
sampling time Ts, according to

x(tk), tk = Tsk, k = 0, 1 . . . .

If the state is not measured, an observer or a model of (1)
in input-output form has to be employed.

Suppose that the system output y(t) is required to track a
desired reference signal r(t). The state, output and input
variables may be subject to constraints, and it may be of
interest to have a suitable trade-off between performance
and command effort. NMPC is a suitable approach to
tackle such a control problem and is based on two key
operations: prediction and optimization. At each time t =
tk, the system state and output are predicted over the time

interval [t, t + Tp], where Tp ≥ Ts is called the prediction
horizon. The prediction is obtained by integration of (1).
For any τ ∈ [t, t + Tp], the predicted output ŷ (τ) is a
function of the “initial” state x(t) and the input signal:

ŷ (τ) ≡ ŷ (τ, x(t), u(t : τ)) (2)

where u(t : τ) denotes the input signal in the interval
[t, τ ]. The basic idea of NMPC (and of the most predictive
approaches) is to look for an input signal u∗(t : τ) at each
time t = tk, such that the prediction ŷ (τ, x(t), u∗(t : τ))
has the desired behavior in the time interval [t, t+Tp]. The
concept of desired behavior is formalized by defining the
objective function
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=

∫ t+Tp

t

(
∥ep(τ)∥2Q + ∥u(τ)∥2R

)
dτ+∥ep(t+ Tp)∥2P

(3)

where ep(τ)
.
= r(τ)− ŷ(τ) is the predicted tracking error,

r(τ) ∈ Rny is the reference to track, and ∥·∥∗ is a weighted
Euclidean norm. For example, if Q is a positive definite
weight matrix, the norm of a vector w is defined as
∥w∥2Q

.
= w⊤Qw.

The input signal u∗(t : t + Tp) is the minimizer of the
objective function J (u(t : t+ Tp)). In particular, at each
time t = tk, for τ ∈ [t, t + Tp], the following optimization
problem is solved:

u∗(t : t+ Tp) = argmin
u(·)

J (u(t : t+ Tp))

subject to:
˙̂x(τ) = f (x̂(τ), u(τ)) , x̂(t) = x(t)
ŷ(τ) = h (x̂(τ), u(τ))
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc.

(4)

The first two constraints in this problem ensure that
the predicted state and output are consistent with the
system equations (1). The setsXc and Yc account for other
constraints that may hold for the predicted state/output
(e.g., obstacles or barriers). The set Uc accounts for input
constraints (e.g., input saturation).

The NMPC closed-loop command is obtained according to
a so-called receding horizon strategy (RHS). At time t = tk,
the input signal u∗(t : t+ Tp) is computed by solving (4).
Then, only the first optimal input value u(τ) = u∗(tk) is
applied to the plant (1), keeping it constant ∀τ ∈ [tk, tk+1].
The complete procedure is repeated at the subsequent time
steps t = tk+1, tk+2. . . .

The optimization problem (4) is in general non-convex.
Moreover, the decision variable u(·) is a signal, and opti-
mizing a function with respect to a signal is a difficult
task. To overcome these issues, the command signal is
parametrized as follows: The prediction interval [t, t+ Tp]
is divided into ns sub-intervals, and u and r are kept
constant on each sub-interval. The command and reference
values at time k in the ith sub-interval are denoted by
uki and rki, respectively. The command and reference se-
quences in the prediction interval are uk

.
= (uk1, . . . , ukns

)
and rk

.
= (rk1, . . . , rkns

), respectively. In this way, the
optimization problem reduces to a finite-dimension prob-
lem, which can be solved using an efficient numerical
optimization algorithm.

3. REDUCED DOMAIN NMPC

This section describes the method that we propose to
improve the computational performance of an NMPC
algorithm.

According to the formulation of Section 2, the optimal
command sequence u∗

k
.
= (u∗

k1, . . . , u
∗
kns

) obtained solving
(4) is a static nonlinear function ϕ(·) of the current state
xk

.
= x(tk) and the reference sequence rk

.
= (rk1, . . . , rkns

).
Hence, the optimal sequence u∗

k at time tk is given by

u∗
k = ϕ(wk) (5)

where wk
.
= (xk, rk).

The proposed method consists in approximating ϕ(·) and
computing tight bounds of this function from a set of data
computed offline. The approximation is used for warm
starting the solution of the optimization problem, whereas
the bounds are used to reduce the search domain of this
problem. The phases of the method are as follows.

1) Data Collection. Several offline simulations are per-
formed. A set of state data x̃k and reference sequences
r̃k, with k = 1 . . . ,M , are generated, giving a set of
values of the regressor w̃k

.
= (x̃k, r̃k) ∈ W, where W

is a bounded region where the regressor can evolve. For
each w̃k, the corresponding optimal command sequence is
computed by solving (4), giving rise to a set of command
data ũk = ϕ(w̃k), k = 1, . . . ,M .

2) Clustering. A clustering procedure is carried out to re-
duce the number of data used to derive the approximation
of the NMPC control law ϕ. The K-Medoids approach is
used, which is based on medoids to represent the various
clusters (see Kaufman and Rousseeuw (2009)). A medoid
is a point of the data set whose sum of dissimilarities with
respect to all the other points in the cluster is minimal.
Among many algorithms for K-medoids clustering, the
CLustering LARge Applications (CLARA) is used, able
to deal with large data sets.

At the end of the clustering analysis, the size of the
database can be reduced by at least 10 times. This means
that:

K ≤ M

10
(6)

where K is the number of clusters and then the number
of data used to identify the function ϕ. These can be seen
as the data that best characterize the controller.

3) Set Membership Approximation. After the clustering
process, the resulting data set is composed of K regressor
and command values w̃mk and ũmk. The subscript m is
used to indicate that the data are the medoids of the
clusters found in the previous phase.

On the basis of the data w̃mk, ũmk, k = 1, . . . ,K, tight
function bounds ϕ and ϕ, and an approximated control
law ϕc are computed by means of the SM approach of
Milanese and Novara (2004). These functions are defined
as follows:

ϕ(w)
.
= sup

φ∈FFS
φ(w)

ϕ(w)
.
= inf

φ∈FFS
φ(w)

ϕc(w)
.
=

1

2
(ϕ(w) + ϕ(w))

(7)

where the supremum and infimum are intended as element-
wise operations. FFS is called the Feasible Function Set
and is the set of all functions consistent with the prior
assumptions and the data. This set is defined as

FFS
.
= {φ ∈ F(γ) : ũmk = φ(ũmk), k = 1, . . . ,K} (8)

where F(γ) is the set of Lipschitz continuous functions
with local Lipschitz constant γ(w), w ∈ W. The Lipschitz
constant can be estimated from the collected data, allow-
ing the explicit evaluation of ϕ(w), ϕ(w) and ϕc(w), for any
w ∈ W (see Milanese and Novara (2004)). Furthermore,
the following properties are shown in Milanese and Novara
(2004): (i) ϕ and ϕ are optimal bounds of ϕ: they are the
tightest upper and lower bounds that can be derived from
the available prior information on the function and the
data. (ii) ϕc is an optimal approximation of ϕ: it minimizes
the so-called worst-case identification error, defined as the
maximum error given by all possible approximations that
are compatible with the prior information and the data
(i.e., that belong to FFS).

4) Optimal Search Domain Reduction. Once the approxi-
mate function and its bounds have been found, they can
be used within the NMPC optimization process in order
to improve the computational efficiency.

As described in detail in Section 2, the NMPC finds the
optimal control by solving the Optimal Control Problem
(OCP) formulated in (4) over a finite sequence of control
actions at each sampling time. This operation can be pro-
hibitive for “fast” real-time applications. Here, a solution
for reducing the computational complexity is proposed.
The novelty lies in the way the initial conditions of the
algorithm are computed and the definition of optimal
bounds within which the algorithm searches for the op-
timal solution.

In standard NMPC approaches, the bounds of the search
domain typically are derived from the specifications of the
considered application. However, wide bounds lead to large
search domains and this can be a serious issue. Indeed,
nonlinear optimization algorithms are characterized by a
combination of the following operations: (i) exploration:
trying to find which part of the feasibility region is most
promising; (ii) exploitation: trying to reach the optimum
as fast as possible. The exploration phase is very impor-
tant, since the objective function may have several local
minima, and the algorithm has to explore the search do-
main as much as possible, to find a satisfactory one. Hence,
the larger the search domain the more time-consuming the
exploration phase becomes.

The RD-NMPC algorithm exploits ϕc, ϕ and ϕ as follows:
(i) finding an initial condition suitable for warm starting
the optimization algorithm; (ii) finding optimal command
bounds. The latter is the key point of the algorithm:
The tighter these optimal bounds are, the smaller the
search domain becomes, and the less cumbersome the
exploration phase of the algorithm is. This leads to a
reduction in the number of cost functions to be evaluated
and, consequently, to less computational time needed to
find the optimal command.

5) RD-NMPC algorithm. In summary, the RD-NMPC
algorithm consists in solving the OCP (4) where the warm
start ustart = ϕc(wk) is used and the command domain is
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given by

Uc = {uk ∈ Rnsnu : ϕ(wk) ≤ u ≤ ϕ(wk)} (9)

where “≤” are element-wise inequalities.

4. EXAMPLE: AUTONOMOUS VEHICLE
OVERTAKING MANEUVER

The RD-NMPC algorithm has been tested in simulation
in a road scenario involving an overtaking maneuver. An
example of overtaking trajectory is shown in Fig. 1. The
parameters a and b determine the shape of this trajectory.
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Fig. 1. Example of overtaking maneuver.

Firstly, the models used to describe the ego-vehicle are
presented. When implementing the NMPC approach, it
is important to distinguish between two models: a “high-
fidelity” plant model that simulates the real vehicle and a
prediction model that the NMPC optimization algorithm
uses to predict the system future behavior. Generally, the
prediction model is less complex than the high-fidelity
plant model. To simulate the real vehicle, the Matlab Dual-
Track Vehicle Body 3DOF block (see MATLAB (2018))
is used, which implements a rigid two-axle vehicle body
model to calculate longitudinal, lateral, and yaw motion.
This block accounts for body mass, aerodynamic drag, and
weight distribution between the axles due to acceleration
and steering. Regarding the NMPC prediction model, a
standard model of the lateral and longitudinal dynamics
of a vehicle is considered, called the Dynamic Single-Track
(DST) Model. Although simple, this model captures the
main aspects of the vehicle dynamics and, for this reason,
it is suitable for the design and preliminary test of vehicle
control systems. The state equations of the DST model
are:

Ẋ = vx cosψ − vy sinψ

Ẏ = vx sinψ + vy cosψ

ψ̇ = w

v̇x = vyψ̇ + ax

v̇y = −vxψ̇ +
2

m
(Fyf + Fyr)

ẇ =
2

Iz
(lfFyf − lrFyr) .

(10)

where X and Y denote the position of the vehicle, ψ the
yaw angle, w the yaw rate, vx, vy the longitudinal and
lateral speeds. The parameters are as follows: m = 1575 kg
and Iz = 4000 kg*m

2
are the vehicle mass and yaw polar

inertia, and lf = 1.2m and lr = 1.6m are the distances
from the Center of Gravity (CoG) to the front and rear
wheels, respectively. Fyf and Fyr are the lateral forces
exchanged between the wheels and the road. The following
simple linear model is used for these forces:

Fyf = −cfβf , Fyr = −crβr (11)

where cf = 2.7 · 104 N/rad and cr = 2 · 104 N/rad are the
front/rear cornering stiffnesses. The tire slip angles βf and
βr are defined as:

βf = atan

(
vy + lf ψ̇

vx

)
− δf , βr = atan

(
vy − lrψ̇

vx

)

(12)
The longitudinal acceleration ax and the steering angle
δf are the control variables. The output of the system is
(X,Y ).

The operations outlined in Section 3 are now presented for
this example.

A set of 1000 overtaking maneuvers were simulated, con-
sidering different values of the parameters a and b (see
Fig. 1) by using the Latin Hypercube Sampling (LHS)
technique (see McKay et al. (1979)). A constant speed
of 60 km/h was assumed. Starting from this set, a Monte
Carlo (MC) simulation campaign was carried out using
the NMPC algorithm (4) without domain reduction (the
design parameters are listed in Table 1). The simulations
were performed in Simulink. The optimization problem
was embedded in an interpreted Matlab function and
solved using the Matlab command fmincon, with the Se-
quential Quadratic Programming (SQP) algorithm. In the
following, this algorithm without domain reduction will
be called “Standard NMPC”. The NMPC command was
parametrized considering 2 sub-intervals of the prediction
horizon [tk, tk + Tp], implying that there are a total of 4
commands: 2 for the longitudinal acceleration ax and 2
for the steering angle δf . At the end of this campaign, a
database of about M = 5e5 samples was obtained.

Table 1. NMPC design parameters

Parameter Value

Ts 0.1 s
Tp 3 s
Q diag(1, 1)
R diag(0.01, 1)

Upper bounds [3m/s2, π/8, 3m/s2, π/8]

Lower bounds [−3m/s2,−π/8,−3m/s2,−π/8]

Once the database was created, a Clustering Analysis
using the CLARA algorithm was performed in order to
suitably reduce it. After several trials, a number of K
medoids equal to 2e4 was found as a compromise between
quantity of data (and then memory occupation) and
exploration of the control law domain.

Therefore, after the clustering process, the database was
reduced from 5e5 to 2e4 samples {w̃mk, ũmk} with k =
1, . . . , 2e4. On the basis of them, the approximated control
law ϕc, and the corresponding bounds ϕ and ϕ were
computed by means of the SM approach shown in Section
3. Fig. 2 shows the approximation and the relative bounds
of one of the steering angle commands. As it can be seen,
the bounds were reduced more than 10 times with respect
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given by

Uc = {uk ∈ Rnsnu : ϕ(wk) ≤ u ≤ ϕ(wk)} (9)

where “≤” are element-wise inequalities.

4. EXAMPLE: AUTONOMOUS VEHICLE
OVERTAKING MANEUVER

The RD-NMPC algorithm has been tested in simulation
in a road scenario involving an overtaking maneuver. An
example of overtaking trajectory is shown in Fig. 1. The
parameters a and b determine the shape of this trajectory.
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Fig. 1. Example of overtaking maneuver.

Firstly, the models used to describe the ego-vehicle are
presented. When implementing the NMPC approach, it
is important to distinguish between two models: a “high-
fidelity” plant model that simulates the real vehicle and a
prediction model that the NMPC optimization algorithm
uses to predict the system future behavior. Generally, the
prediction model is less complex than the high-fidelity
plant model. To simulate the real vehicle, the Matlab Dual-
Track Vehicle Body 3DOF block (see MATLAB (2018))
is used, which implements a rigid two-axle vehicle body
model to calculate longitudinal, lateral, and yaw motion.
This block accounts for body mass, aerodynamic drag, and
weight distribution between the axles due to acceleration
and steering. Regarding the NMPC prediction model, a
standard model of the lateral and longitudinal dynamics
of a vehicle is considered, called the Dynamic Single-Track
(DST) Model. Although simple, this model captures the
main aspects of the vehicle dynamics and, for this reason,
it is suitable for the design and preliminary test of vehicle
control systems. The state equations of the DST model
are:

Ẋ = vx cosψ − vy sinψ

Ẏ = vx sinψ + vy cosψ

ψ̇ = w

v̇x = vyψ̇ + ax

v̇y = −vxψ̇ +
2

m
(Fyf + Fyr)

ẇ =
2

Iz
(lfFyf − lrFyr) .

(10)

where X and Y denote the position of the vehicle, ψ the
yaw angle, w the yaw rate, vx, vy the longitudinal and
lateral speeds. The parameters are as follows: m = 1575 kg
and Iz = 4000 kg*m

2
are the vehicle mass and yaw polar

inertia, and lf = 1.2m and lr = 1.6m are the distances
from the Center of Gravity (CoG) to the front and rear
wheels, respectively. Fyf and Fyr are the lateral forces
exchanged between the wheels and the road. The following
simple linear model is used for these forces:

Fyf = −cfβf , Fyr = −crβr (11)

where cf = 2.7 · 104 N/rad and cr = 2 · 104 N/rad are the
front/rear cornering stiffnesses. The tire slip angles βf and
βr are defined as:

βf = atan

(
vy + lf ψ̇

vx

)
− δf , βr = atan

(
vy − lrψ̇

vx

)

(12)
The longitudinal acceleration ax and the steering angle
δf are the control variables. The output of the system is
(X,Y ).

The operations outlined in Section 3 are now presented for
this example.

A set of 1000 overtaking maneuvers were simulated, con-
sidering different values of the parameters a and b (see
Fig. 1) by using the Latin Hypercube Sampling (LHS)
technique (see McKay et al. (1979)). A constant speed
of 60 km/h was assumed. Starting from this set, a Monte
Carlo (MC) simulation campaign was carried out using
the NMPC algorithm (4) without domain reduction (the
design parameters are listed in Table 1). The simulations
were performed in Simulink. The optimization problem
was embedded in an interpreted Matlab function and
solved using the Matlab command fmincon, with the Se-
quential Quadratic Programming (SQP) algorithm. In the
following, this algorithm without domain reduction will
be called “Standard NMPC”. The NMPC command was
parametrized considering 2 sub-intervals of the prediction
horizon [tk, tk + Tp], implying that there are a total of 4
commands: 2 for the longitudinal acceleration ax and 2
for the steering angle δf . At the end of this campaign, a
database of about M = 5e5 samples was obtained.

Table 1. NMPC design parameters

Parameter Value

Ts 0.1 s
Tp 3 s
Q diag(1, 1)
R diag(0.01, 1)

Upper bounds [3m/s2, π/8, 3m/s2, π/8]

Lower bounds [−3m/s2,−π/8,−3m/s2,−π/8]

Once the database was created, a Clustering Analysis
using the CLARA algorithm was performed in order to
suitably reduce it. After several trials, a number of K
medoids equal to 2e4 was found as a compromise between
quantity of data (and then memory occupation) and
exploration of the control law domain.

Therefore, after the clustering process, the database was
reduced from 5e5 to 2e4 samples {w̃mk, ũmk} with k =
1, . . . , 2e4. On the basis of them, the approximated control
law ϕc, and the corresponding bounds ϕ and ϕ were
computed by means of the SM approach shown in Section
3. Fig. 2 shows the approximation and the relative bounds
of one of the steering angle commands. As it can be seen,
the bounds were reduced more than 10 times with respect

to the original ones, given by the physical limitations of
the steering actuator.
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Fig. 2. Set Membership Approximation of δf .

Once the approximate Set Membership model was created,
it was used in combination with the NMPC for reducing
the computational time of the optimization algorithm. In
order to test the effectiveness of this technique and the ro-
bustness of the obtained model, different values of a and b,
from those considered previously, were taken into account.
Then, a MC campaign of 100 simulations was carried out.
The standard NMPC and the developed RD-NMPC were
simulated in Simulink on a Dell Precision 5820 (Processor:
Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz). The opti-
mization problem was solved using fmincon and the SQP
algorithm, embedded in an interpreted Matlab function. It
must be noted that the proposed approach is not restricted
to any specific optimization algorithm but it can be used in
combination with any algorithm to increase its numerical
efficiency.

The indexes used for comparing the performance of the
two algorithms are:

(1) Number of evaluated cost functions (Eval. Cost.
Funct.) for finding the minimum;

(2) Computational time (Comp. Time);
(3) Root-Mean-Square (RMS) Error of both the Lateral

Error (Lat. E.) and the Orientation Error (Or. E.).

In Table 2, the mean and maximum values of the above
performance indexes are shown for the two NMPC al-
gorithms. The term Mean Value refers to the average
number of evaluated cost functions, computational times,
and tracking errors throughout the simulations, while the
term Maximum Value refers to the highest absolute value.
Regarding the number of evaluated cost functions, with
the RD-NMPC a reduction of about 11 times, on average,
is obtained. Regarding the computational time, the use of
RD-NMPC leads to an improvement in the performance of
about 4 times, on average. The same considerations also
apply to the maximum values of both metrics. Finally,
considering the RMS errors, we can see that the obtained
results for the Mean and Maximum Values are quite sim-
ilar for both the NMPC algorithms.

Table 2. Comparison between Standard NMPC
and RD-NMPC

Standard NMPC RD-NMPC

Mean Maximum Mean Maximum

Value Value Value Value

Eval. Cost Funct. 98.3 102.4 8.4 9.1

Comp.Time [s] 0.0329 0.0359 0.009 0.0092

RMSLat. E. [m] 0.0355 0.0418 0.0339 0.0402

RMSOr. E. [rad] 0.0024 0.0033 0.002 0.0031

Examples of overtaking maneuvers performed by the RD-
NMPC algorithm are shown in Fig. 3.
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Fig. 3. Examples of RD-NMPC overtaking maneuvers: 50
km/h (top), 60 km/h (middle) and 70 km/h (bottom).

5. CONCLUSIONS

The paper proposes a novel approach for improving the
numerical efficiency of NMPC algorithms, enabling their
real-time implementation even in systems with high sam-
pling rates. In particular, a Set Membership approxima-
tion method is applied to derive from data tight bounds
on the optimal NMPC control law. These bounds are
used to reduce the search domain of the underlying op-
timization process, allowing a significant decrease of the
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computation time. The proposed approach has been tested
in simulation, considering an overtaking maneuver in an
autonomous driving scenario. The obtained results demon-
strate the effectiveness of the method, in terms of compu-
tation time and optimality of the solutions found, with
respect to the NMPC implementation without domain
reduction.
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