
27 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Gradient-Based Competitive Learning: Theory / Cirrincione, Giansalvo; Randazzo, Vincenzo; Barbiero, Pietro;
Ciravegna, Gabriele; Pasero, Eros. - ELETTRONICO. - 16:(2024), pp. 608-623. [10.1007/s12559-023-10225-5]

Original

Gradient-Based Competitive Learning: Theory

Publisher:

Published
DOI:10.1007/s12559-023-10225-5

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984047 since: 2023-11-30T10:53:49Z

Springer



Vol:.(1234567890)

Cognitive Computation (2024) 16:608–623
https://doi.org/10.1007/s12559-023-10225-5

1 3

Gradient‑Based Competitive Learning: Theory

Giansalvo Cirrincione1,2 · Vincenzo Randazzo3   · Pietro Barbiero4 · Gabriele Ciravegna5 · Eros Pasero3

Received: 1 March 2023 / Accepted: 12 November 2023 / Published online: 23 November 2023 
© The Author(s) 2023

Abstract
Deep learning has been recently used to extract the relevant features for representing input data also in the unsupervised setting. 
However, state-of-the-art techniques focus mostly on algorithmic efficiency and accuracy rather than mimicking the input manifold. 
On the contrary, competitive learning is a powerful tool for replicating the input distribution topology. It is cognitive/biologically 
inspired as it is founded on Hebbian learning, a neuropsychological theory claiming that neurons can increase their specialization 
by competing for the right to respond to/represent a subset of the input data. This paper introduces a novel perspective by combin-
ing these two techniques: unsupervised gradient-based and competitive learning. The theory is based on the intuition that neural 
networks can learn topological structures by working directly on the transpose of the input matrix. At this purpose, the vanilla com-
petitive layer and its dual are presented. The former is representative of a standard competitive layer for deep clustering, while the 
latter is trained on the transposed matrix. The equivalence of the layers is extensively proven both theoretically and experimentally. 
The dual competitive layer has better properties. Unlike the vanilla layer, it directly outputs the prototypes of the data inputs, while 
still allowing learning by backpropagation. More importantly, this paper proves theoretically that the dual layer is better suited for 
handling high-dimensional data (e.g., for biological applications), because the estimation of the weights is driven by a constraining 
subspace which does not depend on the input dimensionality, but only on the dataset cardinality. This paper has introduced a novel 
approach for unsupervised gradient-based competitive learning. This approach is very promising both in the case of small datasets 
of high-dimensional data and for better exploiting the advantages of a deep architecture: the dual layer perfectly integrates with 
the deep layers. A theoretical justification is also given by using the analysis of the gradient flow for both vanilla and dual layers.

Keywords  Competitive Hebbian Learning · Deep clustering · Duality theory · Gradient-based clustering · Topology · 
Unsupervised learning

Introduction

Machine learning can be generally referred as extracting 
information from noisy data. Depending on the paradigm, 
either unsupervised or supervised, this problem is called 

clustering or classification, respectively. Both groups of 
techniques can be seen as an optimization problem where 
a loss function is minimized. The oldest and most famous 
clustering technique is k-means [1], which iteratively adapts 
cluster centroid positions in order to minimize the quanti-
zation error. This technique has been extensively used and 
studied to uncover unknown relations in unsupervised prob-
lems. However, its main drawback is the definition of the 
number of cluster centroids (k) beforehand. This is the same 
issue as other famous techniques such as Gaussian Mixture 
Models (GMM) [2] and Neural Gas (NG) [3]. To overcome 
this limitation, several incremental algorithms have been 
proposed in the literature, where the number of neurons is 
not fixed but changes over time w.r.t the complexity of the 
problem at hand. This approach adds a novel unit whether 
certain conditions are met, e.g., the quantization error is too 
high or data is too far from the existing neurons; in this 
sense, the new unit should yield a better quantization of the 
input distribution. Some examples are the adaptive k-means 
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[4] and the Density Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [5]. Furthermore, unsupervised 
learning is generally capable of finding groups of samples 
that are similar under a specific metric, e.g., Euclidean dis-
tance. However, it cannot infer the underlying data topology. 
At this purpose, to define a local topology, the Competitive 
Hebbian Learning (CHL) paradigm [6–8] is employed by 
some algorithms such as Self-Organizing-Map (SOM) by 
Kohonen [9], the Growing Neural Gas (GNG) [10], and its 
variants [11–14]. Indeed, given an input sample, the two 
closest neurons, called first and second winners, are linked 
by an edge, which locally models the input shape. Hebbian 
learning is a cognitive/biologically inspired technique, based 
on a neuropsychological theory claiming that neurons can 
increase their specialization by competing for the right to 
respond to/represent a subset of the input data.

All the previously cited techniques suffer from the curse 
of dimensionality. Distance-based similarity measures are not 
effective when dealing with highly dimensional data (e.g., 
images or biological applications like gene expression). 
Therefore, many methods to reduce input dimensionality and 
to select the most important features have been employed, 
such as Principal Component Analysis (PCA) [15] and ker-
nel functions [16]. To better preserve local topology in the 
reduced space, the Curvilinear Component Analysis (CCA) 
[17] and its online incremental version, the GCCA [18, 19], 
proposed a nonlinear projection algorithm. This approach is 
quite useful for noise removal and when input features are 
highly correlated, because projection reduces the problem 
complexity; on the contrary, when features are statistically 
independent, a smaller space implies worse clustering per-
formance due to the information loss. An alternative way 
for dealing with high-dimensional data is the use of Deep 
Neural Networks (DNNs). Indeed, Convolutional Neural 
Networks (CNNs) [20] have proven to be a valid tool for 
handling high-dimensional input distribution in the case of 
supervised learning [21–24]. The strength of CNNs relies 
on the convolutional filters, which yield an output space 
that is linearly separable in terms of the output classes. In 
this sense, CNN filters can also be exploited for clustering. 
Indeed, CNNs, but also DNNs, can be trained by optimizing a 
clustering loss function [25–27]. A straightforward approach, 
however, may lead to overfitting, where data are mapped to 
compact clusters that do not correspond to data topology 
[28]. To overcome this problem, weight regularization, data 
augmentation, and supervised network pre-training have been 
proposed [28]. The latter technique exploits a pre-trained 
CNN (e.g., AlexNet on ImageNet [29]) as a feature extractor 
in a transfer learning way [30]. Otherwise, clustering learning 
procedures may be integrated with a network learning pro-
cess, which require employing more complex architectures 
such as k-means in [31, 32], Autoencoders (AE) [33] as in 
[34–37], Variational Autoencoders (VAE) [38] as in [39, 40], 

graph neural networks as in [41], or Generative Adversarial 
Networks (GAN) [42] as in [43–45]. Such techniques usually 
employ a two-step learning process: first, a good representa-
tion of the input space is learnt through a network loss func-
tion and, later, the quantization is fine-tuned by optimizing 
a clustering-specific loss. The network loss can be either the 
reconstruction loss of an AE, the variational loss of a VAE, 
or the adversarial loss of a GAN. To the same purpose, a 
deep extension of sparse subspace clustering with L1-norm 
is used in [46]. At last, always taking inspiration from the 
supervised learning world, attention-based mechanisms have 
been also employed for deep clustering. Attention mecha-
nisms [47] have been initially introduced for natural machine 
translation to allow models focus on the most important input 
data. In deep clustering, it has been used for enhancing the 
embedded representation in speech separation [48], but also 
combined with autoencoders for handwritten recognition [49] 
and molecular similarity [50]. The requirement of a two-step 
learning process in deep clustering algorithms derives from 
the different nature of the network and clustering losses, 
which hinders their integration.

To our knowledge, no previous work suggested to join 
DNN feature transformation skill with the higher represen-
tation capabilities of competitive learning approaches. In 
this paper, we propose two variants of a neural architecture 
where competitive learning is embedded in the training loss 
function. The first variant that we refer to as vanilla layer 
consists in a gradient-based competitive learning approach, 
where the weights represent the cluster prototypes, but the 
outputs are not meaningful. In order to integrate with deep 
architectures, a novel approach, called dual competitive 
layer, is here introduced, which directly outputs the proto-
types after the presentation of a complete batch of input 
data. A duality theory is proposed and demonstrated, which 
highlights the relationships between the two layers.

The “Methods” section presents the vanilla and dual com-
petitive layers together with the corresponding dual theory 
and the analysis of the loss function. The “Results” section 
tests the two layers on three synthetic datasets and confirms 
the validity of the proposed approach. The “Discussion—
Theoretical Analysis” section provides a theoretical justifi-
cation of the results by means of the analysis of the gradient 
flows, using both the stochastic approximation theory and 
the evaluation of their dynamics. Finally, the “Conclusion” 
section concludes the paper and proposes future directions.

Methods

Dual Neural Networks

Multi-layer feedforward neural networks are universal func-
tion approximators [51]. Given an input matrix X ∈ ℝ

d×n 



610	 Cognitive Computation (2024) 16:608–623

1 3

containing a collection of n observations and a set of k super-
visionsY ∈ ℝ

k×n , a neural network with d input and k output 
units can be used to approximate the target features Y. The 
relationship between X and Y can be arbitrarily complex; none-
theless, deep neural networks can optimize their parameters in 
such a way that their predictions Ŷ will match the target Y. In 
supervised settings, neural networks are used to combine the 
information of different features (rows of X) in order to provide 
a predictionŶ , which corresponds to a nonlinear projection of 
the observations (columns of X) optimized to match the target 
Y. Hence, in such scenarios, the neural network will provide 
one prediction for each observationi = 1,… , n.

The objective of competitive learning consists in studying 
the underlying structure of a manifold by means of prototypes, 
i.e., a set of positions in the feature space representative of the 
input observations. Each prototype pk is a vector in ℝd as it lies 
in the same feature space of the observations. Hence, competi-
tive learning algorithms can be described as functions map-
ping an input matrix X ∈ ℝ

d×n in an output matrix P̂ ∈ ℝ
d×k 

where the j-th column represents the prototype pj . Indeed,

is the relationship implemented by competitive learning. In 
deep clustering, it is used in a feedforward way. However, 
it directly computes the prototypes as its own weights and 
the output is not meaningful. Indeed, vanilla competitive 
neural networks [52–54] are composed of a set of competing 
neurons described by a vector of weights pj , representing the 
position of neurons (a.k.a. prototypes) in the input space. 
The inverse of the Euclidean distance between the input 
data xi and the weight vector pj represents the similarity 
between the input and the prototype. For every input vector 
xi , the prototypes compete with each other to see which one 
is the most similar to that particular input vector. By fol-
lowing the Competitive Hebbian Learning (CHL) rule [6, 
7], the two closest prototypes to xi are connected using an 
edge, representing their mutual activation. Depending on the 
approach, the closest prototypes to the input sample move 
towards it, reducing the distance between the prototype and 
the input. As a result, the position of the competing neurons 
in the input space will tend to cluster centroids of the input 
data. As a consequence, the feedforward representation of 
the vanilla algorithm is not justified. Instead, as it will be 
proved in the following sections, the most natural way of 
using a feedforward neural network for this kind of task is 
the transposition of the input matrix X while optimizing a 
prototype-based loss function. This approach derives from 
the idea of requiring the prototypes as outputs, and not as 
weights. This leads to the dual competitive layer (DCL, see 
“Duality Theory for Single-Layer Networks” and “Cluster-
ing as a Loss Minimization” sections), i.e., a fully connected 
layer trained on XT , thus having n input units corresponding 

(1)X → P̂ =
[
p1 … pk

]

to observations and k output units corresponding to proto-
types (see Fig. 1). Thus, the mapping of DCL is given by:

where, unlike the vanilla algorithm, the prototypes are the 
output of the network. Instead of combining different fea-
tures to generate the feature subspace ℝk where samples will 
be projected as for classification or regression tasks, in this 
case the neural network combines different samples to gen-
erate a synthetic summary of the observations, represented 
by a set of prototypes. Resuming, compared with the archi-
tecture of a vanilla competitive layer (VCL) [52] where pro-
totypes correspond to the set of weight vectors of the fully 
connected layer, the dual approach naturally fits in a deep 
learning framework as the fully connected layer is actually 
used to apply a transformation of the input.

The DCL outputs an estimation of the prototypes after 
each batch of samples by means of a linear transformation 
represented by its weights. At this aim, a gradient-based 
minimization of a loss function is used, by using the whole 
batch. This reminds the centroid estimation of the general-
ized Lloyd algorithm (k-means, [55, 56]), which, instead, uses 
only the Voronoi sets. This is an important difference, because 
the error information can be backpropagated to the previous 
layer, if any, by exploiting all the observations, thus provid-
ing a relaxation of the Voronoi constraint. The underlying 
DCL analysis can be found in the “Discussion—Theoretical 
Analysis” section.

In order to estimate the parameters of DCL, a loss 
function representing the quantization error of the pro-
totypes is used. It requires the computation of the Voro-
noi sets, which are deduced by means of the Euclidean 
distance matrix (edm). This is the same requirement of 
the second iteration of the generalized Lloyd algorithm. 
However, the latter uses this information for directly 
computing the centroids. The former, instead, only yields 
the error to be backpropagated. The analysis and choice 
of the loss function is illustrated in the “Clustering as a 
Loss Minimization” section.

By training on the transposed input, DCL looks at 
observations as features and vice versa. As a consequence, 
increasing the number of observations n (rows of XT  ) 
enhances the capacity of the network, as the number of input 
units corresponds to n. Providing a higher number of fea-
tures, instead, stabilizes the learning process as it expands 
the set of input vectors of DCL. After training, once proto-
type positions have been estimated, the dual network is no 
longer needed. Indeed, test observations can be evaluated 
finding the closest prototype for each sample. This means 
that the amount of information required to employ this 
approach in production environments corresponds just to 
the prototype matrix P̂.

(2)XT
→ P̂T =

[
p1

T … pk
T
]
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Duality Theory for Single‑layer Networks

The intuitions outlined in the previous section can be formal-
ized in a general theory that considers the duality properties 
between a linear single-layer neural network and its dual, 
defined as a network, which learns on the transpose of the 
input matrix and has the same number of output neurons.

Consider a single-layer neural network whose outputs 
have linear activation functions. There are d input units and k 
output units which represent a continuous signal in the case 
of regression or class membership (posterior probabilities 

for cross entropy error function) in the case of classifica-
tion. A batch of n samples, say X, is fed to the network. The 
weight matrix is W1 , where the element wij represents the 
weight from the input unit j to the neuron i. The single-layer 
neural network with linear activation functions in the lower 
scheme is here called the dual network of the former one. It 
has the same number of outputs and n inputs. It is trained on 
the transpose of the original X database. Its weight matrix 
is W2 and the output batch is Y2 . The following theorems 
state the duality conditions of the two architectures. Figure 2 
represents the two networks and their duality.

Fig. 1   Representation of a deep architecture where a dual competitive 
network is used to estimate cluster centroids. The first network exe-
cutes a feature extraction and then maps training observations into a 

d1-dimensional feature subspace. This output is transposed and used 
to feed the dual network to estimate prototype positions [67]

Fig. 2   Base (top) and dual 
(bottom) single-layer neural 
networks. The red double arrow 
shows the equivalence between 
the columns (in red) of the Y1 
batch and the weight vectors 
of W2. The blue double arrow 
shows the dual equivalence (W1 
– Y2) [67]
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Theorem 2.1  (Network duality in competitive learning). 
Given a loss function for competitive learning based on 
prototypes, a single linear network (base), whose weight 
vectors associated to the output neurons are the prototypes, 
is equivalent to another (dual) whose outputs are the proto-
types, under the following assumptions:

1.	 The input matrix of the dual network is the transpose of 
the input matrix of the base network;

2.	 The samples of the input matrix X are uncorrelated with 
unit variance.

Proof. Consider a loss function based on prototypes, 
whose minimization is required for competitive learning. 
From the assumption on the inputs (rows of the matrix X), 
it results XXT = Id . A single-layer linear network is repre-
sented by the matrix formula:

By multiplying on the right by XT , it holds:

Under the second assumption:

This equation represents a (dual) linear network whose 
outputs are the prototypes W. Considering that the same 
loss function is used for both cases, the two networks are 
equivalent.

This theorem directly applies to the VCL (base) and DCL 
(dual) neural networks if the assumption 2 holds for the 
training set. If not, a pre-processing, e.g., batch normaliza-
tion, can be performed.

This theorem justifies the dual approach, in the sense 
that this novel architecture directly outputs the prototypes 
by using the weights for building the solution. It can be said 
that DCL is more “neural” than VCL (whose output is not 
meaningful). It also requires an input normalization (uncor-
relation with unit variance), which is a standard requirement 
in data pre-processing (batch normalization).

Theorem 2.2  (Impossible complete duality). Two dual net-
works cannot share weights as W1 = Y2 and W2 = Y1(com-
plete dual constraint), except if the samples of the input 
matrix XT are uncorrelated with unit variance.

Proof. From the duality of networks and their linearity, 
for an entire batch it follows:

(3)Y = WX =
[
prototype1 … prototypek

]T
X

(4)WXXT = YXT

(5)W =
[
prototype1 … prototypek

]T
= YXT

where Id and In are the identity matrices of size d and n, 
respectively. These two final conditions are only possible 
if the samples of the input matrix X are uncorrelated with 
unit variance, which is not the case in (almost all) machine 
learning applications.

Theorem 2.3  (Half duality I). Given two dual networks, if 
the samples of the input matrix XT are uncorrelated with unit 
variance and if W1 = Y2 (first dual constraint), then W2 = Y1
(second dual constraint).

Proof. From the first dual constraint (see Fig. 3), for the 
second network it stems:

Hence:

under the given assumption on XT , which implies XTX = In , 
the result follows.

Theorem 2.4  (Half duality II). Given two dual networks, 
if the samples of the input matrix X are uncorrelated with 
unit variance and if W2 = Y1 (second dual constraint), then 
W1 = Y2(first dual constraint).

Proof. From the second dual constraint (see Fig. 3), for 
the second network it stems:

From the assumption on the inputs (rows of the matrix 
X), it results XXT = Id . The first neural architecture yields:

Theorem  2.4 completes the analysis of duality, 
by highlighting the relationships between the VCL 
weights and DCL outputs, and justifies the use of 
backpropagation in a straight way in DCL. Indeed, the 
meaningfulness of the DCL output allows to estimate the 
cost-function, which will be backpropagated, from the 
output. In this sense, DCL can be integrated in a deep 
architecture, as one of its layers.

(6)

{
Y1 = W1X

Y2 = W2X
T ⇒ W1 = Y1X

T
⇒ W1 = W1XX

T
⇒ XXT = Id

(7)

{
Y1 = W1X

Y2 = W2X
T ⇒ W2 = Y2X

T
⇒ W2 = W2X

TX ⇒ XTX = In

(8)Y2 = W1 = W2X
T

(9)Y1 = W1X ⇒ Y1 = W2X
TX

(10)Y1 = W2 = W1X

(11)Y2 = W2X
T
⇒ Y2 = W1XX

T = W1
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Corollary 2.4.1  (Self-supervised learning). The assumption of The-
orem 2.4 implies the construction of labels for the base network.

Proof. As sketched in Fig. 3, under the assumption of the 
equivalence between the training of the dual network (build-
ing of prototypes) and the architecture of the base network 
(output neurons as prototypes), the previous theorem implies 
the second dual constraint, which means the construction of 
a self-organized label.

Thanks to this corollary, the base network can work in 
a self-supervised way, by using the results of the dual self-
organization, to infer information on the dataset. This results 
in a new approach to self-supervised learning.

Clustering as a Loss Minimization

The theoretical framework developed in the “Duality Theory 
for Single-Layer Networks” section can be easily adapted to 
accommodate for a variety of unsupervised learning tasks 
by designing a suitable loss function. One of the most com-
mon prototype-based loss functions employed for clustering 
aims at minimizing the expected squared quantization error 
[57]. Depending on the feature subspace, some clusters may 
have complex shapes; therefore, using only one prototype 
per cluster may result in a poor representation. To overcome 
this limitation, each cluster can be represented by a graph 
composed of a collection of connected prototypes. The cor-
responding loss function can be written as:

where Q is the classical quantization error, given by the sum 
of the squares of the Euclidean distances between the data 
and their closest prototypes; and E is the adjacency matrix 
describing the connections between prototypes. The Q term 
is estimated from the Voronoi sets of the prototypes, which 

(12)L = Q + �‖E‖2

require the evaluation of the edm between X and Y. The E 
term uses the CHL rule, which implies the estimation of 
the first and second winner w.r.t. each sample by means of 
the same edm. By using the Lagrangian term �‖E‖2 , the 
complexity of the graph representing connections among 
prototypes can be minimized, in order to learn the minimal 
topological structure. Lonely prototypes (i.e., prototypes 
without connections) may represent outliers and can be eas-
ily pruned or examined individually.

The minimization of Eq. (12) can be exploited for analyzing 
the topological properties of the input manifolds. While this 
is out of the scope of this paper, it allows both the detection 
of clusters by means of the connectedness of the graphs and 
the best number of prototypes (pruning from a user-defined 
number of output units), as it has been shown in [10, 14]. This 
technique addresses the problem of the choice of prototypes 
in k-means.

The “Duality Theory for Single-Layer Networks” sec-
tion established a set of conditions for the duality of two 
single-layer feedforward neural networks only in terms of 
their architecture. Instead, the choice of the learning process 
determines their application. In the case of clustering, they 
correspond to the VCL and DCL respectively, if they are 
both trained by the minimization of Eq. (12). However, as 
it will be shown in the “Discussion—Theoretical Analysis” 
section, the equivalence in the architecture does not imply 
an equivalence in the training process, even if the loss func-
tion and the optimization algorithm are the same. Indeed, in 
a vanilla competitive layer, there is no forward pass as Y1 is 
neither computed nor considered and the prototype matrix 
is just the weight matrix W1:

where prototypei ∈ ℝ
d . In a dual competitive layer, instead, 

the prototype matrix corresponds to the output Y2 ; hence, 

(13)P̂1 =
[
prototype1 … prototypek

]
= W1

Fig. 3   Half dualities
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the forward pass is a linear transformation of the input XT 
through the weight matrix W2:

where wi is the weight vector of the i-th output neuron of the 
dual network and fi is the i-th feature over all samples of the 
input matrix X. The components of i-th prototype are com-
puted using the same weight wi , because each row is a rank 
one outer product. Besides, each component is computed as 
it was a one-dimensional learning problem. For instance, 
the first component of the prototypes is 

[
wT
1
f1 … wT

k
f1
]T , 

which means that the first component of all the prototypes 
is computed by considering just the first feature f1 . Hence, 
each component is independent from all the other features of 
the input matrix, allowing the forward pass to be just like a 
collection of d columnwise one-dimensional problems.

Such differences in the forward pass have an impact on 
the backward pass as well, even if the form of the loss func-
tion is the same for both systems. However, the parameters 
of the optimization are not the same. For the base network:

while for the dual network:

where Y  is a linear transformation (filter) represented by W2 . 
In the base competitive layer, the gradient of the loss func-
tion with respect to the weights W1 is computed directly as:

On the other hand, in the dual competitive layer, the chain 
rule is required to compute the gradient with respect to the 
weights W2 as the loss function depends on the prototypes Y2:

As a result, despite the architecture of the two layers is 
equivalent, the learning process is quite different.

Results

In order to rigorously assess the main characteristics of the 
learning process, several metrics are evaluated while train-
ing the VCL and DCL networks on three synthetic datasets 

(14)

P̂2 =

�
prototype1 … prototypek

�T
= Y2 = W2X

T

=

⎡
⎢⎢⎢⎣

wT
1

wT
2

⋯

wT
k

⎤
⎥⎥⎥⎦

�
f1 f2 … fd

�
=

⎡
⎢⎢⎢⎣

wT
1
f1 wT

1
f2 … wT

1
fd

wT
2
f1 wT

2
f2 … wT

2
fd

… … ⋱ ⋮

wT
k
f1 wT

k
f2 … wT

k
fd

⎤
⎥⎥⎥⎦

(15)L = L(X,W1)

(16)L = L(XT ,Y)

(17)∇L(W1) =
dL

dW1

(18)∇L
(
W2

)
=

dL

dW2

=
dL

dY2

⋅
dY2

dW2

containing clusters of different shapes and sizes. Table 1 
summarizes the main characteristics of each experiment. 
While these experiments deal with maximum two clusters, 
there is no theoretical reason to limit this study to only two 
clusters. For DCL, the number of output units corresponds 
to the number of clusters (just like the parameter k in the 
k-means algorithm), as shown in [58]. The first dataset is 
composed of samples drawn from a two-dimensional Archi-
medean spiral (Spiral). The second dataset consists of sam-
ples drawn from two half semicircles (Moons). The last one 
is composed of two concentric circles (Circles). Each dataset 
is normalized by removing the mean and scaling to unit vari-
ance before fitting neural models. For all the experiments, 
the number of output units k of the dual network is set to 
30. A grid-search optimization is conducted for tuning the 
hyper-parameters. The learning rate is set to � = 0.008 for 
VCL and to � = 0.0008 for DCL. Besides, for both networks, 
the number of epochs is equal to � = 400 , while the Lagran-
gian multiplier to � = 0.01 . For each dataset, both networks 
are trained 10 times using different initialization seeds in 
order to statistically compare their performance.

Figure 4 shows for each dataset the dynamics of three 
key metrics for both VCL and DCL: the quantization error, 
the topological complexity of the solution (i.e., ‖E‖ ), and 
the number of valid prototypes (i.e., the ones with a non-
empty Voronoi set). By looking at the quantization error, 
both networks tend to converge to similar local minima in 
all scenarios, thus validating their theoretical equivalence. 
Nonetheless, the single-layer dual network exhibits a much 
faster rate of convergence compared to the vanilla competi-
tive layer. The most significant differences are outlined (i) 
by the number of valid prototypes as DCL tends to employ 
more resources and (ii) by the topological complexity as 
VCL favors more complex solutions.

Figure 5 shows topological clustering results after 800 
epochs. As expected, both neural networks yield an adequate 
estimation of prototype positions, even though the topology 
learned by DCL is far more accurate in following the under-
lying manifolds w.r.t. to VCL.

Figure 6 shows the trajectories of the prototypes during 
the training for both networks. The parameters in both net-
works have been initialized by means of the Glorot initial-
izer [59], which draws small values from a normal distribu-
tion centered on zero. For VCL, these parameters are the 

Table 1   Synthetic datasets used for the simulations (s.v. stands for 
singular value)

DATASET SAMPLES FEATURES CLUSTERS MAX 
S.V

MIN S.V

SPIRAL 500 2 1 23.43 21.24
MOONS 500 2 2 26.97 16.51
CIRCLES 500 2 2 22.39 22.34
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prototypes and they are initially clustered around the origin, 
as expected. For DCL, instead, the initial prototypes are an 
affine transformation of the inputs parameterized by the 
weight matrix. This implies the initial prototypes are close 
to a random choice of the input data. The VCL trajectories 
tend towards the closest to the initial (close to the origin) 
cluster and then some of them spread towards the furthest 
manifolds. The DCL trajectories are much shorter because 
of the closeness of the initial prototypes to the input clusters. 
These considerations reveal the better suitability of DCL to 
deep learning traditional initializations.

The performance of the vanilla competitive layer and 
its dual network in tackling high-dimensional problems 
is assessed through numerical experiments. Sure enough, 
standard distance–based algorithms generally suffer the 
well-known curse of dimensionality when dealing with 
high-dimensional data. The MADELON algorithm pro-
posed in [60] is used to generate high-dimensional datasets 

with an increasing number of features and fixed number of 
samples. This algorithm creates clusters of points, normally 
distributed about vertices of an n-dimensional hypercube. 
An equal number of cluster and data is assigned to two 
different classes. Both the number of samples (ns) and the 
dimensionality of the space (nf) in which they are placed can 
be defined programmatically. More precisely, the number 
of samples is set to ns = 100 while the number of features 
ranges in nf ∈ [1000, 2000, 3000, 5000, 10000] . The num-
ber of required centroids is fixed to one-tenth the number 
of input samples. Table 2 summarizes the hyper-parameter 
settings. Three different networks are compared (see Fig. 7): 
VCL, DCL, and a deep variant of DCL with two hidden lay-
ers of 10 neurons each (deep-DCL). Results are averaged 
over 10 repetitions on each dataset. Accuracy for each clus-
ter is calculated by considering true positive those samples 
belonging to the class more represented, and false positive 
the remaining data.

Fig. 4   Comparison of three key metrics between the vanilla single-
layer network and its dual over 10 runs. The metrics are the quanti-
zation error (top row), the norm of the matrix of the edges (middle 
row), and the number of valid prototypes (bottom row). The metrics 

are computed on three different datasets: Spiral (left column), Moons 
(middle column), and Circles (right column). Error bands represent 
the standard error of the mean
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The “Discussion—Theoretical Analysis” section yields 
a theoretical explanation for the observed results. All the 
code for the experiments has been implemented in Python 3, 
relying upon open-source libraries [61, 62]. All the experi-
ments have been run on the same machine: Intel® Core™ 
i7-8750H 6-Core Processor at 2.20 GHz equipped with 
8 GiB RAM. To enable code reuse, the Python code for 
the mathematical models including parameter values and 
documentation is freely available under Apache 2.0 Public 
License from a GitHub repository11 [63]. The whole pack-
age can also be downloaded directly from PyPI2. Unless 
required by applicable law or agreed to in writing, software 
is distributed on an “as is” basis, without warranties or con-
ditions of any kind, either express or implied. The datasets 
generated and analyzed during the current study are avail-
able from the corresponding author on reasonable request.

Discussion—Theoretical Analysis

Stochastic Approximation Theory of the Gradient Flows

In the following, the gradient flows of the vanilla and the dual 
single-layer neural networks are formally examined when 
trained using the quantization error, one of the most common 

loss functions used for training unsupervised neural networks 
in clustering contexts. The following theory is based on the 
assumption of � = 0 in Eq. (12). Taking into account the edge 
error only relaxes the analysis, but the results remain valid. 
Under the stochastic approximation theory, the asymptotic prop-
erties of the gradient flows of the two networks can be estimated.

Base Layer Gradient Flow

For each prototype j, represented in the base layer by the 
weight vector Wj

1
∈ ℝ

d of the j-th neuron (it is the j-th row 
of the matrix W1 ), the contribution of its Voronoi set to the 
quantization error is given by:

where nj is the cardinality of the j-th Voronoi set. The corre-
sponding gradient flow of the base network is the following:

being � the learning rate. The averaging ODE holds:

where �j = �[xi] is the expectation in the limit of infinite samples 
of the j-th Voronoi set, and corresponds to the centroid of the 
Voronoi region. The unique critical point of the ODE is given by:

(19)Ej =

nj�
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‖xi −W
j

1
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dt
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Fig. 5   Experiments on synthetic datasets. From left to right: Spiral, Moons, and Circles datasets

1  https://​github.​com/​pietr​obarb​iero/​cola
2  https://​pypi.​org/​proje​ct/​deeptl/​1.0.​0/

https://github.com/pietrobarbiero/cola
https://pypi.org/project/deeptl/1.0.0/
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and the ODE can be rewritten as:

under the transformation wj

1
= W

j

1
−W

j

1,crit
 in order to study 

the origin as the critical point. The associated matrix is −Id , 
whose eigenvalues are all equal to − 1 and whose eigenvec-
tors are the vectors of the standard basis. Hence, the gradi-
ent flow is stable and decreases in the same exponential 
way, as e−t , in all directions. The gradient flow of one epoch 
corresponds to an approximation of the second step of the 
generalized Lloyd iteration, as stated before.

Dual Layer Gradient Flow

In the dual layer, the prototypes are estimated by the outputs, 
in such a way that they are represented by the rows of the Y2 
matrix. Indeed, the j-th prototype is now represented by the 

(22)W
j

1,crit
= �j

(23)
dw

j

1

dt
= −w

j

1

row vector 
(
Y
j

2

)T

 , from now on called yT
j
 for sake of simplic-

ity. It is computed by the linear transformation:

where xi ∈ ℝ
n is the i-th row of the training set X and 

W
j

2
∈ ℝ

n is the weight vector of the j-th neuron (it is the j-th 
row of the matrix W2 ), and is here named as Ωj for simplicity. 
Hence, the j-th prototype is computed as:

and its squared (Euclidean) 2-norm is:

For the j-th prototype, the contribution of its Voronoi set to 
the quantization error is given by:

with the same notation as previously. The gradient flow of 
the dual network is computed as:

being � the learning rate. The gradient is given by:

(24)yT
j
=
(
W

j

2

)T[
x1 ⋯ xd

]
=
(
W

j

2

)T

XT = ΩT
j
XT

(25)yj = XΩj

(26)‖yj‖22 = ΩT
j
XTXΩj

(27)Ej =

nj�
i=1

‖xi − yj‖22 =
nj�
i=1

(‖xi‖22 + ‖yi‖22 − 2xT
i
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i
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j
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)
= 2

(
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)

Fig. 6   Dynamical simulations. From left to right: Spiral, Moons, and Circles datasets

Table 2   Parameters for high-dimensional simulations using MADELON 
(s.v. stands for singular value)

SAMPLES FEATURES CLUSTERS MAX S.V MIN S.V

100 1000 2 112 3E − 14
100 2000 2 120 7E − 14
100 3000 2 126 4E − 14
100 5000 2 139 5E − 14
100 10,000 2 154 7E − 14
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The averaging ODE is estimated as:

The unique critical point of the ODE is the solution of the 
normal equations:

The linear system can be solved only if XTX ∈ ℝ
n×n is full 

rank. This is true only if n ≤ d (the case n = d is trivial and, 
so, from now on the analysis deals with n < d ) and all col-
umns of X are linearly independent. In this case, the solution 
is given by:

where X+ is the pseudoinverse of X . The result corresponds to 
the least squares solution of the overdetermined linear system:

which is equivalent to:

This last system shows that the dual layer asymptotically 
tends to output the centroids as prototypes. The ODE can 
be rewritten as:

under the transformation wj = Ωj − Ωj,crit in order to study 
the origin as the critical point. The associated matrix is 
−XTX . Consider the singular value decomposition (SVD) 

(30)
dΩj

dt
= −

(
XTXΩj − XT�j

)

(31)XTXΩj = XT�j

(32)Ωj,crit = (XTX)
−1
XT�j = X+�j

(33)XΩj = �j

(34)ΩT
j
XT = �T

j

(35)
dwj

dt
= −XTXwj

of X = UΣVT where U ∈ ℝ
d×d and V ∈ ℝ

n×n are orthogonal 
and Σ ∈ ℝ

d×n is diagonal (nonzero diagonal elements named 
singular values and called �i , indexed in decreasing order). 
The i-th column of V  (associated to �i ) is written as vi and is 
named right singular vector. Then:

is the eigenvalue decomposition of the sample autocorrela-
tion matrix of the inputs of the dual network. It follows that 
the algorithm is stable and the ODE solution is given by:

where the constants depend on the initial conditions. The 
same dynamical law is valid for all the other weight neurons. 
If n > d and all columns of X are linearly independent, it 
follows:

and the system XΩj = �j is underdetermined. This set of 
equations has a nontrivial nullspace and so the least squares 
solution is not unique. However, the least squares solution 
of minimum norm is unique. This corresponds to the mini-
mization problem:

The unique solution is given by the normal equations of 
the second kind:

(36)XTX =
(
UΣVT

)T
UΣVT = VΣ2VT

(37)wj(t) =

n∑
i=1

civie
−�2

i
t

(38)rank(X) = rank
(
XTX

)
= d

(39)���
(
Ωj

)
s.t.XΩj = �j

(40)
{

XXTz = �j

Ωj = XTz

Fig. 7   High-dimensional simu-
lations: accuracy as a function 
of the dimensionality of the 
problem. Error bands corre-
spond to the standard error of 
the mean [67]
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that is, by considering that XXT has an inverse:

Multiplying on the left by XXT yields:

that is Eq. (31), which is the system whose solution is the 
unique critical point of the ODE (setting the derivative 
in Eq. (30) to zero). Resuming, both cases give the same 
solution. However, in the case n > d and rank(X) = d , the 
output neuron weight vectors have minimum norm and 
are orthogonal to the nullspace of X, which is spanned by 
vn−d+1, v(n−d+2),… , vn . Indeed, XTX has n − d zero eigen-
values, which correspond to centers. Therefore, the ODE 
solution is given by:

This theory proves the following theorem.

Theorem  3.1  (Dual flow and PCA). The dual network 
evolves in the directions of the principal axes of its autocor-
relation matrix (see Eq. (36)) with time constants given by 
the inverses of the associated data variances.

This statement claims the dual gradient flow moves 
faster in the more relevant directions, i.e., where data vary 
more. Indeed, the trajectories start at the initial position of 
the prototypes (the constants in Eq. (43) are the associated 
coordinates in the standard framework rotated by V) and 
evolve along the right singular vectors, faster in the direc-
tions of more variance in the data. It implies a faster rate of 
convergence because it is dictated by the data content, as 
already observed in the numerical experiments (see Fig. 4).

Dynamics of the Dual Layers

For the basic layer, it holds:

where l ∈ ℝ
d is a vector of constants. Therefore, Wj

1
 tends 

asymptotically to �j , by moving in ℝd . However, being �j a 
linear combinations of the columns of X, it can be deduced 
that, after a transient period, the neuron weight vectors tend 
to the range (column space) of X, say R(X), i.e.:

where t0 is a certain instant of time and r = rank(X) =

min{d, n} under the assumption of samples independently 
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drawn from the same distribution, which prevents from the 
presence of collinearities in data. It follows

where l ∈ ℝ
d is another vector of constants. Then, Wj

1
 can be 

considered the output of a linear transformation represented 
by the matrix X, i.e., Wj

1
= Xp , being p ∈ ℝ

n its preimage. 
Hence, (Wj

1
)
T
= pTXT  , which shows the duality. Indeed, 

it represents a network whose input is XT , and the output 
(W

j

1
)
T
 and parameter weight vector pT are the interchange 

of the corresponding ones in the base network. Notice, how-
ever, that the weight vector in the dual network corresponds 
only through a linear transformation, that is, by means of the 
preimage. Under the second duality assumption XXT = Id , 
it holds:

where 0r,s is the zero matrix with r rows and s columns. 
Therefore, this assumption implies there are d singular val-
ues all equal to 1 or − 1. In the case of remaining singular 
values, they are all null and of cardinality d − n . For the dual 
layer, under the second duality assumption, in the case of 
singular values all equal to − 1 or 0, it follows:

where q ∈ ℝ
n . Therefore, Ωj tends asymptotically to Ωj,crit , 

by moving in ℝn . Hence, it can be deduced that, after a tran-
sient period, the neuron weight vectors tend to the range 
(column space) of X, say R(XT ) , i.e.:

where t0 is a certain instant of time and r = rank(X) =

min{d, n} under the same assumption of noncollinear data.
Resuming, the base and dual gradient flows, under the 

two duality assumptions, except for the presence of cent-
ers, are given by:

because XV = UΣ from the SVD of X and c = Σq for the 
arbitrariness of the constants. This result claims the fact that 
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the base flow directly estimates the prototype, while the dual 
flow estimates its preimage. This confirms the duality of the 
two layers from the dynamical point of view and proves the 
following theorem.

Theorem 3.2  (Dynamical duality). Under the two assump-
tions of 2.1, the two networks are dynamically equivalent. 
In particular, the base gradient flow evolves in R(X) and the 
dual gradient flow evolves in R(XT ).

More in general, the fact that the prototypes are straightly 
computed in the base network implies a more rigid dynam-
ics of its gradient flow. On the contrary, the presence of the 
singular values in the exponentials of the dual gradient flow 
originates from the fixed transformation (matrix X) used 
for the prototype estimation. They are exploited for a better 
dynamics, because they are suited to the statistical charac-
teristics of the training set, as discussed before. Both flows 
estimate the centroids of the Voronoi sets, like the centroid 
estimation step of the Lloyd algorithm, but the linear layers 
allow the use of gradient flows and do not require the a priori 
knowledge of the number of prototypes (see the discussion 
on pruning in the “Clustering as a Loss Minimization” sec-
tion). However, the dual flow is an iterative least squares 
solution, while the base flow does the same only implicitly. In 
the cased > n,rank(X) = rank(XT ) = n , and the base gradient 
flow stays in ℝd , but tends to lie on the n-dimensional sub-
spaceR(X) . Instead, the dual gradient flow is n-dimensional 
and always evolves in the n-dimensional subspaceR(XT ) . 
Figure 8 shows both flows and the associated subspaces for 
the case n = 2 andd = 3 . The following lemma describes the 
relationship between the two subspaces.

Lemma 3.3  (Range transformation). The subspace R(X) is 
the transformation by X of the subspace R(XT ).

Proof. The two subspaces are the range (column space) 
of the two matrices X and XT:

Then:

More in general, multiplying X by a vector yields a vec-
tor in R(X).

All vectors in R(XT ) are transformed by X in the cor-
responding quantities in R(X) . In particular:

This analysis proves the following theorem.

Theorem 3.4  (Fundamental on gradient flows, part I). 
In the case d > n, the base gradient flow represents the 
temporal law of a d-dimensional vector tending to an 
n-dimensional subspace containing the solution. Instead, 
the dual gradient flow always remains in an n-dimen-
sional subspace containing the solution. Then, the least 
squares transformation X+ yields a new approach, the 
dual one, which is not influenced by d, i.e., the dimen-
sionality of the input data.

This assertion is the basis of the claim the dual network is 
a novel and very promising technique for high-dimensional 
clustering. However, it must be considered that the underlying 
theory is only approximated and gives an average behavior. 
Figure 7 shows a simulation comparing the performances of 
VCL, DCL, and a deep variant of the DCL model in tackling 
high-dimensional problems with an increasing number of fea-
tures. The simulations show how the dual methods are more 
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Fig. 8   Gradient flows and sub-
spaces (n = 2 and d = 3) [67]
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capable to deal with high-dimensional data as their accuracy 
remains near 100% until 2000 − 3000 features. Obviously, the 
deep version of DCL (deep-DCL) yields the best accuracy 
because it exploits the nonlinear transformation of the addi-
tional layers.

In the case n ≥ d , instead, the two subspaces have 
dimension equal to d. Then, they coincide with the fea-
ture space, eliminating any difference between the two 
gradient flows. In reality, for the dual flow, there are n − d 
remaining modes with zero eigenvalue (centers) which are 
meaningless, because they only add n − d constant vectors 
(the right singular vectors of X) which can be eliminated 
by adding a bias to each output neuron of the dual layer.

Theorem 3.5  (Fundamental on gradient flows, part II). In 
the case d ≤ n, both gradient flows lie in the same (feature) 
space, the only difference being the fact that the dual gra-
dient flow temporal law is driven by the variances of the 
input data.

The Voronoi Set Estimation

Consider the matrixXTYT ∈ ℝ
n×j , which contains all the 

inner products between data and prototypes. From the 
architecture and notation of the dual layer, it follows 
= ΩXT , which yields:

where the sample autocorrelation data matrix G is the Gram 
matrix. The Euclidean distance matrixedm(X, Y) ∈ ℝ

n×j , 
which contains the squared distances between the columns 
of X and Y, i.e., between data and prototypes, is given by 
[64]:

where diag(A) is a column vector containing the diagonal 
entries of A and 1r is the r-dimensional column vector of all 
ones. It follows:

and considering that YYT = ΩXT
(
ΩXT

)T
= ΩGΩT , it holds:

as a quadratic function of the dual weights. This func-
tion allows the straight computation of the edm from 
the estimated weights, which is necessary in order to 
evaluate the Voronoi sets of the prototypes for the quan-
tization loss.

(56)XTYT = XTXΩT = GΩT
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(
XTX

)
1T
j
− 2XTYT + 1ndiag

(
YYT

)T

(58)edm(X, Y) = diag(G)1T
j
− 2GΩT + 1ndiag

(
YYT

)T

(59)
edm(X, Y) = f (G,Ω) = 1ndiag

(
ΩGΩT

)T
− 2GΩT + diag(G)1T

j

Conclusion

This work opens a novel field in neural network research where 
unsupervised gradient-based learning joins competitive learn-
ing. Two novel layers, VCL, as a representative of the competi-
tive layer, and DCL, its dual, are introduced for unsupervised 
deep learning applications. Despite VCL is just an adaptation 
of a standard competitive layer for deep neural architectures, 
DCL represents a completely novel approach. The relationship 
between the two layers has been extensively analyzed and their 
equivalence in terms of architecture has been proven. Nonethe-
less, the advantages of the dual approach justify its employment. 
Unlike all other clustering techniques, the parameters of DCL 
evolve in a n-dimensional submanifold which does not depend on 
the number of features d as the layer is trained on the transposed 
input matrix. As a result, the dual approach is natively suitable 
for tackling high-dimensional problems. The limitation of the 
proposed theory follows from the choice of using the stochastic 
approximation theory, which only yields the asymptotic proper-
ties of the gradient flows of the two networks. For this reason, the 
analysis of the dynamics of two flows has been added. The other 
important advantage of DCL is the fact that it outputs the pro-
totypes. This requires either a batch or minibatch learning. This 
works the same as the classical neural module outputs and can be 
naturally embedded in the backpropagation rule. Hence, unlike 
VCL, and, of course, the traditional deep clustering approaches, 
DCL can be perfectly integrated in a deep neural framework, thus 
allowing to exploit the advantages of both.

The flexibility and the power of the approach pave the 
way towards more advanced and challenging learning tasks; 
an upcoming paper will compare DCL on renowned bench-
marks against state-of-the-art clustering algorithms. Further 
extensions of this approach may include topological non-
stationary clustering [65], hierarchical clustering [12–14], 
core set discovery [66], incremental and attention-based 
approaches, or the integration within complex architectures 
such as VAEs and GANs, and will be studied in the future.
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