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The application of an optimization based 3D-1D coupling strategy is proposed, for the first time, for the 
simulation of fluid and chemical exchanges between a growing capillary network and the surrounding tissue, 
in the context of tumor-induced angiogenesis. A well posed mathematical model is worked out, based on the 
coupling between a three-dimensional and a one-dimensional equation (3D-1D coupled problem). The problems 
are then solved in a PDE-constrained optimization framework, under which no mesh conformity is required. 
This makes the method particularly suitable for this kind of application, since no remeshing is required as the 
capillary network grows. In order to handle both the evolution of the quantities of interest and the changes 
in the geometry, a discrete-hybrid strategy is adopted, combining a continuous modeling of the tissue and 
of the chemicals with a discrete tip-tracking model to account for the vascular network growth. The tip-

tracking strategy, together with some proper rules for branching and anastomosis, is able to provide a realistic 
representation of the capillary network.
1. Introduction

Angiogenesis is the crucial process that leads to the formation of 
new blood vessels from an existing vasculature, with the aims of pro-

viding the correct amount of nutrients and oxygen to the tissue and of 
warranting metabolic waste removal from it [1]. This process occurs in 
many different conditions, either physiologically (e.g., embryogenesis, 
wound-healing, and female cycle) [2,3] or pathologically (e.g., rheuma-

toid and inflammatory disease, duodenal ulcers, abnormal vasculariza-

tion in the eye, and the initiation and progression of cancers) [4–8]. In 
all cases, angiogenesis entails a well-organized sequence of events, com-

prising the rearrangement, migration, and proliferation of endothelial 
cells (ECs) forming the capillary wall. These processes should coordi-

nate with the establishment of blood flow inside the new capillaries in 
order to reach a properly functional vessel network [9]. The whole pro-

cess is orchestrated by biochemical stimuli, released both by neighbor-

ing cells and by the ECs themselves, and by the mechanical interaction 
between the ECs and the surrounding environment (refer to [10–13] for 
an extensive review of the key chemical and mechanical cues in angio-

genesis).
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In this paper, we specifically focus on tumor-induced angiogene-

sis, occurring when an avascular tumor reaches a critical diameter of 
approximately 1-2 mm, above which nutrients and oxygen diffusion 
from the existing vasculature are no longer sufficient to sustain can-

cer progression and cells inside the tumor experience hypoxia [9,14]. 
The hypoxic condition triggers the secretion by tumor cells of a number 
of chemicals, collectively called tumor angiogenic factors (TAFs) [1,9]. 
These substances diffuse through the nearby tissue and, when they 
reach the vasculature, they activate ECs by binding to the transmem-

brane cell receptors and activating specific molecular pathways. This 
initiates the first step of angiogenesis, in which ECs change shape and 
adhesion properties, leading to a weakening of the junctions within the 
endothelial layer and a subsequent increase in the permeability of the 
blood vessel [15]. In the next phase, ECs produce proteolytic enzymes, 
which degrade the basal lamina of the vessel and the surrounding ex-

tracellular matrix [16], enabling the formation of the first protrusion 
(sprout) and the subsequent cell migration towards the source of the 
TAFs (chemotaxis) [17,18]. At this stage, it is possible to distinguish 
between tip cells, i.e., the specialized cells at the extremity of newly 
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formed capillaries that guide vessel outgrowth through chemotactic mo-

tion, and stalk cells, which are highly proliferative cells that follow the 
tip cell motion, establishing tight junctions to ensure the stability of 
the new sprout and the formation of the nascent capillary [19]. During 
the development of the network, tip-sprouts may undergo branching or 
they can merge when two capillaries encounter each other (anastomosis) 
[17,20]. As the sprout approaches the tumor, the branches noticeably 
increase in number [21] and the whole process culminates with the 
penetration of the new capillaries inside the tumor. Once the tumor be-

comes vascularized, the cancer cells gain access to an almost unlimited 
supply of nutrients and oxygen and they can eventually enter inside the 
vasculature and form metastasis also in distant sites [11].

Tumor-induced angiogenesis has been extensively studied through 
in vitro and in vivo biological experiments [22–25], that pointed out the 
main biomechanical factors and pathways involved in both physiolog-

ical and pathological vascular progression. However, many aspects are 
still under investigation and a comprehensive biological set-up able to 
study the process as a whole, considering the different spatio-temporal 
scales and all the components involved in this complex mechanism is 
yet to be developed. In this regard, in silico models may be an efficient 
way to study and replicate selected features of the experimental system 
and forecast the evolution of the entire process in biologically relevant 
conditions. Therefore, in the last decades, different mathematical mod-

els have been proposed, with different approaches, from continuous 
[26–33] to discrete/hybrid [34–38] models, with either deterministic or 
stochastic rules for cell branching (see [39–41] for a review on math-

ematical models on angiogenesis). Continuous models [26,28,29,42], 
typically encapsulates systems of coupled nonlinear partial differential 
equations (PDEs) describing the migration of ECs from the parent vessel 
towards the solid tumor in response to the TAFs and other chemicals dis-

persed in the ECM or eventually released by the ECs themselves. Despite 
the ability of such PDE models to capture important angiogenic features 
at the macroscopic scale (i.e., average ECs and sprout density, average 
vessel growth and network expansion rates), they are not able to explic-

itly represent the geometry of the developing capillary network. Even in 
those cases in which the boundary between the capillary network and 
the surrounding tissue is tracked through a diffuse interface approach 
[32,41], the proposed models are not suitable to evaluate the inner 
blood flow. At the same time, in those continuous models in which the 
morphology of nascent vessels is captured through a sharp interface, 
whose evolution is controlled both by chemical and mechanical cues 
[33], the vascularization of the network is not described, since it would 
require the definition of the complex fluid-structure interaction in an 
evolving 3D network. Conversely, the description of the vessel network 
morphology has been widely reproduced with discrete models operating 
at the scale of single ECs [20,43], coupled with a continuous representa-

tion for the chemicals [34,42,44,45,37,46,38]. Although hybrid models 
have the advantage of describing the motion of individual ECs for sim-

ulating a realistic capillary network, the number of vessels that can be 
considered is limited by the computational costs of the discrete rep-

resentation of each EC. Furthermore, the simulation of the blood flow 
inside the expanding geometry is generally disregarded. Indeed, despite 
its renowned importance in tumor growth and drug transport, the study 
of blood flow through the new vessel network and the mechanisms of 
fluid transport inside the surrounding tissue have only recently gained 
attention in mathematical modeling.

Starting from the preliminary works of Baxter and Jain presenting 
a macroscopic model for fluid and macromolecules transport inside a 
tumor with a distributed vascular source [47,48] and a microscopic 
model describing flow transport around a single vessel [49], some math-

ematical models to describe the blood flow in non-evolving vascular 
networks have been proposed [50,51]. Recently some attempts to cou-

ple discrete models of angiogenesis, with continuous models of blood 
flow have been done. Specifically, in [52], the flow into each node of 
a network of vessels, evolving accordingly to the discrete angiogene-

sis model proposed in [53], is expressed in terms of nodal pressures 
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and flow resistances of the segment, in order to satisfy the conserva-

tion of mass. A similar approach to determine blood flow in the vessel 
was used in [36,54–56], with different discrete models to reproduce 
the spatial and temporal evolution of the network. In these works, the 
simulation of flow was carried out a posteriori, either after generation 
of an hexagonal hollow vessel network constructed ad-hoc [36] or af-

ter an initial cell migration model that reproduce the vessel network 
[54–56]. Notably, Rieger et al. developed a 2D and 3D cellular au-

tomata model [57–59] that considered angiogenesis, vessel co-option 
and vessel collapse in a time-dependent model of blood flow and tu-

mor growth. However, in all these models, nascent vessels need to be 
conformal to the mesh, leading to unnatural geometries of the network 
and blood flow inside it. Furthermore when cellular automata are used, 
the number of cells that can be simulated and therefore the extent of 
the vascular network that can be reproduced are limited in size. More 
complex models for vessel generation and blood flow simulation inside 
both the evolving capillary network and the surrounding tissue can be 
found in [60,61]. In particular, in [60] an algorithmic approach to gen-

erate realistic microvascular networks starting from larger vessels and 
a numerical method to solve the 3D-1D coupled model for blood flow 
and oxygen transport are presented. In that work, Murray’s law is used 
to determine the radii of the vessels and the bifurcation angles, with-

out any influence of the chemical involved in the angiogenesis process. 
Therefore this model can be more suitably applied to obtain surrogate 
vessel networks than to study tumor-induced angiogenesis. The result-

ing problem is solved with a two-point flux approximation scheme, with 
singular sources described as Dirac deltas for the 3D-1D coupling. On 
the other hand, the work of [61] focuses on modeling and simulating 
the growth of a tumor sustained by an evolving vessel networks. The 3D 
model for the tissue is based on continuous balance laws for a mixture 
composed by the tumor tissue, the extracellular matrix and the chem-

icals (namely the tumor angiogenic factors and the matrix-degrading 
enzymes). All the phases in the mixture are constrained to move with 
the same velocity and a Cahn-Hilliard type phase-field model is used to 
separate them. Angiogenesis is orchestrated both by some deterministic 
rules related to the concentration of the tumor angiogenesis factors and 
by the presence of stochastic terms. The equation system is solved us-

ing a combination of finite volume and finite element schemes and an 
iterative procedure is used to couple the 3D and 1D problems. The nu-

merical results [61], however, refer to a network with a limited number 
of vessels.

Therefore in this work, neglecting the growth of the tumor mass, 
we focus on the angiogenesis process in order to propose an efficient 
numerical technique to solve the fluid flow and chemical transport 
problems both inside the tissue and inside the vessels. Specifically, we 
propose a hybrid model, coupling a continuous representation of the tis-
sue and of the chemical dispersed inside it with a discrete tip-tracking 
model that describes the motion of tip cells and the subsequent for-

mation of vessels. In principle this task would require the definition 
of a three dimensional domain, representing the healthy tissue, with 
tubular evolving structures immersed inside it, to represent the ves-

sels. Then, all the equations of the model should be defined in both 
domains, with proper conditions at the interface between the vessel 
and the surrounding tissue. The presence of domains with embedded 
tubular inclusions with radius much smaller than the length and than 
the size of the domain itself is challenging from a simulation stand-

point. The generation of the computational mesh in the interior of the 
inclusions, indeed, constraints the mesh-size in the neighborhood, thus 
resulting in a linear system with a very large number of unknowns. Fur-

ther, for complex networks of inclusions, the mesh generation process 
may be infeasible, due to the large number of geometrical constraints. 
All these complexities are further aggravated if time-dependent simula-

tions are to be performed and when branching and anastomosis occur.

The reduction of the inclusions to one dimensional objects can be 
performed, in these situations, to mitigate the computational cost and 
to allow the treatment of arbitrarily complex configurations. The 3D 
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Fig. 1. Nomenclature for capillary network representation at a bifurcation point.
inclusions are collapsed on their centrelines, and simultaneously the 
external domain is extended to fill the voids. The resulting problem 
is composed of a three dimensional bulk domain with an embedded 
network of one dimensional domains, and a coupling of the solutions of 
such 3D-1D problems is required.

The mathematical formulation of 3D-1D coupled problems requires 
particular care, as there is no bounded trace operator on 1D manifolds 
for functions in 𝐻1-spaces on 3D domains. In [62,63] 3D problems with 
singular source terms on 1D segments are investigated, posing the ba-

sis for the analysis of 3D-1D coupled problems. Some authors suggest 
a regularization of the singular terms, such as in [64–66], or splitting 
techniques, which treat in a separate manner the regular and irregular 
part of the solution [67,68]. Coupled 3D-1D problems are treated by 
[69] through the introduction of suitable averaging operators, and by 
[70] through the use of Lagrange multipliers in a domain decomposi-

tion setting. Here the method proposed by [71,72] is adopted, in which 
a well posed problem is derived in suitable function spaces, defined on 
the basis of some assumptions on the regularity of the solution, and the 
problem is solved by means of an optimization based domain decompo-

sition method. According to this approach, the 3D problem and the 1D 
problem are independently written, introducing additional variables at 
the interfaces, and a cost functional, expressing the error in fulfilling 
interface conditions is minimized to recover a global solution. The ad-

vantages of this approach lie in the possibility of building independent 
meshes on the various domains and in the direct computation of inter-

face variables, that are of particular interest for the applications.

In detail, the paper is organized as follows. In Section 2 we introduce 
the notation and the main modeling assumptions. The governing equa-

tions of the angiogenesis hybrid model, described as a 3D-1D coupled 
problem, are presented in Section 3, while in Section 4 the optimization 
based domain decomposition for 3D-1D coupling is proposed and ana-

lyzed. Section 5 is devoted to the discussion of the details concerning 
the numerical discretization of the model equations, while in Section 6

some numerical experiments are presented. Finally, in Section 7 we 
summarize the main features of the work and present possible direc-

tions for further research.

2. Notation and model assumptions

Let us consider the time interval [0, 𝑇 ] and a partition defined as

0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑘 < ... < 𝑡𝐾 = 𝑇 ,

with 𝑘 = (𝑡𝑘−1, 𝑡𝑘] and Δ𝑘 = 𝑡𝑘 − 𝑡𝑘−1. Let Σ(𝑡𝑘) = Σ𝑘 ⊂ Ω ⊂ ℝ3 denote 
the capillary network at time 𝑡𝑘. For the sake of simplicity we consider 
the case Σ0 ⊆ Σ1 ⊆ ... ⊆ Σ𝑘, i.e. we allow for the growth of the vascular 
network by so-called sprouting angiogenesis, but not for its regression. 
More precisely, in a continuous-discrete hybrid framework, Σ𝑘 denotes 
the fixed capillary network which is considered as the quantities of in-

terest vary during the time-interval 𝑘. We assume that the network Σ𝑘
254
is composed by thin tubular vessels of constant radius 𝑅, as shown in 
Fig. 1, the generalization to a radius varying along the network being 
however straightforward. The surrounding interstitial volume for 𝑡 ∈ 𝑘

is defined as 𝑘 =Ω ⧵Σ𝑘. The boundary of Ω is denoted by 𝜕Ω whereas 
𝜕Σ𝑘 is the boundary of Σ𝑘. Such boundary is split into four parts, i.e.

𝜕Σ𝑘 = Γ𝑘 ∪
(
𝜕Σ𝑘

𝑖𝑛 ∪ 𝜕Σ𝑘
𝑜𝑢𝑡 ∪ 𝜕Σ𝑘

𝑑

)
,

with Γ𝑘 denoting the lateral surface of Σ𝑘, and 𝜕Σ𝑘
𝑖𝑛 ⊂ 𝜕Ω and 𝜕Σ𝑘

𝑜𝑢𝑡 ⊂ 𝜕Ω
being the union, respectively, of the inlet and outlet cross-sections of 
Σ𝑘, the nomenclature referring to blood velocity. Finally, the set 𝜕Σ𝑘

𝑑
collects the extremal cross sections of Σ𝑘 lying in the interior of Ω and 
thus having an empty intersection with 𝜕Ω. We will assume that the ex-

tremal cross sections of Σ𝑘 are either completely lying on 𝜕Ω, or inside 
Ω, for all 𝑘 = 0, ..., 𝐾 . For clarity of exposition, we also suppose the set of 
the inflow and outflow sections to be fixed in time, i.e. we exclude the 
possibility for any growing vessel to reach the boundary of the domain. 
For this reason the sets 𝜕Σ𝑖𝑛 and 𝜕Σ𝑜𝑢𝑡 will actually not depend on time, 
so that the superscript 𝑘 is dropped. On the other hand, 𝜕Σ𝑘

𝑑
is allowed 

to change in time. In practice, Ω will bound the entire vessel network 
generated by angiogenesis and encompass the region in which chemical 
diffusion and transport take place. In Fig. 1, we have reported a simpli-

fied cartoon of a single bifurcation just to provide clear labels for the 
vessel geometry. Vectors 𝒏̃𝑜𝑢𝑡 and 𝒏̃𝑘

𝑑
are used to denote the unit normal 

vectors to 𝜕Σ𝑜𝑢𝑡 and 𝜕Σ𝑘
𝑑

respectively, both outward pointing from Σ𝑘. 
We define the boundary of 𝑘 as

𝜕 = 𝜕Ω ⧵ (𝜕Σ𝑖𝑛 ∪ 𝜕Σ𝑜𝑢𝑡),

where the superscript 𝑘 is dropped since 𝜕Σ𝑖𝑛 and 𝜕Σ𝑜𝑢𝑡 do not change 
in time. We denote by 𝒏 the unit normal vector to 𝜕 outward pointing 
from 𝑘.

We assume that the radius 𝑅 is much smaller than the inclusion 
length and than the characteristic size of Ω, and thus that the origi-

nal 3D-3D equi-dimensional problems can be approximated by 3D-1D 
problems. First, in each time interval 𝑘, the original network Σ𝑘 is 
covered by a set of thin straight cylindrical vessels Σ𝑘

𝑖 , eventually cut 
by domain borders. We denote the centerline of each cylindrical vessel 
segment by Λ𝑘

𝑖 = {𝝀𝑘
𝑖 (𝑠), 𝑠 ∈ (0, 𝑆𝑘

𝑖 )}, for 𝑖 ∈ 𝑌 𝑘, where 𝑌 𝑘 is the set of 
vessel segment indices in 𝑘. We also call Γ𝑘

𝑖 the lateral surface of each 
vessel. Vessel centrelines are possibly connected at their endpoints, and 
we denote by {𝒙𝑏}𝑏∈𝐵𝑘 the set of points at which vessel centrelines join 
or bifurcate as a consequence of branching or anastomosis events. The 
subset 𝑌 𝑘

𝑏
⊂ 𝑌 𝑘 of centreline indexes is introduced, such that segments 

Λ𝑘
𝑗 , 𝑗 ∈ 𝑌 𝑘

𝑏
are connected in 𝒙𝑏, and we call 𝑆𝑖,𝑏 the curvilinear abscissa 

such that 𝝀𝑘
𝑖 (𝑆𝑖,𝑏) = 𝒙𝑏, 𝑖 ∈ 𝑌 𝑘

𝑏
(clearly 𝑆𝑖,𝑏 is either 0 or 𝑆𝑘

𝑖 ). The do-

main Σ𝑘 is thus replaced, in the derivation of the 3D-1D problems, by ⋃
𝑖∈𝑌 𝑘 Σ𝑘

𝑖 , while Λ𝑘 =
⋃

𝑖∈𝑌 𝑘 Λ𝑘
𝑖 ∪ {𝒙𝑏}𝑏∈𝐵𝑘 , with Λ𝑖𝑛, Λ𝑜𝑢𝑡 and Λ𝑘

𝑑
denot-

ing respectively the union of the centers of the sections in 𝜕Σ𝑖𝑛, 𝜕Σ𝑜𝑢𝑡

and 𝜕Σ𝑘 . We remark that, in general, according to the above definition, 

𝑑



S. Berrone, C. Giverso, D. Grappein et al. Computers and Mathematics with Applications 151 (2023) 252–270
Fig. 2. Mutual dependence of the considered problems/quantities.

the union of the Σ𝑘
𝑖 might be different from Σ𝑘, but, as 𝑅 is small such 

difference can be considered negligible.

3. Models and methods

The process of oxygen delivery by blood flow during angiogenesis

is here described by means of three partial differential equation prob-

lems and an ordinary differential equation. In particular, we consider a 
PDE problem for fluid pressure, one for oxygen concentration, and an-

other for VEGF concentration. The growth of the capillary network is 
described by an ODE for the evolution of the position of vessel free ends, 
with given rules for preferential growth paths, branching and anasto-

mosis. The starting point is an equilibrium configuration at time 𝑡 = 0
for pressure, oxygen concentration, and VEGF concentration in the do-

main, given the initial vessel configuration Σ0. Then the vessel network 
can change, over a given time interval, with the displacement of vessel 
tip cells depending on the initial VEGF concentration. The new com-

puted geometry, Σ1, breaks the equilibrium configuration, triggering 
the evolution of pressure, VEGF and oxygen concentration, over the 
same time interval. First, the new pressure distribution is calculated 
and post processed to determine fluid velocity both in the vessels and 
in the interstitial tissue. Such velocity is then used to compute the new 
distribution of VEGF and oxygen concentration. When calculating the 
evolution of such quantities, the geometry of the vessel is kept fixed 
at Σ1. The whole process is then repeated over the next time interval, 
starting again from the growth of the network, according to the new 
concentration of VEGF. A diagram of the process modeling is shown in 
Fig. 2. In the following the different problems are analyzed in details, 
while a summary of the equations is provided in Section 3.5.

3.1. The pressure problem

The first PDE problem describes the distribution of fluid pressure 
in the considered domain. This problem is first formulated as a coupled 
problem between a 3D tissue and a 3D domain given by the union of the 
vessels. To ease the meshing process and to reduce the computational 
cost of simulations, since the radius of the vessels is small compared to 
the size of the whole domain Ω, the 3D-3D equi-dimensional problem 
is re-formulated as a 3D-1D coupled problem, assuming that, inside the 
vessels, the variation of pressure along the cross section is negligible. 
The pressure problem is solved in a quasi-stationary framework, i.e. an 
equilibrium problem is solved each time the geometry is updated. For 
details about the solving strategy we refer to Sections 4-5, that refer to 
the oxygen concentration problem but can be easily generalized to the 
pressure case.

Let us denote by 𝑝(𝒙, 𝑡) and 𝑝̃(𝒙, 𝑡) respectively the interstitial fluid 
pressure in the tissue 𝑘 and the blood pressure in the capillary network 
Σ𝑘, with 𝑡 ∈ 𝑘 = (𝑡𝑘−1, 𝑡𝑘]. Assuming that the tissue can be suitably rep-

resented by a saturated porous medium [73], with the cells and the 
extracellular matrix representing the solid skeleton, the Darcy’s law 
can be used to model the interstitial flow. The solid skeleton is as-

sumed to be rigid and the growth of cells in the tissue surrounding 
the capillary and the degradation/deposition of the ECM are neglected. 
Therefore the cell volume fraction of the interstitial fluid and the solid 
phase can be assumed constant. Inside the capillaries, the motion of 
255
the blood, described as an incompressible viscous fluid can be appro-

priately described by the Poiseuille’s law for laminar stationary flow 
[47,50]. Therefore, the following 3D-3D quasi-stationary coupled prob-

lem completely describes the motion of the fluid inside the capillary 
and the interstitium ∀𝑡 ∈ 𝑘:

−∇ ⋅
(
𝜅

𝜇
∇𝑝(𝒙, 𝑡)

)
+ 𝛽𝐿𝑆

𝑝
𝑆

𝑉
(𝑝(𝒙, 𝑡) − 𝑝𝐿𝑆 ) = 0 𝒙 ∈𝑘 (1)

𝜅

𝜇
∇𝑝(𝒙, 𝑡) ⋅ 𝒏𝑘

Γ(𝒙) = 𝛽𝑝(𝑝̃(𝒙, 𝑡) − 𝑝(𝒙, 𝑡) − Δ𝑝𝑜𝑛𝑐) 𝒙 ∈ Γ𝑘 (2)

𝜅

𝜇
∇𝑝(𝒙, 𝑡) ⋅ 𝒏(𝒙) = 𝛽𝑒𝑥𝑡

𝑝 (𝑝𝑒𝑥𝑡 − 𝑝(𝒙, 𝑡)) 𝒙 ∈ 𝜕 (3)

∇𝑝(𝒙, 𝑡) ⋅ 𝒏𝑘
𝑑 (𝒙) = 0 𝒙 ∈ 𝜕Σ𝑘

𝑑 (4)

−∇ ⋅
(
𝑅2

8𝜇
∇𝑝̃(𝒙, 𝑡)

)
= 0 𝒙 ∈ Σ𝑘 (5)

𝑅2

8𝜇
∇𝑝̃(𝒙, 𝑡) ⋅ 𝒏̃𝑘

Γ(𝒙) = 𝛽𝑝(𝑝(𝒙, 𝑡) − 𝑝̃(𝒙, 𝑡) + Δ𝑝𝑜𝑛𝑐) 𝒙 ∈ Γ𝑘 (6)

𝑝̃(𝒙, 𝑡) = 𝑝̃𝑖𝑛 𝒙 ∈ 𝜕Σ𝑖𝑛 (7)

𝑝̃(𝒙, 𝑡) = 𝑝̃𝑜𝑢𝑡 𝒙 ∈ 𝜕Σ𝑜𝑢𝑡 (8)

∇𝑝̃(𝒙, 𝑡) ⋅ 𝒏̃𝑘
𝑑 (𝒙) = 0 𝒙 ∈ 𝜕Σ𝑘

𝑑 . (9)

Parameters 𝜅 and 𝜇 are positive scalars, denoting respectively the hy-

draulic permeability of the tissue and blood viscosity. Also 𝛽𝑝 and 𝛽𝑒𝑥𝑡
𝑝

are positive scalars, representing respectively the permeability of the 
capillary wall Γ𝑘 and the conductivity of the external boundary, while 
𝑝𝑒𝑥𝑡 is the basal pressure. In numerical simulations we will consider 
𝑝̃𝑜𝑢𝑡 = 𝑝𝑒𝑥𝑡. Vector 𝒏𝑘

Γ = −𝒏̃𝑘
Γ is the unit normal vector to Γ𝑘 outward 

pointing from 𝑘, while 𝒏𝑘
𝑑
= −𝒏̃𝑘

𝑑
.

Equations (1) and (5) are coupled through (2) and (6), which impose 
flux conservation across the surface Γ𝑘. The flux is defined through the 
Starling equation, assuming it is proportional to the pressure jump. The 
term Δ𝑝𝑜𝑛𝑐 accounts for the contribution of oncotic pressure, whose gra-

dient is determined by the difference in concentration of the chemicals 
on the two sides of the vessel wall. The most significant contribu-

tion to the oncotic pressure gradient is given by proteins, in particu-

lar by albumin, whose concentration is considered constant. For this 
reason we handle the oncotic pressure as a known correction term 
Δ𝑝𝑜𝑛𝑐 = 𝜉(𝑝̃𝑜𝑛𝑐 − 𝑝𝑜𝑛𝑐 ), with 𝑝𝑜𝑛𝑐 and 𝑝̃𝑜𝑛𝑐 denoting the oncotic pressure 
of albumin inside 𝑘 and Σ𝑘 respectively (∀𝑘) and 𝜉 being the depar-

ture of the membrane from perfect permeability (see [51] for further 
details). Finally the term 𝛽𝐿𝑆

𝑝
𝑆

𝑉
(𝑝(𝒙, 𝑡) − 𝑝𝐿𝑆 ) accounts for the absorp-

tion of the fluid in excess by the lymphatic system. This contribution is 
treated as a distributed sink term, with 𝛽𝐿𝑆

𝑝 denoting the permeability 
of the lymphatic wall, 𝑆

𝑉
the surface area of lymphatic vessels per unit 

of tissue volume and 𝑝𝐿𝑆 = 𝑝𝑒𝑥𝑡 the pressure inside the lymphatic sys-

tem. Once the pressure distribution is computed inside 𝑘 and Σ𝑘 the 
fluid velocity can be defined as

𝒗(𝒙, 𝑡) = −𝜅

𝜇
∇𝑝(𝒙, 𝑡) 𝒙 ∈𝑘, 𝑡 ∈ 𝑘 (10)

𝒗̃(𝒙, 𝑡) = −𝑅2

8𝜇
∇𝑝̃(𝒙, 𝑡) 𝒙 ∈ Σ𝑘, 𝑡 ∈ 𝑘. (11)

In order to reduce the problem to a 3D-1D coupled problem let us as-

sume that, inside the vessels, the pressure variations along the radial 
direction are negligible and let us hence introduce, ∀𝑖 ∈ 𝑌 𝑘, the one-

dimensional quantity 𝑝̂𝑖(𝑠, 𝑡) such that, in cylindrical coordinates, for 
𝑠 ∈ (0, 𝑆𝑘

𝑖 ) and 𝑡 ∈ 𝑘

𝑝̃|Σ𝑘
𝑖
(𝑟, 𝜃, 𝑠, 𝑡) = 𝑝̂𝑖(𝑠, 𝑡), ∀𝑟 ∈ [0,𝑅], ∀𝜃 ∈ [0,2𝜋). (12)

Similarly we introduce the one-dimensional quantity 𝑝̌𝑖(𝑠, 𝑡) such that

𝑝|Γ𝑘
𝑖
(𝑅,𝜃, 𝑠, 𝑡) = 𝑝̌𝑖(𝑠, 𝑡), ∀𝜃 ∈ [0,2𝜋), (13)

i.e. we are neglecting the variations of 𝑝(𝒙, 𝑡) along the cross section 
perimeter.
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Fig. 3. Sketch of the 1D reduced problem with related quantities.

Thus, defining for 𝑠 ∈ (0, 𝑆𝑘
𝑖 ), 𝑡 ∈ 𝑘:

𝑓 𝑖
𝑝(𝑠, 𝑡) = 2𝜋𝑅𝛽𝑝(𝑝̂𝑖(𝑠, 𝑡) − 𝑝̌𝑖(𝑠, 𝑡) − Δ𝑝𝑜𝑛𝑐 ), (14)

𝑣̂𝑖(𝑠, 𝑡) = −𝑅2

8𝜇
𝜕𝑝̂𝑖(𝑠, 𝑡)

𝜕𝑠
, 𝑄𝑖(𝑠, 𝑡) = |Σ𝑖(𝑠)|𝑣̂𝑖(𝑠, 𝑡),

and given the assumptions on the geometry, the conservation law on 
vessel centerline reads (see Fig. 3):

𝑄𝑖(𝑠+ d𝑠, 𝑡) =𝑄𝑖(𝑠, 𝑡) − 𝑓 𝑖
𝑝(𝑠, 𝑡) d𝑠.

Therefore equations (1)-(2) and (5)-(6) can be rewritten as a 3D-1D 
coupled system, i.e. for 𝑡 ∈ 𝑘:

−∇ ⋅
(
𝜅

𝜇
∇𝑝(𝒙, 𝑡)

)
+ 𝛽𝐿𝑆

𝑝
𝑆

𝑉
(𝑝(𝒙, 𝑡) − 𝑝𝐿𝑆 ) =

∑
𝑖∈𝑌 𝑘

𝑓 𝑖
𝑝𝛿Λ𝑘

𝑖
𝒙 ∈𝑘 (15)

− 𝜕

𝜕𝑠

(
𝜋𝑅4

8𝜇
𝜕𝑝̂𝑖(𝑠, 𝑡)

𝜕𝑠

)
= −𝑓 𝑖

𝑝(𝑠, 𝑡) ∀𝑖 ∈ 𝑌 𝑘, 𝑠 ∈ (0, 𝑆𝑘
𝑖 ) (16)

∑
𝑗∈𝑌𝑏

𝜕𝑝̂𝑗

𝜕𝑠
(𝑆𝑗,𝑏, 𝑡) = 0 ∀𝑏 ∈𝐵𝑘 (17)

𝑝̂𝑖(𝑆𝑖,𝑏, 𝑡) = 𝑝̂𝑗 (𝑆𝑗,𝑏, 𝑡) ∀𝑖 ≠ 𝑗 ∈ 𝑌𝑏, ∀𝑏 ∈ 𝐵𝑘, (18)

where the last two equations express respectively flux balance and pres-

sure continuity at bifurcation points. We observe that the flow through 
the lateral surface of each vessel, 𝑓 𝑖

𝑝 behaves as a distributed source 
term in the 1D reduced problem (16), balanced by the correspond-

ing concentrated source terms in the 3D problem (15). More details 
on geometrical model reduction, also considering more general vessel 
geometries, can be found in [69].

3.2. The oxygen concentration problem

Similarly to the pressure case, we start from an equidimensional 
3D-3D coupled problem, concerning the transport and diffusion of oxy-

gen in the tissue and inside the vessel network. The velocity field for 
the transport term is computed according to the gradient of fluid pres-

sure, previously obtained. In this case the equations are parabolic, i.e. 
although the geometry is fixed ∀𝑡 ∈ 𝑘, we consider the continuous vari-

ation of oxygen distribution in the given time-interval. Exploiting the 
same considerations that were done for pressure, we reduce the prob-

lem to a 3D-1D coupled problem. The reformulation as an optimization 
based problem and its discretization are given in Sections 4-5.

Denoting by 𝑐(𝒙, 𝑡) and 𝑐(𝒙, 𝑡) the concentration of oxygen respec-

tively in 𝑘 and in the capillary network Σ𝑘, we can write, for 𝑡 ∈ 𝑘

the following 3D-3D reaction-diffusion-convection coupled problem:

𝜕𝑐(𝒙, 𝑡)
𝜕𝑡

=∇ ⋅
(
𝐷𝑐∇𝑐(𝒙, 𝑡)

)
− 𝒗(𝒙, 𝑡) ⋅∇𝑐(𝒙, 𝑡) −𝑚𝑐(𝑐(𝒙, 𝑡)) 𝒙 ∈𝑘 (19)

𝐷𝑐∇𝑐(𝒙, 𝑡) ⋅ 𝒏𝑘
Γ(𝒙) = 𝛽𝑐(𝑐(𝒙, 𝑡) − 𝑐(𝒙, 𝑡)) 𝒙 ∈ Γ𝑘 (20)

𝐷𝑐∇𝑐(𝒙, 𝑡) ⋅ 𝒏(𝒙) = 𝛽𝑒𝑥𝑡
𝑐 (𝑐𝑒𝑥𝑡 − 𝑐(𝒙, 𝑡)) 𝒙 ∈ 𝜕 (21)

∇𝑐(𝒙, 𝑡) ⋅ 𝒏𝑘
𝑑 (𝒙) = 0 𝒙 ∈ 𝜕Σ𝑘

𝑑 (22)

𝜕𝑐(𝒙, 𝑡) = ∇ ⋅ (𝐷̃𝑐∇𝑐(𝒙, 𝑡)) − 𝒗̃(𝒙, 𝑡) ⋅∇𝑐(𝒙, 𝑡) 𝒙 ∈ Σ𝑘 (23)

𝜕𝑡

256
𝑐(𝒙, 𝑡𝑘−1) = 0 𝒙 ∈ Σ𝑘 ⧵ Σ𝑘−1 (24)

𝐷̃𝑐∇𝑐(𝒙, 𝑡) ⋅ 𝒏̃𝑘
Γ(𝒙) = 𝛽𝑐(𝑐(𝒙, 𝑡) − 𝑐(𝒙, 𝑡)) 𝒙 ∈ Γ𝑘 (25)

𝑐(𝒙, 𝑡) = 𝑐𝑖𝑛 𝒙 ∈ 𝜕Σ𝑖𝑛 (26)

𝐷̃𝑐∇𝑐(𝒙, 𝑡) ⋅ 𝒏̃𝑜𝑢𝑡(𝒙) = 0 𝒙 ∈ 𝜕Σ𝑜𝑢𝑡 (27)

∇𝑐(𝒙, 𝑡) ⋅ 𝒏̃𝑘
𝑑 (𝒙, 𝑡) = 0 𝒙 ∈ 𝜕Σ𝑘

𝑑 . (28)

For 𝑘 = 0 we define the initial conditions

𝑐(𝒙, 𝑡0) = 𝑐0(𝒙) 𝒙 ∈0

𝑐(𝒙, 𝑡0) = 𝑐0(𝒙) 𝒙 ∈ Σ0

while for 𝑘 > 0 the concentrations at time 𝑡𝑘−1 are available from the fi-

nal concentrations computed in 𝑘−1 and only the amount of oxygen in 
the newborn capillaries has to be initialized, as in equation (24). Param-

eters 𝐷𝑐 and 𝐷̃𝑐 are positive scalars denoting the diffusivity respectively 
in 𝑘 and Σ𝑘. Also 𝛽𝑐 and 𝛽𝑒𝑥𝑡

𝑐 are positive scalars, which denote the 
permeability to oxygen respectively of the blood vessel wall and of the 
boundary of 𝑘. Finally, function 𝑚𝑐(𝑐(𝒙, 𝑡)) accounts for the oxygen 
metabolization by cells. In particular we choose 𝑚𝑐(𝑐(𝒙, 𝑡)) = 𝑀𝑐𝑐(𝒙, 𝑡), 
with 𝑀𝑐 positive scalar.

As for the pressure case, let us introduce ∀𝑖 ∈ 𝑌𝑘 the one-dimensional 
quantities 𝑐𝑖(𝑠, 𝑡) and 𝑐𝑖(𝑠, 𝑡), 𝑠 ∈ (0, 𝑆𝑘

𝑖 ), and let us assume that for 𝑠 ∈
(0, 𝑆𝑘

𝑖 ) and 𝑡 ∈ 𝑘

𝑐|Σ𝑘
𝑖
(𝑟, 𝜃, 𝑠, 𝑡) = 𝑐𝑖(𝑠, 𝑡), ∀𝑟 ∈ [0,𝑅], ∀𝜃 ∈ [0,2𝜋) (29)

𝑐|Γ𝑘
𝑖
(𝑅,𝜃, 𝑠, 𝑡) = 𝑐𝑖(𝑠, 𝑡), ∀𝜃 ∈ [0,2𝜋). (30)

Defining the quantity

𝑓 𝑖
𝑐 (𝑠, 𝑡) = 2𝜋𝑅𝛽𝑐 (𝑐𝑖(𝑠, 𝑡) − 𝑐𝑖(𝑠, 𝑡)), 𝑠 ∈ (0, 𝑆𝑘

𝑖 ), 𝑡 ∈ 𝑘 (31)

equations (19)-(20) and (23)-(25) can now be rewritten as the 3D-1D 
coupled system, for 𝑡 ∈ 𝑘:

𝜕𝑐(𝒙, 𝑡)
𝜕𝑡

−∇ ⋅
(
𝐷𝑐∇𝑐(𝒙, 𝑡)

)
+ 𝒗(𝒙, 𝑡) ⋅∇𝑐(𝒙, 𝑡) +𝑚𝑐(𝑐(𝒙, 𝑡))=

∑
𝑖∈𝑌 𝑘

𝑓 𝑖
𝑐𝛿Λ𝑘

𝑖
(32)

𝒙 ∈𝑘

𝜋𝑅2 𝜕𝑐𝑖(𝑠, 𝑡)
𝜕𝑡

− 𝜕

𝜕𝑠𝑖

(
𝜋𝑅2𝐷̃𝑐

𝜕𝑐𝑖(𝑠, 𝑡)
𝑑𝑠

)
+ 𝜋𝑅2𝑣̂𝑖(𝑠, 𝑡)

𝜕𝑐𝑖(𝑠, 𝑡)
𝜕𝑠𝑖

= −𝑓 𝑖
𝑐 (𝑠, 𝑡) (33)

∀𝑖 ∈ 𝑌 𝑘, 𝑠 ∈ (0, 𝑆𝑘
𝑖 )∑

𝑗∈𝑌𝑏

𝜕𝑐𝑗

𝜕𝑠
(𝑆𝑗,𝑏, 𝑡) = 0 ∀𝑏 ∈𝐵𝑘 (34)

𝑐𝑖(𝑆𝑖,𝑏, 𝑡) = 𝑐𝑗 (𝑆𝑗,𝑏, 𝑡) ∀𝑖 ≠ 𝑗 ∈ 𝑌𝑏, ∀𝑏 ∈𝐵𝑘. (35)

3.3. The chemotactic growth factor problem

The third considered PDE models the distribution of a chemotactic 
growth factor in the 3D tissue. The absorption of the chemotactic agent 
by the capillary network is modeled as a singular sink term located 
at vessel centrelines, while no equation is solved inside the vessel net-

work. Even in this case a time-dependent advection-diffusion-reaction 
equation is considered.

Let us denote by  ⊂ℝ3 the portion of space occupied by the tumor. 
We suppose that 𝜕Ω ∩ 𝜕 ≠ ∅ but  ⊈Ω, i.e. our computational domain 
does not account for the tumor region, but a portion of its boundary is 
chosen as an interface with the tumor itself. Let us then denote by 𝑔(𝒙, 𝑡)
the concentration of a vascular endothelial growth factor (VEGF) and 
let us describe its evolution for 𝑡 ∈ 𝑘 by the following set of equations

𝜕𝑔(𝒙, 𝑡)
𝜕𝑡

=∇ ⋅
(
𝐷𝑔∇𝑔(𝒙, 𝑡)

)
− 𝒗(𝒙, 𝑡) ⋅∇𝑔(𝒙, 𝑡) − 𝜎𝑔(𝒙, 𝑡) 𝒙 ∈𝑘 (36)
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Fig. 4. Top left, cell cycle division time (45) for 𝑔 ∈ [0.25, 1] ⋅ 1013 kg∕mm3, 𝜏 = 12 h and 𝑔̄ = 1 ⋅ 10−13 ; bottom left, branching probability (47) for 𝑔𝑏𝑟 = 𝑔̄ = 1 ⋅ 10−13
and 𝜏𝑏𝑟 = 48 h. On the right representation of the branching directions.
𝐷𝑔∇𝑔(𝒙, 𝑡) ⋅ 𝒏𝑘
Γ(𝒙) = −𝜎̃𝑔(𝒙, 𝑡) 𝒙 ∈ Γ𝑘 (37)

𝑔(𝒙, 𝑡) = 𝑔 (𝒙) 𝒙 ∈ 𝜕 ∩ 𝜕 (38)

∇𝑔(𝒙, 𝑡) ⋅ 𝒏(𝒙) = 0 𝒙 ∈ 𝜕 ⧵ (𝜕 ∩ 𝜕) (39)

∇𝑔(𝒙, 𝑡) ⋅ 𝒏𝑘
𝑑 (𝒙) = 0 𝒙 ∈ 𝜕Σ𝑘

𝑑 . (40)

For 𝑘 = 0 we set an initial condition

𝑔(𝒙,0) = 𝑔0(𝒙) 𝒙 ∈0.

At the interface between the tissue sample and the tumor a constant 
Dirichlet boundary condition is imposed, modeling a constant distribu-

tion 𝑔 of growth factor at the tumor boundary. Parameters 𝐷𝑔 and 𝜎
are positive scalars denoting respectively the diffusivity of the VEGF 
and its natural decay rate, 𝜎̃ is the rate of consumption of VEGF by 
endothelial cells. The vector field 𝒗 is computed according to (10).

Introducing the one-dimensional quantity 𝑔̌𝑖(𝑠, 𝑡) we neglect the vari-

ations of 𝑔(𝒙, 𝑡) along the cross section perimeter, assuming in cylindri-

cal coordinates, for 𝑠 ∈ (0, 𝑆𝑘
𝑖 )

𝑔|Γ𝑘
𝑖
(𝑅,𝜃, 𝑠, 𝑡) = 𝑔̌𝑖(𝑠, 𝑡), ∀𝜃 ∈ [0,2𝜋), 𝑡 ∈ 𝑘. (41)

Equations (36)-(37) can thus be reduced to a 3D equation with a singu-

lar reaction term

𝜕𝑔(𝒙, 𝑡)
𝜕𝑡

−∇ ⋅
(
𝐷𝑔∇𝑔(𝒙, 𝑡)

)
+ 𝒗(𝒙, 𝑡) ⋅∇𝑔(𝒙, 𝑡)+ (42)

+ 𝜎𝑔(𝒙, 𝑡) = −
∑
𝑖∈𝑌 𝑘

2𝜋𝑅𝜎̃𝑔̌(𝑠, 𝑡)𝛿Λ𝑘
𝑖
, 𝒙 ∈𝑘, 𝑡 ∈ 𝑘.

The consumption of VEGF by endothelial cells is to be intended in terms 
of receptor mediated binding, i.e. there is not a flux of VEGF through the 
vessel wall. For this reason no equation is defined for the concentration 
of VEGF inside the capillaries.

3.4. The growth of the vascular network

In the following we identify the vascular network at time 𝑡𝑘 with its 
centerline Λ𝑘 and we extend the domain 𝑘 to the whole Ω, with em-

bedded subdomains Λ𝑘. We denote by 𝑘 the set of capillary tips at time 
𝑡𝑘, being nothing but the centers of the sections 𝜕Σ𝑘

𝑑
. We assume that the 

endothelial cells respond chemotactically to VEGF gradients, undergo-

ing mitosis and producing sprout extension. We model this phenomenon 
as a displacement of the tip cells, thus monitoring their number and po-
257
sition. In particular, the position 𝒙𝑃 of a generic tip cell 𝑃 ∈ 𝑘 evolves 
according to

𝑑𝒙𝑃

𝑑𝑡
=𝒘(𝑔(𝒙𝑃 , 𝑡𝑘),𝒙𝑃 ) (43)

with 𝒘 denoting the tip velocity and defined, according to [46], as

𝒘(𝑔,𝒙) =
⎧⎪⎨⎪⎩

𝑙𝑒

𝑡𝑐(𝑔)
𝑲𝐸𝐶𝑀 (𝒙)∇𝑔||𝑲𝐸𝐶𝑀 (𝒙)∇𝑔|| if 𝑔 ≥ 𝑔𝑙𝑖𝑚

0 otherwise.

(44)

In the above definition, 𝑔𝑙𝑖𝑚 represents the minimum VEGF concentra-

tion for endothelial cell proliferation, i.e. for tip displacement, 𝑙𝑒 is the 
endothelial cell length and 𝑡𝑐 is a cell cycle division time, modeled as 
[46]

𝑡𝑐(𝑔) = 𝜏

(
1 + 𝑒

(
𝑔̄
𝑔
−1
))

, (45)

where 𝜏 is a cell proliferation parameter, while 𝑔 is the concentration 
at which 𝑡𝑐 = 2𝜏 . In Fig. 4 (top left) function 𝑡𝑐(𝑔) is plotted for 𝜏 = 12 h

and 𝑔 = 1 ⋅ 10−13 kg∕mm3. The local orientation of the extracellular ma-

trix (ECM) fibers is modeled through matrix 𝑲𝐸𝐶𝑀 , which is assumed 
constant in time but variable in space. When no data on the ECM orien-

tation is available, the matrix is defined as 𝑲𝐸𝐶𝑀 =𝑲𝑟𝑎𝑛𝑑
𝐸𝐶𝑀 , with

𝑲𝑟𝑎𝑛𝑑
𝐸𝐶𝑀 (𝒙) = 𝑰 + 𝑘𝑎𝑛(𝒙)𝑲𝑎𝑛

𝐸𝐶𝑀 (𝒙). (46)

Matrix 𝑲𝑎𝑛
𝐸𝐶𝑀

(𝒙) represents deviations from isotropicity and it takes the 
form

𝑲𝑎𝑛
𝐸𝐶𝑀 (𝒙) =

⎡⎢⎢⎢⎣
−𝑘2(𝒙)2 − 𝑘3(𝒙)2 𝑘1(𝒙)𝑘2(𝒙) 𝑘1(𝒙)𝑘3(𝒙)

𝑘1(𝒙)𝑘2(𝒙) −𝑘1(𝒙)2 − 𝑘3(𝒙)2 𝑘2(𝒙)𝑘3(𝒙)

𝑘1(𝒙)𝑘3(𝒙) 𝑘2(𝒙)𝑘3(𝒙) −𝑘1(𝒙)2 − 𝑘2(𝒙)2

⎤⎥⎥⎥⎦ .
The parameters 𝑘𝑖(𝒙), 𝑖 = 1, ..., 3 and the weight of the anisotropic con-

tribution 𝑘𝑎𝑛(𝒙) are randomly chosen for each position in space, such 
that ∑3

𝑖=1 𝑘𝑖(𝒙)2 = 1 and 𝑘𝑎𝑛(𝒙) ∈ [0, 1]. We refer to Section 6.2 for a case 
in which random perturbation is exploited together with some known 
features on the ECM orientation.

3.4.1. Branching

In our model the generation of new sprouts from an existing sprout 
tip (branching) can occur only when the following conditions are both 
satisfied ([46]):
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1. the age of the current sprout is greater than a threshold-age 
𝜏𝑏𝑟. This means that a time 𝜏𝑏𝑟 has passed since the sprout last 
branched;

2. the ratio between the norm of the orthogonal projection of 𝒘 on 
the plane perpendicular to the current sprout orientation and the 
norm of 𝒘 is greater than a threshold value 𝛼𝑤

𝑏𝑟
.

We introduce also a branching probability 𝑃𝑏𝑟(𝑔), such that branching oc-

curs more probably when the concentration of VEGF is high. The aim of 
the branching probability function is also to avoid the formation of new 
branches at a rate which could be incoherently higher than the prolif-

eration rate. According to (45), the cell cycle division time is in fact 
related to VEGF concentration so that we impose a very low probability 
of branching when 𝜏𝑏𝑟 < 𝑡𝑐 . In particular we define

𝑃𝑏𝑟(𝑔) =
⎧⎪⎨⎪⎩
𝑒
−𝑎
(

𝑔
𝑔𝑏𝑟

−1
)4

if 𝑔 < 𝑔𝑏𝑟

1 otherwise
(47)

with 𝑔𝑏𝑟 corresponding to the VEGF concentration at which the proba-

bility of branching is 100%. We choose the parameter 𝑎 such that the 
probability of branching is 5% for a value of 𝑔 corresponding to 𝑡𝑐 = 𝜏𝑏𝑟. 
More or less restrictive choices are of course possible, possibly sup-

ported by biological experiments. The branching probability function 
for 𝑔𝑏𝑟 = 𝑔̄ = 1.0 ⋅ 10−13 and 𝜏𝑏𝑟 = 48 h is reported in Fig. 4 (bottom left).

Let 𝑃 ∈ 𝑘 being a sprout tip at time 𝑡𝑘. Let us denote by Π the 
plane perpendicular to the sprout orientation and by 𝒘Π the orthogonal 
projection of 𝒘(𝑔(𝒙𝑃 , 𝑡𝑘), 𝒙𝑃 ) onto Π. Let us suppose that ||𝒘Π||||𝒘|| > 𝛼𝑤

𝑏𝑟
and 

that the sprout is old enough to branch. If, according to the probability 
𝑃𝑏𝑟(𝑔(𝒙𝑃 , 𝑡𝑘)), branching actually occurs, then the directions 𝒘1 and 𝒘2
of the two new sprouts are obtained as

𝒘1 =𝒘+
𝒘Π||𝒘Π||𝑑𝑏𝑟, 𝒘2 =𝒘−

𝒘Π||𝒘Π||𝑑𝑏𝑟

with 𝑑𝑏𝑟 denoting the diameter of a single capillary and corresponding 
to the distance by which the new sprout tips will be separated (see 
Fig. 4-right).

3.4.2. Anastomosis

Anastomosis, i.e. the formation of loops as a consequence of the 
fusion of two vessels, is supposed to occur when a sprout tip meets an-

other sprout tip or a portion of a sprout that is not older than a certain 
threshold-age 𝜏𝑎𝑛. Using the nomenclature in [46], the first configura-

tion is called tip-to-tip anastomosis and produces the deactivation of 
both tips, while the second is called tip-to-sprout and leads only one 
tip to become inactive. In the simulations, anastomosis is forced when 
the new sprout tip lies within a distance 𝑑𝑎𝑛 from another tip or from a 
sufficiently young sprout.

3.5. Summary of model equations

We here provide a summary of the equations involved in the model. 
The three PDE-problems are written for a generic time interval 𝑘, for 
a fixed 1D capillary network Λ𝑘, 𝑘 > 0. The equation concerning the 
evolution of the capillary network from Λ𝑘 to Λ𝑘+1 is then reported.

Fluid pressure.

−∇ ⋅
(
𝜅

𝜇
∇𝑝(𝒙, 𝑡)

)
+ 𝛽𝐿𝑆

𝑝
𝑆

𝑉
(𝑝(𝒙, 𝑡) − 𝑝𝐿𝑆 ) =

∑
𝑖∈𝑌 𝑘

𝑓 𝑖
𝑝𝛿Λ𝑘

𝑖
𝒙 ∈𝑘

− 𝜕

𝜕𝑠

(
𝜋𝑅4

8𝜇
𝜕𝑝̂𝑖(𝑠, 𝑡)

𝜕𝑠

)
= −𝑓 𝑖

𝑝(𝑠, 𝑡) ∀𝑖 ∈ 𝑌 𝑘, 𝑠 ∈ (0, 𝑆𝑘
𝑖 )

𝑓 𝑖
𝑝(𝑠, 𝑡) = 2𝜋𝑅𝛽𝑝(𝑝̂𝑖(𝑠, 𝑡) − 𝑝̌𝑖(𝑠, 𝑡) − Δ𝑝𝑜𝑛𝑐 ) 𝑠 ∈ (0, 𝑆𝑘

𝑖 ).

Oxygen concentration.

𝜕𝑐(𝒙, 𝑡)
𝜕𝑡

−∇ ⋅
(
𝐷𝑐∇𝑐(𝒙, 𝑡)

)
+ 𝒗(𝒙, 𝑡) ⋅∇𝑐(𝒙, 𝑡) +𝑚𝑐(𝑐(𝒙, 𝑡)) =

∑
𝑘

𝑓 𝑖
𝑐𝛿Λ𝑘

𝑖

𝑖∈𝑌

258
𝒙 ∈𝑘

𝜋𝑅2 𝜕𝑐𝑖(𝑠, 𝑡)
𝜕𝑡

− 𝜕

𝜕𝑠𝑖

(
𝜋𝑅2𝐷̃𝑐

𝜕𝑐𝑖(𝑠, 𝑡)
𝑑𝑠

)
+ 𝜋𝑅2𝑣̂𝑖(𝑠, 𝑡)

𝜕𝑐𝑖(𝑠, 𝑡)
𝜕𝑠𝑖

= −𝑓 𝑖
𝑐 (𝑠, 𝑡)

∀𝑖 ∈ 𝑌 𝑘, 𝑠 ∈ (0, 𝑆𝑘
𝑖 )

𝑓 𝑖
𝑐 (𝑠, 𝑡) = 2𝜋𝑅𝛽𝑐 (𝑐𝑖(𝑠, 𝑡) − 𝑐𝑖(𝑠, 𝑡)), 𝑠 ∈ (0, 𝑆𝑘

𝑖 ), 𝑡 ∈ 𝑘.

VEGF concentration.

𝜕𝑔(𝒙, 𝑡)
𝜕𝑡

−∇ ⋅
(
𝐷𝑔∇𝑔(𝒙, 𝑡)

)
+ 𝒗(𝒙, 𝑡) ⋅∇𝑔(𝒙, 𝑡)+ (48)

+ 𝜎𝑔(𝒙, 𝑡) = −
∑
𝑖∈𝑌 𝑘

2𝜋𝑅𝜎̃𝑔̌(𝑠, 𝑡)𝛿Λ𝑘
𝑖

𝒙 ∈𝑘.

Conditions at bifurcation points.∑
𝑗∈𝑌𝑏

𝜕𝑝̂𝑗

𝜕𝑠
(𝑆𝑗,𝑏, 𝑡) = 0,

∑
𝑗∈𝑌𝑏

𝜕𝑐𝑗

𝜕𝑠
(𝑆𝑗,𝑏, 𝑡) = 0 ∀𝑏 ∈ 𝐵𝑘 (49)

𝑝̂𝑖(𝑆𝑖,𝑏, 𝑡)=𝑝̂𝑗 (𝑆𝑗,𝑏, 𝑡), 𝑐𝑖(𝑆𝑖,𝑏, 𝑡)=𝑐𝑗 (𝑆𝑗,𝑏, 𝑡) ∀𝑖 ≠ 𝑗∈𝑌𝑏, ∀𝑏∈𝐵𝑘. (50)

Boundary conditions.

𝜅

𝜇
∇𝑝(𝒙, 𝑡) ⋅ 𝒏(𝒙) = 𝛽𝑒𝑥𝑡

𝑝 (𝑝𝑒𝑥𝑡 − 𝑝(𝒙, 𝑡)) 𝒙 ∈ 𝜕
𝐷𝑐∇𝑐(𝒙, 𝑡) ⋅ 𝒏(𝒙) = 𝛽𝑒𝑥𝑡

𝑐 (𝑐𝑒𝑥𝑡 − 𝑐(𝒙, 𝑡)) 𝒙 ∈ 𝜕
𝑔(𝒙, 𝑡) = 𝑔 (𝒙) 𝒙 ∈ 𝜕 ∩ 𝜕
∇𝑔(𝒙, 𝑡) ⋅ 𝒏(𝒙) = 0 𝒙 ∈ 𝜕 ⧵ (𝜕 ∩ 𝜕)

𝑝̂ = 𝑝̂𝑖𝑛, 𝑐 = 𝑐𝑖𝑛 in Λ𝑖𝑛

𝑝̂ = 𝑝̂𝑜𝑢𝑡,
𝜕𝑐

𝜕𝑠
= 0 in Λ𝑜𝑢𝑡

𝜕𝑝̂

𝜕𝑠
=0, 𝜕𝑐

𝜕𝑠
=0 in Λ𝑑 .

Initial conditions.

𝑐(𝒙, 𝑡0) = 𝑐0(𝒙) 𝒙 ∈0

𝑐(𝒙, 𝑡0) = 𝑐0(𝒙) 𝒙 ∈Λ0

𝑐(𝒙, 𝑡𝑘−1) = 0 𝒙 ∈Λ𝑘 ⧵Λ𝑘−1

𝑔(𝒙,0) = 𝑔0(𝒙) 𝒙 ∈0.

Tip cell movement. ∀𝑃 ∈ 𝑘

𝑑𝒙𝑃

𝑑𝑡
=
⎧⎪⎨⎪⎩

𝑙𝑒

𝑡𝑐(𝑔(𝒙𝑃 , 𝑡𝑘))
𝑲𝐸𝐶𝑀 (𝒙𝑃 )∇𝑔(𝒙𝑃 , 𝑡𝑘)||𝑲𝐸𝐶𝑀 (𝒙𝑃 )∇𝑔(𝒙𝑃 , 𝑡𝑘)|| if 𝑔(𝒙𝑃 , 𝑡𝑘) ≥ 𝑔𝑙𝑖𝑚

0 otherwise.

4. The optimization based domain decomposition for 3D-1D 
coupling

The problems of pressure and oxygen concentration require a cou-

pling between a 3D and a 1D problem. Providing a well-posed math-

ematical formulation for this kind of coupling is not trivial, since no 
bounded trace operator is defined when the dimensionality gap between 
the interested manifolds is higher than one. However it is possible to de-

fine suitable subspaces of the Sobolev spaces typically employed for the 
variational formulation of partial differential equations, in which the 
definition of such a trace operator is never required. After having de-

fined the proper spaces in which to look for the solutions we aim at 
applying the optimization based 3D-1D coupling strategy presented in 
[72]. This choice is related to the fact that this approach has no mesh 
conformity requirements and, hence, it allows to easily handle complex 
time-varying geometries as the ones characterizing angiogenesis simu-

lations. We refer to [71]-[72] for a wider presentation of the method, 
while trying to give the main ideas in the following. In this section we 
focus on problem (32)-(35) in which time derivation, advection and 
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reaction contributions are present. The same considerations hold, how-

ever, for more simple elliptic problems as (15)-(18).

Let us consider 𝑡 ∈ 𝑘 = (𝑡𝑘−1, 𝑡𝑘] and let us define the space

𝐻1(Λ𝑘) =
∏
𝑖∈𝑌 𝑘

𝐻1(Λ𝑘
𝑖 ) ∩ 0(Λ𝑘),

being nothing but the space of continuous functions on Λ𝑘 whose re-

striction to Λ𝑘
𝑖 is in 𝐻1(Λ𝑘

𝑖 ). Each function 𝑢̂ ∈ 𝐻1(Λ𝑘) can be written 
as

𝑢̂ =
∏
𝑖∈𝑌 𝑘

𝑢̂𝑖, 𝑢̂𝑖 ∈𝐻1(Λ𝑘
𝑖 ).

More in general, in the remainder of this section, we denote by 𝑤𝑖 the 
restriction of a sufficiently regular function 𝑤 to Λ𝑘

𝑖 . We then define a 
trace operator

𝛾𝑘𝑖 ∶𝐻1(𝑘) ∪𝐻1(Σ𝑘
𝑖 )→𝐻

1
2 (Γ𝑘

𝑖 )

which, given 𝑢 ∈ 𝐻1(𝑘) ∪ 𝐻1(Σ𝑘), returns 𝛾𝑘𝑖 𝑢 = 𝑢|Γ𝑘
𝑖

𝑖 ∈ 𝑌 𝑘, and an 
extension operator

𝑘
𝑖 ∶𝐻1(Λ𝑘

𝑖 )→𝐻
1
2 (Γ𝑘

𝑖 )

which, given 𝑢̂𝑖 ∈ 𝐻1(Λ𝑘
𝑖 ) uniformly extends the value 𝑢̂𝑖(𝑠) to the 

boundary Γ𝑘
𝑖 (𝑠) of the transversal section Σ𝑘

𝑖 (𝑠), i.e. 𝑘
𝑖 𝑢̂𝑖(𝑠) = 𝑢̃(𝒙) ∀𝒙 ∈

Γ𝑘
𝑖 (𝑠). Then, we define

𝑉 𝑘
0 =

{
𝑢̂ ∈𝐻1(Λ𝑘) ∶ 𝑢̂|Λ𝑖𝑛

= 0
}
, 𝑉 𝑘 =

{
𝑢̂ ∈𝐻1(Λ𝑘) ∶ 𝑢̂|Λ𝑖𝑛

= 𝑐𝑖𝑛

}
,

with Λ𝑖𝑛 collecting the centers of the inflow sections 𝜕Σ𝑖𝑛, and

Γ𝑘
𝑖 = {𝑢 ∈𝐻

1
2 (Γ𝑘

𝑖 ) ∶ 𝑢 = 𝑘
𝑖 𝑢̂𝑖, 𝑢̂ ∈ 𝑉 𝑘}

𝑉 𝑘 =
{
𝑢 ∈𝐻1(𝑘) ∶ 𝛾𝑘𝑖 𝑢 ∈Γ𝑘

𝑖 , ∀𝑖 ∈ 𝑌 𝑘
}
.

Also, the space 𝑉 𝑘
𝑖 is introduced as:

𝑉 𝑘
𝑖 = {𝑢 ∈𝐻1(Σ𝑘

𝑖 ) ∶ 𝑢 = Ξ𝑘
𝑖 𝑢̂𝑖, 𝑢̂ ∈ 𝑉 𝑘},

where Ξ𝑘
𝑖 ∶𝐻1(Λ𝑘

𝑖 ) →𝐻1(Σ𝑘
𝑖 ) is an extension operator which uniformly 

extends the value 𝑢̂𝑖(𝑠) to the cross section Σ𝑘
𝑖 (𝑠) of the cylinder, i.e. 

Ξ𝑘
𝑖 𝑢̂𝑖(𝑠) = 𝑢̃(𝒙) ∀𝒙 ∈ Σ𝑘

𝑖 (𝑠).
According to (29)-(30) we choose, ∀𝑡 ∈ 𝑘

𝑐(𝑡) ∈ 𝑉 𝑘 and 𝑐(𝑡) =
∏
𝑖∈𝑌 𝑘

𝑐𝑖(𝑡), 𝑐𝑖(𝑡) ∈ 𝑉 𝑘
𝑖 .

We denote by 𝑐(𝑡) ∈ 𝑉 𝑘 the function such that 𝛾𝑘𝑖 𝑐(𝑡) = 𝑘
𝑖 𝑐𝑖(𝑡), as in 

(30), and similarly by 𝑐(𝑡) ∈ 𝑉 𝑘 the function such that 𝑐(𝑡)(𝒙) = Ξ𝑘
𝑖 𝑐𝑖(𝑡)

∀𝒙 ∈ Σ𝑘
𝑖 .

The 3D-1D variational formulation of problem (32)-(35) can now be 
written as: ∀𝑡 ∈ 𝑘, find 𝑐(𝑡) ∈ 𝑉 𝑘, 𝑐(𝑡) ∈ 𝑉 𝑘 such that(
𝜕𝑐

𝜕𝑡
, 𝜂
)
𝐿2(𝑘)

+
(
𝐷𝑐∇𝑐,∇𝜂

)
𝐿2(𝑘) +

(
𝒗 ⋅∇𝑐, 𝜂

)
𝐿2(𝑘) +

(
𝑀𝑐𝑐, 𝜂

)
𝐿2(𝑘)+

+ (𝛽𝑒𝑥𝑡
𝑐 𝑐, 𝜂)𝐿2(𝜕) +

∑
𝑖∈𝑌 𝑘

(2𝜋𝑅𝛽𝑐 (𝑐𝑖 − 𝑐𝑖), 𝜂̌𝑖)𝐿2(Λ𝑘
𝑖
)

= (𝛽𝑒𝑥𝑡
𝑐 𝑐𝑒𝑥𝑡, 𝜂)𝐿2(𝜕) ∀𝜂 ∈ 𝑉 𝑘 ∶ 𝛾𝑘𝑖 𝜂 = 𝑘

𝑖 𝜂̌𝑖, 𝜂̌ ∈ 𝑉 𝑘
0 (51)∑

𝑖∈𝑌 𝑘

[(
𝜋𝑅2 𝜕𝑐𝑖

𝜕𝑡
, 𝜂̂𝑖

)
𝐿2(Λ𝑘

𝑖
)
+
(
𝜋𝑅2𝐷̃𝑐

𝜕𝑐𝑖
𝜕𝑠

,
𝜕𝜂̂𝑖
𝜕𝑠

)
𝐿2(Λ𝑘

𝑖
)
+

+
(
𝜋𝑅2𝑣̂𝑖

𝜕𝑐𝑖
𝜕𝑠

, 𝜂̂𝑖

)
𝐿2(Λ𝑘

𝑖
)
+
(
2𝜋𝑅𝛽𝑐(𝑐𝑖 − 𝑐𝑖), 𝜂̂𝑖)𝐿2(Λ𝑘

𝑖
)

]
= 0 ∀𝜂̂ ∈ 𝑉 𝑘

0 .

(52)

As mentioned before, we now aim at applying the optimization 
based 3D-1D coupling approach presented in [72]. The method resorts 
to a domain decomposition strategy, in which two auxiliary variables 
are introduced at the interface in order to decouple the problems de-

fined in the vascular network and in the surrounding tissue. We denote 
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such variables by 𝜓̂𝐷(𝑡) and 𝜓̂Σ(𝑡) and we rewrite problem (51)-(52) as:

∀𝑡 ∈ 𝑘, find 𝑐(𝑡) ∈ 𝑉 𝑘, 𝑐(𝑡) ∈ 𝑉 𝑘
𝑐 , 𝜓̂𝐷(𝑡) ∈ 𝑉 𝑘, 𝜓̂Σ(𝑡) ∈ 𝑉 𝑘 such that(

𝜕𝑐

𝜕𝑡
, 𝜂
)
𝐿2(𝑘)

+
(
𝐷𝑐∇𝑐,∇𝜂

)
𝐿2(𝑘) +

(
𝒗 ⋅∇𝑐, 𝜂

)
𝐿2(𝑘) +

(
𝑀𝑐𝑐, 𝜂

)
𝐿2(𝑘)+

+ (𝛽𝑒𝑥𝑡
𝑐 𝑐, 𝜂)𝐿2(𝜕) +

∑
𝑖∈𝑌 𝑘

(2𝜋𝑅𝛽𝑐𝑐𝑖, 𝜂̌𝑖)𝐿2(Λ𝑘
𝑖
) −

∑
𝑖∈𝑌 𝑘

(2𝜋𝑅𝛽𝑐𝜓̂
Σ
𝑖 , 𝜂̌𝑖)𝐿2(Λ𝑘

𝑖
) =

= (𝛽𝑒𝑥𝑡
𝑐 𝑐𝑒𝑥𝑡, 𝜂)𝐿2(𝜕), ∀𝜂 ∈ 𝑉 𝑘 ∶ 𝛾𝑘𝑖 𝜂 = 𝑘

𝑖 𝜂̌𝑖, 𝜂̌ ∈ 𝑉 𝑘
0 (53)∑

𝑖∈𝑌 𝑘

[(
𝜋𝑅2 𝜕𝑐𝑖

𝜕𝑡
, 𝜂̂𝑖

)
𝐿2(Λ𝑘

𝑖
)
+
(
𝜋𝑅2𝐷̃𝑐

𝜕𝑐𝑖
𝜕𝑠

,
𝜕𝜂̂𝑖
𝜕𝑠

)
𝐿2(Λ𝑘

𝑖
)
+

+
(
𝜋𝑅2𝑣̂𝑖

𝜕𝑐𝑖
𝜕𝑠

, 𝜂̂𝑖

)
𝐿2(Λ𝑘

𝑖
)
+
(
2𝜋𝑅𝛽𝑐𝑐𝑖, 𝜂̂𝑖

)
𝐿2(Λ𝑘

𝑖
)
− (2𝜋𝑅𝛽𝑐𝜓̂

𝐷
𝑖 , 𝜂̂𝑖)𝐿2(Λ𝑘

𝑖
)

]
= 0, ∀𝜂̂ ∈ 𝑉 𝑘

0 (54)

with interface conditions, ∀𝑖 ∈ 𝑌 𝑘,⟨
𝑐𝑖(𝑡) − 𝜓̂𝐷

𝑖 (𝑡), 𝜇̂𝑖

⟩
𝑉 𝑘
0 ,𝑉 𝑘

0
′ = 0 ∀𝜇̂𝑖 ∈ 𝑉 𝑘

0
′
, 𝑡 ∈ 𝑘, (55)⟨

𝑐𝑖(𝑡) − 𝜓̂Σ
𝑖 (𝑡), 𝜇̂𝑖

⟩
𝑉 𝑘
0 ,𝑉 𝑘

0
′ = 0 ∀𝜇̂𝑖 ∈ 𝑉 𝑘

0
′
, 𝑡 ∈ 𝑘. (56)

The final step is to recast our problem into a PDE-constrained opti-

mization problem. We hence introduce a cost functional, which mimics 
the error committed by approximating 𝑐(𝑡) and 𝑐(𝑡) by 𝜓̂𝐷(𝑡) and 𝜓̂Σ(𝑡)
respectively:

𝐽𝑘(𝜓̂𝐷(𝑡), 𝜓̂Σ(𝑡)) =
1
2
∑
𝑖∈𝑌 𝑘

(||𝑐𝑖(𝑡) − 𝜓̂𝐷
𝑖 (𝑡)||2

𝐿2(Λ𝑘
𝑖
)
+ ||𝑐𝑖(𝑡) − 𝜓̂Σ

𝑖 (𝑡)||2𝐿2(Λ𝑘
𝑖
)

)
.

(57)

The variational PDE-constrained optimization formulation of problem 
(19)-(28) finally reads: ∀𝑡 ∈ 𝑘

min
𝜓̂𝐷(𝑡),𝜓̂Σ(𝑡)∈𝑉 𝑘

𝐽𝑘(𝜓̂𝐷(𝑡), 𝜓̂Σ(𝑡)) subject to (53)-(54). (58)

Handling the 3D-1D coupled problem as an optimization problem ends 
up in a method for which no mesh conformity is required. This rep-

resents a great advantage in angiogenesis simulations, since we will 
never need to remesh the tissue as the vascular network grows. Fur-

ther, interface quantities are directly computed, without any need of 
post processing. We refer to Section 5 for details about meshes and for 
the discretization of problem (58).

As previously mentioned, the problem for VEGF is a 3D problem 
with singular sink term, since there is no VEGF flux through the ves-

sel wall. Hence we do not need to deal with a 3D-1D coupled problem. 
However we here report the variational formulation of Equation (42)

which will be used in Section 5 to derive the discrete matrix formula-

tion. Let us introduce the spaces

𝑉 𝑘
0 =

{
𝑢 ∈𝐻1(𝑘) ∶ 𝛾𝑘𝑖 𝑢 ∈Γ𝑘

𝑖 and 𝑢|𝜕∩𝜕 = 0
}
,

𝑉 𝑘
𝑔 =

{
𝑢 ∈𝐻1(𝑘) ∶ 𝛾𝑘𝑖 𝑢 ∈Γ𝑘

𝑖 and 𝑢|𝜕∩𝜕 = 𝑔
}
.

The variational problem then reads: Find 𝑔(𝑡) ∈ 𝑉 𝑘
𝑔 such that

⎧⎪⎨⎪⎩
(
𝜕𝑡𝑔, 𝜂

)
𝐿2(𝑘) +

(
𝐷𝑔∇𝑔,∇𝜂

)
𝐿2(𝑘) + (𝒗 ⋅∇𝑔, 𝜂)𝐿2(𝑘) + (𝜎𝑔, 𝜂)𝐿2(𝑘)+

+
∑

𝑖∈𝑌 𝑘

(
2𝜋𝑅𝜎̃𝑔̌𝑖, 𝜂̌𝑖

)
𝐿2(Λ𝑘

𝑖
) = 0 ∀𝜂 ∈ 𝑉 𝑘

0 ∶ 𝛾𝑘𝑖 𝜂 = 𝑘
𝑖 𝜂̌, 𝜂̌ ∈𝐻1(Λ𝑘)

𝑔(0) = 𝑔0

(59)

where 𝛾𝑘𝑖 𝑔(𝑡) = 𝑘
𝑖 𝑔̌𝑖(𝑡).

5. Problem discretization

Here the discretization of the equations reported in Section 4 is pro-

vided. We start from the problem for oxygen concentration, resulting 
from the application of the optimization method, then we move to the 
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VEGF problem and to the network growth. The discretization of the 
pressure problem can be easily derived from the steps made for oxygen 
concentration.

5.1. The discrete optimization problem

As already mentioned in Section 3.4, for the discretization of the 3D-

1D coupled problems, the 3D domain is extended to the whole Ω. Let 
us consider a tetrahedral mesh  on domain Ω, independent from the 
position of the vessel network. Denoting by 𝑁 the number of DOFs for 
oxygen inside Ω, let us define linear Lagrangian basis functions 

{
𝜑𝑗

}𝑁

𝑗=1
such that the discrete approximation of 𝑐(𝑡) is 𝐶(𝑡) =∑𝑁

𝑗=1 𝐶𝑗 (𝑡)𝜑𝑘. For 
what concerns the 1D variables, we build on Λ𝑘 three different parti-

tions ̂ 𝑘, 𝜏𝑘
𝐷

and 𝜏𝑘Σ, independent from each other and from  . Such 
meshes could change at each time-step, but, for computational effi-

ciency we choose to incrementally add mesh elements as the network 
grows. To ensure mesh uniformity, a minimum element size can be 
fixed, such that new mesh elements are created only if larger than the 

minimum size. We define the basis functions 
{
𝜑̂𝑗

}𝑁̂𝑘

𝑗=1 on ̂ 𝑘, 
{
𝜃𝐷
𝑗

}𝑁̂𝑘
𝐷

𝑗=1

on 𝜏𝑘
𝐷

and 
{
𝜃Σ𝑗

}𝑁̂𝑘
Σ

𝑗=1
on 𝜏𝑘Σ, with 𝑁̂𝑘, 𝑁̂𝑘

𝐷
and 𝑁̂𝑘

Σ denoting the number 
of DOFs at time 𝑡𝑘 of the discrete approximations of the variables 𝑐(𝑡), 
𝜓̂𝐷(𝑡) and 𝜓̂Σ(𝑡). We remark that the basis functions do not depend on 
time, only their number can vary with time. The approximations of 𝑐(𝑡), 
𝜓̂𝐷(𝑡) and 𝜓̂Σ(𝑡) on the vascular network Λ𝑘 are defined as:

𝐶̂(𝑡) =
𝑁̂𝑘∑
𝑗=1

𝐶̂𝑗 (𝑡) 𝜑̂𝑗 , Ψ𝐷(𝑡) =
𝑁̂𝑘

𝐷∑
𝑗=1

Ψ𝐷
𝑗 (𝑡) 𝜃

𝐷
𝑗 , ΨΣ(𝑡) =

𝑁̂𝑘
Σ∑

𝑗=1
ΨΣ

𝑗 (𝑡) 𝜃
Σ
𝑗 .

Let us now define the matrices

𝑨𝑘 ∈ℝ𝑁×𝑁 s.t. 𝐴𝑘
𝑙𝑗 = ∫

Ω

(
𝐷𝑐∇𝜑𝑗 ⋅∇𝜑𝑙 + (𝒗 ⋅∇𝜑𝑗 )𝜑𝑙 +𝑚𝑐𝜑𝑗𝜑𝑙

)
𝑑𝜔+

+ ∫
𝜕Ω

𝛽𝑒𝑥𝑡
𝑐 𝜑𝑗 |𝜕Ω𝜑𝑙 |𝜕Ω𝑑𝜎 + ∫

Λ𝑘

2𝜋𝑅𝛽𝑐𝜑𝑗 |Λ𝑘
𝜑𝑙 |Λ𝑘

𝑑𝑠,

𝑨̂
𝑘 ∈ℝ𝑁̂𝑘×𝑁̂𝑘

s.t. 𝐴̂𝑘
𝑙𝑗 = ∫

Λ𝑘

(
𝜋𝑅2𝐷̃𝑐

𝑑𝜑̂𝑗

𝑑𝑠

𝑑𝜑̂𝑙

𝑑𝑠
+ 𝜋𝑅2𝑣̂

𝑑𝜑̂𝑗

𝑑𝑠
𝜑̂𝑙

)
𝑑𝑠+

+ ∫
Λ𝑘

2𝜋𝑅𝛽𝑐𝜑̂𝑗 𝜑̂𝑙 𝑑𝑠

𝑴 ∈ℝ𝑁×𝑁 s.t. 𝑀𝑙𝑗 = ∫
Ω

𝜑𝑗𝜑𝑙 𝑑𝜔

𝑴̂
𝑘 ∈ℝ𝑁̂×𝑁̂ s.t. 𝑀̂𝑘

𝑙𝑗 = ∫
Λ𝑘

𝜋𝑅2𝜑̂𝑗 𝜑̂𝑙 𝑑𝑠,

𝑫̂
𝑘

𝛽 ∈ℝ𝑁̂𝑘×𝑁̂𝑘
𝐷 s.t. (𝐷̂𝑘

𝛽 )𝑙𝑗 = ∫
Λ𝑘

2𝜋𝑅𝛽𝑐𝜑̂𝑙 𝜃
𝐷
𝑗 𝑑𝑠,

𝑺𝑘
𝛽 ∈ℝ𝑁×𝑁̂𝑘

Σ s.t. (𝑆𝑘
𝛽 )𝑙𝑗 = ∫

Λ𝑘

2𝜋𝑅𝛽𝑐𝜑𝑙 |Λ𝑘
𝜃Σ𝑗 𝑑𝑠

and the vector

𝐹 ∈ℝ𝑁 s.t. 𝐹𝑙 = ∫
𝜕Ω

𝛽𝑒𝑥𝑡
𝑐 𝑐𝑒𝑥𝑡𝜑𝑙 𝑑𝜎.

The implicit Euler scheme is adopted for time-discretization. At this 
aim let us define a uniform partition of the time interval 𝑘 with a step 
Δ𝑡 ≤ Δ𝑘 and 𝑡𝑘,𝑞 = 𝑡𝑘−1 + 𝑞Δ𝑡, 𝑞 ≥ 0. The fully discretized version of 
equations (53)-(54) then reads:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
𝑴 +Δ𝑡𝑨𝑘

)
𝐶(𝑡𝑘,𝑞) − Δ𝑡𝑺𝑘

𝛽
ΨΣ(𝑡𝑘,𝑞) =𝑴𝐶(𝑡𝑘,𝑞−1) + Δ𝑡𝐹(

𝑴̂
𝑘 +Δ𝑡𝑨̂

𝑘)
𝐶̂(𝑡𝑘,𝑞) − Δ𝑡𝑫̂

𝑘

𝛽Ψ𝐷(𝑡𝑘,𝑞) = 𝑴̂
𝑘
𝐶̂(𝑡𝑘,𝑞−1)

𝐶(𝑡𝑘,0) =

{
𝐶0 if 𝑘 = 0
𝐶(𝑡𝑘−1) if 𝑘 > 0

𝐶̂(𝑡𝑘,0) =

{
𝐶̂0 if 𝑘 = 0
𝐶̂♯(𝑡𝑘−1) if 𝑘 > 0

(60)

where 𝐶̂♯(𝑡𝑘−1) is the trivial extension of 𝐶̂(𝑡𝑘−1) ∈ℝ𝑁̂𝑘−1
to ℝ𝑁̂𝑘

by zero 
elements in correspondence of DOFs defined on Λ𝑘 ⧵Λ𝑘−1.

In order to work out the discrete formulation of functional (57) let 
us build the matrices

𝑮𝑘 ∈ℝ𝑁×𝑁 s.t. 𝐺𝑘
𝑙𝑗 = ∫

Λ𝑘

𝜑𝑗 |Λ𝑘
𝜑𝑙 |Λ𝑘

𝑑𝑠,

𝑮̂
𝑘 ∈ℝ𝑁̂𝑘×𝑁̂𝑘

s.t. 𝐺̂𝑘
𝑙𝑗
= ∫
Λ𝑘

𝜑̂𝑗 𝜑̂𝑙 𝑑𝑠,

𝑫𝑘 ∈ℝ𝑁×𝑁̂𝑘
𝐷 s.t. 𝐷𝑘

𝑙𝑗 = ∫
Λ𝑘

𝜑𝑙 |Λ𝑘
𝜃𝐷
𝑗 𝑑𝑠,

𝑺̂
𝑘 ∈ℝ𝑁̂𝑘×𝑁̂𝑘

Σ s.t. 𝑆̂𝑘
𝑙𝑗 = ∫

Λ𝑘

𝜑̂𝑙 𝜃
Σ
𝑗 𝑑𝑠,

𝑮𝑘
𝑫
∈ℝ𝑁̂𝑘

𝐷
×𝑁̂𝑘

𝐷 s.t. (𝐺𝑘
𝐷)𝑙𝑗 = ∫

Λ𝑘

𝜃𝐷
𝑗 𝜃𝐷

𝑙 𝑑𝑠,

𝑮𝑘
𝚺 ∈ℝ𝑁̂𝑘

Σ×𝑁̂
𝑘
Σ s.t. (𝐺𝑘

Σ)𝑙𝑗 = ∫
Λ𝑘

𝜃Σ𝑗 𝜃Σ𝑙 𝑑𝑠.

The discrete cost functional at time 𝑡𝑘,𝑞 then reads:

𝐽𝑘,𝑞 =
1
2
(
𝐶(𝑡𝑘,𝑞)𝑇𝑮𝑘𝐶(𝑡𝑘,𝑞) −𝐶(𝑡𝑘,𝑞)𝑇𝑫𝑘Ψ𝐷(𝑡𝑘,𝑞) − Ψ𝐷(𝑡𝑘,𝑞)𝑇 (𝑫𝑘)𝑇 𝐶(𝑡𝑘,𝑞)+

+Ψ𝐷(𝑡𝑘,𝑞)𝑇𝑮𝑘
𝑫
Ψ𝐷(𝑡𝑘,𝑞) + 𝐶̂(𝑡𝑘,𝑞)𝑇 𝑮̂

𝑘
𝐶̂(𝑡𝑘,𝑞) − 𝐶̂(𝑡𝑘,𝑞)𝑇 𝑺̂

𝑘ΨΣ(𝑡𝑘,𝑞)+

−ΨΣ(𝑡𝑘,𝑞)𝑇 (𝑺̂
𝑘)𝑇 𝐶̂(𝑡𝑘,𝑞) + ΨΣ(𝑡𝑘,𝑞)𝑇𝑮𝑘

𝚺ΨΣ(𝑡𝑘,𝑞)
)
. (61)

Introducing the matrices


𝑘 =

⎡⎢⎢⎢⎢⎣
𝑮𝑘 𝟎 −𝑫𝑘 𝟎
𝟎 𝑮̂

𝑘 𝟎 −𝑺̂𝑘

−(𝑫𝑘)𝑇 𝟎 𝑮𝑘
𝑫

𝟎
𝟎 −(𝑺̂𝑘)𝑇 𝟎 𝑮𝑘

𝚺

⎤⎥⎥⎥⎥⎦


𝑘 =

[
𝑨𝑘 0
0 𝑨̂

𝑘

]
, 

𝑘 =

[
𝑴 0
0 𝑴̂

𝑘

]
, 

𝑘
𝜷
=

[
0 𝑺𝑘

𝛽

𝑫𝑘
𝛽

0

]
,


𝑘
𝚫𝒕 =

[
Δ𝑡𝑘 +

𝑘 −Δ𝑡𝒌
𝜷

]
first order optimality conditions for the minimization of (61) con-

strained by Equations (60) are collected in the saddle-point system


𝑘 =

[

𝑘 (𝑘

𝚫𝒕)
𝑇


𝑘
𝚫𝒕 𝟎

]


𝑘

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶(𝑡𝑘)

𝐶̂(𝑡𝑘,𝑞)

Ψ𝐷(𝑡𝑘,𝑞)

ΨΣ(𝑡𝑘,𝑞)

−Π(𝑡𝑘,𝑞)

−Π̂(𝑡𝑘,𝑞)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

𝑴𝐶(𝑡𝑘,𝑞−1) + Δ𝑡𝐹

𝑴̂
𝑘
𝐶̂(𝑡𝑘,𝑞−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(62)

which is solved at each time-step 𝛿𝑡. Vectors Π and Π̂ are the vector of 
DOFs of Lagrange multipliers. Let us observe that, by a proper organiza-

tion of the DOFs, most matrices do not need to be rebuilt completely at 
each 𝑘: only the integrals on Λ𝑘 ⧵Λ𝑘−1 have to be computed and prop-

erly concatenated to the matrices already available at time 𝑡𝑘−1. Only 
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the matrices 𝑨 and 𝑨̂ need a further update, in order to account for the 
variation of the velocity field. This update affects however only the ad-

vection contribution to such matrices. For the proof of the uniqueness 
of the solution to (62) we refer to [72].

5.2. The discrete problem for VEGF and capillary growth

The finite element discretization of Problem (59) is obtained con-

sidering a tetrahedral mesh  on domain Ω and defining on it linear 
Lagrangian basis functions 

{
𝜑𝑗

}𝑁𝐺

𝑗=1, such that 𝐺(𝑡) =∑𝑁𝐺

𝑗=1 𝐺𝑘(𝑡)𝜑𝑗 is the 
discrete approximation of variable 𝑔(𝑡) being 𝑁𝐺 the number of degrees 
of freedom. We then define the matrices

𝑩𝑘 ∈ℝ𝑁𝐺×𝑁𝐺 s.t. 𝐵𝑘
𝑙𝑗 = ∫

Ω

𝐷𝑔∇𝜑𝑗 ⋅∇𝜑𝑙 𝑑𝜔+ ∫
Ω

(𝒗 ⋅∇𝜑𝑗 )𝜑𝑙 𝑑𝜔+

+ ∫
Ω

𝜎𝜑𝑗𝜑𝑙 𝑑𝜔+ ∫
Λ𝑘

2𝜋𝑅𝜎̃𝜑𝑗 |Λ𝑘𝜑𝑙 |Λ𝑘 𝑑𝑠

𝑯 ∈ℝ𝑁𝐺×𝑁𝐺 s.t. 𝐻𝑙𝑗 = ∫
Ω

𝜑𝑗𝜑𝑙 𝑑𝜔

such that the space semi-discretization of problem (59) reads{
𝑯𝐺′(𝑡) +𝑩𝑘𝐺(𝑡) = 0 𝑡 ∈ 𝑘

𝐺(0) =𝐺0
(63)

with 𝐺′ = 𝜕𝑡𝐺. For what concerns time discretization we adopt an im-

plicit Euler scheme, considering again a uniform partition of 𝑘 with 
Δ𝑡 ≤Δ𝑘 and 𝑡𝑘,𝑞 = 𝑡𝑘−1 + 𝑞Δ𝑡 we solve at each time step a system in the 
form⎧⎪⎨⎪⎩
(
𝑯 +Δ𝑡𝑩𝑘

)
𝐺(𝑡𝑘,𝑞) =𝑯𝐺(𝑡𝑘,𝑞−1) 𝑘 > 0

𝐺(𝑡𝑘,0) =

{
𝐺0 if 𝑘 = 0
𝐺(𝑡𝑘−1) if 𝑘 > 0.

(64)

For what concerns Equation (43), discretization is made by the explicit 
Euler method. Once the VEGF concentration at time 𝑡𝑘 has been com-

puted, the position of the tip cells is updated as

𝒙𝑃 (𝑡𝑘+1) = 𝒙𝑃 (𝑡𝑘) + Δ𝑘+1 ⋅𝒘(𝐺(𝑡𝑘),𝒙𝑃 (𝑡𝑘)), ∀𝑃 ∈ 𝑘 (65)

providing the position of a tip cell in 𝑘+1. The points 𝒙𝑃 (𝑡𝑘+1) and 
𝒙𝑃 (𝑡𝑘) are then connected by a line, such that the capillary network 
is represented by sets of connected segments in the 3D space. In case 
branching occurs, the orthogonal projection 𝒘Π of 𝒘(𝐺(𝑡𝑘), 𝒙𝑃 (𝑡𝑘)) onto 
the plane Π perpendicular to the direction 𝒙𝑃 (𝑡𝑘) − 𝒙𝑃 (𝑡𝑘−1) has to be 
computed in order to obtain the branching directions 𝒘1 and 𝒘2. Equa-

tion (65) is then split into

𝒙1𝑃 (𝑡𝑘+1) = 𝒙𝑃 (𝑡𝑘) + Δ𝑘+1𝒘1, 𝒙2𝑃 (𝑡𝑘+1) = 𝒙𝑃 (𝑡𝑘) + Δ𝑘+1𝒘2 (66)

producing two new sprout tips. Once the new positions of the tip cells 
have been computed, the network is updated as

Λ𝑘+1 = Λ𝑘 ∪
⋃

𝑃∈𝑘

𝑖=1,2

[𝑥𝑖
𝑃 (𝑡𝑘+1), 𝑥𝑃 (𝑡𝑘)]

which is the fixed geometry on which the other quantities will evolve 
for 𝑡 ∈ 𝑘+1.

6. Numerical experiments

In this section we provide some numerical examples exploiting the 
previously proposed approach. For the numerical validation of the op-

timization based 3D-1D coupling strategy we refer the reader to [71]

and [72], in which considerations on the accuracy and the efficacy of 
the method are reported for simpler test cases. In the present work we 
focus instead on two test cases, labeled TestFace and TestSphere. In the 
first case the domain Ω is a cube and the tumor interface corresponds 
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Table 1

Default parameters for the geometry.

Parameter Value Unit Description Reference

𝐿 0.5 − 2.5 mm Domain edge length [5,74,75]

𝑅 5 ⋅ 10−3 mm Vessel radius [76]

to one of its faces. A small initial vascular network with two inlet and 
two outlet points is considered, located at the opposite of the tumor in-

terface, as shown in Fig. 5-left. For the second test the tumor is instead 
supposed to be spherical and located at the center of a cubic domain. 
For this case a more complex initial network is considered, as reported 
in Fig. 5-right. In the following we choose Δ𝑡 = Δ𝑘, i.e. we consider 
the same, uniform, time-stepping for the growth of the network and for 
the evolution on the quantities defined on it.

Tables 1-4 provide a set of parameter values to which we will re-

fer as default parameters. Changes to these values will be specified and 
motivated on a case-by-case basis. The parameter values for pressure 
and oxygen concentration are mainly taken from [51]. For what con-

cerns the VEGF, in [77] its concentration is assumed to be at a constant 
value of 20 ng∕ml, while in [78] endothelial cells are stimulated to mi-

grate with a VEGF concentration of 50 ng∕ml. Converting to the units of 
measure used in the numerical simulations, the order of magnitude of 
concentrations is of 10−14 kg∕mm3. We choose 𝑔𝑙𝑖𝑚 = 2.5 ⋅10−14 kg∕mm3

and, according to [46] we set 𝑔 = 4𝑔𝑙𝑖𝑚 = 1 ⋅ 10−13 kg∕mm3 in Equation 
(45). At the tumor interface we fix 𝑔 = 10−13 kg∕mm3, so that the cell 
proliferation time 𝑡𝑐 in the simulation will be in the range (2𝜏, +∞). 
The diffusion coefficient inferred from biological data, for the vast ma-

jority of angiogenic growth factors, is in the order of 10 − 600 μm2∕s

[23,42,79], i.e. between 0.036 and 2.16 mm2∕h, while the decay rate 
of the VEGF in the surrounding tissue is in the order of 0.456 − 0.65 h−1

[79,80].

The initial distributions of pressure, oxygen and VEGF are obtained 
solving respectively problems (1)-(9), (19)-(28) and (36)-(40) in steady 
state conditions. In the numerical simulations the initial set of vessels is 
supposed, at all time instants, to have a lower permeability with respect 
to the ones generated during angiogenesis. This is in accordance with 
the biological observation that tumor-induced vessels are highly leaky, 
due to a weakening of the junctions between the endothelial cells that 
leads to an increase in the permeability of the blood vessel [15] both to 
fluids, oxygen and other nutrients. In particular we suppose

𝛽𝑝(𝒙) =

{
𝛽0𝑝 ∀𝒙 ∈Λ0

𝑟𝛽𝑝𝛽
0
𝑝 ∀𝒙 ∈Λ𝑘 ⧵Λ0, ∀𝑘 = 0, ...,𝐾

(67)

and

𝛽𝑐(𝒙) =

{
𝛽0𝑐 ∀𝒙 ∈Λ0

𝑟
𝛽
𝑐 𝛽

0
𝑐 ∀𝒙 ∈Λ𝑘 ⧵Λ0, ∀𝑘 = 0, ...,𝐾,

(68)

with 𝑟𝛽𝑝 , 𝑟
𝛽
𝑐 ≥ 1. In the default set of parameters we consider 𝑟𝛽𝑝 = 100 and 

𝑟𝛽𝑐 = 10. The fact that the permeability of vessels to fluids increases by 
two order of magnitude in tumor-induced vessels is in agreement with 
[50]. Different choices of the ratio 𝑟𝛽𝑐 will instead be discussed in the 
sensitivity analysis carried out in this section. Finally, we suppose that 
only stalk and tip cells can bind VEGF, so that

𝜎̃(𝒙) =

{
0 ∀𝒙 ∈Λ0,

𝜎̃ ∀𝒙 ∈Λ𝑘 ⧵Λ0, ∀𝑘 = 0, ...,𝐾.

6.1. TestFace

Let us consider a cubic domain Ω = (0, 𝐿)3, 𝐿 = 0.5 mm. The inter-

face between the tumor and the tissue sample corresponds to the top 
face of Ω, highlighted in red in Fig. 5-left, while the blood inlet and 
outlet points on the initial network are marked in red and blue respec-

tively. For the time discretization we choose a step Δ𝑡 = Δ𝑘 = 12 h
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Fig. 5. Initial configurations for the proposed numerical experiments, on the left TestFace (inlet and outlet extrema in red and blue respectively), on the right 
TestSphere.

Table 2

Default parameters for pressure.

Parameter Value Unit Description Reference

𝛽0
𝑝

2.78 ⋅ 10−10 mm2h
𝑘𝑔

Hydraulic permeability of healthy capillary wall [51]

𝑟𝛽𝑝 100 − Increase of wall permeability for tumor-generated capillaries [50]

Δ𝑝𝑜𝑛𝑐 4.82 ⋅ 107 kg
h2mm

Oncotic pressure jump at the capillary wall [51]

𝛽𝐿𝑆
𝑝

𝑆

𝑉
2.89 ⋅ 10−7 mm h

kg
Effective permeability of the lymphatic vessels [51,48]

𝜅 1.0 ⋅ 10−12 mm2 Hydraulic permeability of the tissue [51]

𝜇 1.44 ⋅ 10−2 kg
mm h

Blood viscosity [51]

𝑝̃𝑖𝑛 6.05 ⋅ 107 kg
h2mm

inflow pressure [51]

𝑝̃𝑜𝑢𝑡 5.83 ⋅ 107 kg
h2mm

outflow pressure [51]

𝛽𝑒𝑥𝑡
𝑝

1.4 ⋅ 10−8 mm2h
kg

boundary conductivity [51]

Table 3

Default parameters for oxygen.

Parameter Value Unit Description Reference

𝛽0
𝑐

12.6 mm
h

Permeability of the healthy capillary wall [51]

𝑟𝛽𝑐 10 − Increase of wall permeability for tumor-generated capillaries

𝐷𝑐 4.86 mm2

h
Diffusivity, tissue [51]

𝑚𝑐 3.6 1
h

Decay/metabolization parameter

𝐷̃𝑐 1.8 ⋅ 103 mm2

h
Vascular diffusivity [51]

𝑐𝑖𝑛 1.64 ⋅ 108 kg
h2mm

inflow concentration

𝛽𝑒𝑥𝑡
𝑐

36 mm
h

boundary permeability [51]

𝑐𝑒𝑥𝑡 6.05 ⋅ 106 kg
h2mm

External oxygen concentration
∀𝑘, while a maximum volume of 1 ⋅ 10−5 mm3 is considered for the 
tetrahedra of the space discretization. Grid Péclet numbers lower than 
one are obtained on all the elements of such meshes for the cho-

sen parameters. Fig. 6 shows, from top to bottom, the distributions 
of VEGF, pressure and oxygen at time 𝑡 = 2, 7, 14 and the transcap-

illary flux of oxygen along the vascular network at the same time 
instants. The parameters are taken from Tables 1-4. The time scale 
of the numerical simulations is qualitatively in agreement with the 
biological observations reported in [5,17,21], where it takes approx-

imately 10 to 21 days for the growing network to link the tumor 
to the parent vessel. With reference to the third row in Fig. 6, the 
isolines corresponding to 𝑐 = 1.38 ⋅ 107 kg∕(h2mm) ≈ 8mmHg (green) 
and 𝑐 = 2.60 ⋅ 107 kg∕(h2mm) ≈ 15mmHg (cyan) are highlighted, repre-

senting, according to [81], the pathological and physiological hypoxia 
thresholds. We observe that, starting from a condition in which the 
whole tissue is highly hypoxic, the formation of new vessels brings oxy-

gen levels above the pathological hypoxia threshold. Around half the 
simulation time, concentrations higher than 15 mmHg are registered. 
However the maximum decreases towards the end of the simulation as 
an effect of the exchanges through the boundaries, since an external 
concentration 𝑐𝑒𝑥𝑡 = 3.5 mmHg is imposed. This choice, together with 
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the vessel wall permeability to oxygen 𝛽𝑐 , influences of course the re-

sults. Let us remark that no post-processing is necessary to compute the 
transcapillary oxygen flux represented at the fourth row in Fig. 6 since, 
thanks to the chosen formulation, the oxygen concentrations on both 
sides of the vessel wall are directly available as part of the solution and 
can be used to compute the flux according to Starling’s equation (20).

An analysis of the impact of 𝛽𝑐 and 𝑐𝑒𝑥𝑡 on the percentage of hypoxic 
tissue is reported in Figs. 7 and 8. For all the plotted curves we consider 
𝛽𝑐
0 = 12.6 mm∕h while we increment the permeability for the vessels 

generated by angiogenesis as 𝑟𝛽𝑐 𝛽0𝑐 . In Fig. 7 we set 𝑐𝑒𝑥𝑡 = 3.5 mmHg and 
we analyze the percentage of tissue below 4, 8 and 15 mmHg of oxygen 
concentration. As expected, an increment of the permeability promotes 
a faster tissue oxygenation. For all the considered values of 𝑟𝛽𝑐 the tissue 
sample reaches an oxygen concentration higher than 4 mmHg within 
the simulation time (Fig. 7-left), while the percentage of tissue below 8 
mmHg still ranges between 57% (for the highest value of 𝑟𝛽𝑐 ) and 73% 
(for the lowest value of 𝑟𝛽𝑐 ) after 14 days (Fig. 7-center). For what con-

cerns the physiological hypoxia level (15 mmHg) we can see that for too 
low values of 𝑟𝛽𝑐 the threshold is never reached in the sample. As men-

tioned before, a small amount of tissue (3-5%) goes above 15 mmHg if 
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Table 4

Default parameters for VEGF.

Parameter Value Unit Description Reference

𝐷𝑔 0.18 mm2

h
VEGF diffusivity

𝜎 0.5 1
h

VEGF interstitial decay

𝜎̃ 0.7 1
h

Endothelial cell VEGF consumption rate

𝑔 1.0 ⋅ 10−13 kg
mm3 VEGF concentration at tumor interface

𝑔𝑙𝑖𝑚 2.5 ⋅ 10−14 kg
mm3 minimum VEGF concentration for proliferation [77], [78]

𝑔̄ 1.0 ⋅ 10−13 kg
mm3 VEGF concentration for 𝑡𝑐 = 2𝜏

𝜏 12 h cell proliferation parameter [46]

𝑙𝑒 0.04 mm endothelial cell length [46]

𝛼𝑤
𝑏𝑟

0.3 - threshold of
||𝒘Π ||||𝒘|| for branching

𝑑𝑏𝑟 1.0 ⋅ 10−2 mm branching distance

𝜏𝑏𝑟 48 h threshold age for branching

𝑔𝑏𝑟 1.0 ⋅ 10−13 kg
mm3 VEGF concentration for 𝑃𝑏𝑟 = 1

𝑑𝑎𝑛 1.0 ⋅ 10−5 mm maximum distance for anastomosis

𝜏𝑎𝑛 24 h maximum capillary age for anastomosis

Fig. 6. TestFace: From left to right, distributions at time 𝑡 = 1, 7, 14 days of VEGF concentration (first row), pressure (second row), oxygen concentration (third row, 
with highlighted isolines corresponding to 𝑐 = 8mmHg (green) and 𝑐 = 15mmHg (cyan)), transcapillary oxygen flux (fourth row). Parameters are set from the tables.
263
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Fig. 7. TestFace: Percentage of hypoxic tissue under the variation of 𝑟𝛽𝑐 (see (68)). From left to right hypoxia levels at 4, 8, 15 mmHg respectively, 𝑐𝑒𝑥𝑡 = 6.05 ⋅
106 kg∕(h2mm) (= 3.5 mmHg) in all the cases.

Fig. 8. TestFace: Percentage of hypoxic tissue under the variation of 𝑟𝛽𝑐 (see (68)). On the left hypoxia level at 8 mmHg, on the right at 15 mmHg; 𝑐𝑒𝑥𝑡 = 1.21 ⋅
107 kg∕(h2mm) (= 7 mmHg) in both cases.
we consider higher permeability values, but the trend with time of the 
hypoxic portion is not monotonically decreasing as an effect of the ex-

changes through the boundaries. Therefore, in Fig. 8 we consider the 
trend with time of the percentage of tissue below 8 and 15 mmHg (left 
and right plots respectively) in the case 𝑐𝑒𝑥𝑡 = 7 mmHg. As expected, 
since the external concentration is higher, better oxygenation levels are 
reached into the tissue sample. Let us remark, in Fig. 8-right, that about 
3% of the tissue sample goes above the physiological hypoxia level al-

ready with 𝑟𝛽𝑐 = 2. However the trend of the hypoxic portion is again 
non monotonically decreasing, due to the exchange of oxygen with the 
surrounding tissue, maintained in an hypoxic state through the imposed 
boundary conditions.

The effectiveness of oxygenation can be related also to the structure 
of the vascular network, in particular to the presence of more or less 
branches and to the velocity of formation of new vessels. Specifically, 
we consider two opposite conditions, namely the early branching and the 
late branching cases. Early branching is achieved by abnormally forcing 
the rapid creation of new branches also at low concentrations of VEGF, 
i.e. by setting 𝜏𝑏𝑟 = 24 h and 𝑃𝑏𝑟(𝑔) = 1, ∀𝑔. Conversely, late branch-

ing results from an increase in the branching age threshold parameter 
to 𝜏𝑏𝑟 = 96 h, and by setting 𝑔𝑏𝑟 = 2 ⋅ 10−13 kg∕mm3 in the branching 
probability definition (47). The morphology of the resulting vascu-

lar networks, along with the distribution of VEGF, fluid pressure and 
oxygen concentration are shown in Fig. 9. The results are obtained con-

sidering 𝑐𝑒𝑥𝑡 = 3.5 mmHg and 𝑟𝛽𝑐 = 10.

Fig. 10 shows the trend with time of the volume percentage in 
which the oxygen concentration is below 8 mmHg (Fig. 10-left) and 
15 mmHg (Fig. 10-right). For this analysis the volume has been split 
into two parts: Ω+ = {𝒙 = (𝑥, 𝑦, 𝑧) ∈Ω s.t. 𝑧 > 𝐿

2 } and Ω− = {𝒙 = (𝑥, 𝑦, 𝑧) ∈
Ω s.t. 𝑧 ≤ 𝐿

2 }, in order to account for oxygenation levels far and close to 
the tumor boundary. We can observe how fast and early branching does 
not produce a better oxygenation of Ω+, i.e. of the tissue portion which 
is closer to the tumor. In fact, as it can be seen in Fig. 9 on the left col-

umn, the early branching network is very dense but not much extended 
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in the 𝑧 direction. This produces an efficient oxygenation of the lowest 
part of the domain and a consequent exchange through the boundaries, 
while the oxygenation level in the highest part tends to be very simi-

lar to the one obtained in the late branching case. We remark that this 
result is highly influenced by the boundary condition imposed at the 
tumor interface and future studies will certainly look at the descrip-

tion of tumor oxygenation. For both configurations, the physiological 
hypoxia level (15 mmHg) is never reached in Ω+, as shown by the per-

fectly overlapped full lines in Fig. 10-right. However, we remark that 
even if the hypoxic condition persists in the tumor region, it is rather a 
gain for the cancer. Indeed cancer cells are more resistant than healthy 
cells to lack of oxygen, since they can efficiently switch to an anaero-

bic metabolism (Warburg effect) [82] and the death of cells surrounding 
the tumor mass, due to hypoxia, fosters tumor cell invasion. Finally, it 
may be worth underlining how the irregularity of the generated ves-

sel network in the early branching configuration possibly hinders the 
transport and diffusion of anti-cancer drugs to the correct site.

Fig. 11 reports instead the trend with time of the maximum growth 
velocity and of the number of tip cells inside the domain both for the 
early and the late branching configuration. The maximum growth ve-

locity is obtained at each time-step by computing the maximum of the 
norm of 𝒘 among the tip cells. Both for the early and the late branching 
configuration, we can observe (see Fig. 11-left) how the growth velocity 
decreases at the beginning of the simulation to increase again once the 
vessels approach the tumor region. Indeed, according to Equation (44), 
the growth velocity is related to the VEGF concentration: in response to 
the VEGF binding operated by endothelial cells, such concentration goes 
below its initial minimum in the lowest part of the domain while it is 
maintained at the maximum level at the tumor boundary, thus explain-

ing the trend of the velocity. This behavior is particularly evident in the 
early branching case, where the very dense structure of the capillaries 
network consumes a big amount of VEGF and the region close to the tu-

mor boundary is never reached. Therefore the VEGF concentration goes 
actually below the threshold for proliferation in a considerable part of 
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Fig. 9. TestFace: From top to bottom, VEGF concentration (in magenta isoline corresponding to 𝑔 = 𝑔𝑙𝑖𝑚 = 2.5 ⋅ 10−14 kg
mm3 ), fluid pressure and oxygen concentration 

(in green and cyan isolines corresponding to 8mmHg and 15mmHg, respectively) for the early branching (left) and the late branching (right) cases.

Fig. 10. TestFace: Variation in time of the percentage of hypoxic tissue early branching and the late branching cases. On the left, hypoxia threshold at 8mmHg; on the 
right hypoxia threshold at 15mmHg.

Fig. 11. TestFace: Variation in time of the maximum growth velocity (on the left) and of the number of tip cells (on the right) for an early and a late branching 
vascular network.
265
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Fig. 12. TestFace: From left to right: variation in time of the maximum growth velocity, of the number of tip cells inside the domain and of the percentage of hypoxic 
tissue for different values of 𝜎̃ [1∕ℎ].

Fig. 13. TestFace: Comparison of the vascular networks obtained after 14 days for a low, a medium and a high VEGF consumption rate. From left to right: 𝜎̃ = 0.4 h−1 , 
𝜎̃ = 0.7 h−1 and 𝜎̃ = 6 h−1 .

Fig. 14. TestSphere: Detail on the network configuration at time 𝑡 = 40 days. On the left 𝑲𝐸𝐶𝑀 =𝑲 𝑟𝑎𝑛𝑑
𝐸𝐶𝑀

(see (46)), on the right 𝑲𝐸𝐶𝑀 =𝑲⟂
𝐸𝐶𝑀

(see (69)).
the tissue sample, as shown, in Fig. 9-top left, by the isoline correspond-

ing to the minimum VEGF concentration required for EC proliferation, 
i.e., 𝑔 = 𝑔𝑙𝑖𝑚 = 2.5 ⋅ 10−14 kg

mm3 . Finally, as aforementioned, Fig. 11-right 
reports also the trend with time of the number of tip cells which are 
contemporaneously active inside the domain. As the vascular network 
approaches the tumor, the number of tip cells and, consequently, the 
vessel density increase, in accordance with the so-called brush-border ef-
fect experimentally observed [21,83]. The decrease in the rate at which 
this number increases in the early branching configuration is related to 
the tips which reach the lateral boundary of Ω and ideally leave the 
analyzed tissue sample.

In order to better analyze the impact that the rate of consumption 
of VEGF by the endothelial cells has on the vascular network structure 
and performances, in Fig. 12 the time trends of the maximum growth 
velocity, of the number of tip cells in the domain and of the percentage 
of hypoxic tissue are investigated for different values of the endothelial 
cell VEGF consumption rate, 𝜎̃. As expected, a bigger consumption rate 
corresponds to lower values of ||𝒘||. On the other hand, when no con-

sumption is considered, the trend of the growth velocity with time is 
monotonically increasing. A higher consumption rate also corresponds 
to a lower number of tip cells, since branching is inhibited when VEGF 
concentration is low: actually for the cases 𝜎̃ = 3 h−1 and 𝜎̃ = 6 h−1 no 
branching occurs at all. The rapid final decrease in the number of tip 
cells in the case 𝜎̃ = 0 h−1 is due to the fact that, with a fast growth, 
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Fig. 15. TestSphere: comparison of the maximum growth velocity in the cir-

cumferential anisotropicity case (𝑲𝐸𝐶𝑀 = 𝑲⟂
𝐸𝐶𝑀

) and in the spatially random 
anisotropicity case (𝑲𝐸𝐶𝑀 =𝑲𝑟𝑎𝑛𝑑

𝐸𝐶𝑀 ).

the network manages to reach the tumor interface within 14 days and 
the tips reaching the boundary are not considered in the set of tip cells 
anymore. For what concerns the impact of 𝜎̃ on oxygenation we can see 
how, neglecting the case 𝜎̃ = 0 h−1, the final percentage of tissue below 
8 mmHg increases as the consumption rate gets higher. Since in this 
case we are not abnormally forcing branching at low VEGF concentra-
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Fig. 16. TestSphere: On the left, trend with time of the number of inactive tip cells (see text for the definition), on the right trend with time of the cumulative sum of 
tip cells having reached the boundary. Comparisons between the circumferential anisotropicity case (𝑲𝐸𝐶𝑀 =𝑲⟂

𝐸𝐶𝑀
) and the spatially random anisotropicity case 

(𝑲𝐸𝐶𝑀 =𝑲𝑟𝑎𝑛𝑑
𝐸𝐶𝑀 ).
tions, an inadequate presence of angiogenic factor corresponds both to 
poor branching and scarce development, thus hindering oxygenation. A 
low consumption rate allows instead for a more branched structure, but 
since we are using the branching probability 𝑃𝑏𝑟(𝑔) defined in (47), the 
branches are not massively developing in the lowest part of the domain, 
thus allowing a more efficient oxygenation. The small increase regis-

tered in the hypoxic volume for 𝜎̃ = 0 is related to the fact that a fast 
and branched development promotes oxygen exchange with the lateral 
boundary. The vascular networks generated for 𝜎̃ = 0.4 h−1, 𝜎̃ = 0.7 h−1
and 𝜎̃ = 6 h−1 are reported in Fig. 13.

6.2. TestSphere

As stated in the Introduction, tumor can grow in the avascular phase 
until a critical size of about 1 − 2 mm is reached [1,9]. Above this size, 
the existing vasculature can no longer sustain cancer growth and the 
tumor stimulates new vessel formation across distances of some mil-

limeters (1 − 3 mm in [74,75]). Hence, let us consider a cube of edge 
𝐿 = 2.5 mm and a sphere  of radius 𝑅 = 0.5 mm centered in the mid-

dle of the cube, as reported in Fig. 5 on the right. The sphere represents 
the tumor, while the computational domain Ω for this numerical exam-

ple is given by the portion of the cube lying outside the sphere. For the 
pressure and oxygen concentration problems the inlet extrema are cho-

sen as the ones lying on the planes 𝑥 = 0, 𝑦 = 0 or 𝑧 = 0, while the outlets 
lie on 𝑥 = 2.5, 𝑦 = 2.5 or 𝑧 = 2.5. All the parameters, except the domain 
edge length 𝐿 and the VEGF diffusivity 𝐷𝑔 , have the values reported in 
Tables 1-4. The value of 𝐷𝑔 was slightly increased (but still remaining 
in the range proposed by [23,79]) in order to have a sufficient con-

centration for EC proliferation also far from the center of the faces of 
the cube. In particular 𝐷𝑔 = 0.36 mm2∕h was used. For this numerical 
example we also consider a peculiar anisotropic structure of the extra-

cellular matrix. Specifically, we suppose that the growth of the tumor 
produced a modification in the orientation of the surrounding extra-

cellular matrix fibers, leading to concentric spherical layers around the 
cancer mass. Denoting by 𝒙 the center of the tumor (corresponding in 
this case with the center of the domain) and by 𝒆𝑟(𝒙) the unit vector in 
the direction 𝒙 − 𝒙 we define

𝑲⟂
𝐸𝐶𝑀 =

(
𝑰 + (𝜀(𝒙) − 1)𝒆𝑟 ⊗ 𝒆𝑟

)
𝑲𝑟𝑎𝑛𝑑

𝐸𝐶𝑀 (69)

with 𝜀(𝒙) = 2||𝒙−𝒙||
𝐿
√
3

and 𝑲𝑟𝑎𝑛𝑑
𝐸𝐶𝑀

defined as in (46). By setting 𝑲𝐸𝐶𝑀 =

𝑲⟂
𝐸𝐶𝑀 in (44), we are still accounting for a random perturbation of the 

ECM fiber direction, but we are also enhancing the circumferential di-

rection as the ECM approaches the tumor boundary. Fig. 14 shows the 
vascular network generated after 40 days, on the left when a 𝑲𝑟𝑎𝑛𝑑

𝐸𝐶𝑀

is considered (spatially random anisotropicity), and on the right when 
the displacement in the radial direction is penalized, exploiting 𝑲⟂

𝐸𝐶𝑀

(circumferential anisotropicity). For the discretization a tetrahedral mesh 
with maximum element volume of 2 ⋅ 10−3 mm3 is considered, while a 
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time step Δ𝑡 = 24 h is used to reach a final time of 40 days. Also in this 
case grid Péclet numbers lower than one are obtained, in all mesh el-

ements. The position of the initial tip cells is chosen randomly on the 
initial network. In particular in this case we consider 165 initial tips. As 
expected, sprouts that generate closer to the tumor region, i.e. next to 
the center of the cube faces, grow more rapidly and branch at a higher 
rate, since a higher concentration of VEGF is available. Conversely, tip 
cells located far from the tumor region neither sprout nor progress. 
From the morphology reported in Fig. 14 it is evident the effect of the 
imposed directional anisotropy: when the anisotropy is spatially ran-

dom, the new vessels only slightly deviate from the radial direction, on 
the other hand when the circumferential anisotropicity is imposed the 
endothelial cell tends to follow the ECM fibers, while moving toward 
the source of VEGF. Therefore, in this latter case, the vascular network 
develops also in the transversal direction, ending up in wider gatherings 
on the tumor surface.

To quantitatively compare the two cases, we consider the growth ve-

locity of the network and some data on the number of tip cells. Fig. 15

reports the trend with time of the maximum growth velocity for the 
spatially random and the circumferential anisotropicity cases. We can 
observe how, since the tumor surface is reached in both ECM scenarios, 
the same maximum growth velocity is registered at the end of the sim-

ulation. We recall, indeed, that a constant Dirichlet boundary condition 
is imposed for the VEGF at the tumor interface. The velocity increase 
with time is however faster in the spatially random anisotropic case, 
i.e., when 𝑲𝑟𝑎𝑛𝑑

𝐸𝐶𝑀
is used. This is related to the different structure of 

the network: with the same total distance to cover from the starting tip 
cells to the tumor surface, the capillaries are actually longer and more 
branched in the circumferential anisotropic case, since radial displace-

ment is inhibited. This ends up in a stronger VEGF consumption, thus 
leading to a lower growth velocity.

Fig. 16 compares instead, for the two ECM configurations, the trends 
with time of the number of inactive tip cells and of the total number of 
tip cells having reached the tumor boundary. We define an inactive tip 
cell at time 𝑡∗ as a tip 𝒙𝑃 such that 𝑔(𝒙𝑃 , 𝑡∗) < 2.5 ⋅ 10−14 kg∕mm3, i.e. 
a tip cell in a position where the concentration of VEGF at time 𝑡∗ is 
lower than the minimum required for proliferation. As it can be ob-

served in Fig. 16-left, the number of tips suffering of a too low VEGF 
concentration is higher in the 𝑲⟂

𝐸𝐶𝑀 case, coherently with the previous 
considerations on VEGF consumption. For what concerns the tip cells 
having reached the tumor boundary, their number is of course higher 
in the 𝑲⟂

𝐸𝐶𝑀 case, since the network is much more branched (3189 
branching events were observed, versus 944 in the 𝑲𝑟𝑎𝑛𝑑

𝐸𝐶𝑀
case). In the 

random anisotropicity case the first tip cells reach 𝜕 after around 𝑡 = 20
days, while it takes 25 days in the circumferential anisotropicity case to 
reach the tumor. This is coherent with the time at which the maximum 
growth velocity becomes constant (Fig. 15). Let us finish the compari-

son by mentioning that the maximum number of tip cells reached inside 
the domain is 729 in the 𝑲⟂

𝐸𝐶𝑀 case and 270 in the 𝑲𝑟𝑎𝑛𝑑 one. This 

𝐸𝐶𝑀
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Fig. 17. TestSphere: pressure distribution (on the left) and oxygen concentration (on the right) for 𝑲𝐸𝐶𝑀 =𝑲⟂
𝐸𝐶𝑀 and 𝑡 = 40 days. Isoline corresponding to 𝑐 = 8 mmHg

highlighted in red in the right figure.

Fig. 18. TestSphere: oxygen concentration on the tumor surface for 𝑲𝐸𝐶𝑀 =𝑲⟂
𝐸𝐶𝑀

. On the left 𝑡 = 10 days, on the right 𝑡 = 40 days.
Table 5

TestSphere: maximum sprout growth velocity and percent-

age of hypoxic tissue for different time instants. 𝑲𝐸𝐶𝑀 =
𝑲⟂

𝐸𝐶𝑀 (see (69)).

Time Max Growth Velocity % Vol < 8 mmHg 𝑶𝟐

(days) (mm/h)

1 7.9 ⋅ 10−4 92%

10 9.7 ⋅ 10−4 87%

20 1.3 ⋅ 10−3 83%

40 1.7 ⋅ 10−3 80%

number does not account for the tips that leave the domain through the 
tumor boundary.

Referring to the circumferential anisotropic case, Table 5 reports 
the maximum growth velocity and the percentage of tissue below 
the pathological hypoxia level at different instants of time (namely 
𝑡 = 1, 10, 20 and 40 days). We observe that, even though the hypoxic 
region reduces with time thanks to the formation of new vessels, the 
imposed boundary conditions and the exchange with the surrounding 
tissue, highly affects the supply of oxygen in the domain. Fig. 17 reports 
the pressure distribution and the oxygen concentration in the capillary 
network and on a tissue slice at 𝑡 = 40 days. Fig. 18 focuses instead on 
the oxygen concentration at the tumor boundary, for 𝑡 = 10 days and 
𝑡 = 40 days, left and right respectively.

7. Conclusions

This paper presents a comprehensive approach for the simulation 
of tumor-induced angiogenesis, coupling the growth of an arbitrarily 
complex vascular network with fluid flow and oxygen transport in the 
tissue and in the vessels, and the dispersion of a chemotactic growth 
factor in the tissue.

First, model equations inside the tissue and inside the vessels, rep-

resented by cylindrical connected tubes, are reported. This 3D-3D prob-

lem for the three unknowns (namely fluid pressure, oxygen concentra-

tion and VEGF concentration) is then reformulated in its corresponding 
3D-1D approximation by reducing the cylindrical vessels to their center-
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lines and simultaneously extending the outer domain to fill the voids. 
The equations are written in an evolving geometry and the evolution 
of the vascular network is taken into account thanks to a discrete tip-

tracking model that monitors the position of the tip of each capillary 
at any time. Therefore, we end up defining a hybrid model, coupling a 
continuous representation of the fluid flow and chemical distributions 
with a discrete model for the vessels.

The novelty of the proposed work lies in bringing together: i) a 
model of fluid and macromolecular transport inside both a 3D tissue 
and a 1D vascular network; ii) a discrete model that reproduces the spa-

tial and temporal evolution of the geometry, and iii) a numerical scheme 
based on a PDE constrained domain decomposition strategy that allows 
to write the 3D problem and the 1D problem on non conforming meshes 
and to solve them independently. The blend of these three mathemat-

ical ingredients allows to overcome the limitations of some previous 
approaches to the problem. In particular, the reduction of the inclu-

sions to one-dimensional objects allows to reduce the computational 
cost and to treat arbitrarily complex configurations. Furthermore, the 
coupling with the discrete tip-tracking model and the solving strategy 
allow to simulate flow and diffusion within an evolving geometry, in 
contrast to other models that simulate the spatio-temporal evolution of 
quantities inside non-evolving vascular networks. Finally, the chosen 
numerical technique properly adapted to the considered setting, allows 
the growing vasculature to remain unconstrained by mesh conformity 
requirements, thus also avoiding remeshing as the capillary configura-

tion evolves. At the same time, the used approach is not limited in the 
number of bifurcations and segments that can be simulated, overcoming 
the drawback of discrete cellular automata models used for angiogene-

sis.

The proposed model and method are applied to two different test 
cases, providing a sensitivity analysis with respect to some key param-

eters such as the absorption rate of the chemotactic growth factor from 
the capillary network, the branching process parameters, the efficiency 
of oxygenation and the role of the extracellular matrix. The capability 
of the model to respond to changes in the parameters could be possibly 
used to build in-silico models of real configuration, also in combination 
with data fitting and uncertainty quantification techniques.
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Some challenges remain to be tackled from a mathematical and nu-

merical point of view. In particular, the modeling of tumor expansion 
into the surrounding tissue, its effect on fluid flow and on VEGF pro-

duction, as well as the response of the tumor to oxygen and nutrient 
uptake should also be considered. Future research could also address the 
definition of more realistic models for angiogenesis, possibly deriving 
the onset of branching and anastomosis directly from physical balances 
and chemical constraints, instead of ad-hoc predetermined rules. In this 
context also vessel pruning, i.e. the regression and remodeling of some 
capillary vessels, could also be considered. Finally, the study of drug 
delivery, which can be easily incorporated into the proposed setup, is 
left to a future work.

In conclusion, the proposed model represents a step towards the def-

inition of a comprehensive model of angiogenesis and efficient numer-

ical strategies for its successful solution and, with slight modifications, 
can possibly be applied to the study of this complex biological phe-

nomenon also in different physiological and pathological conditions, 
such as embryogenesis, wound healing, retinal vascularization and in-

flammatory diseases.
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