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Abstract: To push the boundaries of autonomy in space, the spacecraft must rely on its own
sensors to achieve positioning and environmental perception. In this context, the key problem
of autonomous navigation is the nonlinear state estimation of the spacecraft in a dynamic 3D
environment. In this paper, we propose a new approach based on a single-state sub-partitioning
of the state vector and a partial updating of the vector of weights according to the specific
information provided by each sensor. In this way, we avoid to lose information in the resampling
phase thanks to a parallelization approach. The proposed method has been applied to an Earth
observation mission and the efficacy of the proposed approach is demonstrated with a numerical
example using a high-fidelity orbital simulator.
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1. INTRODUCTION

In the pathway towards fully autonomous spacecraft, space
systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework,
two main concepts result of particular relevance: i) percep-
tion, and ii) navigation Elkaim et al. (2015). The problem
of sensor fusion in the aerospace field is typically handled
exploiting Kalman-like filtering techniques, used to merge
measurements provided by different sources (see e.g. Sasi-
adek and Hartana (2004); VanDyke et al. (2004); Markley
and Sedlak (2008); Finance et al. (2021); Donati et al.
(2022) and references therein). On the other hand, to accu-
rately model the dynamics of complex systems, it becomes
crucial to appropriately take into account nonlinearity and
non-Gaussian probabilities.

In this context, a valid alternative is represented by the
so-called particle filter (PF), which uses a set of particles
(also called samples) to represent the posterior distribution
of a stochastic process given the noisy and/or partial
observations. For this category of filters, the state-space
model can be nonlinear and the initial state and noise
distributions can take any form required (not only Normal
distributions). Several PF navigation filters have been
proposed for space systems. Different PF-based techniques
have been proposed (see e.g., Cheng and Crassidis (2004),
Mashiku et al. (2012), Kiani and Pourtakdoust (2015), He
et al. (2017), Bazik et al. (2019), Ning and Fang (2008)).

In PFs, the samples from the distribution are represented
by a set of particles, each one with an assigned likelihood
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weight, which represents the probability of that particle
being sampled from the probability density function. A
common problem in PFs is that, after few iterations,
all but few particles tend to have negligible weights. In
other terms, the estimation error’s variance of particles
will increase and many weights will take small values,
thus not contributing to the final solution. As a result,
only some samples will represent a reliable estimation,
thus degrading PF performances. To overcome this issue,
a resampling step is typically introduced after the update
phase which outputs a new set of Ns particles starting
from the original set, where each particle has a probability
of being generated equal to its weight. This means that
particles with higher weights are more likely to appear
in the new set and could be chosen multiple times, while
the number of particles from the lower weights is reduced.
Because of the computational load of this step, in Hol et al.
(2006) different resampling strategies have been analyzed
and compared in terms of performances and computational
requirements.

Despite the resampling technique, all the PFs share the
same commonality: the larger is the number of samples,
the better becomes the approximation of the posterior
density function, the more accurate the estimation will
be. For this reason, in the case of a system with an
high number of state variables, an insufficient number of
particles gives surely rise to a degeneracy problem and,
more generally, to divergent and inaccurate estimations of
the state vector. In particular, it is proven by Poterjoy
(2016) that the number of particles required to accurately
represent the a-posteriori densities increases exponentially
with the dimension of the state space .

Single-state weighted particle filter with
application to Earth Observation missions

Cesare Donati ∗,∗∗ Martina Mammarella ∗∗ 1

Fabrizio Dabbene ∗∗

∗ DET, Politecnico di Torino, Turin, Italy
(e-mail: cesare.donati@polito.it)

∗∗ CNR-IEIIT, Turin, Italy
(e-mail: martina.mammarella, fabrizio.dabbene@ieiit.cnr.it)

Abstract: To push the boundaries of autonomy in space, the spacecraft must rely on its own
sensors to achieve positioning and environmental perception. In this context, the key problem
of autonomous navigation is the nonlinear state estimation of the spacecraft in a dynamic 3D
environment. In this paper, we propose a new approach based on a single-state sub-partitioning
of the state vector and a partial updating of the vector of weights according to the specific
information provided by each sensor. In this way, we avoid to lose information in the resampling
phase thanks to a parallelization approach. The proposed method has been applied to an Earth
observation mission and the efficacy of the proposed approach is demonstrated with a numerical
example using a high-fidelity orbital simulator.

Keywords: Aerospace; particle filtering; information and sensor fusion; guidance, navigation
and control of vehicles; high accuracy pointing

1. INTRODUCTION

In the pathway towards fully autonomous spacecraft, space
systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework,
two main concepts result of particular relevance: i) percep-
tion, and ii) navigation Elkaim et al. (2015). The problem
of sensor fusion in the aerospace field is typically handled
exploiting Kalman-like filtering techniques, used to merge
measurements provided by different sources (see e.g. Sasi-
adek and Hartana (2004); VanDyke et al. (2004); Markley
and Sedlak (2008); Finance et al. (2021); Donati et al.
(2022) and references therein). On the other hand, to accu-
rately model the dynamics of complex systems, it becomes
crucial to appropriately take into account nonlinearity and
non-Gaussian probabilities.

In this context, a valid alternative is represented by the
so-called particle filter (PF), which uses a set of particles
(also called samples) to represent the posterior distribution
of a stochastic process given the noisy and/or partial
observations. For this category of filters, the state-space
model can be nonlinear and the initial state and noise
distributions can take any form required (not only Normal
distributions). Several PF navigation filters have been
proposed for space systems. Different PF-based techniques
have been proposed (see e.g., Cheng and Crassidis (2004),
Mashiku et al. (2012), Kiani and Pourtakdoust (2015), He
et al. (2017), Bazik et al. (2019), Ning and Fang (2008)).

In PFs, the samples from the distribution are represented
by a set of particles, each one with an assigned likelihood

⋆ This work was partially funded by the European Commission
within the HE project HORIZON-CL4-2021-HUMAN-01.
1 corresponding author martina.mammarella@ieiit.cnr.it.

weight, which represents the probability of that particle
being sampled from the probability density function. A
common problem in PFs is that, after few iterations,
all but few particles tend to have negligible weights. In
other terms, the estimation error’s variance of particles
will increase and many weights will take small values,
thus not contributing to the final solution. As a result,
only some samples will represent a reliable estimation,
thus degrading PF performances. To overcome this issue,
a resampling step is typically introduced after the update
phase which outputs a new set of Ns particles starting
from the original set, where each particle has a probability
of being generated equal to its weight. This means that
particles with higher weights are more likely to appear
in the new set and could be chosen multiple times, while
the number of particles from the lower weights is reduced.
Because of the computational load of this step, in Hol et al.
(2006) different resampling strategies have been analyzed
and compared in terms of performances and computational
requirements.

Despite the resampling technique, all the PFs share the
same commonality: the larger is the number of samples,
the better becomes the approximation of the posterior
density function, the more accurate the estimation will
be. For this reason, in the case of a system with an
high number of state variables, an insufficient number of
particles gives surely rise to a degeneracy problem and,
more generally, to divergent and inaccurate estimations of
the state vector. In particular, it is proven by Poterjoy
(2016) that the number of particles required to accurately
represent the a-posteriori densities increases exponentially
with the dimension of the state space .

Single-state weighted particle filter with
application to Earth Observation missions

Cesare Donati ∗,∗∗ Martina Mammarella ∗∗ 1

Fabrizio Dabbene ∗∗

∗ DET, Politecnico di Torino, Turin, Italy
(e-mail: cesare.donati@polito.it)

∗∗ CNR-IEIIT, Turin, Italy
(e-mail: martina.mammarella, fabrizio.dabbene@ieiit.cnr.it)

Abstract: To push the boundaries of autonomy in space, the spacecraft must rely on its own
sensors to achieve positioning and environmental perception. In this context, the key problem
of autonomous navigation is the nonlinear state estimation of the spacecraft in a dynamic 3D
environment. In this paper, we propose a new approach based on a single-state sub-partitioning
of the state vector and a partial updating of the vector of weights according to the specific
information provided by each sensor. In this way, we avoid to lose information in the resampling
phase thanks to a parallelization approach. The proposed method has been applied to an Earth
observation mission and the efficacy of the proposed approach is demonstrated with a numerical
example using a high-fidelity orbital simulator.

Keywords: Aerospace; particle filtering; information and sensor fusion; guidance, navigation
and control of vehicles; high accuracy pointing

1. INTRODUCTION

In the pathway towards fully autonomous spacecraft, space
systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework,
two main concepts result of particular relevance: i) percep-
tion, and ii) navigation Elkaim et al. (2015). The problem
of sensor fusion in the aerospace field is typically handled
exploiting Kalman-like filtering techniques, used to merge
measurements provided by different sources (see e.g. Sasi-
adek and Hartana (2004); VanDyke et al. (2004); Markley
and Sedlak (2008); Finance et al. (2021); Donati et al.
(2022) and references therein). On the other hand, to accu-
rately model the dynamics of complex systems, it becomes
crucial to appropriately take into account nonlinearity and
non-Gaussian probabilities.

In this context, a valid alternative is represented by the
so-called particle filter (PF), which uses a set of particles
(also called samples) to represent the posterior distribution
of a stochastic process given the noisy and/or partial
observations. For this category of filters, the state-space
model can be nonlinear and the initial state and noise
distributions can take any form required (not only Normal
distributions). Several PF navigation filters have been
proposed for space systems. Different PF-based techniques
have been proposed (see e.g., Cheng and Crassidis (2004),
Mashiku et al. (2012), Kiani and Pourtakdoust (2015), He
et al. (2017), Bazik et al. (2019), Ning and Fang (2008)).

In PFs, the samples from the distribution are represented
by a set of particles, each one with an assigned likelihood

⋆ This work was partially funded by the European Commission
within the HE project HORIZON-CL4-2021-HUMAN-01.
1 corresponding author martina.mammarella@ieiit.cnr.it.

weight, which represents the probability of that particle
being sampled from the probability density function. A
common problem in PFs is that, after few iterations,
all but few particles tend to have negligible weights. In
other terms, the estimation error’s variance of particles
will increase and many weights will take small values,
thus not contributing to the final solution. As a result,
only some samples will represent a reliable estimation,
thus degrading PF performances. To overcome this issue,
a resampling step is typically introduced after the update
phase which outputs a new set of Ns particles starting
from the original set, where each particle has a probability
of being generated equal to its weight. This means that
particles with higher weights are more likely to appear
in the new set and could be chosen multiple times, while
the number of particles from the lower weights is reduced.
Because of the computational load of this step, in Hol et al.
(2006) different resampling strategies have been analyzed
and compared in terms of performances and computational
requirements.

Despite the resampling technique, all the PFs share the
same commonality: the larger is the number of samples,
the better becomes the approximation of the posterior
density function, the more accurate the estimation will
be. For this reason, in the case of a system with an
high number of state variables, an insufficient number of
particles gives surely rise to a degeneracy problem and,
more generally, to divergent and inaccurate estimations of
the state vector. In particular, it is proven by Poterjoy
(2016) that the number of particles required to accurately
represent the a-posteriori densities increases exponentially
with the dimension of the state space .

Single-state weighted particle filter with
application to Earth Observation missions

Cesare Donati ∗,∗∗ Martina Mammarella ∗∗ 1

Fabrizio Dabbene ∗∗

∗ DET, Politecnico di Torino, Turin, Italy
(e-mail: cesare.donati@polito.it)

∗∗ CNR-IEIIT, Turin, Italy
(e-mail: martina.mammarella, fabrizio.dabbene@ieiit.cnr.it)

Abstract: To push the boundaries of autonomy in space, the spacecraft must rely on its own
sensors to achieve positioning and environmental perception. In this context, the key problem
of autonomous navigation is the nonlinear state estimation of the spacecraft in a dynamic 3D
environment. In this paper, we propose a new approach based on a single-state sub-partitioning
of the state vector and a partial updating of the vector of weights according to the specific
information provided by each sensor. In this way, we avoid to lose information in the resampling
phase thanks to a parallelization approach. The proposed method has been applied to an Earth
observation mission and the efficacy of the proposed approach is demonstrated with a numerical
example using a high-fidelity orbital simulator.

Keywords: Aerospace; particle filtering; information and sensor fusion; guidance, navigation
and control of vehicles; high accuracy pointing

1. INTRODUCTION

In the pathway towards fully autonomous spacecraft, space
systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework,
two main concepts result of particular relevance: i) percep-
tion, and ii) navigation Elkaim et al. (2015). The problem
of sensor fusion in the aerospace field is typically handled
exploiting Kalman-like filtering techniques, used to merge
measurements provided by different sources (see e.g. Sasi-
adek and Hartana (2004); VanDyke et al. (2004); Markley
and Sedlak (2008); Finance et al. (2021); Donati et al.
(2022) and references therein). On the other hand, to accu-
rately model the dynamics of complex systems, it becomes
crucial to appropriately take into account nonlinearity and
non-Gaussian probabilities.

In this context, a valid alternative is represented by the
so-called particle filter (PF), which uses a set of particles
(also called samples) to represent the posterior distribution
of a stochastic process given the noisy and/or partial
observations. For this category of filters, the state-space
model can be nonlinear and the initial state and noise
distributions can take any form required (not only Normal
distributions). Several PF navigation filters have been
proposed for space systems. Different PF-based techniques
have been proposed (see e.g., Cheng and Crassidis (2004),
Mashiku et al. (2012), Kiani and Pourtakdoust (2015), He
et al. (2017), Bazik et al. (2019), Ning and Fang (2008)).

In PFs, the samples from the distribution are represented
by a set of particles, each one with an assigned likelihood

⋆ This work was partially funded by the European Commission
within the HE project HORIZON-CL4-2021-HUMAN-01.
1 corresponding author martina.mammarella@ieiit.cnr.it.

weight, which represents the probability of that particle
being sampled from the probability density function. A
common problem in PFs is that, after few iterations,
all but few particles tend to have negligible weights. In
other terms, the estimation error’s variance of particles
will increase and many weights will take small values,
thus not contributing to the final solution. As a result,
only some samples will represent a reliable estimation,
thus degrading PF performances. To overcome this issue,
a resampling step is typically introduced after the update
phase which outputs a new set of Ns particles starting
from the original set, where each particle has a probability
of being generated equal to its weight. This means that
particles with higher weights are more likely to appear
in the new set and could be chosen multiple times, while
the number of particles from the lower weights is reduced.
Because of the computational load of this step, in Hol et al.
(2006) different resampling strategies have been analyzed
and compared in terms of performances and computational
requirements.

Despite the resampling technique, all the PFs share the
same commonality: the larger is the number of samples,
the better becomes the approximation of the posterior
density function, the more accurate the estimation will
be. For this reason, in the case of a system with an
high number of state variables, an insufficient number of
particles gives surely rise to a degeneracy problem and,
more generally, to divergent and inaccurate estimations of
the state vector. In particular, it is proven by Poterjoy
(2016) that the number of particles required to accurately
represent the a-posteriori densities increases exponentially
with the dimension of the state space .

Single-state weighted particle filter with
application to Earth Observation missions

Cesare Donati ∗,∗∗ Martina Mammarella ∗∗ 1

Fabrizio Dabbene ∗∗

∗ DET, Politecnico di Torino, Turin, Italy
(e-mail: cesare.donati@polito.it)

∗∗ CNR-IEIIT, Turin, Italy
(e-mail: martina.mammarella, fabrizio.dabbene@ieiit.cnr.it)

Abstract: To push the boundaries of autonomy in space, the spacecraft must rely on its own
sensors to achieve positioning and environmental perception. In this context, the key problem
of autonomous navigation is the nonlinear state estimation of the spacecraft in a dynamic 3D
environment. In this paper, we propose a new approach based on a single-state sub-partitioning
of the state vector and a partial updating of the vector of weights according to the specific
information provided by each sensor. In this way, we avoid to lose information in the resampling
phase thanks to a parallelization approach. The proposed method has been applied to an Earth
observation mission and the efficacy of the proposed approach is demonstrated with a numerical
example using a high-fidelity orbital simulator.

Keywords: Aerospace; particle filtering; information and sensor fusion; guidance, navigation
and control of vehicles; high accuracy pointing

1. INTRODUCTION

In the pathway towards fully autonomous spacecraft, space
systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework,
two main concepts result of particular relevance: i) percep-
tion, and ii) navigation Elkaim et al. (2015). The problem
of sensor fusion in the aerospace field is typically handled
exploiting Kalman-like filtering techniques, used to merge
measurements provided by different sources (see e.g. Sasi-
adek and Hartana (2004); VanDyke et al. (2004); Markley
and Sedlak (2008); Finance et al. (2021); Donati et al.
(2022) and references therein). On the other hand, to accu-
rately model the dynamics of complex systems, it becomes
crucial to appropriately take into account nonlinearity and
non-Gaussian probabilities.

In this context, a valid alternative is represented by the
so-called particle filter (PF), which uses a set of particles
(also called samples) to represent the posterior distribution
of a stochastic process given the noisy and/or partial
observations. For this category of filters, the state-space
model can be nonlinear and the initial state and noise
distributions can take any form required (not only Normal
distributions). Several PF navigation filters have been
proposed for space systems. Different PF-based techniques
have been proposed (see e.g., Cheng and Crassidis (2004),
Mashiku et al. (2012), Kiani and Pourtakdoust (2015), He
et al. (2017), Bazik et al. (2019), Ning and Fang (2008)).

In PFs, the samples from the distribution are represented
by a set of particles, each one with an assigned likelihood

⋆ This work was partially funded by the European Commission
within the HE project HORIZON-CL4-2021-HUMAN-01.
1 corresponding author martina.mammarella@ieiit.cnr.it.

weight, which represents the probability of that particle
being sampled from the probability density function. A
common problem in PFs is that, after few iterations,
all but few particles tend to have negligible weights. In
other terms, the estimation error’s variance of particles
will increase and many weights will take small values,
thus not contributing to the final solution. As a result,
only some samples will represent a reliable estimation,
thus degrading PF performances. To overcome this issue,
a resampling step is typically introduced after the update
phase which outputs a new set of Ns particles starting
from the original set, where each particle has a probability
of being generated equal to its weight. This means that
particles with higher weights are more likely to appear
in the new set and could be chosen multiple times, while
the number of particles from the lower weights is reduced.
Because of the computational load of this step, in Hol et al.
(2006) different resampling strategies have been analyzed
and compared in terms of performances and computational
requirements.

Despite the resampling technique, all the PFs share the
same commonality: the larger is the number of samples,
the better becomes the approximation of the posterior
density function, the more accurate the estimation will
be. For this reason, in the case of a system with an
high number of state variables, an insufficient number of
particles gives surely rise to a degeneracy problem and,
more generally, to divergent and inaccurate estimations of
the state vector. In particular, it is proven by Poterjoy
(2016) that the number of particles required to accurately
represent the a-posteriori densities increases exponentially
with the dimension of the state space .

Single-state weighted particle filter with
application to Earth Observation missions

Cesare Donati ∗,∗∗ Martina Mammarella ∗∗ 1

Fabrizio Dabbene ∗∗

∗ DET, Politecnico di Torino, Turin, Italy
(e-mail: cesare.donati@polito.it)

∗∗ CNR-IEIIT, Turin, Italy
(e-mail: martina.mammarella, fabrizio.dabbene@ieiit.cnr.it)

Abstract: To push the boundaries of autonomy in space, the spacecraft must rely on its own
sensors to achieve positioning and environmental perception. In this context, the key problem
of autonomous navigation is the nonlinear state estimation of the spacecraft in a dynamic 3D
environment. In this paper, we propose a new approach based on a single-state sub-partitioning
of the state vector and a partial updating of the vector of weights according to the specific
information provided by each sensor. In this way, we avoid to lose information in the resampling
phase thanks to a parallelization approach. The proposed method has been applied to an Earth
observation mission and the efficacy of the proposed approach is demonstrated with a numerical
example using a high-fidelity orbital simulator.

Keywords: Aerospace; particle filtering; information and sensor fusion; guidance, navigation
and control of vehicles; high accuracy pointing

1. INTRODUCTION

In the pathway towards fully autonomous spacecraft, space
systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework,
two main concepts result of particular relevance: i) percep-
tion, and ii) navigation Elkaim et al. (2015). The problem
of sensor fusion in the aerospace field is typically handled
exploiting Kalman-like filtering techniques, used to merge
measurements provided by different sources (see e.g. Sasi-
adek and Hartana (2004); VanDyke et al. (2004); Markley
and Sedlak (2008); Finance et al. (2021); Donati et al.
(2022) and references therein). On the other hand, to accu-
rately model the dynamics of complex systems, it becomes
crucial to appropriately take into account nonlinearity and
non-Gaussian probabilities.

In this context, a valid alternative is represented by the
so-called particle filter (PF), which uses a set of particles
(also called samples) to represent the posterior distribution
of a stochastic process given the noisy and/or partial
observations. For this category of filters, the state-space
model can be nonlinear and the initial state and noise
distributions can take any form required (not only Normal
distributions). Several PF navigation filters have been
proposed for space systems. Different PF-based techniques
have been proposed (see e.g., Cheng and Crassidis (2004),
Mashiku et al. (2012), Kiani and Pourtakdoust (2015), He
et al. (2017), Bazik et al. (2019), Ning and Fang (2008)).

In PFs, the samples from the distribution are represented
by a set of particles, each one with an assigned likelihood

⋆ This work was partially funded by the European Commission
within the HE project HORIZON-CL4-2021-HUMAN-01.
1 corresponding author martina.mammarella@ieiit.cnr.it.

weight, which represents the probability of that particle
being sampled from the probability density function. A
common problem in PFs is that, after few iterations,
all but few particles tend to have negligible weights. In
other terms, the estimation error’s variance of particles
will increase and many weights will take small values,
thus not contributing to the final solution. As a result,
only some samples will represent a reliable estimation,
thus degrading PF performances. To overcome this issue,
a resampling step is typically introduced after the update
phase which outputs a new set of Ns particles starting
from the original set, where each particle has a probability
of being generated equal to its weight. This means that
particles with higher weights are more likely to appear
in the new set and could be chosen multiple times, while
the number of particles from the lower weights is reduced.
Because of the computational load of this step, in Hol et al.
(2006) different resampling strategies have been analyzed
and compared in terms of performances and computational
requirements.

Despite the resampling technique, all the PFs share the
same commonality: the larger is the number of samples,
the better becomes the approximation of the posterior
density function, the more accurate the estimation will
be. For this reason, in the case of a system with an
high number of state variables, an insufficient number of
particles gives surely rise to a degeneracy problem and,
more generally, to divergent and inaccurate estimations of
the state vector. In particular, it is proven by Poterjoy
(2016) that the number of particles required to accurately
represent the a-posteriori densities increases exponentially
with the dimension of the state space .

Single-state weighted particle filter with
application to Earth Observation missions

Cesare Donati ∗,∗∗ Martina Mammarella ∗∗ 1

Fabrizio Dabbene ∗∗

∗ DET, Politecnico di Torino, Turin, Italy
(e-mail: cesare.donati@polito.it)

∗∗ CNR-IEIIT, Turin, Italy
(e-mail: martina.mammarella, fabrizio.dabbene@ieiit.cnr.it)

Abstract: To push the boundaries of autonomy in space, the spacecraft must rely on its own
sensors to achieve positioning and environmental perception. In this context, the key problem
of autonomous navigation is the nonlinear state estimation of the spacecraft in a dynamic 3D
environment. In this paper, we propose a new approach based on a single-state sub-partitioning
of the state vector and a partial updating of the vector of weights according to the specific
information provided by each sensor. In this way, we avoid to lose information in the resampling
phase thanks to a parallelization approach. The proposed method has been applied to an Earth
observation mission and the efficacy of the proposed approach is demonstrated with a numerical
example using a high-fidelity orbital simulator.

Keywords: Aerospace; particle filtering; information and sensor fusion; guidance, navigation
and control of vehicles; high accuracy pointing

1. INTRODUCTION

In the pathway towards fully autonomous spacecraft, space
systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework,
two main concepts result of particular relevance: i) percep-
tion, and ii) navigation Elkaim et al. (2015). The problem
of sensor fusion in the aerospace field is typically handled
exploiting Kalman-like filtering techniques, used to merge
measurements provided by different sources (see e.g. Sasi-
adek and Hartana (2004); VanDyke et al. (2004); Markley
and Sedlak (2008); Finance et al. (2021); Donati et al.
(2022) and references therein). On the other hand, to accu-
rately model the dynamics of complex systems, it becomes
crucial to appropriately take into account nonlinearity and
non-Gaussian probabilities.

In this context, a valid alternative is represented by the
so-called particle filter (PF), which uses a set of particles
(also called samples) to represent the posterior distribution
of a stochastic process given the noisy and/or partial
observations. For this category of filters, the state-space
model can be nonlinear and the initial state and noise
distributions can take any form required (not only Normal
distributions). Several PF navigation filters have been
proposed for space systems. Different PF-based techniques
have been proposed (see e.g., Cheng and Crassidis (2004),
Mashiku et al. (2012), Kiani and Pourtakdoust (2015), He
et al. (2017), Bazik et al. (2019), Ning and Fang (2008)).

In PFs, the samples from the distribution are represented
by a set of particles, each one with an assigned likelihood

⋆ This work was partially funded by the European Commission
within the HE project HORIZON-CL4-2021-HUMAN-01.
1 corresponding author martina.mammarella@ieiit.cnr.it.

weight, which represents the probability of that particle
being sampled from the probability density function. A
common problem in PFs is that, after few iterations,
all but few particles tend to have negligible weights. In
other terms, the estimation error’s variance of particles
will increase and many weights will take small values,
thus not contributing to the final solution. As a result,
only some samples will represent a reliable estimation,
thus degrading PF performances. To overcome this issue,
a resampling step is typically introduced after the update
phase which outputs a new set of Ns particles starting
from the original set, where each particle has a probability
of being generated equal to its weight. This means that
particles with higher weights are more likely to appear
in the new set and could be chosen multiple times, while
the number of particles from the lower weights is reduced.
Because of the computational load of this step, in Hol et al.
(2006) different resampling strategies have been analyzed
and compared in terms of performances and computational
requirements.

Despite the resampling technique, all the PFs share the
same commonality: the larger is the number of samples,
the better becomes the approximation of the posterior
density function, the more accurate the estimation will
be. For this reason, in the case of a system with an
high number of state variables, an insufficient number of
particles gives surely rise to a degeneracy problem and,
more generally, to divergent and inaccurate estimations of
the state vector. In particular, it is proven by Poterjoy
(2016) that the number of particles required to accurately
represent the a-posteriori densities increases exponentially
with the dimension of the state space .
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1. INTRODUCTION

In the pathway towards fully autonomous spacecraft, space
systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework,
two main concepts result of particular relevance: i) percep-
tion, and ii) navigation Elkaim et al. (2015). The problem
of sensor fusion in the aerospace field is typically handled
exploiting Kalman-like filtering techniques, used to merge
measurements provided by different sources (see e.g. Sasi-
adek and Hartana (2004); VanDyke et al. (2004); Markley
and Sedlak (2008); Finance et al. (2021); Donati et al.
(2022) and references therein). On the other hand, to accu-
rately model the dynamics of complex systems, it becomes
crucial to appropriately take into account nonlinearity and
non-Gaussian probabilities.

In this context, a valid alternative is represented by the
so-called particle filter (PF), which uses a set of particles
(also called samples) to represent the posterior distribution
of a stochastic process given the noisy and/or partial
observations. For this category of filters, the state-space
model can be nonlinear and the initial state and noise
distributions can take any form required (not only Normal
distributions). Several PF navigation filters have been
proposed for space systems. Different PF-based techniques
have been proposed (see e.g., Cheng and Crassidis (2004),
Mashiku et al. (2012), Kiani and Pourtakdoust (2015), He
et al. (2017), Bazik et al. (2019), Ning and Fang (2008)).

In PFs, the samples from the distribution are represented
by a set of particles, each one with an assigned likelihood
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weight, which represents the probability of that particle
being sampled from the probability density function. A
common problem in PFs is that, after few iterations,
all but few particles tend to have negligible weights. In
other terms, the estimation error’s variance of particles
will increase and many weights will take small values,
thus not contributing to the final solution. As a result,
only some samples will represent a reliable estimation,
thus degrading PF performances. To overcome this issue,
a resampling step is typically introduced after the update
phase which outputs a new set of Ns particles starting
from the original set, where each particle has a probability
of being generated equal to its weight. This means that
particles with higher weights are more likely to appear
in the new set and could be chosen multiple times, while
the number of particles from the lower weights is reduced.
Because of the computational load of this step, in Hol et al.
(2006) different resampling strategies have been analyzed
and compared in terms of performances and computational
requirements.

Despite the resampling technique, all the PFs share the
same commonality: the larger is the number of samples,
the better becomes the approximation of the posterior
density function, the more accurate the estimation will
be. For this reason, in the case of a system with an
high number of state variables, an insufficient number of
particles gives surely rise to a degeneracy problem and,
more generally, to divergent and inaccurate estimations of
the state vector. In particular, it is proven by Poterjoy
(2016) that the number of particles required to accurately
represent the a-posteriori densities increases exponentially
with the dimension of the state space .

In recent years, some variants of the particle filter have
been proposed, whose aim was to reduce the computa-
tional complexity of the filter for large state space dimen-
sions. Some examples are the equivalent weight PF (Ades
and van Leeuwen (2015)), the unweighted PF (Surace et al.
(2020)), the adaptive PF (Soto (2005); Carmi and Oshman
(2009)), and the variational Bayesian multiple PF Ait-
El-Fquih and Hoteit (2016). Moreover, differently from
conventional implementations of PFs, where for each par-
ticle a single weight based on the whole set of input mea-
surements is generated, the multiple particle filter (MPF)
(Poterjoy, 2016; Poterjoy and Anderson, 2016) and the
multiple-weighting PF (MW-PF) (Zocca et al., 2022) vari-
ants derive multiple weights associated to sub-spaces/sub-
partitions of the complete state-space. The process of
choosing the correct states partitions as proposed in the
MW-PF approach and simultaneously avoiding complex
filtering structures (e.g. the communication phase intro-
duced in the MPF) can be challenging, especially when
different sensors provide information about same portions
of the state space.

In this paper, we propose a single-state weighted PF
(SSW-PF), which particularizes the MW-PF approach
to the case of multiple sensors measuring interconnected
portions of the state-space. Moreover, it introduces a
MPF-like parallel structure in the resampling stage in
order to avoid the loss of information present in this step of
the MW-PF. The main aim of the SSW-PF is to maintain
the simplicity of the weight computation of a standard
PF, while defining a vector of weights where each element
represents the importance of a single state variable. In this
way, we obtain a one-dimension partitioning. Moreover,
we pre-compute the weights for the state variable that
cannot be directly observed by the sensors, reducing the
computational burden for the weight update phase.

As case study, we selected an Earth observation (EO) mis-
sion performed by a pico-satellite, which shall guarantee
fine pointing requirements. To prove the benefits achiev-
able in terms of attitude estimation, we compared the
SSW-PF with a standard PF scheme (Gustafsson (2010))
and an EKF (Donati et al. (2022)).

2. SINGLE-STATE WEIGHTED PARTICLE FILTER

Let us consider the (possibly) nonlinear dynamical system

xk+1 = f(xk, uk, vk), (1)

z
(ℓ)
k = h(ℓ)(xk) + ω

(ℓ)
k , ℓ ∈ [1, Nℓ] ⊂ N (2)

where xk ∈ Rn is the state vector, uk ∈ Rm is the
command input, vk ∈ Rn is the process noise caused by
modeling approximations and model integration errors,

z
(ℓ)
k ∈ Rαℓ and ω

(ℓ)
k ∈ Rαℓ are the observation vector

and the measurement noise related to the ℓ-th sensor,
respectively. 2 Then, we define the vector of weights wk =
[wk,1, . . . , wk,n]

⊤, which represents the importance and
reliability given to the estimation of the j-th element of the
state xk on the base of the sensor measurement. Now, we
introduce the set Sk = {s1k, . . . , sik, . . . , s

Ns

k } containing Ns

particles where each sik is defined by the couple {xi
k, w

i
k},

where xi
k ∈ Rn.

2 We assume that each sensor can observe αℓ ≤ n state variables.

Then, we define the vectors of simulated measurements for
the i-th particle as

Zi
k =

{
h(1)(xi

k), . . . , h
(ℓ)(xi

k), . . . , h
(Nℓ)(xi

k)
}
. (3)

To initialize the set of Ns particles, we first assign to
each particle a uniform distribution of initial importance
weights, i.e., considering the generic i-th particle, we have

wi
k,0 =

1

Ns
1n, i ∈ [1, Ns] ⊂ N, (4)

where 1n is a n-elements, all-ones (column) vector. On
the other hand, for the state xi

k,0, we can use the previous
knowledge on the initial condition of the considered sys-
tem. For example, if the initial state xk,0 of the system is
exactly known, the starting samples can be distributed in
a neighborhood of xk,0. Then, as typical of PF approaches,
the estimation process can be split into three phases, i.e.
update, resampling, and propagation, which are described
in details in the following sections.

2.1 Update phase

The main contribution of the proposed PF approach
resides in the update phase. In particular, we introduce
a specific weighting system, where the focus is on the
single state variable instead on the overall particle as in
the standard PF schemes. In this way, each particle is
able to provide a higher-quality information because of
the larger number of weights for each state, improving
the accuracy of the final estimations. As we will show
in the numerical simulations, this solution allows us to
decrease the number of particles needed to obtain a given
performance on the final estimation and, as a consequence,
to reduce the computational complexity of the filter itself.

Specifically, the proposed approach aim at reducing the
computational complexity of the update phase. To reach
this objective, we implement a sensor-specific logic. We
have that, for each i-th particle, the vector of weights
wi

k is updated on the base of the similarity between the
simulated measurements of the particles (3) and the true

observations zik = [z
(1)
k , . . . , z

(Nℓ)
k ]i collected by the Nℓ

sensors and represented by vectors of updaters.

In particular, we define as Ξi
ℓ = [(ξi1)ℓ, . . . , (ξ

i
n)ℓ]

⊤ ∈ Rn

the vector of weight updaters related to the ℓ-th sensor
and for the i-th particle such that

wi
k = wi

k−1

Nℓ∏
ℓ=1

Ξi
ℓ, (5)

where the weight updater (ξij)ℓ for the j-th state variable

xi
k,j is set either:

• equal to the probability that the i-th particle could
have observed the true measurement of xi

k,j given by
the ℓ-th sensor, if the ℓ-th sensor observes the j-th
state variable, or

• equal to 1 otherwise, i.e. if the ℓ-th sensor does not
observe the j-th component of xi

k.

Last, wi
k is normalized such that the sum over the Ns

particle is equal to one.

Remark 1. To evaluate the performance of the filter, one
can compute the RMSE over all the particle estimations
as classical of PF approaches, i.e.
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In recent years, some variants of the particle filter have
been proposed, whose aim was to reduce the computa-
tional complexity of the filter for large state space dimen-
sions. Some examples are the equivalent weight PF (Ades
and van Leeuwen (2015)), the unweighted PF (Surace et al.
(2020)), the adaptive PF (Soto (2005); Carmi and Oshman
(2009)), and the variational Bayesian multiple PF Ait-
El-Fquih and Hoteit (2016). Moreover, differently from
conventional implementations of PFs, where for each par-
ticle a single weight based on the whole set of input mea-
surements is generated, the multiple particle filter (MPF)
(Poterjoy, 2016; Poterjoy and Anderson, 2016) and the
multiple-weighting PF (MW-PF) (Zocca et al., 2022) vari-
ants derive multiple weights associated to sub-spaces/sub-
partitions of the complete state-space. The process of
choosing the correct states partitions as proposed in the
MW-PF approach and simultaneously avoiding complex
filtering structures (e.g. the communication phase intro-
duced in the MPF) can be challenging, especially when
different sensors provide information about same portions
of the state space.

In this paper, we propose a single-state weighted PF
(SSW-PF), which particularizes the MW-PF approach
to the case of multiple sensors measuring interconnected
portions of the state-space. Moreover, it introduces a
MPF-like parallel structure in the resampling stage in
order to avoid the loss of information present in this step of
the MW-PF. The main aim of the SSW-PF is to maintain
the simplicity of the weight computation of a standard
PF, while defining a vector of weights where each element
represents the importance of a single state variable. In this
way, we obtain a one-dimension partitioning. Moreover,
we pre-compute the weights for the state variable that
cannot be directly observed by the sensors, reducing the
computational burden for the weight update phase.

As case study, we selected an Earth observation (EO) mis-
sion performed by a pico-satellite, which shall guarantee
fine pointing requirements. To prove the benefits achiev-
able in terms of attitude estimation, we compared the
SSW-PF with a standard PF scheme (Gustafsson (2010))
and an EKF (Donati et al. (2022)).

2. SINGLE-STATE WEIGHTED PARTICLE FILTER

Let us consider the (possibly) nonlinear dynamical system

xk+1 = f(xk, uk, vk), (1)

z
(ℓ)
k = h(ℓ)(xk) + ω

(ℓ)
k , ℓ ∈ [1, Nℓ] ⊂ N (2)

where xk ∈ Rn is the state vector, uk ∈ Rm is the
command input, vk ∈ Rn is the process noise caused by
modeling approximations and model integration errors,

z
(ℓ)
k ∈ Rαℓ and ω

(ℓ)
k ∈ Rαℓ are the observation vector

and the measurement noise related to the ℓ-th sensor,
respectively. 2 Then, we define the vector of weights wk =
[wk,1, . . . , wk,n]

⊤, which represents the importance and
reliability given to the estimation of the j-th element of the
state xk on the base of the sensor measurement. Now, we
introduce the set Sk = {s1k, . . . , sik, . . . , s

Ns

k } containing Ns

particles where each sik is defined by the couple {xi
k, w

i
k},

where xi
k ∈ Rn.

2 We assume that each sensor can observe αℓ ≤ n state variables.

Then, we define the vectors of simulated measurements for
the i-th particle as

Zi
k =

{
h(1)(xi

k), . . . , h
(ℓ)(xi

k), . . . , h
(Nℓ)(xi

k)
}
. (3)

To initialize the set of Ns particles, we first assign to
each particle a uniform distribution of initial importance
weights, i.e., considering the generic i-th particle, we have

wi
k,0 =

1

Ns
1n, i ∈ [1, Ns] ⊂ N, (4)

where 1n is a n-elements, all-ones (column) vector. On
the other hand, for the state xi

k,0, we can use the previous
knowledge on the initial condition of the considered sys-
tem. For example, if the initial state xk,0 of the system is
exactly known, the starting samples can be distributed in
a neighborhood of xk,0. Then, as typical of PF approaches,
the estimation process can be split into three phases, i.e.
update, resampling, and propagation, which are described
in details in the following sections.

2.1 Update phase

The main contribution of the proposed PF approach
resides in the update phase. In particular, we introduce
a specific weighting system, where the focus is on the
single state variable instead on the overall particle as in
the standard PF schemes. In this way, each particle is
able to provide a higher-quality information because of
the larger number of weights for each state, improving
the accuracy of the final estimations. As we will show
in the numerical simulations, this solution allows us to
decrease the number of particles needed to obtain a given
performance on the final estimation and, as a consequence,
to reduce the computational complexity of the filter itself.

Specifically, the proposed approach aim at reducing the
computational complexity of the update phase. To reach
this objective, we implement a sensor-specific logic. We
have that, for each i-th particle, the vector of weights
wi

k is updated on the base of the similarity between the
simulated measurements of the particles (3) and the true

observations zik = [z
(1)
k , . . . , z

(Nℓ)
k ]i collected by the Nℓ

sensors and represented by vectors of updaters.

In particular, we define as Ξi
ℓ = [(ξi1)ℓ, . . . , (ξ

i
n)ℓ]

⊤ ∈ Rn

the vector of weight updaters related to the ℓ-th sensor
and for the i-th particle such that

wi
k = wi

k−1

Nℓ∏
ℓ=1

Ξi
ℓ, (5)

where the weight updater (ξij)ℓ for the j-th state variable

xi
k,j is set either:

• equal to the probability that the i-th particle could
have observed the true measurement of xi

k,j given by
the ℓ-th sensor, if the ℓ-th sensor observes the j-th
state variable, or

• equal to 1 otherwise, i.e. if the ℓ-th sensor does not
observe the j-th component of xi

k.

Last, wi
k is normalized such that the sum over the Ns

particle is equal to one.

Remark 1. To evaluate the performance of the filter, one
can compute the RMSE over all the particle estimations
as classical of PF approaches, i.e.
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RMSEk =

√∑Ns

i=1(xk − xi
k)

2

Ns
(6)

Another possibility, typical of Kalman-like filters, is to first
obtain a good overall estimation of xk from Sk performing
the weighted mean between all the samples states, i.e.

x̂k =

Ns∑
i=1

wi
k ◦ xi

k, (7)

and then compute the estimation error as x̃k = xk − x̂k.

2.2 Resampling phase

In the resampling phase, we propose a state-oriented
strategy that allow us to overcome the typical limitations
of other PF schemes related to the degeneracy problem
(Daum and Huang, 2011) and sample impoverishment
(Pardal et al., 2015).

In particular, we start generating a new set of Ns particles
from Sk, where each state estimation xi

k,j has a proba-

bility of being generated proportional to its weight wi
k,j .

As a result, the elements with higher weights are more
likely to appear in the new set of particles and could be
chosen multiple times. Applying the systematic resampling
approach presented by Hol et al. (2006), we first compute
the (normalized) cumulative sum Ci

j of the weights for
each j-th state variable of the sample i as

Ci
j =

i∑
s=1

ws
k,j . (8)

Then, we generate Ns ordered numbers uη
j

{
uη
j = ū = U

[
0,

1

Ns

)
, η = 1

uη
j = uη−1

j +
1

Ns
, 1 < η ≤ Ns

(9)

used to determine the number of times that the j-th ele-
ment of the i-th particle will be resampled, corresponding
to the cardinality of H = {η ∈ [1, Ns] |uη

j ∈ [Ci−1
j , Ci

j)}
with C0

j = 0. This implies that the estimated variables
with higher weights (e.g. samples 2 and 4 in Fig. 1) will
generate larger intervals corresponding to a higher proba-
bility to be resampled (two and three times, respectively).

Fig. 1. Example of the systematic resampling approach.

2.3 Propagation phase

At each iteration k, the set of resampled particles is
propagated at time k + 1 according to (1), given uk and

vik. Note that, since the process noise is a random variable,
the propagation phase is a stochastic operation and each
particle is propagated considering a possible realization vik
of the random process noise vk.

3. ONBOARD SENSORS MODELING

For the case study, we selected a pico-satellite whose
attitude determination and control subsystem (ADCS) is
composed by commercial-off-the-shelf magnetometers, gy-
roscopes, and Sun sensors. Moreover, we assume that the
satellite is also equipped with a GPS sensor for estimating
the satellite positioning. Being each sensor rigidly attached
to the satellite frame, the measurements are defined in
the satellite body frame. Then, these measurements are
compared against model-generated estimates of their true
values in the Earth Centered Inertial (ECI) frame. From
the knowledge of at least two vectors expressed both in
ECI and body-fixed frames, the attitude of the satellite
can be estimated using the well-known TRIAD method
(Black (1964)). In the follows, a brief review of the models
used to simulate their output is reported. More details can
be found in Wertz (2012); Markley and Crassidis (2014).

3.1 Gyroscope

The gyroscope provides measurements of the satellite
angular velocity. A widely used three-axis continuous-time
mathematical model for a rate-integrating gyroscope is
described in (Tam (2015)) and reported hereafter

ω̃b = ωb + βω + ηω, (10)

where ω̃b is the measured angular rate, ωb is the true an-
gular velocity and ηω is a zero-mean, Gaussian white noise
with standard deviation σω. The gyro bias βω changes over
time as β̇ω = ηβ where ηβ is a zero-mean, Gaussian white
noise with standard deviation σβ . To initialize the bias
term β0

ω when the gyroscopes are turned on, we use a
different Normal distribution with standard deviation σβ0 ,
i.e. β0

ω ∼ N (0, σ2
β0
ω
). Note that ηω, ηβ , and β0

ω are inde-

pendent. Then, using the quaternion kinematics equation,
it is possible to recover the estimated satellite orientation
(see Markley and Crassidis (2014)).

3.2 Magnetometer

Magnetometers measure the strength and direction of
the local magnetic field. Knowing the position of the
satellite, it is possible to generate a true inertial magnetic
field vector bImag by using the International Geomagnetic
Reference Field model Alken et al. (2021) of the Earth’s
magnetic field. Then, the magnetometer output is

b̃Bmag = bBmag + βmag + ηmag. (11)

where b̃Bmag is the measured magnetic field in the body
frame, βmag is the magnetometer bias, and ηmag is a
zero-mean, Gaussian noise with standard deviation σmag.
Then, as described by Bergamasco and Lovera (2013), it
is possible to recover the satellite orientation using any
method to solve the spacecraft attitude determination
problem and compute the rotation matrix RB

I such that

b̃Bmag = RB
I b

I
mag.

3.3 Sun sensor

The Sun sensor is a navigational instrument used by space-
craft to detect the position of the Sun in terms of azimuth
and elevation angles. Let assume we know the ECI Sun-
Earth position, computed as described by Vallado (2001),
and the ECI satellite position with respect to Earth, which
is provided by the GPS, so that we can compute the
relative ECI position among the satellite and the Sun
rIsun. Then, we convert this vector to body coordinates
rBsun using the attitude matrix and we compute azimuth
az and el as described by Markley and Crassidis (2014).
The measured azimuth and elevation can be recovered by
adding white noise to the true values as ãz = az+ηaz and
ẽl = el + ηel, where ηaz and ηel are zero-mean, Gaussian
noises with standard deviations σaz and σel, respectively.
Last, we can recover the measured Sun unit vector r̃Bsun as

r̃Bsun =
1√

1 + tan2 α+ tan2 β

[
tanα
1

tanβ

]
, (12)

where tanα = tan ẽl sin ãz and tanβ = tan ẽl cos ãz.

3.4 GPS

With a GPS receiver, it is possible to measure the orbital
position and velocity of a satellite, and its model is defined
as r̃Igps = rIgps + ηr and ṽIgps = vIgps + ηv, where ηr and ηv
represent the zero-mean, Gaussian white noises affecting
the inertial position and velocity vectors with standard
deviations σr and σv, respectively.

3.5 Attitude determination method

Knowing at least two vectors expressed both in ECI
and body-fixed frames, one possibility to estimate the
satellite attitude is the well-known TRIAD method (Black
(1964)) 3 . Given the magnetic field vectors bImag, b

B
mag and

the Sun vectors rIsun, r
B
sun, the TRIAD algorithms provides

the direction cosine matrix (DCM) relating the two frame
as follows:

(1) we compute the rotation matrix Rt = [t̂1,i t̂2,i t̂3,i]
from the i-the frame to the intermediate frame T as

t̂1,i ≡
risun

∥risun∥
, t̂2,i ≡

risun × bimag

∥risun × bimag∥
, t̂3,i ≡ t̂1,i × t̂2,i;

(2) we obtain the T-to-B RB
t and T-to-I RI

t DCMs;
(3) we recover the ECI-to-body DCM as RB

I = RB
t (R

I
t )

⊤.

4. NUMERICAL RESULTS

As test case, we considered a 3U CubeSat with a mass
of 4 kg, orbiting on an equatorial, 400 km circular orbit.
The ADCS relies on the SSW-PF estimator for attitude
estimation and on a PID controller for guaranteeing the
desired pointing requirement for a Earth-pointing mission.
Consequently, for the specific case study, the yaw angle ψ
has been the only variable controlled. The time frame for
all test cases is a half-orbital period.

3 It is also possible to use alternative attitude determination algo-
rithms e.g., the Q-Method.

The attitude dynamics of the satellite in the body frame
is modeled using the standard Euler equations, in which
we also included the RWs contribution, i.e.

Jω̇B = M − ωB × (JωB + JRWωRW ) (13)

with ωB = [ωx ωy ωz]
⊤ the satellite angular velocity in

the body frame, J the satellite inertia tensor, M the sum
of control torque and environmental disturbances (i.e.,
drag, gravity gradient, solar pressure), and JRW and ωRW

the inertial and angular rate of the RWs, respectively.
Then, the satellite orientation defined by the quaternion
q = [qs qv]

⊤ = [qs q1 q2 q3]
⊤ can be computed integrating

the kinematic equations, i.e.

q̇ =
1

2
Σ(q)ωB , Σ(q) =

[
−q⊤

qSI3 + [q]×

]
. (14)

The results presented in this section focus on highlight-
ing the improvements achievable exploiting the proposed
SSW-PF approach compared with an EKF and a classical
PF on three main aspects: i) estimation accuracy over the
state variables; ii) average/ maximum estimation error,
number of particles being equal for the PFs; and iii)
computational cost.

Fig. 2. Estimation error for different Ns using PF and
SSW-PF.

We start analyzing the estimation error for one of the
angular velocity components, i.e. ωz, comparing the per-
formance achieved applying the proposed SSW-PF and
a classical PF for different number of particles Ns. In
Figure 2, we can observe that the average estimation
error eωz

is almost constant, despite the filtering approach
adopted and the number of particles. On the other hand,
we show that better performance in terms of variance can
be achieved when the SSW-PF is exploited. In particular,
when we apply the SSW-PF, if we increase the number of
particles from Ns = 10 up to Ns = 103, we can spot a
reduction in the estimation error variance, with a decrease
inversely proportional to the increase of the samples. On
the other side, the variance for the classical PF is less
sensitive to the increment of Ns. These results are also
reported in Table 1 in terms of standard deviation σωz ,
confirming the different effect of increasing Ns over the
two PF schemes.

Ns 10 50 100 500 1000

SSW [µrad/s] 0.6499 0.5852 0.5767 0.5703 0.5691
PF [µrad/s] 1.1425 1.1459 1.1431 1.1431 1.1464

Table 1. Standard deviation σωz for variousNs.

Next, we focus on comparing the performance of the two
PFs exploiting the same number of particles, i.e. Ns = 10.
Fig. 3 shows the effectiveness of the proposed approach
(lavender line) with respect to a classical PF (black line).
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3.3 Sun sensor

The Sun sensor is a navigational instrument used by space-
craft to detect the position of the Sun in terms of azimuth
and elevation angles. Let assume we know the ECI Sun-
Earth position, computed as described by Vallado (2001),
and the ECI satellite position with respect to Earth, which
is provided by the GPS, so that we can compute the
relative ECI position among the satellite and the Sun
rIsun. Then, we convert this vector to body coordinates
rBsun using the attitude matrix and we compute azimuth
az and el as described by Markley and Crassidis (2014).
The measured azimuth and elevation can be recovered by
adding white noise to the true values as ãz = az+ηaz and
ẽl = el + ηel, where ηaz and ηel are zero-mean, Gaussian
noises with standard deviations σaz and σel, respectively.
Last, we can recover the measured Sun unit vector r̃Bsun as

r̃Bsun =
1√

1 + tan2 α+ tan2 β

[
tanα
1

tanβ

]
, (12)

where tanα = tan ẽl sin ãz and tanβ = tan ẽl cos ãz.

3.4 GPS

With a GPS receiver, it is possible to measure the orbital
position and velocity of a satellite, and its model is defined
as r̃Igps = rIgps + ηr and ṽIgps = vIgps + ηv, where ηr and ηv
represent the zero-mean, Gaussian white noises affecting
the inertial position and velocity vectors with standard
deviations σr and σv, respectively.

3.5 Attitude determination method

Knowing at least two vectors expressed both in ECI
and body-fixed frames, one possibility to estimate the
satellite attitude is the well-known TRIAD method (Black
(1964)) 3 . Given the magnetic field vectors bImag, b

B
mag and

the Sun vectors rIsun, r
B
sun, the TRIAD algorithms provides

the direction cosine matrix (DCM) relating the two frame
as follows:

(1) we compute the rotation matrix Rt = [t̂1,i t̂2,i t̂3,i]
from the i-the frame to the intermediate frame T as

t̂1,i ≡
risun

∥risun∥
, t̂2,i ≡

risun × bimag

∥risun × bimag∥
, t̂3,i ≡ t̂1,i × t̂2,i;

(2) we obtain the T-to-B RB
t and T-to-I RI

t DCMs;
(3) we recover the ECI-to-body DCM as RB

I = RB
t (R

I
t )

⊤.

4. NUMERICAL RESULTS

As test case, we considered a 3U CubeSat with a mass
of 4 kg, orbiting on an equatorial, 400 km circular orbit.
The ADCS relies on the SSW-PF estimator for attitude
estimation and on a PID controller for guaranteeing the
desired pointing requirement for a Earth-pointing mission.
Consequently, for the specific case study, the yaw angle ψ
has been the only variable controlled. The time frame for
all test cases is a half-orbital period.

3 It is also possible to use alternative attitude determination algo-
rithms e.g., the Q-Method.

The attitude dynamics of the satellite in the body frame
is modeled using the standard Euler equations, in which
we also included the RWs contribution, i.e.

Jω̇B = M − ωB × (JωB + JRWωRW ) (13)

with ωB = [ωx ωy ωz]
⊤ the satellite angular velocity in

the body frame, J the satellite inertia tensor, M the sum
of control torque and environmental disturbances (i.e.,
drag, gravity gradient, solar pressure), and JRW and ωRW

the inertial and angular rate of the RWs, respectively.
Then, the satellite orientation defined by the quaternion
q = [qs qv]

⊤ = [qs q1 q2 q3]
⊤ can be computed integrating

the kinematic equations, i.e.

q̇ =
1

2
Σ(q)ωB , Σ(q) =

[
−q⊤

qSI3 + [q]×

]
. (14)

The results presented in this section focus on highlight-
ing the improvements achievable exploiting the proposed
SSW-PF approach compared with an EKF and a classical
PF on three main aspects: i) estimation accuracy over the
state variables; ii) average/ maximum estimation error,
number of particles being equal for the PFs; and iii)
computational cost.

Fig. 2. Estimation error for different Ns using PF and
SSW-PF.

We start analyzing the estimation error for one of the
angular velocity components, i.e. ωz, comparing the per-
formance achieved applying the proposed SSW-PF and
a classical PF for different number of particles Ns. In
Figure 2, we can observe that the average estimation
error eωz

is almost constant, despite the filtering approach
adopted and the number of particles. On the other hand,
we show that better performance in terms of variance can
be achieved when the SSW-PF is exploited. In particular,
when we apply the SSW-PF, if we increase the number of
particles from Ns = 10 up to Ns = 103, we can spot a
reduction in the estimation error variance, with a decrease
inversely proportional to the increase of the samples. On
the other side, the variance for the classical PF is less
sensitive to the increment of Ns. These results are also
reported in Table 1 in terms of standard deviation σωz ,
confirming the different effect of increasing Ns over the
two PF schemes.

Ns 10 50 100 500 1000

SSW [µrad/s] 0.6499 0.5852 0.5767 0.5703 0.5691
PF [µrad/s] 1.1425 1.1459 1.1431 1.1431 1.1464

Table 1. Standard deviation σωz for variousNs.

Next, we focus on comparing the performance of the two
PFs exploiting the same number of particles, i.e. Ns = 10.
Fig. 3 shows the effectiveness of the proposed approach
(lavender line) with respect to a classical PF (black line).
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Fig. 3. Comparison of PF and SSW-PF in terms of eωz
.

In particular, we are able to reduce the variance of about
one order of magnitude, from 1.3052 · 10−12 achieved with
the PF to 4.2249 · 10−13 obtained with the SSW-PF. In
this figure, we can also value the improvements attained
increasing Ns up to 103 (orange line). On the other hand,
to reach performance comparable with the SSW-PF but
using a classical PF, we need to increase the number of
particles up to 105 (green line). In this way, we obtain
similar results in terms of average (SSW-PF: −3.6877 ·
10−06/ PF: −3.0163 · 10−06) and maximum (SSW-PF:
5.8052 · 10−06, PF: 6.0104 · 10−06) estimation error, and
variance (SSW-PF: 1.3052 · 10−12, PF:1.1685 · 10−12).

Fig. 4. Estimation error and error distribution for ψ (left)
and to ωx (right) using EKF and SSW-PF.

Then, we compare the performance of the SSW-PF (for
Ns = 10 and Ns = 103) against a standard EKF for two
different state variables, as shown in Fig. 4: the controlled
variable ψ (left) and the angular rate ωx (right).

Starting from the analysis of the Euler angle ψ, we can
observe in the top figure how the EKF introduces an
estimation error, which is drifting away from zero. On
the other hand, the lower estimation error achieved with
the SSW-PF allows to obtain a more accurate pointing.
Nonetheless, it is worth to highlight that both approaches
are able to achieve a pointing error lower than 1 deg.

Focusing on the corresponding estimation error distribu-
tion plot (bottom left), we can spot two picks for the
SSW-PF, one corresponding to the process noise (around
10−3) and the other one shifted by the average estimation

error (i.e. 10−3). On the other hand, the EKF presents
an almost uniform distribution. In neither case, we can
observe the typical normal distribution. This is due to
the non-gaussianity introduced by sensors modeling and
the triad method. Moreover, this plot highlights how the
SSW-PF, and more in general the PF schemes, can handle
also non-Gaussian distributions without compromising the
filtering efficacy, unlike Kalman-like approaches.

On the other side, we analyze the evolution of the esti-
mation error and variance related to ωx. Here, we can
notice that the average error is comparable (around 4 ·
10−6) among the two approached whereas the variance
is significantly reduced applying the SSW-PF, especially
when Ns = 103. Moreover, we can observe that all three
estimation error distributions present a Gaussian distribu-
tion but with a bias introduced by the random-walk term
in the gyroscope modelling, which shifts the bell curves
from zero to the mean error.

The last aspect analyzed is the correlation among the
number of particles and the computation time for the PF
schemes. To compare the performance of the proposed
scheme with respect to a classical one, we performed
different simulations, each one with the same length, i.e.
150 s, but different Ns up to 103. As shown in Fig. 5,
despite the exploited approach, the larger the number of
samples is, the higher the computation time (red line)
required to complete a full simulation will be. However,
with the same Ns, the PF approach (blue dashed line) is
less computational demanding than the proposed SSW-
PF, in particular for large Ns. Moreover, we can observe
that for Ns < 900, the simulation time is higher than the
SSW-PF computation time. While, if we further increase
the number of particles, the real-time implementability
could be not attained. On the other hand, the PF is more
effective from a computational viewpoint, at the expense
of worsened estimation accuracy.

Fig. 5. Computation time with respect Ns for the SSW-
PF (red) and a classical PF (blue), overlapped with
the evolution of the maximum estimation error e∞
achieved with the SSW-PF for different Ns.

A similar trade-off also characterizes the EKF where
a (much) faster algorithm provides degraded estimation
performance. In Fig. 5, we also report the maximum
estimation error emax (black line) with respect to Ns,
and we can observe an exponential trend where the lower
the number of samples, the larger the estimation error.
Moreover, we can observe that the maximum estimation
error is converging to a steady-state value e∞ (black dotted
line), which corresponds to the process noise included
into the propagation phase, i.e. 10−4. Overlapping these

two trends, we can conclude that one could select the
desired estimation accuracy and, correspondingly, identify
the (minimum) number of particles to be exploited to
guarantee not only the required performance but also the
real-time implementation of the proposed filtering scheme.

5. CONCLUSIONS

In this paper, we presented an innovative multiple weight
particle filter that allows to fuse data from heterogeneous
sensors with limited computational complexity. The sub-
partitioning of the state-space is one-dimensional and
the weights are partially pre-defined according to the
measured states. The efficacy with respect to classical
particle and Kalman filtering techniques was shown for an
Earth orbit mission of a pico-satellite. The results showed
that better estimation performance can be achieve at the
expense of a higher computational cost, while improving
the estimation accuracy with a much lower number of
particles with respect to classical PF schemes.
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two trends, we can conclude that one could select the
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the (minimum) number of particles to be exploited to
guarantee not only the required performance but also the
real-time implementation of the proposed filtering scheme.

5. CONCLUSIONS

In this paper, we presented an innovative multiple weight
particle filter that allows to fuse data from heterogeneous
sensors with limited computational complexity. The sub-
partitioning of the state-space is one-dimensional and
the weights are partially pre-defined according to the
measured states. The efficacy with respect to classical
particle and Kalman filtering techniques was shown for an
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