
27 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Gradient-Based Competitive Learning: Theory / Cirrincione, Giansalvo; Randazzo, Vincenzo; Barbiero, Pietro;
Ciravegna, Gabriele; Pasero, Eros. - ELETTRONICO. - 16:(2024), pp. 608-623. [10.1007/s12559-023-10225-5]

Original

Gradient-Based Competitive Learning: Theory

Publisher:

Published
DOI:10.1007/s12559-023-10225-5

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984047 since: 2023-11-30T10:53:49Z

Springer

Vol:.(1234567890)

Cognitive Computation (2024) 16:608–623
https://doi.org/10.1007/s12559-023-10225-5

1 3

Gradient‑Based Competitive Learning: Theory

Giansalvo Cirrincione1,2 · Vincenzo Randazzo3  · Pietro Barbiero4 · Gabriele Ciravegna5 · Eros Pasero3

Received: 1 March 2023 / Accepted: 12 November 2023 / Published online: 23 November 2023
© The Author(s) 2023

Abstract
Deep learning has been recently used to extract the relevant features for representing input data also in the unsupervised setting.
However, state-of-the-art techniques focus mostly on algorithmic efficiency and accuracy rather than mimicking the input manifold.
On the contrary, competitive learning is a powerful tool for replicating the input distribution topology. It is cognitive/biologically
inspired as it is founded on Hebbian learning, a neuropsychological theory claiming that neurons can increase their specialization
by competing for the right to respond to/represent a subset of the input data. This paper introduces a novel perspective by combin-
ing these two techniques: unsupervised gradient-based and competitive learning. The theory is based on the intuition that neural
networks can learn topological structures by working directly on the transpose of the input matrix. At this purpose, the vanilla com-
petitive layer and its dual are presented. The former is representative of a standard competitive layer for deep clustering, while the
latter is trained on the transposed matrix. The equivalence of the layers is extensively proven both theoretically and experimentally.
The dual competitive layer has better properties. Unlike the vanilla layer, it directly outputs the prototypes of the data inputs, while
still allowing learning by backpropagation. More importantly, this paper proves theoretically that the dual layer is better suited for
handling high-dimensional data (e.g., for biological applications), because the estimation of the weights is driven by a constraining
subspace which does not depend on the input dimensionality, but only on the dataset cardinality. This paper has introduced a novel
approach for unsupervised gradient-based competitive learning. This approach is very promising both in the case of small datasets
of high-dimensional data and for better exploiting the advantages of a deep architecture: the dual layer perfectly integrates with
the deep layers. A theoretical justification is also given by using the analysis of the gradient flow for both vanilla and dual layers.

Keywords  Competitive Hebbian Learning · Deep clustering · Duality theory · Gradient-based clustering · Topology ·
Unsupervised learning

Introduction

Machine learning can be generally referred as extracting
information from noisy data. Depending on the paradigm,
either unsupervised or supervised, this problem is called

clustering or classification, respectively. Both groups of
techniques can be seen as an optimization problem where
a loss function is minimized. The oldest and most famous
clustering technique is k-means [1], which iteratively adapts
cluster centroid positions in order to minimize the quanti-
zation error. This technique has been extensively used and
studied to uncover unknown relations in unsupervised prob-
lems. However, its main drawback is the definition of the
number of cluster centroids (k) beforehand. This is the same
issue as other famous techniques such as Gaussian Mixture
Models (GMM) [2] and Neural Gas (NG) [3]. To overcome
this limitation, several incremental algorithms have been
proposed in the literature, where the number of neurons is
not fixed but changes over time w.r.t the complexity of the
problem at hand. This approach adds a novel unit whether
certain conditions are met, e.g., the quantization error is too
high or data is too far from the existing neurons; in this
sense, the new unit should yield a better quantization of the
input distribution. Some examples are the adaptive k-means

 *	 Giansalvo Cirrincione
	 exin@u-picardie.fr

 *	 Vincenzo Randazzo
	 vincenzo.randazzo@polito.it

1	 Lab. LTI, Université de Picardie Jules Verne, Amiens,
France

2	 University of South Pacific, Suva, Fiji
3	 DET ‑ Department of Electronics and Telecommunications,

Politecnico Di Torino, Turin, Italy
4	 Computer Laboratory, Cambridge University, Cambridge,

UK
5	 MAASAI, Inria, Université Cote D’Azur, I3S, CNRS, Nice,

France

http://orcid.org/0000-0003-3640-8561
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-023-10225-5&domain=pdf

609Cognitive Computation (2024) 16:608–623	

1 3

[4] and the Density Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [5]. Furthermore, unsupervised
learning is generally capable of finding groups of samples
that are similar under a specific metric, e.g., Euclidean dis-
tance. However, it cannot infer the underlying data topology.
At this purpose, to define a local topology, the Competitive
Hebbian Learning (CHL) paradigm [6–8] is employed by
some algorithms such as Self-Organizing-Map (SOM) by
Kohonen [9], the Growing Neural Gas (GNG) [10], and its
variants [11–14]. Indeed, given an input sample, the two
closest neurons, called first and second winners, are linked
by an edge, which locally models the input shape. Hebbian
learning is a cognitive/biologically inspired technique, based
on a neuropsychological theory claiming that neurons can
increase their specialization by competing for the right to
respond to/represent a subset of the input data.

All the previously cited techniques suffer from the curse
of dimensionality. Distance-based similarity measures are not
effective when dealing with highly dimensional data (e.g.,
images or biological applications like gene expression).
Therefore, many methods to reduce input dimensionality and
to select the most important features have been employed,
such as Principal Component Analysis (PCA) [15] and ker-
nel functions [16]. To better preserve local topology in the
reduced space, the Curvilinear Component Analysis (CCA)
[17] and its online incremental version, the GCCA [18, 19],
proposed a nonlinear projection algorithm. This approach is
quite useful for noise removal and when input features are
highly correlated, because projection reduces the problem
complexity; on the contrary, when features are statistically
independent, a smaller space implies worse clustering per-
formance due to the information loss. An alternative way
for dealing with high-dimensional data is the use of Deep
Neural Networks (DNNs). Indeed, Convolutional Neural
Networks (CNNs) [20] have proven to be a valid tool for
handling high-dimensional input distribution in the case of
supervised learning [21–24]. The strength of CNNs relies
on the convolutional filters, which yield an output space
that is linearly separable in terms of the output classes. In
this sense, CNN filters can also be exploited for clustering.
Indeed, CNNs, but also DNNs, can be trained by optimizing a
clustering loss function [25–27]. A straightforward approach,
however, may lead to overfitting, where data are mapped to
compact clusters that do not correspond to data topology
[28]. To overcome this problem, weight regularization, data
augmentation, and supervised network pre-training have been
proposed [28]. The latter technique exploits a pre-trained
CNN (e.g., AlexNet on ImageNet [29]) as a feature extractor
in a transfer learning way [30]. Otherwise, clustering learning
procedures may be integrated with a network learning pro-
cess, which require employing more complex architectures
such as k-means in [31, 32], Autoencoders (AE) [33] as in
[34–37], Variational Autoencoders (VAE) [38] as in [39, 40],

graph neural networks as in [41], or Generative Adversarial
Networks (GAN) [42] as in [43–45]. Such techniques usually
employ a two-step learning process: first, a good representa-
tion of the input space is learnt through a network loss func-
tion and, later, the quantization is fine-tuned by optimizing
a clustering-specific loss. The network loss can be either the
reconstruction loss of an AE, the variational loss of a VAE,
or the adversarial loss of a GAN. To the same purpose, a
deep extension of sparse subspace clustering with L1-norm
is used in [46]. At last, always taking inspiration from the
supervised learning world, attention-based mechanisms have
been also employed for deep clustering. Attention mecha-
nisms [47] have been initially introduced for natural machine
translation to allow models focus on the most important input
data. In deep clustering, it has been used for enhancing the
embedded representation in speech separation [48], but also
combined with autoencoders for handwritten recognition [49]
and molecular similarity [50]. The requirement of a two-step
learning process in deep clustering algorithms derives from
the different nature of the network and clustering losses,
which hinders their integration.

To our knowledge, no previous work suggested to join
DNN feature transformation skill with the higher represen-
tation capabilities of competitive learning approaches. In
this paper, we propose two variants of a neural architecture
where competitive learning is embedded in the training loss
function. The first variant that we refer to as vanilla layer
consists in a gradient-based competitive learning approach,
where the weights represent the cluster prototypes, but the
outputs are not meaningful. In order to integrate with deep
architectures, a novel approach, called dual competitive
layer, is here introduced, which directly outputs the proto-
types after the presentation of a complete batch of input
data. A duality theory is proposed and demonstrated, which
highlights the relationships between the two layers.

The “Methods” section presents the vanilla and dual com-
petitive layers together with the corresponding dual theory
and the analysis of the loss function. The “Results” section
tests the two layers on three synthetic datasets and confirms
the validity of the proposed approach. The “Discussion—
Theoretical Analysis” section provides a theoretical justifi-
cation of the results by means of the analysis of the gradient
flows, using both the stochastic approximation theory and
the evaluation of their dynamics. Finally, the “Conclusion”
section concludes the paper and proposes future directions.

Methods

Dual Neural Networks

Multi-layer feedforward neural networks are universal func-
tion approximators [51]. Given an input matrix X ∈ ℝ

d×n

610	 Cognitive Computation (2024) 16:608–623

1 3

containing a collection of n observations and a set of k super-
visionsY ∈ ℝ

k×n , a neural network with d input and k output
units can be used to approximate the target features Y. The
relationship between X and Y can be arbitrarily complex; none-
theless, deep neural networks can optimize their parameters in
such a way that their predictions Ŷ will match the target Y. In
supervised settings, neural networks are used to combine the
information of different features (rows of X) in order to provide
a predictionŶ , which corresponds to a nonlinear projection of
the observations (columns of X) optimized to match the target
Y. Hence, in such scenarios, the neural network will provide
one prediction for each observationi = 1,… , n.

The objective of competitive learning consists in studying
the underlying structure of a manifold by means of prototypes,
i.e., a set of positions in the feature space representative of the
input observations. Each prototype pk is a vector in ℝd as it lies
in the same feature space of the observations. Hence, competi-
tive learning algorithms can be described as functions map-
ping an input matrix X ∈ ℝ

d×n in an output matrix P̂ ∈ ℝ
d×k

where the j-th column represents the prototype pj . Indeed,

is the relationship implemented by competitive learning. In
deep clustering, it is used in a feedforward way. However,
it directly computes the prototypes as its own weights and
the output is not meaningful. Indeed, vanilla competitive
neural networks [52–54] are composed of a set of competing
neurons described by a vector of weights pj , representing the
position of neurons (a.k.a. prototypes) in the input space.
The inverse of the Euclidean distance between the input
data xi and the weight vector pj represents the similarity
between the input and the prototype. For every input vector
xi , the prototypes compete with each other to see which one
is the most similar to that particular input vector. By fol-
lowing the Competitive Hebbian Learning (CHL) rule [6,
7], the two closest prototypes to xi are connected using an
edge, representing their mutual activation. Depending on the
approach, the closest prototypes to the input sample move
towards it, reducing the distance between the prototype and
the input. As a result, the position of the competing neurons
in the input space will tend to cluster centroids of the input
data. As a consequence, the feedforward representation of
the vanilla algorithm is not justified. Instead, as it will be
proved in the following sections, the most natural way of
using a feedforward neural network for this kind of task is
the transposition of the input matrix X while optimizing a
prototype-based loss function. This approach derives from
the idea of requiring the prototypes as outputs, and not as
weights. This leads to the dual competitive layer (DCL, see
“Duality Theory for Single-Layer Networks” and “Cluster-
ing as a Loss Minimization” sections), i.e., a fully connected
layer trained on XT , thus having n input units corresponding

(1)X → P̂ =
[
p1 … pk

]

to observations and k output units corresponding to proto-
types (see Fig. 1). Thus, the mapping of DCL is given by:

where, unlike the vanilla algorithm, the prototypes are the
output of the network. Instead of combining different fea-
tures to generate the feature subspace ℝk where samples will
be projected as for classification or regression tasks, in this
case the neural network combines different samples to gen-
erate a synthetic summary of the observations, represented
by a set of prototypes. Resuming, compared with the archi-
tecture of a vanilla competitive layer (VCL) [52] where pro-
totypes correspond to the set of weight vectors of the fully
connected layer, the dual approach naturally fits in a deep
learning framework as the fully connected layer is actually
used to apply a transformation of the input.

The DCL outputs an estimation of the prototypes after
each batch of samples by means of a linear transformation
represented by its weights. At this aim, a gradient-based
minimization of a loss function is used, by using the whole
batch. This reminds the centroid estimation of the general-
ized Lloyd algorithm (k-means, [55, 56]), which, instead, uses
only the Voronoi sets. This is an important difference, because
the error information can be backpropagated to the previous
layer, if any, by exploiting all the observations, thus provid-
ing a relaxation of the Voronoi constraint. The underlying
DCL analysis can be found in the “Discussion—Theoretical
Analysis” section.

In order to estimate the parameters of DCL, a loss
function representing the quantization error of the pro-
totypes is used. It requires the computation of the Voro-
noi sets, which are deduced by means of the Euclidean
distance matrix (edm). This is the same requirement of
the second iteration of the generalized Lloyd algorithm.
However, the latter uses this information for directly
computing the centroids. The former, instead, only yields
the error to be backpropagated. The analysis and choice
of the loss function is illustrated in the “Clustering as a
Loss Minimization” section.

By training on the transposed input, DCL looks at
observations as features and vice versa. As a consequence,
increasing the number of observations n (rows of XT  )
enhances the capacity of the network, as the number of input
units corresponds to n. Providing a higher number of fea-
tures, instead, stabilizes the learning process as it expands
the set of input vectors of DCL. After training, once proto-
type positions have been estimated, the dual network is no
longer needed. Indeed, test observations can be evaluated
finding the closest prototype for each sample. This means
that the amount of information required to employ this
approach in production environments corresponds just to
the prototype matrix P̂.

(2)XT
→ P̂T =

[
p1

T … pk
T
]

611Cognitive Computation (2024) 16:608–623	

1 3

Duality Theory for Single‑layer Networks

The intuitions outlined in the previous section can be formal-
ized in a general theory that considers the duality properties
between a linear single-layer neural network and its dual,
defined as a network, which learns on the transpose of the
input matrix and has the same number of output neurons.

Consider a single-layer neural network whose outputs
have linear activation functions. There are d input units and k
output units which represent a continuous signal in the case
of regression or class membership (posterior probabilities

for cross entropy error function) in the case of classifica-
tion. A batch of n samples, say X, is fed to the network. The
weight matrix is W1 , where the element wij represents the
weight from the input unit j to the neuron i. The single-layer
neural network with linear activation functions in the lower
scheme is here called the dual network of the former one. It
has the same number of outputs and n inputs. It is trained on
the transpose of the original X database. Its weight matrix
is W2 and the output batch is Y2 . The following theorems
state the duality conditions of the two architectures. Figure 2
represents the two networks and their duality.

Fig. 1   Representation of a deep architecture where a dual competitive
network is used to estimate cluster centroids. The first network exe-
cutes a feature extraction and then maps training observations into a

d1-dimensional feature subspace. This output is transposed and used
to feed the dual network to estimate prototype positions [67]

Fig. 2   Base (top) and dual
(bottom) single-layer neural
networks. The red double arrow
shows the equivalence between
the columns (in red) of the Y1
batch and the weight vectors
of W2. The blue double arrow
shows the dual equivalence (W1
– Y2) [67]

612	 Cognitive Computation (2024) 16:608–623

1 3

Theorem 2.1  (Network duality in competitive learning).
Given a loss function for competitive learning based on
prototypes, a single linear network (base), whose weight
vectors associated to the output neurons are the prototypes,
is equivalent to another (dual) whose outputs are the proto-
types, under the following assumptions:

1.	 The input matrix of the dual network is the transpose of
the input matrix of the base network;

2.	 The samples of the input matrix X are uncorrelated with
unit variance.

Proof. Consider a loss function based on prototypes,
whose minimization is required for competitive learning.
From the assumption on the inputs (rows of the matrix X),
it results XXT = Id . A single-layer linear network is repre-
sented by the matrix formula:

By multiplying on the right by XT , it holds:

Under the second assumption:

This equation represents a (dual) linear network whose
outputs are the prototypes W. Considering that the same
loss function is used for both cases, the two networks are
equivalent.

This theorem directly applies to the VCL (base) and DCL
(dual) neural networks if the assumption 2 holds for the
training set. If not, a pre-processing, e.g., batch normaliza-
tion, can be performed.

This theorem justifies the dual approach, in the sense
that this novel architecture directly outputs the prototypes
by using the weights for building the solution. It can be said
that DCL is more “neural” than VCL (whose output is not
meaningful). It also requires an input normalization (uncor-
relation with unit variance), which is a standard requirement
in data pre-processing (batch normalization).

Theorem 2.2  (Impossible complete duality). Two dual net-
works cannot share weights as W1 = Y2 and W2 = Y1(com-
plete dual constraint), except if the samples of the input
matrix XT are uncorrelated with unit variance.

Proof. From the duality of networks and their linearity,
for an entire batch it follows:

(3)Y = WX =
[
prototype1 … prototypek

]T
X

(4)WXXT = YXT

(5)W =
[
prototype1 … prototypek

]T
= YXT

where Id and In are the identity matrices of size d and n,
respectively. These two final conditions are only possible
if the samples of the input matrix X are uncorrelated with
unit variance, which is not the case in (almost all) machine
learning applications.

Theorem 2.3  (Half duality I). Given two dual networks, if
the samples of the input matrix XT are uncorrelated with unit
variance and if W1 = Y2 (first dual constraint), then W2 = Y1
(second dual constraint).

Proof. From the first dual constraint (see Fig. 3), for the
second network it stems:

Hence:

under the given assumption on XT , which implies XTX = In ,
the result follows.

Theorem 2.4  (Half duality II). Given two dual networks,
if the samples of the input matrix X are uncorrelated with
unit variance and if W2 = Y1 (second dual constraint), then
W1 = Y2(first dual constraint).

Proof. From the second dual constraint (see Fig. 3), for
the second network it stems:

From the assumption on the inputs (rows of the matrix
X), it results XXT = Id . The first neural architecture yields:

Theorem 2.4 completes the analysis of duality,
by highlighting the relationships between the VCL
weights and DCL outputs, and justifies the use of
backpropagation in a straight way in DCL. Indeed, the
meaningfulness of the DCL output allows to estimate the
cost-function, which will be backpropagated, from the
output. In this sense, DCL can be integrated in a deep
architecture, as one of its layers.

(6)

{
Y1 = W1X

Y2 = W2X
T ⇒ W1 = Y1X

T
⇒ W1 = W1XX

T
⇒ XXT = Id

(7)

{
Y1 = W1X

Y2 = W2X
T ⇒ W2 = Y2X

T
⇒ W2 = W2X

TX ⇒ XTX = In

(8)Y2 = W1 = W2X
T

(9)Y1 = W1X ⇒ Y1 = W2X
TX

(10)Y1 = W2 = W1X

(11)Y2 = W2X
T
⇒ Y2 = W1XX

T = W1

613Cognitive Computation (2024) 16:608–623	

1 3

Corollary 2.4.1  (Self-supervised learning). The assumption of The-
orem 2.4 implies the construction of labels for the base network.

Proof. As sketched in Fig. 3, under the assumption of the
equivalence between the training of the dual network (build-
ing of prototypes) and the architecture of the base network
(output neurons as prototypes), the previous theorem implies
the second dual constraint, which means the construction of
a self-organized label.

Thanks to this corollary, the base network can work in
a self-supervised way, by using the results of the dual self-
organization, to infer information on the dataset. This results
in a new approach to self-supervised learning.

Clustering as a Loss Minimization

The theoretical framework developed in the “Duality Theory
for Single-Layer Networks” section can be easily adapted to
accommodate for a variety of unsupervised learning tasks
by designing a suitable loss function. One of the most com-
mon prototype-based loss functions employed for clustering
aims at minimizing the expected squared quantization error
[57]. Depending on the feature subspace, some clusters may
have complex shapes; therefore, using only one prototype
per cluster may result in a poor representation. To overcome
this limitation, each cluster can be represented by a graph
composed of a collection of connected prototypes. The cor-
responding loss function can be written as:

where Q is the classical quantization error, given by the sum
of the squares of the Euclidean distances between the data
and their closest prototypes; and E is the adjacency matrix
describing the connections between prototypes. The Q term
is estimated from the Voronoi sets of the prototypes, which

(12)L = Q + �‖E‖2

require the evaluation of the edm between X and Y. The E
term uses the CHL rule, which implies the estimation of
the first and second winner w.r.t. each sample by means of
the same edm. By using the Lagrangian term �‖E‖2 , the
complexity of the graph representing connections among
prototypes can be minimized, in order to learn the minimal
topological structure. Lonely prototypes (i.e., prototypes
without connections) may represent outliers and can be eas-
ily pruned or examined individually.

The minimization of Eq. (12) can be exploited for analyzing
the topological properties of the input manifolds. While this
is out of the scope of this paper, it allows both the detection
of clusters by means of the connectedness of the graphs and
the best number of prototypes (pruning from a user-defined
number of output units), as it has been shown in [10, 14]. This
technique addresses the problem of the choice of prototypes
in k-means.

The “Duality Theory for Single-Layer Networks” sec-
tion established a set of conditions for the duality of two
single-layer feedforward neural networks only in terms of
their architecture. Instead, the choice of the learning process
determines their application. In the case of clustering, they
correspond to the VCL and DCL respectively, if they are
both trained by the minimization of Eq. (12). However, as
it will be shown in the “Discussion—Theoretical Analysis”
section, the equivalence in the architecture does not imply
an equivalence in the training process, even if the loss func-
tion and the optimization algorithm are the same. Indeed, in
a vanilla competitive layer, there is no forward pass as Y1 is
neither computed nor considered and the prototype matrix
is just the weight matrix W1:

where prototypei ∈ ℝ
d . In a dual competitive layer, instead,

the prototype matrix corresponds to the output Y2 ; hence,

(13)P̂1 =
[
prototype1 … prototypek

]
= W1

Fig. 3   Half dualities

614	 Cognitive Computation (2024) 16:608–623

1 3

the forward pass is a linear transformation of the input XT
through the weight matrix W2:

where wi is the weight vector of the i-th output neuron of the
dual network and fi is the i-th feature over all samples of the
input matrix X. The components of i-th prototype are com-
puted using the same weight wi , because each row is a rank
one outer product. Besides, each component is computed as
it was a one-dimensional learning problem. For instance,
the first component of the prototypes is

[
wT
1
f1 … wT

k
f1
]T ,

which means that the first component of all the prototypes
is computed by considering just the first feature f1 . Hence,
each component is independent from all the other features of
the input matrix, allowing the forward pass to be just like a
collection of d columnwise one-dimensional problems.

Such differences in the forward pass have an impact on
the backward pass as well, even if the form of the loss func-
tion is the same for both systems. However, the parameters
of the optimization are not the same. For the base network:

while for the dual network:

where Y is a linear transformation (filter) represented by W2 .
In the base competitive layer, the gradient of the loss func-
tion with respect to the weights W1 is computed directly as:

On the other hand, in the dual competitive layer, the chain
rule is required to compute the gradient with respect to the
weights W2 as the loss function depends on the prototypes Y2:

As a result, despite the architecture of the two layers is
equivalent, the learning process is quite different.

Results

In order to rigorously assess the main characteristics of the
learning process, several metrics are evaluated while train-
ing the VCL and DCL networks on three synthetic datasets

(14)

P̂2 =

�
prototype1 … prototypek

�T
= Y2 = W2X

T

=

⎡
⎢⎢⎢⎣

wT
1

wT
2

⋯

wT
k

⎤
⎥⎥⎥⎦

�
f1 f2 … fd

�
=

⎡
⎢⎢⎢⎣

wT
1
f1 wT

1
f2 … wT

1
fd

wT
2
f1 wT

2
f2 … wT

2
fd

… … ⋱ ⋮

wT
k
f1 wT

k
f2 … wT

k
fd

⎤
⎥⎥⎥⎦

(15)L = L(X,W1)

(16)L = L(XT ,Y)

(17)∇L(W1) =
dL

dW1

(18)∇L
(
W2

)
=

dL

dW2

=
dL

dY2

⋅
dY2

dW2

containing clusters of different shapes and sizes. Table 1
summarizes the main characteristics of each experiment.
While these experiments deal with maximum two clusters,
there is no theoretical reason to limit this study to only two
clusters. For DCL, the number of output units corresponds
to the number of clusters (just like the parameter k in the
k-means algorithm), as shown in [58]. The first dataset is
composed of samples drawn from a two-dimensional Archi-
medean spiral (Spiral). The second dataset consists of sam-
ples drawn from two half semicircles (Moons). The last one
is composed of two concentric circles (Circles). Each dataset
is normalized by removing the mean and scaling to unit vari-
ance before fitting neural models. For all the experiments,
the number of output units k of the dual network is set to
30. A grid-search optimization is conducted for tuning the
hyper-parameters. The learning rate is set to � = 0.008 for
VCL and to � = 0.0008 for DCL. Besides, for both networks,
the number of epochs is equal to � = 400 , while the Lagran-
gian multiplier to � = 0.01 . For each dataset, both networks
are trained 10 times using different initialization seeds in
order to statistically compare their performance.

Figure 4 shows for each dataset the dynamics of three
key metrics for both VCL and DCL: the quantization error,
the topological complexity of the solution (i.e., ‖E‖ ), and
the number of valid prototypes (i.e., the ones with a non-
empty Voronoi set). By looking at the quantization error,
both networks tend to converge to similar local minima in
all scenarios, thus validating their theoretical equivalence.
Nonetheless, the single-layer dual network exhibits a much
faster rate of convergence compared to the vanilla competi-
tive layer. The most significant differences are outlined (i)
by the number of valid prototypes as DCL tends to employ
more resources and (ii) by the topological complexity as
VCL favors more complex solutions.

Figure 5 shows topological clustering results after 800
epochs. As expected, both neural networks yield an adequate
estimation of prototype positions, even though the topology
learned by DCL is far more accurate in following the under-
lying manifolds w.r.t. to VCL.

Figure 6 shows the trajectories of the prototypes during
the training for both networks. The parameters in both net-
works have been initialized by means of the Glorot initial-
izer [59], which draws small values from a normal distribu-
tion centered on zero. For VCL, these parameters are the

Table 1   Synthetic datasets used for the simulations (s.v. stands for
singular value)

DATASET SAMPLES FEATURES CLUSTERS MAX
S.V

MIN S.V

SPIRAL 500 2 1 23.43 21.24
MOONS 500 2 2 26.97 16.51
CIRCLES 500 2 2 22.39 22.34

615Cognitive Computation (2024) 16:608–623	

1 3

prototypes and they are initially clustered around the origin,
as expected. For DCL, instead, the initial prototypes are an
affine transformation of the inputs parameterized by the
weight matrix. This implies the initial prototypes are close
to a random choice of the input data. The VCL trajectories
tend towards the closest to the initial (close to the origin)
cluster and then some of them spread towards the furthest
manifolds. The DCL trajectories are much shorter because
of the closeness of the initial prototypes to the input clusters.
These considerations reveal the better suitability of DCL to
deep learning traditional initializations.

The performance of the vanilla competitive layer and
its dual network in tackling high-dimensional problems
is assessed through numerical experiments. Sure enough,
standard distance–based algorithms generally suffer the
well-known curse of dimensionality when dealing with
high-dimensional data. The MADELON algorithm pro-
posed in [60] is used to generate high-dimensional datasets

with an increasing number of features and fixed number of
samples. This algorithm creates clusters of points, normally
distributed about vertices of an n-dimensional hypercube.
An equal number of cluster and data is assigned to two
different classes. Both the number of samples (ns) and the
dimensionality of the space (nf) in which they are placed can
be defined programmatically. More precisely, the number
of samples is set to ns = 100 while the number of features
ranges in nf ∈ [1000, 2000, 3000, 5000, 10000] . The num-
ber of required centroids is fixed to one-tenth the number
of input samples. Table 2 summarizes the hyper-parameter
settings. Three different networks are compared (see Fig. 7):
VCL, DCL, and a deep variant of DCL with two hidden lay-
ers of 10 neurons each (deep-DCL). Results are averaged
over 10 repetitions on each dataset. Accuracy for each clus-
ter is calculated by considering true positive those samples
belonging to the class more represented, and false positive
the remaining data.

Fig. 4   Comparison of three key metrics between the vanilla single-
layer network and its dual over 10 runs. The metrics are the quanti-
zation error (top row), the norm of the matrix of the edges (middle
row), and the number of valid prototypes (bottom row). The metrics

are computed on three different datasets: Spiral (left column), Moons
(middle column), and Circles (right column). Error bands represent
the standard error of the mean

616	 Cognitive Computation (2024) 16:608–623

1 3

The “Discussion—Theoretical Analysis” section yields
a theoretical explanation for the observed results. All the
code for the experiments has been implemented in Python 3,
relying upon open-source libraries [61, 62]. All the experi-
ments have been run on the same machine: Intel® Core™
i7-8750H 6-Core Processor at 2.20 GHz equipped with
8 GiB RAM. To enable code reuse, the Python code for
the mathematical models including parameter values and
documentation is freely available under Apache 2.0 Public
License from a GitHub repository11 [63]. The whole pack-
age can also be downloaded directly from PyPI2. Unless
required by applicable law or agreed to in writing, software
is distributed on an “as is” basis, without warranties or con-
ditions of any kind, either express or implied. The datasets
generated and analyzed during the current study are avail-
able from the corresponding author on reasonable request.

Discussion—Theoretical Analysis

Stochastic Approximation Theory of the Gradient Flows

In the following, the gradient flows of the vanilla and the dual
single-layer neural networks are formally examined when
trained using the quantization error, one of the most common

loss functions used for training unsupervised neural networks
in clustering contexts. The following theory is based on the
assumption of � = 0 in Eq. (12). Taking into account the edge
error only relaxes the analysis, but the results remain valid.
Under the stochastic approximation theory, the asymptotic prop-
erties of the gradient flows of the two networks can be estimated.

Base Layer Gradient Flow

For each prototype j, represented in the base layer by the
weight vector Wj

1
∈ ℝ

d of the j-th neuron (it is the j-th row
of the matrix W1 ), the contribution of its Voronoi set to the
quantization error is given by:

where nj is the cardinality of the j-th Voronoi set. The corre-
sponding gradient flow of the base network is the following:

being � the learning rate. The averaging ODE holds:

where �j = �[xi] is the expectation in the limit of infinite samples
of the j-th Voronoi set, and corresponds to the centroid of the
Voronoi region. The unique critical point of the ODE is given by:

(19)Ej =

nj�
i=1

‖xi −W
j

1
‖2
2
=

nj�
i=1

(‖xi‖22 + ‖Wj

i
‖2
2
− 2xT

i
W

j

1
)

(20)W
j

1
(t + 1) = W

j

1
(t) − �∇

W
j

1

Ej = W
j

1
(t) − �

nj∑
i=1

(W
j

1
− xi)

(21)
dW

j

1

dt
= −W

j

1
+ �j

Fig. 5   Experiments on synthetic datasets. From left to right: Spiral, Moons, and Circles datasets

1  https://​github.​com/​pietr​obarb​iero/​cola
2  https://​pypi.​org/​proje​ct/​deeptl/​1.0.​0/

https://github.com/pietrobarbiero/cola
https://pypi.org/project/deeptl/1.0.0/

617Cognitive Computation (2024) 16:608–623	

1 3

and the ODE can be rewritten as:

under the transformation wj

1
= W

j

1
−W

j

1,crit
 in order to study

the origin as the critical point. The associated matrix is −Id ,
whose eigenvalues are all equal to − 1 and whose eigenvec-
tors are the vectors of the standard basis. Hence, the gradi-
ent flow is stable and decreases in the same exponential
way, as e−t , in all directions. The gradient flow of one epoch
corresponds to an approximation of the second step of the
generalized Lloyd iteration, as stated before.

Dual Layer Gradient Flow

In the dual layer, the prototypes are estimated by the outputs,
in such a way that they are represented by the rows of the Y2
matrix. Indeed, the j-th prototype is now represented by the

(22)W
j

1,crit
= �j

(23)
dw

j

1

dt
= −w

j

1

row vector
(
Y
j

2

)T

 , from now on called yT
j
 for sake of simplic-

ity. It is computed by the linear transformation:

where xi ∈ ℝ
n is the i-th row of the training set X and

W
j

2
∈ ℝ

n is the weight vector of the j-th neuron (it is the j-th
row of the matrix W2 ), and is here named as Ωj for simplicity.
Hence, the j-th prototype is computed as:

and its squared (Euclidean) 2-norm is:

For the j-th prototype, the contribution of its Voronoi set to
the quantization error is given by:

with the same notation as previously. The gradient flow of
the dual network is computed as:

being � the learning rate. The gradient is given by:

(24)yT
j
=
(
W

j

2

)T[
x1 ⋯ xd

]
=
(
W

j

2

)T

XT = ΩT
j
XT

(25)yj = XΩj

(26)‖yj‖22 = ΩT
j
XTXΩj

(27)Ej =

nj�
i=1

‖xi − yj‖22 =
nj�
i=1

(‖xi‖22 + ‖yi‖22 − 2xT
i
yj)

(28)Ωj(t + 1) = Ωj(t) − �∇Ωj
Ej

(29)

∇Ωj
Ej = ∇Ωj

nj∑
i=1

(
xT
i
xi + ΩT

j
XTXΩj − 2ΩT

j
XTxi

)
= 2

(
XTXΩj − XTxi

)

Fig. 6   Dynamical simulations. From left to right: Spiral, Moons, and Circles datasets

Table 2   Parameters for high-dimensional simulations using MADELON
(s.v. stands for singular value)

SAMPLES FEATURES CLUSTERS MAX S.V MIN S.V

100 1000 2 112 3E − 14
100 2000 2 120 7E − 14
100 3000 2 126 4E − 14
100 5000 2 139 5E − 14
100 10,000 2 154 7E − 14

618	 Cognitive Computation (2024) 16:608–623

1 3

The averaging ODE is estimated as:

The unique critical point of the ODE is the solution of the
normal equations:

The linear system can be solved only if XTX ∈ ℝ
n×n is full

rank. This is true only if n ≤ d (the case n = d is trivial and,
so, from now on the analysis deals with n < d ) and all col-
umns of X are linearly independent. In this case, the solution
is given by:

where X+ is the pseudoinverse of X . The result corresponds to
the least squares solution of the overdetermined linear system:

which is equivalent to:

This last system shows that the dual layer asymptotically
tends to output the centroids as prototypes. The ODE can
be rewritten as:

under the transformation wj = Ωj − Ωj,crit in order to study
the origin as the critical point. The associated matrix is
−XTX . Consider the singular value decomposition (SVD)

(30)
dΩj

dt
= −

(
XTXΩj − XT�j

)

(31)XTXΩj = XT�j

(32)Ωj,crit = (XTX)
−1
XT�j = X+�j

(33)XΩj = �j

(34)ΩT
j
XT = �T

j

(35)
dwj

dt
= −XTXwj

of X = UΣVT where U ∈ ℝ
d×d and V ∈ ℝ

n×n are orthogonal
and Σ ∈ ℝ

d×n is diagonal (nonzero diagonal elements named
singular values and called �i , indexed in decreasing order).
The i-th column of V (associated to �i ) is written as vi and is
named right singular vector. Then:

is the eigenvalue decomposition of the sample autocorrela-
tion matrix of the inputs of the dual network. It follows that
the algorithm is stable and the ODE solution is given by:

where the constants depend on the initial conditions. The
same dynamical law is valid for all the other weight neurons.
If n > d and all columns of X are linearly independent, it
follows:

and the system XΩj = �j is underdetermined. This set of
equations has a nontrivial nullspace and so the least squares
solution is not unique. However, the least squares solution
of minimum norm is unique. This corresponds to the mini-
mization problem:

The unique solution is given by the normal equations of
the second kind:

(36)XTX =
(
UΣVT

)T
UΣVT = VΣ2VT

(37)wj(t) =

n∑
i=1

civie
−�2

i
t

(38)rank(X) = rank
(
XTX

)
= d

(39)���
(
Ωj

)
s.t.XΩj = �j

(40)
{

XXTz = �j

Ωj = XTz

Fig. 7   High-dimensional simu-
lations: accuracy as a function
of the dimensionality of the
problem. Error bands corre-
spond to the standard error of
the mean [67]

619Cognitive Computation (2024) 16:608–623	

1 3

that is, by considering that XXT has an inverse:

Multiplying on the left by XXT yields:

that is Eq. (31), which is the system whose solution is the
unique critical point of the ODE (setting the derivative
in Eq. (30) to zero). Resuming, both cases give the same
solution. However, in the case n > d and rank(X) = d , the
output neuron weight vectors have minimum norm and
are orthogonal to the nullspace of X, which is spanned by
vn−d+1, v(n−d+2),… , vn . Indeed, XTX has n − d zero eigen-
values, which correspond to centers. Therefore, the ODE
solution is given by:

This theory proves the following theorem.

Theorem 3.1  (Dual flow and PCA). The dual network
evolves in the directions of the principal axes of its autocor-
relation matrix (see Eq. (36)) with time constants given by
the inverses of the associated data variances.

This statement claims the dual gradient flow moves
faster in the more relevant directions, i.e., where data vary
more. Indeed, the trajectories start at the initial position of
the prototypes (the constants in Eq. (43) are the associated
coordinates in the standard framework rotated by V) and
evolve along the right singular vectors, faster in the direc-
tions of more variance in the data. It implies a faster rate of
convergence because it is dictated by the data content, as
already observed in the numerical experiments (see Fig. 4).

Dynamics of the Dual Layers

For the basic layer, it holds:

where l ∈ ℝ
d is a vector of constants. Therefore, Wj

1
 tends

asymptotically to �j , by moving in ℝd . However, being �j a
linear combinations of the columns of X, it can be deduced
that, after a transient period, the neuron weight vectors tend
to the range (column space) of X, say R(X), i.e.:

where t0 is a certain instant of time and r = rank(X) =

min{d, n} under the assumption of samples independently

(41)Ωj = XT
(
XXT

)−1
�j

(42)

(
XTX

)
Ωj =

(
XTX

)
XT

(
XTX

)−1
�j = XT

(
XTX

)(
XTX

)−1
�j = XT�j

(43)wj(t) =

n−d∑
i=1

civie
−�2

i
t +

n∑
i=n−d+1

civi

(44)W
j

1
−W

j

1,crit
= le−t

(45)∀j,∀t > t0W
j

1
∈ R(X) = span (u1, u2,… , ur)

drawn from the same distribution, which prevents from the
presence of collinearities in data. It follows

where l ∈ ℝ
d is another vector of constants. Then, Wj

1
 can be

considered the output of a linear transformation represented
by the matrix X, i.e., Wj

1
= Xp , being p ∈ ℝ

n its preimage.
Hence, (Wj

1
)
T
= pTXT  , which shows the duality. Indeed,

it represents a network whose input is XT , and the output
(W

j

1
)
T
 and parameter weight vector pT are the interchange

of the corresponding ones in the base network. Notice, how-
ever, that the weight vector in the dual network corresponds
only through a linear transformation, that is, by means of the
preimage. Under the second duality assumption XXT = Id ,
it holds:

where 0r,s is the zero matrix with r rows and s columns.
Therefore, this assumption implies there are d singular val-
ues all equal to 1 or − 1. In the case of remaining singular
values, they are all null and of cardinality d − n . For the dual
layer, under the second duality assumption, in the case of
singular values all equal to − 1 or 0, it follows:

where q ∈ ℝ
n . Therefore, Ωj tends asymptotically to Ωj,crit ,

by moving in ℝn . Hence, it can be deduced that, after a tran-
sient period, the neuron weight vectors tend to the range
(column space) of X, say R(XT) , i.e.:

where t0 is a certain instant of time and r = rank(X) =

min{d, n} under the same assumption of noncollinear data.
Resuming, the base and dual gradient flows, under the

two duality assumptions, except for the presence of cent-
ers, are given by:

because XV = UΣ from the SVD of X and c = Σq for the
arbitrariness of the constants. This result claims the fact that

(46)W
j

1
= W

j

1,crit
+ Uce−t

(47)

XX
T = UΣVT

�
UΣVT

�T
= UΣΣT

U
T = I

d
⇒ UΣΣT = U ⇒

⎧⎪⎨⎪⎩

UI
d
= Ud ≤ n

U

�
I
n

0
n,d−n

0
d−n,n 0

d−n,d−n

�
d > n

(48)Ωj − Ωj,crit =

⎧
⎪⎨⎪⎩

Vqe−td ≥ n

Vq

�
e−t1d
1n−d

�
d < n

(49)∀j,∀t > t0Ω
j ∈ R

(
XT

)
= span (v1, v2,… , vr)

(50)

⎧⎪⎨⎪⎩

w
j

1
= Uce−t

�j = Vqe−t
⇒ X�j = XVqe−t ⇒ X�j = UΣqe−t ⇒ X�j = Uce−t ⇒ w

j

1
= X�j

620	 Cognitive Computation (2024) 16:608–623

1 3

the base flow directly estimates the prototype, while the dual
flow estimates its preimage. This confirms the duality of the
two layers from the dynamical point of view and proves the
following theorem.

Theorem 3.2  (Dynamical duality). Under the two assump-
tions of 2.1, the two networks are dynamically equivalent.
In particular, the base gradient flow evolves in R(X) and the
dual gradient flow evolves in R(XT).

More in general, the fact that the prototypes are straightly
computed in the base network implies a more rigid dynam-
ics of its gradient flow. On the contrary, the presence of the
singular values in the exponentials of the dual gradient flow
originates from the fixed transformation (matrix X) used
for the prototype estimation. They are exploited for a better
dynamics, because they are suited to the statistical charac-
teristics of the training set, as discussed before. Both flows
estimate the centroids of the Voronoi sets, like the centroid
estimation step of the Lloyd algorithm, but the linear layers
allow the use of gradient flows and do not require the a priori
knowledge of the number of prototypes (see the discussion
on pruning in the “Clustering as a Loss Minimization” sec-
tion). However, the dual flow is an iterative least squares
solution, while the base flow does the same only implicitly. In
the cased > n,rank(X) = rank(XT) = n , and the base gradient
flow stays in ℝd , but tends to lie on the n-dimensional sub-
spaceR(X) . Instead, the dual gradient flow is n-dimensional
and always evolves in the n-dimensional subspaceR(XT) .
Figure 8 shows both flows and the associated subspaces for
the case n = 2 andd = 3 . The following lemma describes the
relationship between the two subspaces.

Lemma 3.3  (Range transformation). The subspace R(X) is
the transformation by X of the subspace R(XT).

Proof. The two subspaces are the range (column space)
of the two matrices X and XT:

Then:

More in general, multiplying X by a vector yields a vec-
tor in R(X).

All vectors in R(XT) are transformed by X in the cor-
responding quantities in R(X) . In particular:

This analysis proves the following theorem.

Theorem 3.4  (Fundamental on gradient flows, part I).
In the case d > n, the base gradient flow represents the
temporal law of a d-dimensional vector tending to an
n-dimensional subspace containing the solution. Instead,
the dual gradient flow always remains in an n-dimen-
sional subspace containing the solution. Then, the least
squares transformation X+ yields a new approach, the
dual one, which is not influenced by d, i.e., the dimen-
sionality of the input data.

This assertion is the basis of the claim the dual network is
a novel and very promising technique for high-dimensional
clustering. However, it must be considered that the underlying
theory is only approximated and gives an average behavior.
Figure 7 shows a simulation comparing the performances of
VCL, DCL, and a deep variant of the DCL model in tackling
high-dimensional problems with an increasing number of fea-
tures. The simulations show how the dual methods are more

(51)R(X) = {z ∶ z = Xu for a certain u}

(52)R
(
XT

)
=
{
y ∶ y = XTx for a certain x

}

(53)
XR

(
XT

)
=
{
u = Xy ∶ y = XTx for a certain x

}
= R(X)

(54)ui =
1

�i
Xvi ∀i = 1,… , n

(55)�j = XΩj,crit

Fig. 8   Gradient flows and sub-
spaces (n = 2 and d = 3) [67]

621Cognitive Computation (2024) 16:608–623	

1 3

capable to deal with high-dimensional data as their accuracy
remains near 100% until 2000 − 3000 features. Obviously, the
deep version of DCL (deep-DCL) yields the best accuracy
because it exploits the nonlinear transformation of the addi-
tional layers.

In the case n ≥ d , instead, the two subspaces have
dimension equal to d. Then, they coincide with the fea-
ture space, eliminating any difference between the two
gradient flows. In reality, for the dual flow, there are n − d
remaining modes with zero eigenvalue (centers) which are
meaningless, because they only add n − d constant vectors
(the right singular vectors of X) which can be eliminated
by adding a bias to each output neuron of the dual layer.

Theorem 3.5  (Fundamental on gradient flows, part II). In
the case d ≤ n, both gradient flows lie in the same (feature)
space, the only difference being the fact that the dual gra-
dient flow temporal law is driven by the variances of the
input data.

The Voronoi Set Estimation

Consider the matrixXTYT ∈ ℝ
n×j , which contains all the

inner products between data and prototypes. From the
architecture and notation of the dual layer, it follows
= ΩXT , which yields:

where the sample autocorrelation data matrix G is the Gram
matrix. The Euclidean distance matrixedm(X, Y) ∈ ℝ

n×j ,
which contains the squared distances between the columns
of X and Y, i.e., between data and prototypes, is given by
[64]:

where diag(A) is a column vector containing the diagonal
entries of A and 1r is the r-dimensional column vector of all
ones. It follows:

and considering that YYT = ΩXT
(
ΩXT

)T
= ΩGΩT , it holds:

as a quadratic function of the dual weights. This func-
tion allows the straight computation of the edm from
the estimated weights, which is necessary in order to
evaluate the Voronoi sets of the prototypes for the quan-
tization loss.

(56)XTYT = XTXΩT = GΩT

(57)edm(X, Y) = diag
(
XTX

)
1T
j
− 2XTYT + 1ndiag

(
YYT

)T

(58)edm(X, Y) = diag(G)1T
j
− 2GΩT + 1ndiag

(
YYT

)T

(59)
edm(X, Y) = f (G,Ω) = 1ndiag

(
ΩGΩT

)T
− 2GΩT + diag(G)1T

j

Conclusion

This work opens a novel field in neural network research where
unsupervised gradient-based learning joins competitive learn-
ing. Two novel layers, VCL, as a representative of the competi-
tive layer, and DCL, its dual, are introduced for unsupervised
deep learning applications. Despite VCL is just an adaptation
of a standard competitive layer for deep neural architectures,
DCL represents a completely novel approach. The relationship
between the two layers has been extensively analyzed and their
equivalence in terms of architecture has been proven. Nonethe-
less, the advantages of the dual approach justify its employment.
Unlike all other clustering techniques, the parameters of DCL
evolve in a n-dimensional submanifold which does not depend on
the number of features d as the layer is trained on the transposed
input matrix. As a result, the dual approach is natively suitable
for tackling high-dimensional problems. The limitation of the
proposed theory follows from the choice of using the stochastic
approximation theory, which only yields the asymptotic proper-
ties of the gradient flows of the two networks. For this reason, the
analysis of the dynamics of two flows has been added. The other
important advantage of DCL is the fact that it outputs the pro-
totypes. This requires either a batch or minibatch learning. This
works the same as the classical neural module outputs and can be
naturally embedded in the backpropagation rule. Hence, unlike
VCL, and, of course, the traditional deep clustering approaches,
DCL can be perfectly integrated in a deep neural framework, thus
allowing to exploit the advantages of both.

The flexibility and the power of the approach pave the
way towards more advanced and challenging learning tasks;
an upcoming paper will compare DCL on renowned bench-
marks against state-of-the-art clustering algorithms. Further
extensions of this approach may include topological non-
stationary clustering [65], hierarchical clustering [12–14],
core set discovery [66], incremental and attention-based
approaches, or the integration within complex architectures
such as VAEs and GANs, and will be studied in the future.

Funding  Open access funding provided by Politecnico di Torino within
the CRUI-CARE Agreement. Dr. Randazzo acknowledges funding
from the research contract no. 32-G-13427–2 (DM 1062/2021) funded
within the Programma Operativo Nazionale (PON) Ricerca e Innovazi-
one of the Italian Ministry of University and Research.

Data Availability  The datasets generated and analyzed during the current
study are available from the corresponding author on reasonable request.

Declarations 

Ethical Approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

Consent to Participate  Not applicable.

622	 Cognitive Computation (2024) 16:608–623

1 3

Conflict of Interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 MacQueen J, others. Some methods for classification and analysis
of multivariate observations. Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability. Oakland,
CA, USA. 1967;281–97.

	 2.	 McLachlan GJ, Basford KE. Mixture models: inference and appli-
cations to clustering. M. Dekker New York. 1988.

	 3.	 Martinetz T, Schulten K, others. A “neural-gas” network learns
topologies. Artif Neural Netw. 1991;397–402.

	 4.	 Bhatia SK, others. Adaptive K-means clustering. FLAIRS confer-
ence. 2004;695–9.

	 5.	 Ester M, Kriegel H-P, Sander J, Xu X, others. A density-based
algorithm for discovering clusters in large spatial databases with
noise. Kdd. 1996;226–31.

	 6.	 Hebb DO. The organization of behavior: a neuropsychological
theory. Psychology Press; 2005.

	 7.	 Martinetz T. Competitive Hebbian learning rule forms perfectly
topology preserving maps. International conference on artificial
neural networks. Springer. 1993;427–34.

	 8.	 White RH. Competitive Hebbian learning. IJCNN-91-Seattle Int
Jt Conf Neural Netw. 1991;949 vols.2–.

	 9.	 Kohonen T. Self-organized formation of topologically correct
feature maps. Biol Cybern. 1982;43:59–69.

	10.	 Fritzke B. A growing neural gas network learns topologies.
Advances in neural information processing systems. 1995;625–32.

	11.	 Fritzke B. A self-organizing network that can follow non-stationary
distributions. International conference on artificial neural networks.
Springer. 1997;613–8.

	12.	 Palomo EJ, López-Rubio E. The growing hierarchical neural gas
self-organizing neural network. IEEE Trans Neural Netw Learn
Syst. 2017;28:2000–9.

	13.	 Barbiero P, Bertotti A, Ciravegna G, Cirrincione G, Cirrincione
M, Piccolo E. Neural biclustering in gene expression analysis. Int
Conf Comput Sci Comput Intell. 2017;1238–43.

	14.	 Cirrincione G, Ciravegna G, Barbiero P, Randazzo V, Pasero
E. The GH-EXIN neural network for hierarchical clustering.
Neural Netw. 2020;121:57–73.

	15.	 Pearson KLIII. On lines and planes of closest fit to systems of points
in space. Lond Edinb Dublin Philos Mag J Sci. 1901;2:559–72.

	16.	 Schölkopf B, Smola A, Müller K-R. Kernel principal component
analysis. International conference on artificial neural networks.
Springer. 1997;583–8.

	17.	 Demartines P, Hérault J. Curvilinear component analysis: a self-
organizing neural network for nonlinear mapping of data sets.
IEEE Trans Neural Networks. 1997;8:148–54.

	18.	 Cirrincione G, Randazzo V, Pasero E. The growing curvilinear compo-
nent analysis (GCCA) neural network. Neural Netw. 2018;103:108–17.

	19.	 Cirrincione G, Randazzo V, Pasero E. Growing Curvilinear
Component Analysis (GCCA) for dimensionality reduction
of nonstationary data. Multidiscip Approach Neural Comput.
Springer. 2018;151–60.

	20.	 LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard
W, et al. Backpropagation applied to handwritten zip code recogni-
tion. Neural Comput. 1989;1:541–51.

	21.	 Lovino M, Urgese G, Macii E, Di Cataldo S, Ficarra E. A deep
learning approach to the screening of oncogenic gene fusions
in humans. Int J Mol Sci. 2019;20:1645.

	22.	 Lovino M, Ciaburri MS, Urgese G, Di Cataldo S, Ficarra E.
DEEPrior: a deep learning tool for the prioritization of gene
fusions. Bioinformatics. 2020;36:3248–50.

	23.	 Roberti I, Lovino M, Di Cataldo S, Ficarra E, Urgese G.
Exploiting gene expression profiles for the automated pre-
diction of connectivity between brain regions. Int J Mol Sci.
2019;20:2035.

	24.	 Lovino M, Montemurro M, Barrese VS, Ficarra E. Identifying the
oncogenic potential of gene fusions exploiting miRNAs. J Biomed
Inform. 2022;129: 104057.

	25.	 Hu W, Miyato T, Tokui S, Matsumoto E, Sugiyama M. Learn-
ing discrete representations via information maximizing self-
augmented training. arXiv preprint arXiv:170208720. 2017.

	26.	 Yang J, Parikh D, Batra D. Joint unsupervised learning of deep
representations and image clusters. Proc IEEE Conf Com Vis Pat-
tern Recognit. 2016;5147–56.

	27.	 Chang J, Wang L, Meng G, Xiang S, Pan C. Deep adaptive image
clustering. Proc IEEE Int Conf Comput Vis. 2017;5879–87.

	28.	 Min E, Guo X, Liu Q, Zhang G, Cui J, Long J. A survey of cluster-
ing with deep learning: from the perspective of network architec-
ture. IEEE Access. 2018;6:39501–14.

	29.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification
with deep convolutional neural networks. Adv Neural Inf Process
Syst. 2012;1097–105.

	30.	 Hsu C-C, Lin C-W. Cnn-based joint clustering and representation
learning with feature drift compensation for large-scale image
data. IEEE Trans Multimedia. 2017;20:421–9.

	31.	 Fard MM, Thonet T, Gaussier E. Deep k-means: jointly clustering
with k-means and learning representations. Pattern Recogn Lett.
2020;138:185–92.

	32.	 Jabi M, Pedersoli M, Mitiche A, Ayed IB. Deep clustering: on
the link between discriminative models and k-means. IEEE Trans
Pattern Anal Mach Intell. 2019;43:1887–96.

	33.	 Kramer MA. Nonlinear principal component analysis using
autoassociative neural networks. AIChE J. 1991;37:233–43.

	34.	 Huang Q, Zhang Y, Peng H, Dan T, Weng W, Cai H. Deep sub-
space clustering to achieve jointly latent feature extraction and
discriminative learning. Neurocomputing. 2020;404:340–50.

	35.	 Opochinsky Y, Chazan SE, Gannot S, Goldberger J. K-autoencoders
deep clustering. ICASSP 2020 - 2020. IEEE Int Conf Acoust Speech
Signal Process (ICASSP). 2020;4037–41.

	36.	 Li K, Ni T, Xue J, Jiang Y. Deep soft clustering: simultaneous
deep embedding and soft-partition clustering. J Ambient Intell
Humaniz Comput. 2021;1–13.

	37.	 Roselin AG, Nanda P, Nepal S, He X. Intelligent anomaly detec-
tion for large network traffic with optimized deep clustering
(ODC) algorithm. IEEE Access. 2021;9:47243–51.

	38.	 Kingma DP, Welling M. Auto-encoding variational bayes. arXiv
preprint arXiv:13126114. 2013.

	39.	 Jiang Z, Zheng Y, Tan H, Tang B, Zhou H. Variational deep
embedding: an unsupervised and generative approach to cluster-
ing. arXiv preprint arXiv:161105148. 2016.

	40.	 Dilokthanakul N, Mediano PA, Garnelo M, Lee MC, Salimbeni
H, Arulkumaran K, et al. Deep unsupervised clustering with
gaussian mixture variational autoencoders. arXiv preprint
arXiv:161102648. 2016.

http://creativecommons.org/licenses/by/4.0/

623Cognitive Computation (2024) 16:608–623	

1 3

	41.	 Bo D, Wang X, Shi C, Zhu M, Lu E, Cui P. Structural deep clustering
network. Proceedings of The Web Conference. 2020;2020:1400–10.

	42.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, et al. Generative adversarial nets. Adv Neural Inf
Process Syst. 2014;2672–80.

	43.	 Springenberg JT. Unsupervised and semi-supervised learning
with categorical generative adversarial networks. arXiv preprint
arXiv:151106390. 2015.

	44.	 Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel
P. Infogan: Interpretable representation learning by informa-
tion maximizing generative adversarial nets. Proc 30th Int Conf
Neural Inf Process Sys. 2016;2180–8.

	45.	 Harchaoui W, Mattei P-A, Bouveyron C. Deep adversarial
Gaussian mixture auto-encoder for clustering. 2017.

	46.	 Peng X, Feng J, Zhou JT, Lei Y, Yan S. Deep subspace cluster-
ing. IEEE transactions on neural networks and learning systems.
2020;31:5509–21.

	47.	 Bahdanau D, Cho K, Bengio Y. Neural machine translation by
jointly learning to align and translate. 2014 [cited 2022 Nov 4];
Available from: https://​arxiv.​org/​abs/​1409.​0473

	48.	 Jin Y, Tang C, Liu Q, Wang Y. Multi-head self-attention-based
deep clustering for single-channel speech separation. IEEE
Access. 2020;8:100013–21.

	49.	 Chen Z, Ding S, Hou H. A novel self-attention deep subspace
clustering. Int J Mach Learn Cyb. 2021;1–11.

	50.	 Shrivastava AD, Kell DB. FragNet, a contrastive learning-based
transformer model for clustering, interpreting, visualizing, and
navigating chemical space. Molecules. 2021;26:2065.

	51.	 Hornik K, Stinchcombe M, White H, others. Multilayer feedforward
networks are universal approximators. Neural Netw. 1989;2:359–66.

	52.	 Rumelhart DE, Zipser D. Feature discovery by competitive
learning. Cogn Sci. 1985;9:75–112.

	53.	 Barlow HB. Unsupervised learning. Neural Comput. 1989;1:295–311.
	54.	 Haykin S. Neural networks: a comprehensive foundation. Inc.:

Prentice-Hall; 2007.
	55.	 Lloyd S. Least squares quantization in PCM. IEEE Trans Inf

Theory. 1982;28:129–37.
	56.	 Sabin M, Gray R. Global convergence and empirical consistency of the

generalized Lloyd algorithm. IEEE Trans Inf Theory. 1986;32:148–55.

	57.	 Gray R. Vector quantization IEEE Assp Magazine. 1984;1:4–29.
	58.	 Lovino M, Randazzo V, Ciravegna G, Barbiero P, Ficarra E, Cir-

rincione G. A survey on data integration for multi-omics sample
clustering. Neurocomputing [Internet]. 2021 [cited 2021 Dec 10];
Available from: https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​
S0925​23122​10180​63

	59.	 Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks. Proc 13th Int Conf Artif Intell Stat.
2010;249–56.

	60.	 Guyon I. Design of experiments of the NIPS 2003 variable selec-
tion benchmark. NIPS 2003 workshop on feature extraction and
feature selection. 2003;1–7.

	61.	 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al.
Tensorflow: a system for large-scale machine learning. 12th
${$USENIX$}$ symposium on operating systems design and
implementation (${$OSDI$}$ 16). 2016;265–83.

	62.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, et al. Scikit-learn: machine learning in Python. J Mach
Learn Res. 2011;12:2825–30.

	63.	 Barbiero P. pietrobarbiero/cola: Absolutno. 2020.
	64.	 Dokmanic I, Parhizkar R, Ranieri J, Vetterli M. Euclidean distance

matrices: essential theory, algorithms, and applications. IEEE Sig-
nal Process Mag. 2015;32:12–30.

	65.	 Randazzo V, Cirrincione G, Ciravegna G, Pasero E. Nonstationary top-
ological learning with bridges and convex polytopes: the G-EXIN neu-
ral network. 2018 Int Jt Conf Neural Netw (IJCNN). IEEE. 2018;1–6.

	66.	 Ciravegna G, Barbiero P, Cirrincione G, Squillero G, Tonda A.
Discovering hierarchical neural archetype sets. Prog Artif Intell
Neural Syst. Springer. 2019;255–67.

	67.	 Cirrincione G, Randazzo V, Barbiero P, Ciravegna G, Pasero E. Dual
deep clustering. In: Esposito A, Faundez-Zanuy M, Morabito FC,
Pasero E, editors. Applications of artificial intelligence and neural
systems to data science [Internet]. Singapore: Springer Nature; 2023
[cited 2023 Oct 13]. p. 51–62. Available from: https://​doi.​org/​10.​
1007/​978-​981-​99-​3592-5_5

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/1409.0473
https://www.sciencedirect.com/science/article/pii/S0925231221018063
https://www.sciencedirect.com/science/article/pii/S0925231221018063
https://doi.org/10.1007/978-981-99-3592-5_5
https://doi.org/10.1007/978-981-99-3592-5_5

	Gradient-Based Competitive Learning: Theory
	Abstract
	Introduction
	Methods
	Dual Neural Networks
	Duality Theory for Single-layer Networks
	Clustering as a Loss Minimization

	Results
	Discussion—Theoretical Analysis
	Stochastic Approximation Theory of the Gradient Flows
	Base Layer Gradient Flow
	Dual Layer Gradient Flow

	Dynamics of the Dual Layers
	The Voronoi Set Estimation

	Conclusion
	References

