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1 Introduction

Consider the heat equation associated with the fractional harmonic oscillator, namely

{
∂t u(t, x) + Hβu(t, x) = 0

u(0, x) = u0(x),
(t, x) ∈ R

+ × R
d , (1.1)

where Hβ = (−� + |x |2)β , β > 0, and u(t, x) ∈ C.
Strictly speaking, the corresponding fractional heat semigroup e−t Hβ

is defined in
terms of the spectral decomposition of the standard Hermite operator H = H1 =
−� + |x |2. To be precise, recall that

H =
∞∑
k=0

(2k + d)Pk,

where Pk stands for the orthogonal projection of L2(Rd) onto the eigenspace corre-
sponding to the eigenvalue (2k + d) – see Section 2.1 below for further details. As a
consequence of the spectral theorem, we can consider the family of fractional powers
of H defined by

Hβ =
∞∑
k=0

(2k + d)β Pk, β > 0.

The heat semigroup e−t Hβ
is then defined accordingly by

e−t Hβ

f =
∞∑
k=0

e−t(2k+d)β Pk f , f ∈ L2(Rd).

While there is a wealth of literature on the semigroup e−t(−�)β (see e.g., [21], [34]),
stimulated by the very wide range of physics-inspired models involving the fractional
Laplacian [16], [11], the current research of the semigroup e−t Hβ

is rather limited,
even in fundamental settings such as the Lebesgue spaces. This is particularly striking
in view of the role played by the Hermite operator H and its fractional powers Hβ in
several aspects of quantum physics and mathematical analysis [18, 30].

The purpose of this note is to advance the knowledge of the fractional heat semi-
group, in the wake of a research program initiated by the authors in [3]. In particular,
our main result is a set of fixed-time decay estimates for e−t Hβ

in the Lebesgue space
setting.

Theorem 1 For 1 ≤ p, q ≤ ∞ and β > 0, set

σβ := d

2β

∣∣∣ 1
p

− 1

q

∣∣∣.
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1. If p, q ∈ (1,∞), or (p, q) = (1,∞), or p = 1 and q ∈ [2,∞), or p ∈ (1,∞)

and q = 1, then there exists a constant C > 0 such that

‖e−t Hβ

f ‖Lq ≤
{
Ce−tdβ ‖ f ‖L p if t ≥ 1

Ct−σβ ‖ f ‖L p if 0 < t ≤ 1.
(1.2)

2. If 0 < β ≤ 1, then the above estimate holds for p, q ∈ [1,∞].
To the best of our knowledge, the dissipative estimate in Theorem 1 is new even for

the Hermite operator (β = 1). We also stress that the time decay at infinity in (1.2) is
sharp for any choice of Lebesgue exponents. Moreover, since the power of t is never
positive for small time, we infer that there is a singularity near the origin for p �= q.

It is worth emphasizing that the fractionalHermite propagator e−t Hβ
is not a Fourier

multiplier, hence we cannot rely on the arguments typically used to establish L p − Lq

space-time estimates for the fractional heat propagator e−t(−�)β – see for instance
[21, Lemma 3.1]. In fact, we will resort to techniques of pseudodifferential calculus to
deal with the operators e−t Hβ

and e−t H (cf. [22, Section 4.5]), and also to Bochner’s
subordination formula in order to express the heat semigroup e−t Hβ

, 0 < β ≤ 1, in
terms of solutions of the heat equation e−t H (see (3.4)).

As an application of Theorem 1, we investigate the wellposedness of{
∂t u(t, x) + Hβu(t, x) = |u(t, x)|γ−1u(t, x)

u(0, x) = u0(x),
(t, x) ∈ R

+ × R
d , (1.3)

with u(t, x) ∈ C, β > 0 and γ > 1.
First, let us highlight that, due to the occurrence of the quadratic potential |x |2, the

problem (1.3) has no scaling symmetry. Nevertheless, the companion fractional heat
equation{

∂t u(t, x) + (−�)βu(t, x) = |u(t, x)|γ−1u(t, x)

u(0, x) = u0(x),
(t, x) ∈ R

+ × R
d , (1.4)

is invariant under the following scaling transformation. For λ > 0, set

uλ(t, x) = λ
2β

γ−1 u(λ2β t, λx) and u0,λ(x) = λ
2β

γ−1 u0(λx).

If u(t, x) is a solution of (1.4) with initial datum u0(x), then uλ(t, x) is also a solution
of (1.4) with initial datum u0,λ(x). The L p space is invariant under the above scaling
only when p = pβ

c := d(γ−1)
2β . Motivated by this remark, we shall say that (1.3) is

L p −

⎧⎪⎨
⎪⎩
sub-critical if 1 ≤ p < pβ

c

critical if p = pβ
c

super-critical if p > pβ
c .

Concerning the wellposedness of (1.3), our result can be stated as follows.
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Theorem 2 Assume that u0 ∈ L p(Rd), 1 < p < ∞ and β > 0.

1. (Local well-posedness) If p > pβ
c , then there exists a T > 0 such that (1.3) has

a solution u ∈ C([0, T ], L p(Rd)). Moreover, u extends to a maximal interval
[0, Tmax) such that either Tmax = ∞ or Tmax < ∞ and lim

t→Tmax
‖u(t)‖L p = ∞.

2. (Lower blow-up rate) Consider p > pβ
c and suppose that Tmax < ∞, where Tmax

is the existence time of the resulting maximal solution of (1.3). Then

‖u(t)‖L p ≥ C (Tmax − t)
d

2pβ − 1
γ−1 , for all t ∈ [0, Tmax).

3. (Global existence) If p = pβ
c and ‖u0‖

L p
β
c
is sufficiently small, then Tmax = ∞.

Let us briefly recall the literature to better frame our results. Weissler [34] proved
local wellposeness for (1.4) in L p for super-critical indices p > p1c ≥ 1. Concerning
the sub-critical regime p < p1c , there is no general theory of existence, see [34], [6].
Actually, Haraux-Weissler [15] proved that if 1 < p1c < γ + 1 then there is a global
solution of (1.4) (with zero initial data) in L p(Rd) for 1 ≤ p < p1c , but no such
solution exists when γ + 1 < pc. In the critical case where p = p1c it is proved that
the solution exists globally in time for small initial data. Some results in the same vein
have been proved for the fractional heat equation (1.4) by Miao, Yuan and Zhang in
[21, Theorem 4.1].

Remark 1 Let us discuss some aspects of the previous results. In particular, we
highlight some intriguing related problems that we plan to explore in future work.

– The sign in power type non-linearity (focusing or defocusing) will not play any
role in our analysis. Therefore, we have chosen to consider the defocusing case
for the sake of concreteness.

– Using properties of Hermite functions and interpolation, in [35, Theorem 1.6]
Wong proved that ‖e−t H f ‖L2(R) � (sinh t)−1‖ f ‖L p(R) for t > 0 and 1 ≤ p ≤ 2.
We note that Theorem 1 recaptures and improves Wong’s result.

– It is known that (1.4) is ill-posed on Lebesgue spaces in the sub-critical regime, see
[15]. There is reason to believe that the same conclusion holds for (1.3). However,
a thorough analysis of this problem is beyond the scope of this note.

– It is expected that Theorem 1 could be useful in dealing with other types of non-
linearities in (1.3), such as exponential and inhomogeneous type non-linearity
(which are also extensively studied in the literature).

– In Section 5 we discuss another application of Theorem 1, namely Strichartz
estimates for the fractional heat semigroup. Our approach here relies on a standard
technique (i.e., T T � method and real interpolation), whereas a refined phase-space
analysis of Hβ is expected to reflect into better estimates.
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2 Preliminaries

Notation. The symbol X � Y means that the underlying inequality holds with a
suitable positive constant factor:

X � Y 	⇒ ∃C > 0 : X ≤ CY .

2.1 On the fractional harmonic oscillator Hˇ

Let us briefly review some facts concerning the spectral decomposition of the Hermite
operator H = −� + |x |2 on R

d .
Let 	α(x), α ∈ N

d , be the normalized d-dimensional Hermite functions, that is

	α(x) = �d
j=1hα j (x j ), hk(x) = (

√
π2kk!)−1/2(−1)ke

1
2 x

2 dk

dxk
e−x2 .

The Hermite functions	α are eigenfunctions of H with eigenvalues (2|α|+d), where
|α| = α1+ ...+αd . Moreover, they form an orthonormal basis of L2(Rd). The spectral
decomposition of H is thus given by

H =
∞∑
k=0

(2k + d)Pk, Pk f =
∑
|α|=k

〈 f ,	α〉	α,

where 〈·, ·〉 is the inner product in L2(Rd).
In general, given a bounded function m : N → C, the spectral theorem allows us

to define the operator m(H) such that

m(H) f =
∑
α∈Nd

m(2|α| + d)〈 f ,	α〉	α =
∞∑
k=0

m(2k + d)Pk f , f ∈ L2(Rd).

In view of the Plancherel theorem for the Hermite expansions, m(H) is bounded on
L2(Rd).We refer to [30] for further details, in particular forHörmandermultiplier-type
results for m(H) on L p(Rd).

2.2 Some relevant function spaces

For the benefit of the reader we review some basic facts of time-frequency analysis –
see for instance [7, 14], [1] for comprehensive treatments.

Recall that the short-time Fourier transform of a temperate distribution f ∈ S ′(Rd)

with respect to a window function 0 �= g ∈ S(Rd) (Schwartz space) is defined by

Vg f (x, ξ) = 〈 f , g〉 =
∫
Rd

f (t)g(t − x)e−2π iξ ·t dt, (x, ξ) ∈ R
2d ,
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where the brackets 〈·, ·〉 denote the extension to S ′(Rd) × S(Rd) of the L2 inner
product.

Modulation spaces, introduced by Feichtinger [9], have proved to be extremely
useful in a wide variety of contexts, ranging from analysis of PDEs to mathematical
physics – among the most recent contributions, see e.g., [8], [20], [2], [23], [10].
Modulation spaces are defined as follows. For 1 ≤ p, q ≤ ∞ we have

Mp,q(Rd) =
{
f ∈ S ′(Rd) : ‖ f ‖Mp,q :=

∥∥∥‖Vg f (x, ξ)‖L p
x

∥∥∥
Lq

ξ

< ∞
}

.

The Fourier-Lebesgue spaces FL p(Rd) are defined by

FL p(Rd) =
{
f ∈ S ′(Rd) : ‖ f ‖FL p :=‖ f̂ ‖L p < ∞

}
.

We recall from [3, Theorem 1.1] some bounds for the fractional heat semigroup on
modulation spaces.

Theorem 3 Let β > 0, 0 < p1, p2, q1, q2 ≤ ∞ and set

1

p̃
:=max

{ 1

p2
− 1

p1
, 0

}
,

1

q̃
:=max

{ 1

q2
− 1

q1
, 0

}
, σβ := d

2β

( 1

p̃
+ 1

q̃

)
.

Then

‖e−t Hβ

f ‖Mp2,q2 ≤
{
Ce−tdβ ‖ f ‖Mp1,q1 if t ≥ 1,

Ct−σβ ‖ f ‖Mp1,q1 if 0 < t ≤ 1,

where C > 0 is a universal constant.

We briefly recall some properties of the Shubin classes�s , which play a central role
as symbol classes in the theory of pseudodifferential operators – we refer to [19, 22]
for additional details. For s ∈ R we define �s as the space of functions a ∈ C∞(R2d)

satisfying the following condition: for every α̃ ∈ N
2d there exists Cα̃ > 0 such that

|∂α̃a(x, ξ)| ≤ Cα̃(1 + |(x, ξ)|)s−|α̃|, (x, ξ) ∈ R
2d ,

This space becomes a Fréchet space endowed with the obvious seminorms.
It is important for our purposes to recall that the fractional Hermite propagator is

a pseudodifferential operator with symbol in a suitable Shubin class, as proved in [3,
Proposition 2.3].

Proposition 1 Let β > 0. The fractional Hermite operator Hβ = (−� + |x |2)β is a
pseudodifferential operator with Weyl symbol aβ ∈ �2β . More precisely, we have

aβ(x, ξ) = (|x |2 + |ξ |2)β + r(x, ξ), |x | + |ξ | ≥ 1, (2.1)

where r ∈ �2β−2.
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We also recall some facts concerning the so-called Shubin-Sobolev (also known as
Hermite-Sobolev) spaces Qs , s ∈ R – see [25], [12, Theorem 2.1] for further details.
In particular, Qs is the space of f ∈ S ′(Rd) such that

‖ f ‖2Qs :=‖Hs/2 f ‖2L2 =
∞∑
k=0

||Pk f ||2L2(2k + d)s < ∞.

Given the polynomial weight vs(x, ξ):=(1 + |x | + |ξ |)s with (x, ξ) ∈ R
d × R

d

and s ∈ R, consider the weighted modulation space M2,2
vs

(Rd) endowed with the
norm ‖ f ‖M2,2

vs
:= ∥∥vs Vg f

∥∥
L2(R2d )

. In view of the characterization Qs = M2,2
vs

(see
for instance [7, Lemma 4.4.19]), Hölder’s inequality and the inclusion relations of
Shubin-Sobolev spaces (see e.g., [7, Theorem 2.4.17]), it is well known that

Qs ↪→ Mp,q ↪→ M∞ ↪→ Q−s

for all p, q ∈ [1,∞] and s > d – see also [14] and references therein.

3 Proof of Theorem 1

3.1 Proof of Part (1)

It is well known that

L p ↪→ Mp,∞ and Mq,1 ↪→ Lq for 1 ≤ p, q ≤ ∞,

see e.g., [7, 13, 28]. In light of this embedding and Theorem 3, for t > 1 we obtain
the desired estimate

‖e−t Hβ

f ‖Lq � e−tdβ ‖ f ‖L p , ∀p, q ∈ [1,∞].

Let us consider now the case where 0 < t ≤ 1. In view of Proposition 1 we think
of Hβ as a pseudodifferential operator with Weyl symbol aβ ∈ �2β , where

aβ(x, ξ) = (|x |2 + |ξ |2)β + r(x, ξ), |x | + |ξ | ≥ 1,

for a suitable r ∈ �2β−2. We may further rewrite

aβ(x, ξ) = a(x, ξ) + r ′(x, ξ), x, ξ ∈ R
d ,

for some r ′ ∈ �2β−2, where a ∈ �2β satisfies

a(x, ξ) ≥ (1 + |x | + |ξ |)2β, x, ξ ∈ R
d . (3.1)
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Note that the same conclusion holds for the Kohn-Nirenberg symbol of Hβ (see [22,
Proposition 1.2.9]). Therefore,we assume in the sequel that the above functionsa(x, ξ)

and r ′(x, ξ) denote the Kohn-Nirenberg symbols of the corresponding operators.
It follows from [22, Theorem 4.5.1] that the heat semigroup e−t Hβ

has a Kohn-
Nirenberg symbol with the following structure1:

bt (x, ξ) = e−ta(x,ξ) + e−ta(x,ξ)
J−1∑
j=1

2 j∑
l=1

t lul, j (x, ξ) + r
′′
t (x, ξ),

where J ≥ 1 is arbitrarily chosen, ul, j ∈ �2βl−2 j and r
′′
t satisfy

∣∣∂α
x ∂

γ
ξ r

′′
t (x, ξ)

∣∣ ≤ Cα,γ (1 + |x | + |ξ |)−2J−|α|−|γ |

for a constant Cα,γ independent of t ∈ (0, 1), for every α, γ ∈ N
d .

Since r
′′
t (x, D) : Q−J → QJ , for J large enough, we have

‖r ′′
t (x, D) f ‖Lq ≤ C‖ f ‖L p .

Let us focus now on the symbol

Ct (x, ξ):=e−ta(x,ξ)
J−1∑
j=1

2 j∑
l=1

t lul, j (x, ξ).

By virtue of the Leibniz rule, the chain rule and (3.1), one can verify the estimates

∣∣∂α
x ∂

γ
ξ [e t

4 〈x〉2βCt (x, ξ)]∣∣ ≤ Cα,γ (1 + |ξ |)−|γ |, (3.2)

where 〈·〉 = (1+ | · |2)1/2. In fact, it suffices to observe that ∂α
x e

t
4 〈x〉2β is a finite linear

combination of terms of the type

e
t
4 〈x〉2β ∂α1 [t〈x〉2β ] · · · ∂αk [t〈x〉2β ],

with α1 + · · · + αk = |α|, so that
∣∣∂α

x e
t
4 〈x〉2β ∣∣ ≤ e

t
4 2〈x〉2β 〈x〉−|α|.

Similarly, since a ∈ �2β satisfies (3.1), we have

∣∣∂α
x ∂

γ
ξ a(x, ξ)

∣∣ ≤ a(x, ξ) (1 + |x | + |ξ |)−|α|−|γ |,

1 Note that the mentioned result is stated for the Weyl quantization, but again a straightforward change of
variables shows that the same conclusion holds for the Kohn-Nirenberg quantization.
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so that, arguing as above,

∣∣∂α
x ∂

γ
ξ e

−ta(x,ξ)
∣∣ ≤ e− t

2 a(x,ξ) (1 + |x | + |ξ |)−|α|−|γ |,

hence we infer

∣∣∂α
x ∂

γ
ξ [t l ul, j (x, ξ)]∣∣ ≤ t l a(x, ξ)l (1 + |x | + |ξ |)−2 j−|α|−|γ |.

The claimed bound thus follows by the Leibniz rule.
To summarize, for every p ∈ (1,∞) we have

‖e t
4 〈x〉2βCt (x, D) f ‖L p ≤ ‖ f ‖L p , 0 < t < 1,

by the L p boundedness of pseudodifferential operators with symbol in Hörmander’s
class S01,0 – see for instance [27, Proposition 4, p. 250]. For 1 ≤ q ≤ p ≤ ∞ we have,
by Hölder inequality,

‖e− t
4 〈x〉2β f ‖Lq ≤ Ct

d
2β

(
1
q − 1

p

)
‖ f ‖L p .

Hence we obtain, for 1 ≤ q ≤ ∞, 1 < p < ∞, q ≤ p,

‖Ct (x, D) f ‖Lq ≤ Ct
d
2β

(
1
q − 1

p

)
‖ f ‖L p , 0 < t < 1.

On the other hand, we also have

∣∣Ct (x, ξ)
∣∣ ≤ Ce− t

2 |ξ |2β , 0 < t < 1,

and the integral kernel of the operator Ct (x, D) given by

K (x, y) = (2π)−d
∫
Rd

ei(x−y)·ξCt (x, ξ) dξ

is readily seen to satisfy

∣∣K (x, y)
∣∣ ≤ Ct−

d
2β .

This gives the desired continuity result L1 → L∞, while the remaining bounds follow
by interpolation with the above L p → Lq estimates.

Remark 2 Note that some endpoint cases can be obtained in a straightforward way.
For instance, from L1 → L∞ continuity we also obtain L1 → L2 bounds as follows:
if f ∈ L2(Rd) then

∣∣〈e−t Hβ

f , e−t Hβ

f 〉∣∣ = ∣∣〈e−2t Hβ

f , f 〉∣∣ ≤ Ct−
d
2β ‖ f ‖2L1

123



D. G. Bhimani et al.

so that

‖e−t Hβ

f ‖L2 ≤ Ct−
d
4β ‖ f ‖L1 , 0 < t < 1.

By interpolation with L1 → L∞ one also gets the desired estimate L1 → Lq for
2 ≤ q ≤ ∞.

Remark 3 Some endpoint cases (e.g., if p, q ∈ {1,∞}) are not covered in the results
above. A deeper investigation of the kernel K (x, y) of Ct (x, D) could likely give
some result in this connection (for example L1 → L1, L∞ → L∞), but it will not
be essential for the applications to the nonlinear problem in Theorem 2. Nevertheless,
the dispersive estimate L1 → L∞ is covered.

3.2 Proof of Part (2)

In order to prove the second claim in Theorem 1, some preparatory work is needed.
First, we recast e−t H as the Weyl transform of a function on C

d , which allows us to
think of e−t H as a pseudodifferential operator.

Recall that the Weyl transform W (F) of a function F : C
d → C is defined by

W (F)φ(ξ) = (2π)−d
∫
Rd

∫
Rd

ei(ξ−η)·yb
(

ξ + η

2
, y

)
φ(η) dydη,

for φ ∈ L2(Rd), where the symbol b(ξ, η) is the full inverse Fourier transform of
F in both variables. In particular, the Weyl transform W (F) is a pseudodifferential
operator in the Weyl calculus with symbol b.

Let us highlight that the Weyl symbol of the Hermite semigroup e−t H is given by
the function at (x, ξ) = Cd(cosh t)−d e−(tanh t)(|x |2+|ξ |2), see [31]. Thus,

e−t H f (x)

= Cd(cosh t)−d(2π)−d
∫
Rd

∫
Rd

ei(x−η)·y e−(tanh t)|y|2 e−(tanh t)(| x+η
2 |2) f (η) dydη︸ ︷︷ ︸

=I

.

In order to bound the above integral I , we first recast the latter expression in terms
of convolution. Recall that the Fourier transform of the Gaussian function f (y) =
e−πa|y|2 with a > 0 is given by f̂ (x) = a−d/2e−π |x |2/a , and note that

|x − η|2
4

− |x |2
2

− |η|2
2

= −|x + η|2
4

.

As a result, we have

(tanh t)d/2 I =
∫
Rd

e−( 1
4 tanh t − tanh t

4 )|x−η|2e− tanh t
2 (|x |2+|η|2) f (η) dη

= e− tanh t
2 |x |2 (

e− 1
2 sinh 2t |·|2 ∗ g

)
(x),
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where we set g(·) = e− tanh t
2 |·|2 f (·). Note that

(cosh t)−d (tanh t)−d/2 = (sinh(2t))−d/2 .

Hence

e−t H f (x) = C̃d (sinh(2t))−d/2 e− tanh t
2 |x |2 (

e− 1
2 sinh 2t |·|2 ∗ g

)
(x). (3.3)

Lemma 1 Let 1 ≤ p, q ≤ ∞ and t > 0. Then

‖e−t H f ‖Lq ≤ C(tanh t)
− d

2

∣∣∣ 1q − 1
p

∣∣∣ ‖ f ‖L p ,

for some constant C > 0 that depends only on d.

Proof Using Mehler’s formula for the Hermite functions (see e.g., [30]), the kernel
Kt (x, y) of the semigroup e−t H is explicitly given by

Kt (x, y) = cd(sinh 2t)
−d/2e− 1

4 (coth t)|x−y|2e− 1
4 (tanh t)|x+y|2 .

For 1 < p < q < ∞, set α = d(1/p − 1/q). Then we have

Kt (x, y) = cd(sinh 2t)
−d/2(tanh t)(d−α)/2|x − y|α−d

× ((coth t)|x − y|2)(d−α)/2e− 1
4 (coth t)|x−y|2e− 1

4 (tanh t)|x+y|2 ,

from which we obtain the estimate

Kt (x, y) ≤ C(cosh t)−d(tanh t)−α/2|x − y|α−d .

Since the Riesz potential

Rα f (x) = cα

∫
Rd

f (y)|x − y|α−ddy

is bounded from L p to Lq for 1 < p < q < ∞, we get

‖e−t H f ‖Lq ≤ C(cosh t)−d(tanh t)−α/2‖ f ‖L p

for 1 < p < q < ∞.
To prove the remaining cases, we use the identity (3.3). We consider the case

1 ≤ q ≤ p ≤ ∞ first. Set 1
q = 1

p + 1
q̃ and note that

‖e− tanh t
2 |·|2‖Lq̃ ∼ (tanh t)−d/2q̃ = (tanh t)

d
2

(
1
p − 1

q

)
.

123



D. G. Bhimani et al.

By (3.3) and invoking Hölder and Young’s inequalities, we obtain

‖e−t H f ‖Lq � (sinh 2t)−d/2 ‖e− tanh t
2 |·|2‖Lq̃ ‖e− 1

2 sinh 2t |·|2 ∗ g‖L p

� (sinh 2t)−d/2 (tanh t)
d
2

(
1
p − 1

q

)
‖e− 1

2 sinh 2t |·|2‖L1‖g‖L p

� (tanh t)
− d

2

(
1
q − 1

p

)
‖ f ‖L p .

Let 1 ≤ q ≤ ∞ and note that

‖e− 1
2 sinh 2t |·|2‖Lq ≈ (sinh(2t))d/2q .

By (3.3) and Young inequality, we have

‖e−t H f ‖Lq � (sinh 2t)−d/2‖e− 1
2 sinh 2t |·|2 ∗ g‖Lq

� (sinh 2t)−d/2‖e− 1
2 sinh 2t |·|2‖Lq‖g‖L1

� (sinh 2t)
− d

2

(
1− 1

q

)
‖ f ‖L1

� (cosh t)
−d

(
1− 1

q

)
(tanh t)

− d
2

(
1− 1

q

)
‖ f ‖L1 .

This completes the proof. ��
Note that Lemma 1 essentially gives the desired fixed-time estimate of Theorem 1

(2) for β = 1 – see also Remark 4 below. In order to deal with the case 0 < β < 1,
Bochner’s subordination formula and the property of probability density function (see
(3.6)) will play a crucial role. To be precise, Bochner’s subordination formula allows
us to express the heat semigroup e−t

√
H in terms of solutions of the heat equation:

e−t
√
H f (x) = π−1/2

∫ ∞

0
e−y e− t2

4y H f (x) y−1/2 dy, (3.4)

which ultimately follows from the identity

e−a = π−1/2
∫ ∞

0
e−y e− a2

4y y−1/2 dy (a > 0).

The Macdonald function Kν(z) is defined, for z > 0, by

Kν(z) = 2−ν−1 zν
∫ ∞

0
e−y− z2

4y y−ν−1 dy.

A straightforward change of variables shows that

zνKν(z) = 2ν−1
∫ ∞

0
e−y− z2

4y yν−1 dy = zνK−ν(z).
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Then zνKν(z) converges to 2ν−1�(ν) as z → 0. Moreover, it is known that Kν(z)
has exponential decay at infinity (see [17]). Consider now the Gaussian kernel of the
form

gt (x) = (4π t)−d/2 e− |x |2
4t , t > 0, x ∈ R

d .

We set pt (x, y) = pt (x − y), where

pt (x) =
∫ ∞

0
gs(x) ηt (s) ds,

gs is the Gaussian kernel defined above and ηt ≥ 0 is the density function of the
distributionof theβ-stable subordinator at time t , see e.g., [4], [5]. Therefore,ηt (s) = 0
for s ≤ 0 and, for 0 < β < 1, we have

∫ ∞

0
e−us ηt (s) ds = e−tuβ

, u ≥ 0. (3.5)

The fractional heat semi group e−t Hβ
is thus given in terms of solutions of the heat

equation:

e−t Hβ

f (x) =
∫ ∞

0
e−sH f (x) ηt (s) ds. (3.6)

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1 – Part (2) The case t > 1 follows from the proof of Part (1) of
Theorem 1, as it holds for all p, q ∈ [1,∞]. We then assume 0 < t ≤ 1 from now on.
In view of the identity (3.6) and Lemma 1 for the case β = 1, we obtain

‖e−t Hβ

f ‖Lq ≤ C

[∫ ∞

0
(tanh s)−α/2ηt (s)ds

]
‖ f ‖L p ,

where we set α = d|1/p−1/q|. Splitting the integral above into two parts, the integral
taken over [1,∞) is bounded by

∫ ∞

0
ηt (s)ds = 1.

The remaining integral is bounded by

∫ ∞

0
s−α/2ηt (s)ds = 1

�(α/2)

∫ ∞

0

( ∫ ∞

0
e−usuα/2−1du

)
ηt (s)ds.
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Changing the order of integration, and using (3.5), for a suitable constant C > 0 we
obtain ∫ ∞

0
s−α/2ηt (s)ds ≤ C

∫ ∞

0
uα/2−1e−tuβ

du.

Finally, the change of variables v = uβ gives the estimate

∫ ∞

0
uα/2−1e−tuβ

du ≤ C
∫ ∞

0
v(α/2β)−1e−tvdv = Cα,β t

−(α/2β).

This completes the proof for the case 0 < t ≤ 1. ��
Remark 4 We would like to have also a representation in the vein of (3.3) for the
fractional heat propagator e−t Hβ

with β > 1 in terms of the Weyl transform. On the
other hand, we have a convolution formula for the classical fractional heat propagator
e−t(−�)β . Regretfully, we do not know how to get fixed-time estimates for β > 1 via
the Weyl transform at the time.

Remark 5 Using the fact that e−t H commutes with the Fourier transform, i.e.,

ê−t H f = e−t H f̂ , one obtains

‖e−t H f ‖FLq ≤ C(tanh t)
− d

2

∣∣∣ 1q − 1
p

∣∣∣ ‖ f ‖FL p .

4 Proof of Theorem 2

4.1 Part (1) – local wellposedness

Fix M1 ≥ ‖u0‖L p .

The proof strategy is quite standard. Let T > 0 and set

YT = L∞ (
(0, T ), L p(Rd)

)
∩ L∞ (

(0, T ), L pγ (Rd)
)

,

endowed with a norm

‖u‖YT = max

{
sup

0<t<T
‖u(t)‖L p , sup

0<t<T
t
d(γ−1)
2pγ β ‖u(t)‖L pγ

}
.

Moreover, consider

BM+1 = {u ∈ YT : ‖u‖YT ≤ M + 1}

where M > 0 is chosen in such a way that ‖e−t Hβ
u0‖YT ≤ CM1 ≤ M . Note that M

depends only on ‖u0‖YT – in particular, it is independent of t .
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Consider the mapping 	 : BM+1 → YT defined by

	[u](t) = e−t Hβ

u0 +
∫ t

0
e−(t−τ)Hβ

(
|u(τ )|γ−1 u(τ )

)
dτ. (4.1)

We shall show that in fact 	 is a mapping from BM+1 into BM+1. Indeed, consider
u ∈ BM+1. By Theorem 1, for q ∈ {p, pγ }, we have

∥∥∥∥
∫ t

0
e−(t−τ)Hβ

(
|u(τ )|γ−1 u(τ )

)
dτ

∥∥∥∥
Lq

≤ C
∫ t

0
(t − τ)

− d
2β [ 1p − 1

q ] ‖u(τ )‖γ

L pγ dτ

≤ C(M + 1)γ
∫ t

0
(t − τ)

− d
2β [ 1p − 1

q ]
τ

− d(γ−1)
2pβ dτ

= C(M + 1)γ t1−
d
2β [ 1p − 1

q ]− d(γ−1)
2pβ ×

∫ 1

0
(1 − τ)

− d
2β [ 1p − 1

q ]
τ

− d(γ−1)
2pβ dτ.

Since q = p or q = pγ, γ > 1 and p > pβ
c , we have

∫ 1

0
(1 − τ)

− d
2β [ 1p − 1

q ]
τ

− d(γ−1)
2pβ dτ < ∞.

Therefore, we infer

t
d
2β [ 1p − 1

q ]
∥∥∥∥
∫ t

0
e−(t−τ)Hβ

(
|u(τ )|γ−1 u(τ )

)
dτ

∥∥∥∥
Lq

≤ C(M + 1)γ T 1− d(γ−1)
2pβ . (4.2)

If we take q = p or q = pγ in (4.2), then

∥∥∥∥
∫ t

0
e−(t−τ)Hβ

(
|u(τ )|γ−1 u(τ )

)
dτ

∥∥∥∥
L p

≤ C1(M + 1)γ T 1− d(γ−1)
2pβ (4.3)

or

t
d(γ−1)
2pγβ

∥∥∥∥
∫ t

0
e−(t−τ)Hβ

(
|u(τ )|γ−1 u(τ )

)
dτ

∥∥∥∥
L pγ

≤ C2(M + 1)γ T 1− d(γ−1)
2pβ .

As a result, we conclude that

‖	[u]‖YT ≤ M + max{C1,C2} (M + 1)γ T 1− d(γ−1)
2pβ .

Moreover, for a sufficiently small T > 0, we have

max{C1,C2} (M + 1)γ T 1− d(γ−1)
2pβ ≤ 1.
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This shows that 	 is a mapping from BM+1 into BM+1, as claimed.
We now prove that 	 : BM+1 → YT is a contraction mapping. Recall that

∣∣∣|u|γ−1u − |v|γ−1v

∣∣∣ �γ

(
|u|γ−1 + |v|γ−1

)
|u − v|. (4.4)

By (4.4) and Hölder inequality, we have

‖|u|γ−1u − |v|γ−1v‖L p ≤ γ
(
‖u‖γ−1

L pγ + ‖v‖γ−1
L pγ

)
‖u − v‖L pγ .

In light of the previous computation, for u, v ∈ BM+1 and q ∈ {p, pγ } we have

‖	[u](t) − 	[v](t)‖Lq

≤ γ

∫ t

0
(t − τ)

− d
2β

(
1
p − 1

q

) (
‖u(τ )‖γ−1

L pγ + ‖v(τ)‖γ−1
L pγ

)
‖u(τ ) − v(τ)‖L pγ dτ

≤ C3(M + 1)γ−1 t1−
d
2β [ 1p − 1

q ]− d(γ−1)
2pβ ‖u − v‖YT (4.5)

for a constant C3 > 0. By taking q = p or q = pγ in (4.5), we similarly obtain

‖	[u](t) − 	[v](t)‖YT ≤ C4(M + 1)γ−1 T 1− d(γ−1)
2pβ ‖u − v‖YT

for a constant C4 > 0. Since 1− d(γ−1)
2pβ > 0, for a sufficiently small T > 0 we have

C4(M + 1)γ−1 T 1− d(γ−1)
2pβ ≤ 1

2
.

We have thus proved that the mapping 	 is the contraction mapping for a sufficiently
small T . By Banach fixed point theorem, there exists a unique fixed point u of the
mapping 	 in BM+1 and, in light of Duhamel’s principle, the latter is a solution of
(1.3).

Let us finally prove that u ∈ C([0, T ], L p(Rd)). For u0 ∈ L p(Rd), let the solution
map 	u0 : [0, T ] → L p(Rd) given by

	u0u(t) = e−t Hβ

u0 +
∫ t

0
e−(t−τ)Hβ

(
|u(τ )|γ−1 u(τ )

)
dτ.

In view of (4.3), we obtain

‖u(t) − u(0)‖L p ≤ ‖e−t Hβ

u0 − u0‖L p + C1(M + 1)γ t1−
d(γ−1)
2pβ .

The solution map u(t) is then continuous at t = 0 if ‖e−t Hβ
u0 − u0‖L p → 0 as

t → 0. In fact, one can similarly show that it is continuous on [0, T ], hence we have
u ∈ C([0, T ], L p(Rd)). It only remains to show that e−t Hβ → I as t → 0 in the
strong operator topology on L p(Rd). To this aim, let us note first that Theorem 1
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implies that the semigroup e−t Hβ
is bounded on L p(Rd), uniformly with respect to

t ∈ [0, 1], hence it is enough to prove the claim on a dense subspace of L p(Rd). It is
well known that finite linear combinations of Hermite functions are dense in S(Rd)

(see e.g., [26, Theorem 6.4.4]), and in this case the proof of ‖e−t Hβ
f − f ‖L p → 0

as t → 0 is an immediate consequence of the dominated convergence theorem.

Remark 6 We shall also mention that the result of Part (1) can be alternatively derived
from the abstract theorem ofWeissler [33, Theorem 1]. To this aim, we define Kt (u) =
e−t Hβ

(|u|γ−1u). Then for t > 0, Kt : L p(Rd) → L p(Rd) is locally Lipschitz and

‖Kt (u) − Kt (v)‖L p � t
− d

2β

(
γ
p − 1

p

)
‖|u|γ−1u − |v|γ−1v‖

L
p
γ

� t
− d

2β

(
γ
p − 1

p

) (
‖u‖γ−1

L p + ‖v‖γ−1
L p

)
‖u − v‖L p

� t
− d

2β

(
γ
p − 1

p

)
Mγ−1‖u − v‖L p ,

for ‖u‖L p ≤ M and ‖v‖L p ≤ M . Since p >
d(γ−1)

2β , we have t
− d

2β

(
γ
p − 1

p

)
∈

L1
loc(0,∞). Note that t �→ ‖Kt (0)‖L p = 0 ∈ L1

loc(0,∞) and e−sH Kt = Kt+s

for t, s > 0. Then (1) follows by [33, Theorem 1].

4.2 Part (2) – lower blow-up rate

Let u0 ∈ L p(Rd) be such that Tmax < ∞, and let u ∈ C
([0, Tmax), L p(Rd)

)
be the

maximal solution of (1.3). Fix s ∈ [0, Tmax) and set

w(t) = u(t + s), t ∈ [0, Tmax − s), and w(0) = u(s).

Then, as in the proof of Part (1), we claim that

‖u(s)‖L p + KMγ (Tmax − s)1−
d(γ−1)
2pβ > M, ∀M > 0, (4.6)

for some constant K > 0. Assuming the contrary, then for some M > 0 we would
have

‖u(s)‖L p + KMγ (Tmax − s)1−
d(γ−1)
2pβ ≤ M,

andwwould be defined on [0, Tmax−s] – in particular, u(Tmax)would bewell defined,
a contradiction. Hence, (4.6) is verified, for any t ∈ [0, Tmax) fixed and for all M > 0.

Set then M = 2‖u(t)‖L p . By (4.6), we infer

‖u(t)‖L p + K2γ ‖u(t)‖γ

L p (Tmax − t)1−
d(γ−1)
2pβ > 2‖u(t)‖L p , ∀t ∈ [0, Tmax).
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Hence, we have

‖u(t)‖L p ≥ C (Tmax − t)
d

2pβ − 1
γ−1 for all t ∈ [0, Tmax).

4.3 Part (3) – global existence

Given γ > 1, one can choose r in such a way that

2β

dγ (γ − 1)
<

1

r
<

2β

d(γ − 1)
.

Let r be fixed once for all and set

δ = 1

γ − 1
− d

2rβ
.

We observe that

δ + 1 − d(γ − 1)

2rβ
− δγ = 0.

Suppose that ρ > 0 and M > 0 satisfy the inequality

ρ + KMγ ≤ M,

where K = K (γ, d, r) > 0 is a constant and can explicitly be computed. We claim
that if

sup
t>0

tδ‖e−t Hβ

u0‖Lr ≤ ρ (4.7)

then there is a unique global solution u of (1.3) such that

sup
t>0

tδ‖u(t)‖Lr ≤ M . (4.8)

In order to prove our claim, consider

X =
{
u : (0,∞) → Lr (Rd) : sup

t>0
tδ‖u(t)‖Lr < ∞

}
,

XM =
{
u ∈ X : sup

t>0
tδ‖u(t)‖Lr ≤ M

}
, d(u, v) = sup

t>0
tδ‖u(t) − v(t)‖Lr .

It is easy to realize that (XM , d) is a complete metric space.
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Consider now the mapping

Ju0(u)(t) = e−t Hβ

u0 +
∫ t

0
e−(t−s)Hβ

(|u(s)|γ−1u(s))ds. (4.9)

Let u0 and v0 satisfy (4.7) and choose u, v ∈ XM . Clearly, we have

tδ‖Ju0u(t) − Jv0v(t)‖Lr ≤ tδ‖e−t Hβ

(u0 − v0)‖Lr

+ tδ
∫ t

0
‖e−(t−s)Hβ

(|u(s)|γ−1u(s) − |v(s)|γ−1v(s))‖Lr ds.

Using Theorem 1 with exponents (p, q) = (r/γ, r), (4.4) and Hölder’s inequality, we
obtain

‖e−(t−s)Hβ

(|u(s)|γ−1u(s) − |v(s)|γ−1v(s))‖Lr
� (t − s)−

d(γ−1)
2rβ ‖|u(s)|γ−1u(s) − |v(s)|γ−1v(s)‖

L
r
γ

� (t − s)−
d(γ−1)
2rβ γ

(
‖u(s)‖γ−1

Lr + ‖v(s)‖γ−1
Lr

)
‖u(s) − v(s)‖Lr

� (t − s)−
d(γ−1)
2rβ γ s−δγ Mγ−1d(u, v).

Using this inequality, we get

tδ‖Ju0u(t) − Jv0v(t)‖Lr
≤ tδ‖e−t Hβ

(u0 − v0)‖Lr + tδγ Mγ−1d(u, v)

∫ t

0
(t − s)−

d(γ−1)
2rβ s−δγ ds

≤ tδ‖e−t Hβ

(u0 − v0)‖Lr + K Mγ−1d(u, v), (4.10)

where K = tδγ
∫ t
0 (t − s)−

d(γ−1)
2rβ s−δγ ds is a finite positive constant. Indeed, since

δγ < 1,
d(γ − 1)

2rβ
< 1,

we see that∫ t

0
(t − s)−

d(γ−1)
2rβ s−δγ ds = t1−

d(γ−1)
2rβ −δγ

∫ 1

0
(1 − s)−

d(γ−1)
2rβ s−δγ ds < ∞.

Setting v0 = 0 and v = 0 in (4.10) we have

tδ‖Ju0u(t)‖Lr ≤ ρ + KMγ ≤ M .

That is, Ju0 maps XM into itself. Letting u0 = v0 in (4.10), we note that

d(Ju0u(t),Ju0v(t)) ≤ K Mγ−1d(u, v).
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Since KMγ−1 < 1, then Ju0 is a strict contraction on XM . Therefore, Ju0 has a
unique fixed point u in XM , which is a solution of (4.9).

Finally, using Theorem 1 with exponents (p, q) =
(
d(γ−1)

2β , r
)
, we see that if

‖u0‖
L p

β
c
is sufficiently small then (4.7) is satisfied.

5 Concluding remarks

In this concluding sectionwe illustrate another application of Theorem1, that is a set of
Strichartz estimates for the fractional heat propagator. We emphasize that Strichartz
estimates are indispensable tools for a thorough study of the wellposedness theory
for nonlinear equations – see e.g., [29], [32]. Since the proof is based on a standard
machinery, via T T � method and real interpolation (see for instance [21, Lemma 3.2]
and [36, Theorem 1.4] and the references therein), we omit the details.

We say that (q, p, r) is an β-admissible triple of indices if

1

q
= d

2β

(
1

r
− 1

p

)
,

where

1 < r ≤ p <

{
dr

d−2β , f or d > 2rβ

∞ f or d ≤ 2rβ.

Theorem 4 Consider I = [0, T ) for some T ∈ (0,∞], and β > 0.

1. Let (q, p, r) be anyβ-admissible triple and consider f ∈ Lr (Rd). Then e−t Hβ
f ∈

Lq(I , L p(Rd)) ∩ Cb(I , Lr (Rd)) and there exists a constant C > 0 such that

‖e−t Hβ

f ‖Lq (I ,L p) ≤ C‖ f ‖Lr .

2. Denote by p′
1 = p1

p1−1 the Hölder conjugate index of p1 ∈ [1,∞]. Let p′
1, p ∈

(1,∞), or (p′
1, p) = (1,∞), or p′

1 = 1 and p ∈ [2,∞), or p′
1 ∈ (1,∞) and

p = 1. Assume that (q, p) and (q1, p1) satisfy p′
1 �= p, 1 < q ′

1 < q < ∞ and

1

q ′
1

+ d

2β

∣∣∣∣ 1

p′
1

− 1

p

∣∣∣∣ = 1 + 1

q
. (5.1)

Then, there exists a constant C > 0 such that

∥∥∥∥
∫ t

0
e−(t−s)Hβ

F(s)ds

∥∥∥∥
Lq (I ,L p(Rd ))

≤ C‖F‖
Lq′

1 (I ,L p′1 (Rd ))
. (5.2)

We note that Pierfelice [24] studied Strichartz estimates for (1.3) with H = −�, while
Miao-Yuan-Zhang [21] and Zhai [36] obtained Strichartz estimates for the fractional
Laplacian (−�)β .
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Remark 7 We have several comments for Theorem 4.

1. Taking Theorem 1 into account, part (1) of Theorem 4, can be proved in analogy
with [21, Lemma 3.2], while part (2) of Theorem 4 can be proved similarly to [36,
Theorem 1.4].

2. The property (5.1) is weaker than the admissibility of triples (q, p, 2) and
(q1, p1, 2).

3. The hypothesis (5.1) and the constraint p′
1 �= p, 1 < q ′

1 < q < ∞ appear as a
consequence of the Hardy-Littlewood-Sobolev inequality.

4. In order to prove (5.2) we use Theorem 1, hence the assumptions on (p′
1, p) :

p′
1, p ∈ (1,∞), or (p′

1, p) = (1,∞), or p′
1 = 1 and p ∈ [2,∞), or p′

1 ∈ (1,∞)

and p = 1. See [36, Section 3.2] for details.
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