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Abstract: In this paper, we design a Learning Model Predictive Control (LMPC) algorithm for
quadrotors autonomous racing. The proposed algorithm allows to define a highly customizable
3D race track, in which multiple types of obstacles can be inserted. The controller is then able to
autonomously find the best trajectory minimizing the quadrotor lap time, by learning from data
coming from previous flights within the track, ensuring also the avoidance of all the obstacles
therein. We also present novel relaxation approaches for the LMPC optimization problem, that
allow to reduce it from a mixed-integer nonlinear program to a quadratic program. The LMPC
algorithm is tested via several software-in-the-loop simulations, showing that the algorithm has
learned to fly the quadrotor aggressively and dexterously, managing to both find the minimum-
time trajectory and avoid the obstacles inside the track.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), such as quadrotors, are
aircrafts becoming increasingly employed to assist humans
in a wide range of tasks, typically in constrained and
cluttered environments (Li et al., 2022). In this context,
the field of autonomous drone racing has emerged, with
the aim of fostering research in drone agile navigation, to
develop new and increasingly performing control schemes.
Racing drones are typically required to fly across a series
of gates, placed on a closed track, avoiding collisions
and minimizing the lap time (Penicka et al., 2022). In
this scenario, the aim of this paper is to investigate the
use of Learning Model Predictive Control (LMPC) for
quadrotors autonomous racing.

LMPC is a novel iterative learning control technique that
exploits past information, coming from previous execu-
tions of the given control task, to autonomously improve
its performance over time (Rosolia and Borrelli, 2017a).
For our purposes, we develop a LMPC algorithm control-
ling the quadrotor motion within a closed 3D race track, in
which multiple obstacles can be inserted. The algorithm,
through its learning capabilities, is able to autonomously
find the best trajectory minimizing the quadrotor lap time
and also to avoid all the obstacles therein. Being MPC one
of the most flexible and versatile control techniques for
MIMO systems, several works have investigated its use for
quadrotors control in constrained environments, with the
addition of features such as perception capability (Li et al.,
2020) (Bicego et al., 2020) or data-driven refinement of
the system model (Torrente et al., 2021); approaches such

as those of Penicka et al. (2022) and Han et al. (2021),
instead, plan an optimal minimum-time trajectory in ad-
vance and use it as reference. The advantages of LMPC,
with respect to the above approaches, are that it can
be employed online to autonomously find the minimum-
time trajectory, without the need of trajectory planning;
moreover, collected data directly improves the control per-
formances over time and is not limited to the identification
of the system model.

LMPC has been primarily applied to ground vehicles
(Rosolia and Borrelli, 2019) (Brunke, 2020), with limited
research on its use for quadrotors (Li et al., 2022). Our
study achieves all the relevant results from these previous
works, while also introducing several novelties. Specifi-
cally, our work employs Frenet coordinates to describe
the quadrotor motion, allowing for a highly customizable
track description, requiring only linear constraints. Addi-
tionally, we present a novel relaxation approach, based on
convex piecewise-linear interpolation, allowing to reduce
the LMPC optimization problem to a quadratic program.

The remainder of the paper is structured as follows.
In Section 2, we provide an overview on the general
theoretical formulation of LMPC while in Section 3 we
present the quadrotor model in Frenet coordinates. In
Section 4 we show how to adapt LMPC for the purpose
of controlling quadrotors in the drone racing scenario.
Simulations of the LMPC algorithm for quadrotors are
reported in Section 5, showing its functionality and good
performances. Main conclusions are drawn in Section 6.
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be employed online to autonomously find the minimum-
time trajectory, without the need of trajectory planning;
moreover, collected data directly improves the control per-
formances over time and is not limited to the identification
of the system model.

LMPC has been primarily applied to ground vehicles
(Rosolia and Borrelli, 2019) (Brunke, 2020), with limited
research on its use for quadrotors (Li et al., 2022). Our
study achieves all the relevant results from these previous
works, while also introducing several novelties. Specifi-
cally, our work employs Frenet coordinates to describe
the quadrotor motion, allowing for a highly customizable
track description, requiring only linear constraints. Addi-
tionally, we present a novel relaxation approach, based on
convex piecewise-linear interpolation, allowing to reduce
the LMPC optimization problem to a quadratic program.

The remainder of the paper is structured as follows.
In Section 2, we provide an overview on the general
theoretical formulation of LMPC while in Section 3 we
present the quadrotor model in Frenet coordinates. In
Section 4 we show how to adapt LMPC for the purpose
of controlling quadrotors in the drone racing scenario.
Simulations of the LMPC algorithm for quadrotors are
reported in Section 5, showing its functionality and good
performances. Main conclusions are drawn in Section 6.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), such as quadrotors, are
aircrafts becoming increasingly employed to assist humans
in a wide range of tasks, typically in constrained and
cluttered environments (Li et al., 2022). In this context,
the field of autonomous drone racing has emerged, with
the aim of fostering research in drone agile navigation, to
develop new and increasingly performing control schemes.
Racing drones are typically required to fly across a series
of gates, placed on a closed track, avoiding collisions
and minimizing the lap time (Penicka et al., 2022). In
this scenario, the aim of this paper is to investigate the
use of Learning Model Predictive Control (LMPC) for
quadrotors autonomous racing.

LMPC is a novel iterative learning control technique that
exploits past information, coming from previous execu-
tions of the given control task, to autonomously improve
its performance over time (Rosolia and Borrelli, 2017a).
For our purposes, we develop a LMPC algorithm control-
ling the quadrotor motion within a closed 3D race track, in
which multiple obstacles can be inserted. The algorithm,
through its learning capabilities, is able to autonomously
find the best trajectory minimizing the quadrotor lap time
and also to avoid all the obstacles therein. Being MPC one
of the most flexible and versatile control techniques for
MIMO systems, several works have investigated its use for
quadrotors control in constrained environments, with the
addition of features such as perception capability (Li et al.,
2020) (Bicego et al., 2020) or data-driven refinement of
the system model (Torrente et al., 2021); approaches such

as those of Penicka et al. (2022) and Han et al. (2021),
instead, plan an optimal minimum-time trajectory in ad-
vance and use it as reference. The advantages of LMPC,
with respect to the above approaches, are that it can
be employed online to autonomously find the minimum-
time trajectory, without the need of trajectory planning;
moreover, collected data directly improves the control per-
formances over time and is not limited to the identification
of the system model.

LMPC has been primarily applied to ground vehicles
(Rosolia and Borrelli, 2019) (Brunke, 2020), with limited
research on its use for quadrotors (Li et al., 2022). Our
study achieves all the relevant results from these previous
works, while also introducing several novelties. Specifi-
cally, our work employs Frenet coordinates to describe
the quadrotor motion, allowing for a highly customizable
track description, requiring only linear constraints. Addi-
tionally, we present a novel relaxation approach, based on
convex piecewise-linear interpolation, allowing to reduce
the LMPC optimization problem to a quadratic program.

The remainder of the paper is structured as follows.
In Section 2, we provide an overview on the general
theoretical formulation of LMPC while in Section 3 we
present the quadrotor model in Frenet coordinates. In
Section 4 we show how to adapt LMPC for the purpose
of controlling quadrotors in the drone racing scenario.
Simulations of the LMPC algorithm for quadrotors are
reported in Section 5, showing its functionality and good
performances. Main conclusions are drawn in Section 6.
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2. LMPC THEORETICAL FORMULATION

LMPC is an MPC-based iterative learning control strategy
that is able to autonomously improve its performances, by
executing the control task multiple times and collecting
data from each of these iterations. In this section, we recall
the main features of LMPC, first proposed by Rosolia and
Borrelli (2017b).

2.1 Learning Model Predictive Control (LMPC)

Let us consider a generic discrete-time dynamical system

xk+1 = f(xk,uk) (1)

where x ∈ R
n and u ∈ R

m are the system state and input,
respectively. Each j-th LMPC iteration generates a state
trajectory Xj and a corresponding input sequence U j ,
defined as

Xj = (xj
0,x

j
1, ...,x

j
Tj
) (2a)

U j = (uj
0,u

j
1, ...,u

j
Tj−1) (2b)

where j is the iteration number and Tj is the time instant
at which the task is completed.

LMPC is formulated as repetitive, meaning that the j-th
iteration starts from the last state of the previous iteration,
i.e., xj

0 = x
j−1
Tj−1

, ∀j ≥ 1; only iteration 0 starts from an

initial state xS , i.e., x0
0 = xS . The task is considered

complete (at time Tj) when the system reaches a goal state
xF without violating any constraint.

At each iteration, the LMPC algorithm collects the states
of the generated trajectory, with their related costs, and
uses such data to improve the control performances of the
next iteration. The main elements of the LMPC algorithm
(Rosolia and Borrelli, 2017b) are briefly recalled next.

Sampled safe set

The states of each generated trajectory are collected
within the sampled safe set, which is defined as

SSj =

�

�

i∈Gj

∞
�

k=0

xi
k

�

(3a)

Gj =

�

i ∈ [0, j] : lim
k→∞

xi
k = xF

�

(3b)

where SSj is a discrete set storing all the states xk, with
k ∈ [0,∞], composing the state trajectories generated
by successful iterations of the LMPC algorithm, up to
iteration j. In particular, SS0 is initialized with a first
feasible trajectory, that is sub-optimal, and is generated
by means of a basic reference tracking control method (in
our case, classic MPC).

Terminal cost function

We define the cost-to-go of the trajectory j at time k as

Jj

[k,∞](x
j
k) ≡ Jj

k =

∞
�

t=k

h(xj
t ,u

j
t ) (4)

where h is the stage cost function. The cost-to-go cor-
responds to the cumulative cost of the part of the j-th
trajectory starting from state x

j
k. When k = 0, the cost-

to-go is denoted as iteration cost (Jj
0 ) and it corresponds

to the cost of the whole trajectory, i.e., it quantifies the
control algorithm performance at each j-th iteration.

Then, we define the terminal cost function Qj(x), over the
SSj , as

Qj(x) =

�

min
(i,k)∈F j(x)

J i
[k,∞](x) if x ∈ SSj

+∞ if x /∈ SSj
(5a)

F j(x) =
�

(i, k) ∈ [0, j]× [0,∞] : x = xi
k for xi

k ∈ SSj
�

.
(5b)

According to this definition, the terminal cost function
Qj(x) assigns, to every state x in SSj , the minimum cost-
to-go along the trajectories in SSj departing from x.

LMPC formulation

The LMPC optimization problem is constructed according
to the MPC formulation, where at time k of iteration j,
SSj−1 is the terminal set and Qj−1(x) is the terminal cost
function, i.e.,

(Xj∗

k ,U j∗

k ) = argmin
Xk,Uk

N−1
�

t=0

h(xt|k,ut|k) +Qj−1(xN |k)

(6a)

s.t.

xt+1|k = f(xt|k,ut|k), t = [0, . . . , N − 1] (6b)

x0|k = x
j
k (6c)

xt|k ∈ X , ut|k ∈ U , t = [0, . . . , N − 1] (6d)

xN |k ∈ SSj−1 (6e)

where xt|k and ut|k are the state and input predicted t
steps ahead at time k, respectively.

The addition of the terminal cost function and constraint
in (6) guarantees LMPC asymptotically stability and re-
cursively feasibility (Rosolia and Borrelli, 2017b). More-
over, as proved in Rosolia and Borrelli (2017b), the for-
mulation (6) ensures that: (i) between two successive
iterations, the iteration cost is non-increasing; (ii) the
trajectories tend to converge to the solution of the infinite-
horizon version of (6).

3. QUADROTOR MODELLING

The quadrotor dynamical model is described in (Das et al.,
2009) as the following set of differential equations











































ẍ = 1
m
(cφsθcψ + sφsψ)u1 −

βx

m
ẋ

ÿ = 1
m
(cφsθsψ − sφcψ)u1 −

βy

m
ẏ

z̈ = −g + 1
m
cφcθu1 −

βz

m
ż

φ̈ =
Iy−Iz
Ix

θ̇ψ̇ + 1
Ix
u2

θ̈ = Iz−Ix
Iy

φ̇ψ̇ + 1
Iy
u3

ψ̈ =
Ix−Iy

Iz
φ̇θ̇ + 1

Iz
u4

(7)

where sx ≡ sin(x) and cx ≡ cos(x). In (7), (x, y, z)
are the Cartesian coordinates of the quadrotor center of
mass (CoM) position in the inertial frame, (φ, θ, ψ) are
the orientation angles of the body frame with respect
to the inertial one, m and (Ix, Iy, Iz) are the mass and
principal moments of inertia of the quadrotor, respec-
tively, βx, βy, βz are the air drag force coefficients, and
(u1, u2, u3, u4) = (f, τθ, τφ, τψ) are the control inputs,

corresponding to the quadrotor thrust force and torques
related to each orientation angle. respectively. This model
is later discretized using the forward Euler method with
constant time step T .

3.1 Frenet coordinates

In order to define the linear track boundary constraints
(6d), we convert the quadrotor model (7) from Cartesian
to Frenet coordinates, which are a coordinate system that
describes the position of a point P on the plane with
respect to a reference curve γ, called Frenet curve, and
by means of two coordinates, as shown in Fig. 1:

• the signed curvilinear abscissa s, i.e., the length of the
curve γ from its origin to the orthogonal projection
of P on γ;

• the signed distance d from γ, i.e., the lateral distance
between P and its orthogonal projection on γ.

Fig. 1. Frenet coordinates.

Let us assume that P to coincide with the CoM of the
quadrotor. Then, the Cartesian-to-Frenet conversion is
defined in (Morin and Samson, 2008) as follows, i.e.,











ṡ = 1
1−K(s)d (ẋ cosψ2 + ẏ sinψ2)

ḋ = −ẋ sinψ2 + ẏ cosψ2

ψ̇2 = K(s)
1−K(s)d (ẋ cosψ2 + ẏ sinψ2)

(8)

where K(s) is the curvature function of γ. Through
Frenet coordinates, the track shape is embedded within
the quadrotor model (7) by means of the function K(s),
and the track width is then defined with a simple bound
constraint on the state d (6d), assuming that γ coincides
with the track centerline.

3.2 Affine time-variant model for LMPC prediction

The quadrotor model equations, that are inserted in the
LMPC optimization problem as equality constraints (6b),
are linearized, at each time instant k, around the current
operating point of the system (i.e., the current state x

j
k

and the previous input uj
k−1). Hence, the prediction model

(6b) becomes an Affine Time-Variant (ATV) model of the
form

xt+1|k = Akxt|k +Bkut|k + ck, t = [0, . . . , N − 1]

Ak =
∂f

∂x
(xk,uk−1),Bk =

∂f

∂u
(xk,uk−1)

ck = f(xk,uk−1)−Akxk −Bkuk−1. (9)

4. LMPC FOR QUADROTORS

In this section, we describe the adaptation of the LMPC
algorithm for the purpose of controlling racing quadrotors.
The methods presented here represent a new contribution
to the LMPC algorithm of Rosolia and Borrelli (2017b),
in terms of relaxation procedures and application to tasks
in constrained environments.

4.1 LMPC relaxation

We report here a series of relaxations for the LMPC
optimization problem (6), that allow to reduce it from a
mixed-integer nonlinear to a quadratic program.

Sampled safe set relaxation

A presented in (Rosolia and Borrelli, 2019), the sampled
safe set SSj can be relaxed into its convex hull, denoted
as convex safe set CSj , through the barycentric approxi-
mation of SSj , i.e.,

CSj = conv(SSj) = (X0, ...,Xj)λ⊤

λ = (λ0
0, λ

0
1, ..., λ

0
T0
, ..., λj

0, λ
j
1, ..., λ

j
Tj
),

λ ≥ 0, ||λ||1 = 1. (10)

Then, being CSj a convex polytope, we can express it
with its H-representation, obtaining a linear and convex
definition of the the terminal constraint (6e).

Terminal cost function relaxation

Since we need to extend the terminal cost function Qj(x)
over the continuous convex set CSj , we can we compute
the barycentric approximation also for Qj , i.e., P j , which
is defined by (Rosolia and Borrelli, 2019) as follows

P j(x) = conv(Qj(x)) =

= min
λ≥0

�

J0
[0,T0]

(x0
0), J

0
[1,T0]

(x0
1), ..., J

j

[0,Tj ]
(xj

0), ...
�

λ⊤

λ = (λ0
0, λ

0
1, ..., λ

0
T0
, ..., λj

0, λ
j
1, ..., λ

j
Tj
),

λ ≥ 0, ||λ||1 = 1, (X0, ...,Xj)λ⊤ = x. (11)

To practically include the relaxed terminal cost function in
the LMPC optimization problem, we compute P j(x) by in-
terpolating the states contained in SSj = {X0, ...,Xj} =

{x0
0, x

0
1, ..., x

j
Tj
} and the corresponding values of the ter-

minal cost function Qj(SSj) = {J0
0 , J

0
1 , ..., J

j
Tj
} by means

of a convex piecewise-linear function f(x) (Magnani and
Boyd, 2009), i.e., we consider f as a k-term max-affine
function of the form

f(x) = max
�

a⊤
1 x+ b1, ...,a

⊤
k x+ bk

�

(12)

Max-affine functions can be visualized as an intersection
of k planes in the R

n × R space, of which we take the
envelope (which corresponds to the max operation). Then,
we set up a parametric fitting problem for f , where α =
(a1, ...,ak, b1, ..., bk) ∈ R

k(n+1) is the vector of parameters
to be determined through the interpolation. The fitting
problem can be solved by means of the algorithm proposed
in (Magnani and Boyd, 2009) are recalled hereafter:

• create k partitions of the m data points

{(x0
0, J

0
0 ), . . . , (x

j
Tj
, Jj

Tj
)} ≡ {(x1, J1), . . . , (xm, Jm)};
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corresponding to the quadrotor thrust force and torques
related to each orientation angle. respectively. This model
is later discretized using the forward Euler method with
constant time step T .

3.1 Frenet coordinates

In order to define the linear track boundary constraints
(6d), we convert the quadrotor model (7) from Cartesian
to Frenet coordinates, which are a coordinate system that
describes the position of a point P on the plane with
respect to a reference curve γ, called Frenet curve, and
by means of two coordinates, as shown in Fig. 1:

• the signed curvilinear abscissa s, i.e., the length of the
curve γ from its origin to the orthogonal projection
of P on γ;

• the signed distance d from γ, i.e., the lateral distance
between P and its orthogonal projection on γ.

Fig. 1. Frenet coordinates.

Let us assume that P to coincide with the CoM of the
quadrotor. Then, the Cartesian-to-Frenet conversion is
defined in (Morin and Samson, 2008) as follows, i.e.,











ṡ = 1
1−K(s)d (ẋ cosψ2 + ẏ sinψ2)

ḋ = −ẋ sinψ2 + ẏ cosψ2

ψ̇2 = K(s)
1−K(s)d (ẋ cosψ2 + ẏ sinψ2)

(8)

where K(s) is the curvature function of γ. Through
Frenet coordinates, the track shape is embedded within
the quadrotor model (7) by means of the function K(s),
and the track width is then defined with a simple bound
constraint on the state d (6d), assuming that γ coincides
with the track centerline.

3.2 Affine time-variant model for LMPC prediction

The quadrotor model equations, that are inserted in the
LMPC optimization problem as equality constraints (6b),
are linearized, at each time instant k, around the current
operating point of the system (i.e., the current state x

j
k

and the previous input uj
k−1). Hence, the prediction model

(6b) becomes an Affine Time-Variant (ATV) model of the
form

xt+1|k = Akxt|k +Bkut|k + ck, t = [0, . . . , N − 1]

Ak =
∂f

∂x
(xk,uk−1),Bk =

∂f

∂u
(xk,uk−1)

ck = f(xk,uk−1)−Akxk −Bkuk−1. (9)

4. LMPC FOR QUADROTORS

In this section, we describe the adaptation of the LMPC
algorithm for the purpose of controlling racing quadrotors.
The methods presented here represent a new contribution
to the LMPC algorithm of Rosolia and Borrelli (2017b),
in terms of relaxation procedures and application to tasks
in constrained environments.

4.1 LMPC relaxation

We report here a series of relaxations for the LMPC
optimization problem (6), that allow to reduce it from a
mixed-integer nonlinear to a quadratic program.

Sampled safe set relaxation

A presented in (Rosolia and Borrelli, 2019), the sampled
safe set SSj can be relaxed into its convex hull, denoted
as convex safe set CSj , through the barycentric approxi-
mation of SSj , i.e.,

CSj = conv(SSj) = (X0, ...,Xj)λ⊤

λ = (λ0
0, λ
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1, ..., λ

0
T0
, ..., λj

0, λ
j
1, ..., λ

j
Tj
),

λ ≥ 0, ||λ||1 = 1. (10)

Then, being CSj a convex polytope, we can express it
with its H-representation, obtaining a linear and convex
definition of the the terminal constraint (6e).

Terminal cost function relaxation

Since we need to extend the terminal cost function Qj(x)
over the continuous convex set CSj , we can we compute
the barycentric approximation also for Qj , i.e., P j , which
is defined by (Rosolia and Borrelli, 2019) as follows

P j(x) = conv(Qj(x)) =

= min
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λ ≥ 0, ||λ||1 = 1, (X0, ...,Xj)λ⊤ = x. (11)

To practically include the relaxed terminal cost function in
the LMPC optimization problem, we compute P j(x) by in-
terpolating the states contained in SSj = {X0, ...,Xj} =

{x0
0, x

0
1, ..., x

j
Tj
} and the corresponding values of the ter-

minal cost function Qj(SSj) = {J0
0 , J

0
1 , ..., J

j
Tj
} by means

of a convex piecewise-linear function f(x) (Magnani and
Boyd, 2009), i.e., we consider f as a k-term max-affine
function of the form

f(x) = max
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a⊤
1 x+ b1, ...,a

⊤
k x+ bk
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(12)

Max-affine functions can be visualized as an intersection
of k planes in the R

n × R space, of which we take the
envelope (which corresponds to the max operation). Then,
we set up a parametric fitting problem for f , where α =
(a1, ...,ak, b1, ..., bk) ∈ R

k(n+1) is the vector of parameters
to be determined through the interpolation. The fitting
problem can be solved by means of the algorithm proposed
in (Magnani and Boyd, 2009) are recalled hereafter:

• create k partitions of the m data points

{(x0
0, J

0
0 ), . . . , (x

j
Tj
, Jj

Tj
)} ≡ {(x1, J1), . . . , (xm, Jm)};
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Fig. 2. Example of planar track, with its curvature function K(s) and relaxed curvature function K̃(s).

• on each j-th partition, solve analytically the linear
least-squares fitting problem associated to the j-th
affine function composing f , obtaining a first estimate
of the coefficients aj and bj ;

• update each partition on the base of the current
coefficients value;

• iterate the algorithm until either the coefficients con-
verge or a maximum number of iterations is reached.

For j = 1, . . . , k, let P
(l)
j be a partition of the data indices

{1, ...,m} at the l-th iteration of the algorithm such that

P
(l)
j ⊆ {1, ...,m} and it holds that
⋃

j

P
(l)
j = {1, ...,m}, P

(l)
i ∩ P

(l)
j = ∅ for i ̸= j. (13)

Denoting as a
(l)
j and b

(l)
j the values of the parameters at

the l-th iteration of the algorithm, the next values, i.e.,

a
(l+1)
j and b

(l+1)
j , are those that minimize

∑

i∈P
(l)
j

(

a⊤xi + b− Ji
)2

(14)

which is the linear least-squares problem associated to the
j-th affine function composing f , restricted to only the
data in the j-th partition.

Using the new values of the coefficients, we update the

partition to obtain P
(l+1)
j , by assigning i to P

(l+1)
j such

that

f (l+1) (xi) = max
s=1,...,k

(

a(l+1)⊤

s xi + b(l+1)
s

)

=

= a
(l+1)⊤

j xi + b
(l+1)
j . (15)

This means that P
(l+1)
j is the set of indices i for which the

affine function a
(l+1)⊤

j xi + b
(l+1)
j is the maximum for the

data point xi.

This algorithm is iterated, up to a maximum number of
iterations, until the coefficients vector α(l) converges to a

steady-state value or, equivalently, if the partitions P
(l)
j

do not change anymore after a certain iteration. Finally,
the interpolated terminal cost function f(x) ≡ P̃ j(x) is
inserted in (6a) by means of an additional optimization
variable c and an additional linear constraint as stated in
(Magnani and Boyd, 2009), solving the following optimiza-
tion problem

f(x) = P̃ j(x) = min
c

c (16)

s.t. c ≥ aj⊤

s x+ bjs, s = 1, ..., k.

4.2 Track definition

The 3D race track is vertically bounded and horizontally
delimited by a planar track (Fig. 3). Among the planar
tracks, we consider those composed by an arbitrary se-
quence of straight lines and circular curves, of any length
and angle; in this way, K(s) is a constant piecewise func-
tion (Fig. 2).

Fig. 3. Examples of race tracks.

To properly describe the shape of the track within the
LMPC optimization problem, two technical devices are
employed: curvature propagation and curvature relaxation.
Curvature propagation consists in assuming K(s) as con-

stant and equal to its initial value K(sjk) ≡ K within
the LMPC optimization problem. This is done to avoid
the need of analytically inserting the function K(s) in
the model equation constraints (6b). On the other hand,
curvature relaxation, consists in relaxing the vertical edges
of K(s) with third-order polynomials, obtaining the re-

laxed function K̃(s) (Fig. 2). This is done since the LMPC
prediction is falsified by curvature propagation (i.e., being
K constant in the optimization problem), which may lead
to bad control performances; by relaxingK(s), the gradual
change of the curvature edges allows the LMPC to better
predict the future change of curvature, even if it is still
considered as constant in each optimization problem.

4.3 Obstacle avoidance

Obstacle avoidance is an essential feature of the proposed
algorithm since we are targeting drone racing. Specifically,
three types of obstacles can be inserted in the track (Fig.
4). Such obstacles are described as local restrictions of
the bounds (6d) on the states z (altitude) and d (lateral
distance), and they are implemented exploiting the same
propagation and relaxation method used for the track
curvature.

Fig. 4. Types of obstacles.

4.4 Cost function

The stage cost function h of the LMPC optimization
problem (6) is chosen to be quadratic

h(xt|k,ut|k,xt−1|k,ut−1|k) =

= ∥xt|k − xF ∥
2
P (17a)

+ ∥xt|k − xr∥
2
Q + ∥ut|k∥

2
R (17b)

+ ∥xt|k − xt−1|k∥
2
Q∆

+ ∥ut|k − ut−1|k∥
2
R∆

(17c)

and it is composed by the following terms 1 :

• ∥xt|k − xF ∥
2
P : it allows the algorithm to find the

minimum-time trajectory, since it quantifies the dis-
tance from the goal state xF , corresponding to the
finish line of the track (i.e., sF = Ltrack), to the
predicted state xt|k; thus, this cost term tends to
minimize the travelled distance and, being the time
step T constant, also the lap time.

• ∥xt|k − xr∥
2
Q + ∥ut|k∥

2
R: it acts as reference tracking

term (where xr is the reference state) for all the other
relevant states that are not present in (17a) (such as
the altitude z and the yaw angle ψ); it also penalizes
the amplitude of the inputs.

• ∥xt|k − xt−1|k∥
2
Q∆

+ ∥ut|k − ut−1|k∥
2
R∆

: it penalizes
the variation of states and inputs, forcing the quadro-
tor to follow a smoother trajectory, without abrupt
changes in its velocity and acceleration.

Fig. 5. Example of race track with obstacles.

5. SIMULATIONS AND RESULTS

In this section, we report the results of the simulations
conducted on the LMPC algorithm for quadrotors. The
algorithm is employed in software-in-the-loop simulations,
in which it controls the quadrotor model (7), on a certain
number of different tracks, which include also obstacles,
and in various operative conditions.

5.1 Software implementation

The LMPC algorithm presented in Section 4 has been
implemented in Matlab

® 2021a. For the formulation

1 ∥x∥2
A

is equal to x⊤Ax.

of the LMPC optimization problem, it has been used
the third-party toolbox YALMIP, which provides a cus-
tom syntax and parser to express optimization prob-
lems in symbolic form (Löfberg, 2004). The simulations
are run with an 11th Gen Intel® CoreTM i7 CPU.
The full Matlab code implementing the LMPC algo-
rithm for quadrotors, together with all the numerical
data, is available in the following GitHub repository:
github.com/lorenzocalogero/LMPC quadrotors.

5.2 Simulations and results

We provide the results of three different case studies (Fig.
6): the first two (Fig. 6a-b) use the tracks shown in Fig.
3, which have no obstacles; the third one (Fig. 6c) uses
the track shown in Fig. 5, which has three obstacles, one
for each type (see Fig. 4). For each case study, we have:
the quadrotor trajectories on the horizontal plane, overlaid
by their colored velocity profile (Fig. 6-1); the trajectories
on the vertical plane (Fig. 6-2); the iteration cost and lap
time values with respect to the number of iterations (Fig.
6-3); and the quadrotor planar velocity with respect to its
position in the track (Fig. 6-4).

From Fig. 6-1, we can observe that in each case study
the LMPC has learned to fly the quadrotor aggressively,
adopting an optimal shape for the trajectory and smartly
increasing the velocity of the drone over the track. Specif-
ically, from Fig. 6-4, we see that the velocity profiles
steadily increase, up to triplicating the drone average
speed. We also notice that the trajectories tend to con-
verge, in accordance with the LMPC theorem cited in
Section 2. Moreover, from Fig. 6-3, we notice that the
iteration cost and lap time monotonically decrease as the
number of iterations increases (with small steady-state
oscillations due to the optimization problem relaxations),
in accordance with the LMPC theorem of non-increasing
iteration cost (see Section 2). The altitude z (shown in Fig.
6-2), being the start and finish lines independent from it,
is controlled through the term (17b) of the cost function
(meaning that z does not take part in the LMPC opti-
mization); specifically, z tracks (not strictly) the average
altitude defined by the track vertical borders. Finally, in
Fig. 6c-1, we see that the quadrotor is able to avoid any
collision with the obstacles inserted in the track.

From a computational viewpoint, the maximum execution
time of 1 step of the LMPC algorithm among all the
simulations was equal to 28 ms. This value is lower than
the chosen time step, i.e., T = 0.1 s, thus presumably
resulting suitable for real-time applications.
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Fig. 4. Types of obstacles.
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in which it controls the quadrotor model (7), on a certain
number of different tracks, which include also obstacles,
and in various operative conditions.

5.1 Software implementation

The LMPC algorithm presented in Section 4 has been
implemented in Matlab

® 2021a. For the formulation
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is equal to x⊤Ax.

of the LMPC optimization problem, it has been used
the third-party toolbox YALMIP, which provides a cus-
tom syntax and parser to express optimization prob-
lems in symbolic form (Löfberg, 2004). The simulations
are run with an 11th Gen Intel® CoreTM i7 CPU.
The full Matlab code implementing the LMPC algo-
rithm for quadrotors, together with all the numerical
data, is available in the following GitHub repository:
github.com/lorenzocalogero/LMPC quadrotors.

5.2 Simulations and results

We provide the results of three different case studies (Fig.
6): the first two (Fig. 6a-b) use the tracks shown in Fig.
3, which have no obstacles; the third one (Fig. 6c) uses
the track shown in Fig. 5, which has three obstacles, one
for each type (see Fig. 4). For each case study, we have:
the quadrotor trajectories on the horizontal plane, overlaid
by their colored velocity profile (Fig. 6-1); the trajectories
on the vertical plane (Fig. 6-2); the iteration cost and lap
time values with respect to the number of iterations (Fig.
6-3); and the quadrotor planar velocity with respect to its
position in the track (Fig. 6-4).

From Fig. 6-1, we can observe that in each case study
the LMPC has learned to fly the quadrotor aggressively,
adopting an optimal shape for the trajectory and smartly
increasing the velocity of the drone over the track. Specif-
ically, from Fig. 6-4, we see that the velocity profiles
steadily increase, up to triplicating the drone average
speed. We also notice that the trajectories tend to con-
verge, in accordance with the LMPC theorem cited in
Section 2. Moreover, from Fig. 6-3, we notice that the
iteration cost and lap time monotonically decrease as the
number of iterations increases (with small steady-state
oscillations due to the optimization problem relaxations),
in accordance with the LMPC theorem of non-increasing
iteration cost (see Section 2). The altitude z (shown in Fig.
6-2), being the start and finish lines independent from it,
is controlled through the term (17b) of the cost function
(meaning that z does not take part in the LMPC opti-
mization); specifically, z tracks (not strictly) the average
altitude defined by the track vertical borders. Finally, in
Fig. 6c-1, we see that the quadrotor is able to avoid any
collision with the obstacles inserted in the track.

From a computational viewpoint, the maximum execution
time of 1 step of the LMPC algorithm among all the
simulations was equal to 28 ms. This value is lower than
the chosen time step, i.e., T = 0.1 s, thus presumably
resulting suitable for real-time applications.
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Fig. 6. Simulations of the LMPC algorithm for quadrotors.

6. CONCLUSIONS

In this paper, a LMPC algorithm for quadrotors au-
tonomous racing has been presented. With respect to the
basic LMPC algorithm, new relaxation techniques for the
optimization problem have been developed, among which
the convex piecewise-linear interpolation of the terminal
cost function and the use of Frenet coordinates to obtain
linear track constraints. Also, novel approaches for imple-
menting the track, such as curvature/obstacles propaga-
tion and relaxation, have been developed. The proposed
algorithm has been tested via software-in-the-loop simula-
tions, proving its correct functionality and very good per-
formances: the quadrotor has learned to fly aggressively,
achieving lap time minimization and obstacle avoidance.
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