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STABILITY OF THE SCATTERING TRANSFORM FOR

DEFORMATIONS WITH MINIMAL REGULARITY

FABIO NICOLA AND S. IVAN TRAPASSO

Abstract. Within the mathematical analysis of deep convolutional neural networks,

the wavelet scattering transform introduced by Stéphane Mallat is a unique example

of how the ideas of multiscale analysis can be combined with a cascade of modulus

nonlinearities to build a nonexpansive, translation invariant signal representation with

provable geometric stability properties, namely Lipschitz continuity to the action of small

C2 diffeomorphisms – a remarkable result for both theoretical and practical purposes,

inherently depending on the choice of the filters and their arrangement into a hierarchical

architecture. In this note, we further investigate the intimate relationship between the

scattering structure and the regularity of the deformation in the Hölder regularity scale

Cα, α > 0. We are able to precisely identify the stability threshold, proving that stability

is still achievable for deformations of class Cα, α > 1, whereas instability phenomena

can occur at lower regularity levels modelled by Cα, 0 ≤ α < 1. While the behaviour at

the threshold given by Lipschitz (or even C1) regularity remains beyond reach, we are

able to prove a stability bound in that case, up to ε losses.

1. Introduction

Broadly speaking, the last decade was certainly marked by a striking series of successes
in several machine learning tasks relying on neural networks [15]. In particular, impressive
results in image classification, pattern recognition and feature extraction were achieved
by means of deep convolutional neural networks. Borrowing from Wigner, the efforts of
many researchers are currently directed to provide explanations for the “unreasonable ef-
fectiveness” of these models and related intriguing phenomena, such as the double descent
error curve [3, 12, 21, 23] or the instability to adversarial attacks [1, 8, 10, 14, 28].

The mathematical analysis of convolutional neural networks is a wide area of current in-
terest in the literature. The present note fits into a line of research pioneered by Stéphane
Mallat, ultimately aimed at showing how some fundamental principles of harmonic analy-
sis can be used to obtain theoretical models and guarantees in connection with problems
of deep learning. Motivated by some properties naturally expected to be satisfied by a
proper feature extractor, in the fundamental contribution [19] it is shown how such condi-
tions essentially force the design of a multiscale signal representation to have a hierarchical
architecture that shares many similarities with that of a convolutional neural network.

Let us briefly retrace here the basic ideas behind the construction for the sake of clarity.
Motivated by image analysis, the goal is to build up a feature map Φ: L2(Rd) → H, with
values in a suitable Hilbert space H, such that:
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(1) Φ is a nonexpansive transform.
This condition ensures stability to additive perturbations, that is

‖Φ(f)− Φ(h)‖ ≤ ‖f − h‖L2 , f, h ∈ L2(Rd).

(2) Φ is a translation-invariant transform.
Let Lx be the translation operator by x ∈ Rd, acting on f ∈ L2(Rd) as Lxf(y) =
f(y − x). Then

Φ(Lxf) = Φ(f), f ∈ L2(Rd), x ∈ R
d.

(3) Φ is stable to the action of small diffeomorphisms.
A convenient linearization of the action of a diffeomorphism along the orbits of
the translation group leads one to consider deformation operators of the form
Lτf(y) := f(y − τ(y)) with distortion field τ : Rd → R

d. Stability is achieved if
the feature vectors of Lτf and f are close when the underlying diffeomorphism
1− τ is close to identity, namely if there exists C > 0 such that

‖Φ(Lτf)− Φ(f)‖ ≤ CK(τ)‖f‖L2, f ∈ L2(Rd)

where K(τ) is some complexity measure/cost associated with the deformation τ .

1.1. The wavelet scattering transform. The approach in [19] relies on the a priori
exploitation of the principles of multiscale analysis in order to satisfy the requirements
detailed above. It is indeed well understood that instability to deformations is mostly
attributable to the vulnerability of the high-frequency components of a signal, which how-
ever carry fine-structure details and cannot thus be discarded without deteriorating the
information captured by the representation Φ. A Littlewood-Paley wavelet transform
[20, 22] can be used to perform scale separation and rearrange the frequency content of a
signal into dyadic packets. Thanks to inherent redundancy and additional nonlinear op-
erations, this procedure allows one to stabilize the high-frequency content up to a certain
scale, as well as to obtain stability guarantees to relatively small translations. Recovery
of the information content discarded by a fixed scale wavelet transform is achieved by
iteration of the same procedure on the outputs of the latter, ultimately leading to a cas-
cade of convolutions with fixed wavelet filters and modulus nonlinearities that eventually
has the multilayer architecture of a convolutional neural network. The pooling stage is
performed by extracting low-frequency averages of each scattered wavelet coefficient, and
actually coincides with output feature generation.

An essential yet more detailed discussion of this construction is provided in Section 2,
where we also fix the notation used below. Here we just recall that a low-pass filter φ
and a mother wavelet ψ on R

d are primarily chosen in such a way that the collection
{φ2J} ∪ {ψλ}λ∈ΛJ

obtained by suitable rotations and dilations up to the scale 2J , J ∈ Z

(see (2.4) for the precise definition of the index set ΛJ), allow one to essentially cover the
frequency space without holes – as entailed by the Littlewood-Paley condition (2.5) below.
The wavelet modulus coefficient corresponding to λ ∈ ΛJ is given by U [λ]f = |f ∗ψλ|. The
cascading sequence that we mentioned before is obtained by iteration along all the possible
paths with finite length, namely PJ =

⋃
m≥0 Λ

m
J , so that given p = (λ1, . . . , λm) ∈ Λm

J we
set

U [p]f := U [λm] · · ·U [λ1]f.
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The windowed wavelet scattering transform at scale 2J is thus the collection (indexed by
PJ) of features obtained by averaging with the low-pass filter φ2J at the scale 2J :

SJ [PJ ]f := {SJ [p]f}p∈PJ
, SJ [p]f := U [p]f ∗ φ2J .

The feature space corresponds to H = ℓ2(PJ ;L
2(Rd)), hence

‖SJ [PJ ]f‖2 =
∑

p∈PJ

‖SJ [p]f‖2L2.

Concerning the stability to small deformations, it was proved in [19, Theorem 2.12] that,
under suitable assumptions on the frequency filters (see Section 2.3 below for details), for
every input signal f with finite mixed ℓ1L2 scattering norm, that is

‖U [PJ ]f‖1 :=
∑

m≥0

( ∑

p∈Λm
J

‖U [p]f‖2L2

)1/2

<∞,

and for every deformation τ ∈ C2(Rd;Rd) with ‖Dτ‖L∞ ≤ 1/2, the following stability
estimate holds:

(1.1) ‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖ ≤ CK2(τ)‖U [PJ ]f‖1,
with

K2(τ) = 2−J‖τ‖L∞ +max
{
log

‖∆τ‖L∞

‖Dτ‖L∞

, 1
}
‖Dτ‖L∞ + ‖D2τ‖L∞ ,

where ‖∆τ‖L∞ := supx,y∈Rd |τ(x)− τ(y)| and D2τ stands for the Hessian of τ .

Some remarks are in order here. First, this estimate implies stability under small C2

deformations, as well as approximate invariance to global translations up to the scale 2J

(with global invariance recaptured in the asymptotic regime J → +∞).

Concerning the occurrence of the scattering norm, it is proved in [19, Lemma 2.8] that
a similar ℓ2L2 norm is finite for functions with a certain average modulus of continuity in
L2, in particular for functions with logarithmic-Sobolev regularity. It is also worthwhile
to point out that numerical evidences of exponential decay of the scattering energy coef-
ficients were rigorously confirmed (at least in dimension d = 1) in [32]. The latter results
also imply that 1-dimensional signals with a (generalized) logarithmic-Sobolev regularity
have indeed finite ℓ1L2 scattering norm (see Proposition 2.4 below).

It should be highlighted that one can also restrict to more regular signal classes, such as
Sobolev spaces or band-limited and cartoon functions. The underlying gain in signal reg-
ularity usually comes along with some degree of stability to small deformations – namely,
L2 sensitivity bounds of the form ‖Lτf − f‖L2 = O(K(τ)) are satisfied for suitably small
and regular deformations, see e.g. [33, 34]. In view of the Lipschitz continuity of the fea-
ture extractor, the latter bounds reflect into stability results for the signal representation,
in a sense “inherited” from the sensitivity to deformations of the underlying signal class
[2, 4, 9, 36]. On the other hand, the estimate (1.1) entails the more difficult problem of
deriving “structural” stability guarantees from the very design of the feature extractor,
which are thus informative on the invariance of the signal representation rather than the
regularity of the signal itself.

Putting aside these complementary views on the issue, let us observe that the condition
‖Dτ‖L∞ ≤ 1/2 suffices to ensure that I−τ is a bi-Lipschitz map and Lτ : L

2(Rd) → L2(Rd)
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is well-defined and uniformly bounded1. More precisely, if f is concentrated in a certain
frequency dyadic band, Lτf is essentially concentrated in the same band as well and
this suggests that such deformations should interact well with the transform architecture,
which is adjusted to such bands by design. Nevertheless, we will see that some instability
phenomena may occur if ‖Dτ‖L∞ 6→ 0.

1.2. A regularity scale for deformations. The purpose of this note is to elucidate
the intimate relationship between the scattering architecture and the regularity of the
deformation, lying at the very core of the “structural” stability for the wavelet scattering
transform. To this aim, we consider distortion fields in the Cα regularity scale, α > 0
(Hölder classes, recalled in Section 2 below), hence encompassing the case α = 2 already
studied in [19]. The quest for the minimal deformation regularity needed to achieve stabil-
ity guarantees is an intriguing and natural challenge from a mathematical point of view,
further motivated by the current practice in several problems in PDEs and image analy-
sis [26, 31, 35] where diffeomorphisms with lower regularity are taken into account – for
instance, Sobolev deformations τ ∈ Hs(Rd;Rd) with s > d/2+1, hence in Cs−d/2(Rd;Rd).
Stability results for the scattering transform under such weaker regularity assumptions for
the deformation would then broaden the theoretical and practical scope of this mathemat-
ical theory, hence promoting cross-fertilisation with classical and recent problems arising
in signal analysis and deep learning.

As a first result we highlight the following instability phenomenon, when τ → 0 in Cα,
for 0 ≤ α < 1, but not in the C1 norm. We assume here d = 1.

Theorem 1.1. Suppose that the filters φ, ψ ∈ L1(R)∩L2(R) in the definition of the scat-
tering transform satisfy the Littlewood-Paley condition (2.5) below. Assume, in addition,

that ψ has Fourier transform ψ̂ compactly supported in (0,+∞).

There exist τ, f ∈ C∞(R;R) \ {0} with compact support and satisfying ‖τ ′‖L∞ ≤ 1/2
such that the following holds true.

There exists C > 0 such that, for every J ∈ Z, n ∈ N, setting fn(x) = 2n/2f(2nx) and
τn(x) = 2−nτ(2nx),

(1.2) ‖SJ [PJ ](Lτnfn)− SJ [PJ ](fn)‖ ≥ C.

As a consequence, for 0 ≤ α < 1, there exists C > 0 such that, for every J ∈ Z, n ∈ N,

(1.3) ‖SJ [PJ ](Lτnfn)− SJ [PJ ](fn)‖ ≥ C2n(1−α)‖τn‖Cα‖fn‖L2 .

Results in the same spirit hold as well if the L2-norm is replaced by the scattering norm
‖U [PJ ]f‖1, see Proposition 3.1 below.

Notice that the functions τn ∈ C∞(R;R) are all supported in a fixed compact interval,
say I ⊂ R. Moreover, ‖τ ′n‖L∞ ≤ 1/2 for every n, and ‖τn‖Cα → 0 as n → ∞ for every
0 ≤ α < 1 (by (2.1) below).

To better frame the previous result, consider the set

(1.4) B1/2 = {τ ∈ C∞(R;R) : supp (τ) ⊂ I, ‖τ ′‖L∞ ≤ 1/2},
1Indeed, for every y ∈ Rd, the map Rd → Rd given by x 7→ y + τ(x) is a contraction, with Lipschitz

constant L ≤ 1/2. The map that associates y with the corresponding unique fixed point x has Lipschitz

constant ≤ 1/(1− L) ≤ 2.
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equipped with the Cα metric2, 0 ≤ α < 1. By the Taylor formula, if τ1, τ2 ∈ B1/2 then
‖Lτ1f − Lτ2f‖L2 . ‖τ1 − τ2‖∞‖f ′‖L2. Hence, since SJ [PJ ] is nonexpansive, for every
J ∈ Z and every fixed f ∈ H1(R) (Sobolev space) – in particular for each fn as above –
the map B1/2 → ℓ2(PJ ;L

2(R)) given by τ 7→ SJ [PJ ](Lτf) is Lipschitz continuous (cf. also
[13]). On the other hand, Theorem 1.1 provides a lower bound for the blow-up rate of
the Lipschitz constant, depending on α, when the input data become progressively less
regular.

The instability results in Theorem 1.1 can be heuristically explained as follows. Con-
sider a smooth signal f with unit L2 norm. The deformed signal Lτf has a certain
low-frequency mass, but a relatively small energy bump in a quite far dyadic frequency
band may occur even if ‖τ ′‖L∞ ≤ 1/2. The latter will propagate along different scattering
paths, thus preventing the quantity ‖SJ [PJ ](Lτf) − SJ [PJ ](f)‖ from being too small –
assuming that SJ [PJ ] preserves the norm, which is a consequence of the assumptions in
Theorem 1.1. A simple scaling argument shows that the same phenomenon can happen
even when ‖τ‖Cα → 0, 0 ≤ α < 1, along with a corresponding loss of regularity for f .

To summarize, Theorem 1.1 and Proposition 3.1 below show that, as far as the Lipschitz
continuity under Cα deformation is concerned, the threshold α = 1 is critical, both for
functions in L2 and for functions with finite scattering norm. On the other hand, we have
the positive result (1.1) in the case α = 2. The following stability result essentially fills
this gap – we assume the same condition on the filters as in [19] (see Section 2.3).

Theorem 1.2. Consider 0 < α < 1. There exists a constant C > 0 such that, for all
J ∈ Z, f ∈ L2(Rd) with ‖U [PJ ]f‖1 <∞, and τ ∈ C1+α(Rd;Rd), with ‖Dτ‖L∞ ≤ 1/2,

(1.5) ‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖ ≤ CK1+α(τ)‖U [PJ ]f‖1,
with

K1+α(τ) = 2−J‖τ‖L∞ +max
{
log

‖∆τ‖L∞

‖Dτ‖L∞

, 1
}
‖Dτ‖L∞ + |Dτ |Cα.

The definition of the Cα seminorm | · |Cα is recalled in Section 2. This result arises as a
refinement of [19, Theorem 2.12], with which it shares the backbone structure of the proof.
A careful inspection of the latter suggests that lower levels of deformation complexity (such
as logarithmic Hölder regularity) could still give rise to stability results. A substantial
rearrangement of some parts of the proof strategy is expected to accommodate even lower
regularity levels, such as Dini continuous deformations. In any case, we preferred to keep
the technicalities at a minimum and to use the more natural Cα scale, also in view of
applications.

The combination of the previous results provides us with a substantially complete
picture on the interplay between stability and deformation regularity. Notably, the case
of Lipschitz (or even C1(Rd;Rd)) distortions remains open. A dimensional argument
shows that, for f ∈ L2(Rd), the expected bound would have the form

(1.6) ‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖ ≤ C
(
2−J‖τ‖L∞ + ‖Dτ‖L∞

)
‖f‖L2.

While proving this estimate is definitely an ambitious goal, this problem seems to be
out of reach at the current time. Interestingly, we are able to show that it holds up to

2On B1/2 the Cα topology, 0 ≤ α < 1 (but not the metric) is equivalent to the C0 topology, because

of the interpolation inequalities (2.1) below.
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arbitrarily small losses, at least in dimension 1. As customary in harmonic analysis, to

accomplish this goal we consider the case of band-limited functions f , with f̂ supported
in the frequency ball |ω| ≤ R, say, and determine the blow-up rate in the above regime
as R → +∞. The following stability result for Lipschitz deformations shows that such a
rate is indeed smaller than Rε for every ε > 0.

First, we assume that there are C, β > 0 such that

(1.7) ‖U [P0]f‖1 ≤ C logβ(e+R)‖f‖L2

for every f ∈ L2(Rd) with f̂(ω) supported in the ball |ω| ≤ R. Such an estimate holds
in dimension d = 1, for every β > 1, as a consequence of Proposition 2.4 below under an
admissibility condition on the filters detailed in [32]. There is reason to believe that such
a logarithmic bound holds in arbitrary dimension (cf. for instance [19, Lemma 2.8] and
the related remarks).

Theorem 1.3. Assume (1.7). For every ε > 0 there exists C > 0 such that, for every
τ : Rd → Rd bounded and globally Lipschitz, with ‖Dτ‖L∞ ≤ 1/2, and every f ∈ L2(Rd)

with f̂(ω) supported in the ball |ω| ≤ R, R > 0, and every J ∈ Z, we have
(1.8)
‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖ ≤ C

(
logβ(e+ 2JR)2−J‖τ‖L∞ + (1 + 2JR)ε‖Dτ‖L∞

)
‖f‖L2.

The proof is based on a nonlinear interpolation argument in the setting of Besov spaces,
which is in turn a refinement of a classical technique that has already been successfully
developed in the literature in connection with nonlinear estimates for PDEs [16, 18, 24, 29].

To conclude, we observe that it would be also very interesting to investigate similar
stability issues for scattering-type transforms associated with other semi-discrete frames,
such as curvelet or shearlet systems [7, 11], in view of their prominent role in image
processing. Also, from a mathematical perspective, it is natural to wonder whether the
above results are robust enough to encompass more general operators than Lτ , Fourier
integral operators being the natural candidates [6]. We postpone the study of these
problems, that require novel ideas and techniques, to future works.

2. Preliminaries and review of the scattering transform

2.1. Notation. The open ball of Rd centered at x0 with radius r > 0 is denoted by
Br(x0). For a differentiable map τ : Rd → R

d, we denote by Dτ(x) its derivative as a
linear map R

d → R
d, hence we write |Dτ(x)| for the operator norm of this map and also

set ‖Dτ‖L∞ = ‖|Dτ |‖L∞. Similarly, for a scalar-valued function f , ‖∇f‖L∞ = ‖|∇f |‖L∞.

The Fourier transform of f is normalized here as

f̂(ω) = F(f)(ω) =

∫

Rd

e−iω·xf(x) dx.

Given an index set Ω and a collection of operators T [p] : L2(Rd) → L2(Rd) indexed by
p ∈ Ω, we set

T [Ω] = {T [p]}p∈Ω.
Unless otherwise stated, the standard norm in this context is that of ℓ2(Ω;L2(Rd)), namely

‖T [Ω]f‖2 =
∑

p∈Ω

‖T [p]f‖2L2, f ∈ L2(Rd).
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In the proofs, for brevity, we will heavily make use of the symbol A . B, meaning that
the underlying inequality holds up to a positive constant factor, namely

A . B =⇒ ∃C > 0 : A ≤ CB.

If the constant C = C(ν) depends on some parameter ν we write A .ν B. Moreover,
A ≈ B means that A and B are equivalent quantities, that is both A . B and B . A
hold.

In the rest of the note, all the derivatives are to be understood in the distribution sense,
unless otherwise noted.

2.2. Relevant function spaces. Consider an open subset A ⊆ Rd and set Y = Rn

or Y = C. Given a nonnegative integer k we introduce the space Ck(A; Y ) of all the
continuously differentiable functions f : A → Y with bounded derivatives up to order k,
with the natural norm ‖f‖Ck(A) := max|β|≤k supx∈A |∂βf(x)|.

We define the α-Hölder seminorm, 0 < α < 1, and the Lipschitz seminorm of f : A→ Y
by

|f |Cα(A) := sup
x,y∈A
x 6=y

|f(x)− f(y)|
|x− y|α , |f |Lip(A) := sup

x,y∈A
x 6=y

|f(x)− f(y)|
|x− y| .

The space Cα(A; Y ), α > 0, consists of all the functions f : A → Y , continuously differ-
entiable up to the order [α] (integer part of α), such that

‖f‖Cα(A) := ‖f‖C[α](A) +
∑

|γ|=[α]

|∂γf |Cα−[α](A) <∞.

When there is no risk of confusion we usually omit the codomain Y and also the domain
in the case where A = Rd, writing for instance Cα in place of Cα(Rd; Y ) for simplicity.
We also recall the elementary interpolation inequality

(2.1) |f |Cα ≤ 21−α‖f‖1−α
L∞ ‖∇f‖αL∞.

We collect here some basic properties that will be used below.

Proposition 2.1. Fix A ⊂ Rd and 0 < α < 1.

• (Fractional Leibniz rule) If f, g ∈ Cα(A;C), then

(2.2) |fg|Cα(A) ≤ |f |Cα(A)‖g‖L∞(A) + ‖f‖L∞(A)|g|Cα(A).

• (Schauder estimates) Assume that F : Rn → C is Lipschitz. For h ∈ Cα(A;Rn),

(2.3) |F (h)|Cα(A) ≤ |F |Lip(h(A))|h|Cα(A).

Proof. The fractional Leibniz rule is readily obtained by noting that for all x, y ∈ Rd,
x 6= y,

|f(x)g(x)− f(y)g(y)|
|x− y|α ≤ |f(x)− f(y)|

|x− y|α |g(x)|+ |f(y)| |g(x)− g(y)|
|x− y|α .

The inequality in (2.3) follows similarly – as long as h(x) 6= h(y),

|F (h(x))− F (h(y))|
|x− y|α ≤ |F (h(x))− F (h(y))|

|h(x)− h(y)|
|h(x)− h(y)|

|x− y|α .

�
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2.3. A brief review of the wavelet scattering transform. In this section we gather
some basic facts and results concerning the mathematical analysis of the scattering trans-
form, mainly in order to fix the notation. More details can be found in [5, 19].

The basic ingredient is a complex wavelet ψ ∈ L1(Rd) ∩ L2(Rd) with at least one

vanishing moment (ψ̂(0) = 0), satisfying appropriate conditions that are stated below.

Let G be a finite subgroup of rotations in Rd, also comprising the reflection operator
−I. For every λ = 2jr with j ∈ Z and r ∈ G we set

ψλ(x) := 2jdψ(2jr−1x).

The frequency filtering corresponding to ψλ is thus obtained by convolution, namely for
f ∈ L2(Rd) we set

W [λ]f(x) := f ∗ ψλ(x) =

∫

Rd

f(y)ψλ(x− y)dy, x ∈ R
d.

If both f and ψ̂ are real functions it is easy to realize that W [−λ]f = W [λ]f . We thus
conveniently consider the quotient G+ = G/{±I}, so that all the pairs of rotations r and
−r are identified.

Remark 2.2. As a concrete reference model one typically considers a Gabor-like wavelet
ψ such as

ψ(x) = eiη·xθ(x), x ∈ R
d,

for some η ∈ Rd and a function θ with real-valued Fourier transform θ̂ essentially sup-
ported in a low-frequency ball centered at the origin with radius of the order of π. Then

ψ̂λ(ω) = ψ̂(2−jr−1ω) = θ̂(λ−1ω−η) is concentrated in a ball centered at λη of approximate
size |λ| := 2j.

Given J ∈ Z we introduce the index set

(2.4) ΛJ := {λ = 2jr : j > −J, r ∈ G+}.
The filter bankW [ΛJ ] := {W [λ]}λ∈ΛJ

is thus not able to detect a low-frequency component
of a real signal f corresponding to a region of the frequency space with size of the order
of 2−J . Nevertheless, the latter can be captured by a suitable average AJ with a dilated
low-pass filter φ ∈ L1(Rd) ∩ L2(Rd) such that φ is a non-negative real-valued function

with φ̂(0) = 1 (having in mind a Gaussian function as a model), that is

AJf := f ∗ φ2J , φ2J (x) := 2−Jdφ(2−Jx), x ∈ R
d.

To ensure that the frequency content of f is fully preserved by a wavelet analysis at a
scale 2J it is enough that the supports of the filters obtained by dilations of φ and ψ cover
the whole frequency space. To be more precise, let WJf be the wavelet analysis of f
associated with φ and ψ, namely the collection of signal components indexed by {J}∪ΛJ

given by

WJf := {AJf,W [ΛJ ]f}.
It is not difficult to show that WJ is an isometry from L2(Rd;R) (real-valued functions)
to ℓ2({J} ∪ ΛJ ;L

2(Rd)) if and only if the following Littlewood-Paley condition holds for
almost every ω ∈ Rd:

(2.5) |φ̂(2Jω)|2 + 1

2

∑

λ∈ΛJ

[
|ψ̂(λ−1ω)|2 + |ψ̂(−λ−1ω)|2

]
= 1.
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Hence

‖f‖2L2 = ‖WJf‖2ℓ2L2 := ‖AJf‖2L2 +
∑

λ∈ΛJ

‖W [λ]f‖2L2

(see [19, Proposition 2.1] for further details). Slight modifications are needed in the case of
complex-valued signals f in order to accommodate all the rotations. The wavelet analysis
WJf is then accordingly defined including W [−ΛJ ]f as well, and unitarity of WJf is
ensured by the condition

|φ̂(2Jω)|2 +
∑

λ∈ΛJ

[
|ψ̂(λ−1ω)|2 + |ψ̂(−λ−1ω)|2

]
= 1.

We simply discuss below the case where f ∈ L2(Rd) takes real values to lighten the
presentation.

We say that φ and ψ are scattering filters if:

• Given J ∈ Z and a group of rotations G as above, the condition in (2.5) is satisfied.

• ψ̂ is real-valued, and φ̂ is real-valued and symmetric. Moreover, φ is non-negative
and φ̂(0) = 1.

• Both φ(x) and ψ(x) are twice differentiable and decay like O((1+|x|)−d−3) together
with their first and second partial derivatives3.

We now introduce the general index set Λ∞ := 2Z × G+ and the corresponding space
P∞ :=

⋃
m≥0 Λ

m
∞ of all the possible finite paths, where it is understood that Λ0

∞ = {∅}.
The one-step scattering propagator U [λ], λ ∈ Λ∞, coincides with a modulus wavelet
localization: U [λ]f := |W [λ]f | = |f ∗ ψλ|. More generally, the path-ordered scattering
propagator U : P∞×L2(Rd) → L2(Rd) acts along a path p = (λ1, . . . , λm) ∈ Λm

∞ of length
m ≥ 1 by

U [p]f := U [λm] · · ·U [λ2]U [λ1]f.
For the empty path p = ∅ we set U [∅]f = f .

The collection of all the paths with finite length and components in ΛJ is PJ :=⋃∞
m=0 Λ

m
J (again Λ0

J = {∅}). The windowed scattering transform SJ [PJ ] is then defined
as follows:

SJ [PJ ]f = {SJ [p]f}p∈PJ
, SJ [p]f := AJU [p]f.

The assumptions satisfied by the underlying scattering wavelets allow one to show that
SJ [PJ ] has the desired properties from a feature map with values in H = ℓ2(PJ ;L

2(Rd))
as discussed in the introduction.

Lipschitz regularity. It is proved in [19, Proposition 2.5] that SJ [PJ ] : L
2(Rd) → H is a

nonexpansive transform, namely

‖SJ [PJ ]f − SJ [PJ ]h‖ ≤ ‖f − h‖L2 , f, h ∈ L2(Rd).

Norm preservation. Provided that the filters satisfy additional admissibility conditions
(see [19, Theorem 2.6] or [32, Theorem 3.1] in dimension d = 1), SJ [PJ ] preserves the

3In [19] it is assumed a decay condition O((1 + |x|)−d−2) instead. Nevertheless, it seems that even in

that case the decay of order −(d+ 3) is needed, for instance in order to make the integral in [19, (E.26)]

convergent or to suitably bound the last terms in [19, (E.30)] in such a way to obtain [19, (E.31)].
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f

U [λ1]f

U [λ1, λ2]f

...
...

...
...

...
...

...
...

...
...

U [λ1]f

...
...

U [λ1, λ2]f

...
...

...

· · ·

U [λ1, λ2, . . . , λm]f

...
...

...

f ∗ φ2J

(U [λ1]f) ∗ φ2J

(U [λ1, λ2]f) ∗ φ2J

(U [λ1]f) ∗ φ2J

(U [λ1, λ2]f) ∗ φ2J

(U [λ1, λ2, . . . , λm]f) ∗ φ2J

Figure 1. The scattering network architecture, as described above. The index λl ∈ ΛJ

corresponds to the l-th layer. In blue: some features. In red: an example of a path

q = (λ1, λ2 . . . , λm) ∈ Λm
J of length m.

norm of the input signal:

‖f‖2L2 = ‖SJ [PJ ]f‖2 =
∑

p∈PJ

‖SJ [p]f‖2L2, f ∈ L2(Rd).

Translation invariance. It is proved in [19, Proposition 2.9] that the scattering distance
‖SJ [PJ ]f − SJ [PJ ]h‖ is nonincreasing when J increases, and the scattering metric is
asymptotically translation invariant, as proved in [19, Theorem 2.10]:

lim
J→+∞

‖SJ [PJ ](Txf)− SJ [PJ ](f)‖ = 0, ∀x ∈ R
d, f ∈ L2(Rd).

Stability to small deformations. As already anticipated in the Introduction, the stability
bound (1.1) is proved in [19, Theorem 2.12] for functions f such that

‖U [PJ ]f‖1 =
∑

m≥0

‖U [Λm
J ]f‖ <∞.

Let us discuss some additional properties of the scattering transform which are used
below.

Covariance properties. The joint action of scaling and rotation by 2lg ∈ 2Z×G on a signal f
is given by (2lg◦f)(x) := f(2lgx), x ∈ Rd, while for a path p = (λ1, . . . , λm) ∈ P∞ of length
m we set 2lgp := (2lgλ1, . . . , 2

lgλm). It is not difficult to show that the one-step propagator
is somehow covariant to scaling and rotations, namely U [λ](2lg ◦ f) = 2lg ◦ U [2−lgλ]f ,
λ ∈ Λ∞. In view of the cascading structure of the scattering transform, this property
reflects into

(2.6) U [p](2lg ◦ f) = 2lg ◦ U [2−lgp]f, p ∈ P∞,

and

(2.7) SJ [p](2
lg ◦ f) = 2lg ◦ SJ+l[2

−lgp]f, p ∈ PJ .
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Additivity on separated signals. The following simple result shows that SJ [PJ ] is additive
on functions that are separated in the wavelet domain.

Lemma 2.3. Let f, g ∈ L2(Rd) be such that, for every λ ∈ ΛJ ,

f ∗ ψλ = 0 or g ∗ ψλ = 0.

Then

SJ [PJ ](f + g) = SJ [PJ ](f) + SJ [PJ ](g).

Proof. Since the convolution with φ2J is a linear operator, it suffices to prove that

U [p](f + g) = U [p]f + U [p]g, p ∈ PJ .

Consider then p = (λ1, . . . , λm) ∈ Λm
J . Since

U [λ1, . . . , λm] = U [λ2, . . . , λm]U [λ1],

it is enough to show that, for every λ ∈ ΛJ , U [λ](f + g) = U [λ]f + U [λ]g and one of the
two terms on the right-hand side vanishes. The claim follows at once from the assumption
and the definition of the one-step propagator U [λ]f = |f ∗ ψλ|. �

We finally present the following embeddings in dimension d = 1, obtained by means
of the scattering decay results proved in [32]. The formula (2.8) is essentially known, cf.
[19, Lemma 2.8] – the latter was proved in arbitrary dimension under a more restrictive
admissibility condition on the wavelet ψ (see [19, Theorem 2.6]). The estimate (2.9) seems
new.

Proposition 2.4. Let ψ ∈ L1(R)∩L2(R) satisfy the following Littlewood-Paley inequality,
for every ω ∈ R:

1

2

∑

j∈Z

[
|ψ̂(2−jω)|2 + |ψ̂(−2−jω)|2

]
≤ 1.

Moreover, assume that

|ψ̂(−2−jω)| ≤ |ψ̂(2−jω)|
for ω > 0 and j ∈ Z, provided that for every ω the condition holds with strict inequality
for at least one value of j.

Finally, assume that |ψ̂(ω)| = O(|ω|1+ε) for some ε > 0, as ω → 0.

There exists C > 0 such that, for every J ∈ Z,

(2.8) ‖U [PJ ]f‖2 ≤ C

∫

R

|f̂(ω)|2 log(e + 2J |ω|) dω.

Moreover, for every β > 2 there exists C > 0 such that, for every J ∈ Z,

(2.9) ‖U [PJ ]f‖1 ≤ C
( ∫

R

|f̂(ω)|2 logβ(e+ 2J |ω|) dω
)1/2

.

Proof of Proposition 2.4. First of all, we note that it suffices to prove the estimates (2.8)
and (2.9) for J = 0. The claim then follows by a scaling argument. More precisely,
consider fJ(x) := 2J/2f(2Jx) and note that, by (2.6), we have ‖U [Λm

0 ]fJ‖ = ‖U [Λm
J ]f‖

and therefore ‖U [P0]fJ‖ = ‖U [PJ ]f‖ as well.
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By [32, Theorem 3.1], the assumptions in the statement imply that, for m ≥ 2,

(2.10) ‖U [Λm
0 ]f‖2 ≤

1

2π

∫

R

|f̂(ω)|2Am(ω) dω,

where4 Am(ω) = 1− e−2ω2/(ram)2 , for suitable a > 1, r > 0.

Since ‖U [P0]f‖2 =
∑∞

m=0 ‖U [Λm
0 ]f‖2, and ‖U [∅]f‖2+‖U [Λ0]f‖2 ≤ 2‖f‖2L2 (U [Λ0] being

nonexpansive), in order to obtain (2.8) it is enough to verify that

(2.11)
∞∑

m=2

Am(ω) ≤ C log(e+ |ω|/r)

for some constant C > 0, possibly depending on a only.

A straightforward change of variable shows that we can suppose r = 1 without loss of
generality. The estimate (2.11) is satisfied if |ω| ≤ a2 because Am(ω) . (ω/am)2. On the
other hand, if |ω| ≥ a2 we conveniently split the sum in (2.11) in two parts accounting for
m ≤ N and m > N , where N ≥ 2 is such that aN ≤ |ω| < aN+1. Using that Am(ω) ≤ 1
and Am(ω) . (ω/am)2 . a2(N−m) in the two regimes, respectively, we obtain

∞∑

m=2

Am(ω) .
∑

2≤m≤N

1 +
∑

m>N

a2(N−m) . N ≤ loga |ω|,

which gives (2.11).

Let us now prove (2.9) with J = 0 in light of the previous arguments. By (2.10) we see
that it is sufficient to prove the bound

(2.12)

∞∑

m=2

(∫

R

|f̂(ω)|2Am(ω) dω
)1/2

.
(∫

R

|f̂(ω)|2 logβ(e + |ω|) dω
)1/2

.

Since β > 2, the latter will follow from the pointwise bound

Am(ω)

logβ(e + |ω|)
.

1

mβ
.

This estimate clearly holds if |ω| ≥ am/2, since Am(ω) ≤ 1. If |ω| < am/2 we have

Am(ω)

logβ(e+ |ω|)
≤ Am(ω) .

ω2

a2m
≤ 1

am
.

1

mβ
.

�

Remark 2.5. It is worthwhile to point out that (2.12) does not hold for β = 2, as evi-
denced by the following example. Consider a function f ∈ L2(R) whose Fourier transform
is supported in [ra2,+∞) = ∪k≥2Ωk, with Ωk = [rak, rak+1), and takes a constant value

on each Ωk, adjusted so that
∫
Ωk

|f̂(ω)|2 log2(e + |ω|) dω = 1/(k log2 k). We then have
∫

R

|f̂(ω)|2 log2(e+ |ω|) dω <∞.

4The factor 1/(2π) in (2.10) does not appear in [32, Theorem 3.1] because of a different normalization

of the Fourier transform. The constant r below will be different from that in [32, Theorem 3.1] as well,

for the same reason.
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On the other hand, if k ≥ m, on Ωk we have Am(ω)/ log
2(e+|ω|) & 1/ log2(e+|ω|) & 1/k2,

so that
∞∑

m=2

(∫

R

|f̂(ω)|2Am(ω) dω
)1/2

≥
∞∑

m=2

(∑

k≥m

∫

Ωk

|f̂(ω)|2Am(ω) dω
)1/2

&

∞∑

m=2

(∑

k≥m

1

k3 log2 k

)1/2

= ∞.

Indeed, the latter series is readily seen to diverge, since

∑

k≥m

1

k3 log2 k
≥

∫ +∞

m

1

x3 log2 x
dx &

1

m2 log2m
,

where we resorted to integration by parts in the last step.

3. Instability results for Cα regularity, 0 ≤ α < 1

This section is devoted to the instability phenomenon occurring for deformations with
regularity Cα, 0 ≤ α < 1, already illustrated in the Introduction. We begin with the
proof of Theorem 1.1.

Proof of Theorem 1.1. Let us begin with the proof of (1.2). First of all, under the stated
assumptions on φ, ψ we infer from [32, Theorem 3.1]5 that

lim
m→∞

‖U [Λm
J ]f‖ = 0

for every f ∈ L2(R). In view of the Littlewood-Paley condition (2.5), the latter result
implies that SJ [PJ ] preserves the norm (cf. the proof of [19, Theorem 2.6]).

Consider a compactly supported f ∈ C∞(R;R) with f(x) = x for 0 ≤ x ≤ 2π. Let
ϕ ∈ C∞(R;R), supported in [0, 2π], be such that 0 < ϕ(x) ≤ 1 for 0 < x < 2π.

Consider the deformation function defined by

τ(x) = −A

N
sin(Nx)ϕ(x),

where N ∈ N, N ≥ 1, will be chosen later (large enough) and A > 0 is fixed in such a
way that A(1 + ‖ϕ′‖L∞) ≤ 1/2, hence ‖τ ′‖L∞ ≤ 1/2 for every N .

For future reference, we remark that

(3.1) x− τ(x) ∈ [0, 2π] for x ∈ [0, 2π].

This follows from the fact that, since ‖τ‖L∞ ≤ AN−1 ≤ πN−1, if x belongs to one of the
2N subintervals of [0, 2π] where τ has constant sign then x − τ(x) belongs either to the
same interval or to an adjacent one.

We finally set fn(x) = 2n/2f(2nx) and τn(x) = 2−nτ(2nx), n ∈ N, as in the statement.

5The assumptions of Theorem [32, Theorem 3.1] are the same as those of Proposition 2.4 and are

therefore satisfied here. Indeed, if (2.5) holds for the specified J , by rescaling one sees that it holds for

every J ∈ Z. Letting J → −∞, since φ̂ tends to 0 at infinity we see that

1

2

∑

j∈Z

[
|ψ̂(2−jω)|2 + |ψ̂(−2−jω)|2

]
= 1.
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A convenient facilitation results from the fact that it suffices to prove the desired
estimate (1.2) for n = 0, with a constant C0 independent of J ∈ Z. This can be readily
inferred from the scaling property (2.7), yielding

(3.2) ‖SJ [PJ ](Lτnfn)− SJ [PJ ](fn)‖ = ‖SJ+n[PJ+n](Lτf)− SJ+n[PJ+n](f)‖.

Let us thus set n = 0 hereafter. We are going to prove that, for N ∈ N large enough,

(3.3) ‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖ &
1

N

where the hidden constants in the symbols &, . and ≈ are always independent of J ∈ Z

and N ∈ N.

Let us first discuss the strategy. The function f is concentrated in the frequency region
where |ω| . 1, while the function Lτf − f will be shown to be concentrated where
|ω−N | . 1 or |ω+N | . 1. Therefore, if N is sufficiently large we have that SJ [PJ ](Lτf)
approximately coincides with SJ [PJ ](Lτf −f)+SJ [PJ ](f) by virtue of Lemma 2.3, hence

‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖ ≈ ‖SJ [PJ ](Lτf − f)‖ & ‖Lτf − f‖L2.

Making a rigorous argument out of this clue necessarily comes through suitable bounds
for the frequency tails of the functions f and g := Lτf − f . To this aim, let us start by
noting that g = −τ as a consequence of (3.1) and the fact that f(x) = x for x ∈ [0, 2π]
by design. Then

(3.4) ĝ(ω) = i
A

2N
(ϕ̂(ω −N)− ϕ̂(ω +N)).

For j, j′ ∈ Z we write f≤2j , f≥2j′ , f2j≤·≤2j′ , for the projections of f on the subspace of

L2(R) whose Fourier transform in supported in |ω| ≤ 2j, |ω| ≥ 2j
′

and 2j ≤ |ω| ≤ 2j
′

respectively, and similarly for the function g.

By assumption, ψ̂ is compactly supported in (0,+∞), hence there exists k ∈ Z such
that

supp ψ̂ ⊂ [2−k, 2k].

As a result, we have that

(3.5) supp ψ̂λ ⊂ [2j−k, 2j+k], λ = 2j ∈ 2Z.

Let then j ∈ Z be such that 2j+k+1 < N ≤ 2j+k+2. By (3.4) we have

‖g≤2j+k‖2L2 =
1

2π

∫

[−2j+k,2j+k]

|ĝ(ω)|2 dω(3.6)

=
A2

8πN2

∫

[−2j+k,2j+k]

|ϕ̂(ω −N)− ϕ̂(ω +N)|2 dω

≤ A2

4πN2

∫

[−2j+k,2j+k]

(|ϕ̂(ω −N)|2 + |ϕ̂(ω +N)|2) dω

≤ A2

4πN2

∫

R\[−(N−2j+k),N−2j+k]

|ϕ̂(ω)|2dω

.β
1

Nβ
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for every β > 0, because N − 2j+k > N/2 and ϕ̂ is a rapidly decreasing function. On the
other hand,

(3.7) ‖g‖2L2 = ‖τ‖2L2 =
A2

N2

∫

[0,2π]

sin2(Nx)ϕ(x)2 dx ≈ 1

N2

for N large enough, because the latter integral converges to ‖ϕ‖2L2/2 as N → ∞ due to
the Riemann-Lebesgue lemma.

Therefore, we have obtained, for N large enough,

(3.8) ‖g≥2j+k‖2L2 = ‖g‖2L2 − ‖g≤2j+k‖2L2 &
1

N2
.

Furthermore,

(3.9) ‖f≥2j−k‖2L2 =
1

2π

∫

R\[−2j−k,2j−k ]

|f̂(ω)|2 dω .
1

Nβ

for every β > 0, because 2j−k ≥ 2−2k−2N and f̂ has rapid decay.

Note that f = f≤2j−k+f2j−k≤·≤2j+k+f≥2j+k by construction, and a similar decomposition
holds for g. Since SJ is nonexpansive, the triangle inequality allows us to write

‖SJ(Lτf)− SJ(f)‖ ≥‖SJ(f≤2j−k + f≥2j+k + g≤2j−k + g≥2j+k)− SJ(f≤2j−k + f≥2j+k)‖
(3.10)

− 2‖f2j−k≤·≤2j+k‖L2 − ‖g2j−k≤·≤2j+k‖L2 .

We stress that the last two terms are O(N−β) for every β > 0 by (3.6) and (3.9).

On the other hand, in view of (3.5) we have that the functions f≤2j−k + g≤2j−k and
f≥2j+k +g≥2j+k are separated in the wavelet domain, in the sense of Lemma 2.3. Therefore,

SJ [PJ ](f≤2j−k+g≤2j−k+f≥2j+k+g≥2j+k) = SJ [PJ ](f≤2j−k+g≤2j−k)+SJ [PJ ](f≥2j+k+g≥2j+k)

and similarly,

SJ [PJ ](f≤2j−k + f≥2j+k) = SJ [PJ ](f≤2j−k) + SJ [PJ ](f≥2j+k).

To conclude, since SJ [PJ ] is norm preserving as clarified at the beginning of the proof, we
have

‖SJ [PJ ](f≤2j−k + g≤2j−k + f≥2j+k + g≥2j+k)− SJ [PJ ](f≤2j−k + f≥2j+k)‖
≥ ‖g≥2j+k‖L2 − ‖g≤2j−k‖L2 − 2‖f≥2j+k‖L2

&
1

N

for N large enough, by (3.6), (3.8) and (3.9).

Combining the last bound with (3.10) finally gives (3.3), provided that N is large
enough. This concludes the proof of (1.2). The proof of (1.3) turns out to be an immediate
consequence of the validity of (1.2), because ‖fn‖L2 = ‖f‖L2 for every n and, for 0 ≤ α < 1,
‖τn‖Cα . 2−n(1−α) as a result of (2.1). �

The following result provides lower bounds in the same spirit of (1.3) but for scattering
norms instead of the L2-norm. The factors max{J ′+n, 1}1/2 and max{J ′+n, 1}β occurring
in (3.11) and (3.12) below essentially counteract the growth of the norms ‖U [PJ ′ ]fn‖ and
‖U [PJ ′ ]fn‖1, respectively (cf. Proposition 2.4).
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Proposition 3.1. Under the same assumption (and notation) as in Theorem 1.1 we have
the following lower bounds.

There exists C > 0 such that for every J, J ′ ∈ Z, n ∈ N,

(3.11) ‖SJ [PJ ](Lτnfn)− SJ [PJ ](fn)‖ ≥ C2n(1−α)

max{J ′ + n, 1}1/2‖τn‖Cα‖U [PJ ′ ]fn‖.

Moreover, for every β > 1 there exists C > 0 such that, for every J, J ′ ∈ Z, n ∈ N,

(3.12) ‖SJ [PJ ](Lτnfn)− SJ [PJ ](fn)‖ ≥ C2n(1−α)

max{J ′ + n, 1}β ‖τn‖Cα‖U [PJ ′ ]fn‖1.

Proof. The proof of (3.11) is carried out along the lines of that of (1.3) in Theorem 1.1,
now using that

(3.13) ‖U [PJ ′ ]fn‖ . max{J ′ + n, 1}1/2.
Indeed, as already observed, under the assumptions of Theorem 1.1 the hypotheses of
Proposition 2.4 are satisfied as well, so that the latter bound can be inferred from (2.8)
and a suitable change of variable:

‖U [PJ ′ ]fn‖ .
( ∫

R

|f̂(ω)|2 log(e+ 2J
′+n|ω|) dω

)1/2

. max{J ′ + n, 1}1/2,

where we also used that e + 2J
′+n|ω| ≤ (e+ 2J

′+n)(e+ |ω|).
As far as (3.12) is concerned, it is just enough to replace (2.8) with (2.9) in the afore-

mentioned arguments. �

Remark 3.2. We emphasize that letting J ′ → −∞ in (3.11), for fixed J and n, yields
(1.2). Indeed, we have that ‖U [PJ ′ ]f‖ → ‖f‖L2 if f ∈ L2(Rd) and ‖U [PJ0 ]f‖ < ∞ for
some J0 ∈ Z. This follows by an application of the dominated convergence theorem to the
map p 7→ ‖U [p]f‖2L21PJ′

(p) on the set PJ0 (the counting measure being understood), since
1PJ′

→ 1{∅} pointwise.

In addition, note that the quantity ‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖, for fixed f, τ , is nonin-
creasing when J increases – see Section 2.3 and [19, Proposition 2.9] in this connection.
On the contrary, both ‖U [PJ ′ ]f‖ and ‖U [PJ ′ ]f‖1 are increasing with J ′. These observa-
tions show that the results in Theorem 1.1 and Proposition 3.1 are particularly interesting
in the regime J ≫ 1.

We conclude this section by providing a lower bound for the modulus of continuity of
the map τ 7→ SJ [PJ ]Lτf , for signals f with finite scattering norms. The proof is omitted,
as it ultimately relies on the same arguments already used for proving Proposition 3.1.

Proposition 3.3. Consider 0 ≤ α < 1. Under the same assumptions (and notation) of
Theorem 1.1, there exists a constant C > 0 such that, for every J, J ′ ∈ Z and for every n
large enough,

‖SJ [PJ ](Lτnfn)− SJ [PJ ](fn)‖ ≥ C log−1/2
(
‖τn‖−1

Cα

)
‖U [PJ ′ ]fn‖.

Similarly, for every β > 1 we have

‖SJ [PJ ](Lτnfn)− SJ [PJ ](fn)‖ ≥ C log−β
(
‖τn‖−1

Cα

)
‖U [PJ ′ ]fn‖1.
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4. Stability results for C1+α regularity, α > 0

In this section we provide the proof of Theorem 1.2, where we consider deformation
fields τ ∈ C1+α(Rd;Rd) for 0 < α < 1. Recall that this implies τ ∈ L∞(Rd;Rd) and
Dτ ∈ Cα(Rd;Rd). We assume that φ and ψ are scattering filters in the sense of Section
2.3.

The proof of Theorem 1.2 mostly relies on the structure of [19, Theorem 2.12] and the
ancillary results [19, Lemmas 2.13 and 2.14]. For our purposes we only need to isolate a
limited number of key steps and elaborate on those as detailed below. Nevertheless, let
us briefly discuss the complete roadmap for the sake of clarity.

The goal is to bound the quantity ‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖ in terms of ‖τ‖Cα and a
scattering norm of f . It is clear that

‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖ ≤ ‖Lτ (SJ [PJ ]f)− SJ [PJ ](f)‖+ ‖[SJ [PJ ], Lτ ]‖,
where the commutator of two operators A,B is defined by [A,B] = AB −BA.

Let us focus on the first term. The stabilizing properties of the average AJ underlying
SJ [PJ ] can be exploited to prove that

‖Lτ (SJ [PJ ]f)− SJ [PJ ](f)‖ . 2−J‖τ‖L∞‖U [PJ ]f‖,
see [19, (2.42) and (2.51)] – which actually hold assuming only τ ∈ C1(Rd;Rd).

Controlling the commutator error ‖[SJ [PJ ], Lτ ]‖ is actually the main difficulty of this
result. First, it is proved in [19, Lemma 2.13] that for any operator L on L2(Rd) one has

‖[SJ [PJ ], L]f‖ ≤ ‖[UJ , L]‖‖U [PJ ]f‖1,
where UJh = {AJh, U [ΛJ ]h} for h ∈ L2(Rd). Note that UJ =MWJ , where M is the non-
expansive operator on ℓ2({J}∪ΛJ ;L

2(Rd)) given by M{hJ , (hλ)λ∈ΛJ
} = {hJ , (|hλ|)λ∈ΛJ

},
and since [M,Lτ ] = 0 the problem ultimately reduces to bounding the commutator er-
ror ‖[WJ , Lτ ]‖ between the Littlewood-Paley wavelet transform WJ at scale 2J and the
deformation operator Lτ . For τ ∈ C2(Rd;Rd) it was proved in [19, Lemma 2.14] that

‖[WJ , Lτ ]‖ . 2−J‖τ‖L∞ +max
{
log

‖∆τ‖L∞

‖Dτ‖L∞

, 1
}
‖Dτ‖L∞ + ‖D2τ‖L∞ .

The proof of this result is a technical tour de force among quite delicate estimates. Roughly
speaking, the operator [WJ , Lτ ]

∗[WJ , Lτ ] has a singular kernel along the diagonal, and the
standard method of harmonic analysis suggests considering a suitable frequency decom-
position. The singular part of the operator is then carried by the high-frequency terms,
and the latter are eventually bounded using the Cotlar lemma.

Our contribution in this connection is an improvement of the estimate above.

Proposition 4.1. Let 0 < α < 1. There exists a constant C > 0 such that for all J ∈ Z

and τ ∈ C1+α(Rd;Rd), with ‖Dτ‖L∞ ≤ 1/2,

(4.1) ‖[WJ , Lτ ]‖ ≤ C

(
2−J‖τ‖L∞ +max

{
log

‖∆τ‖L∞

‖Dτ‖L∞

, 1
}
‖Dτ‖L∞ + |Dτ |Cα

)
.

Proof. We follow the same pattern of the proof of [19, Lemma 2.14], taking for granted
all the estimates proved there under the assumption τ ∈ C1(Rd;Rd). We thus confine
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ourselves to describe the main strategy, while focusing on the necessary modifications.
We adhere to the notation used in Mallat’s proof for the convenience of the reader.

First, the problem is recast as follows:

‖[WJ , Lτ ]‖ = ‖[WJ , Lτ ]
∗[WJ , Lτ ]‖1/2

≤
∑

r∈G+

∥∥∥
∞∑

j=−J+1

[W [2jr], Lτ ]
∗[W [2jr], Lτ ]

∥∥∥
1/2

︸ ︷︷ ︸
=:I1

+ ‖[AJ , Lτ ]
∗[AJ , Lτ ]‖1/2︸ ︷︷ ︸
=:I2

.(4.2)

Bounds for the latter quantities are derived in [19, Lemma E.1], that will be improved as
well in accordance with our weaker regularity assumptions. The main argument goes as
follows. For j ∈ Z consider

(4.3) Zjf = f ∗ hj , hj(x) = 2djh(2jx),

for a twice differentiable function h : Rd → C that decays like O((1+ |x|)−d−3) along with
all its first- and second-order partial derivatives. We introduce the companion operators
Kj := Zj−LτZjL

−1
τ and note thatKj = Kj,1+Kj,2, where the latter are integral operators

with kernels respectively given by

(4.4) kj,1(x, u) = 2djg(u, 2j(x− u)),

kj,2(x, u) = det(I −Dτ(u)) (hj((I −Dτ(u))(x− u))− hj(x− τ(x)− u+ τ(u))) ,

where we set

(4.5) g(u, v) := h(v)− h
(
(I −Dτ(u))v

)
det(I −Dτ(u)), (u, v) ∈ R

2d.

Step 1. Bound for I2.

In light of the previous assumptions, we have

‖[Zj, Lτ ]‖ = ‖[Zj , Lτ ]
∗[Zj , Lτ ]‖1/2 ≤ ‖Lτ‖‖K∗

jKj‖1/2 = ‖Lτ‖‖Kj‖ ≤ 2d/2‖Kj‖.
A bound for I2 = ‖[AJ , Lτ ]‖ can thus be obtained by bounding ‖Kj‖ in the case where
h = φ and j = −J . In particular, since

(4.6) ‖Kj‖ ≤ ‖Kj,1‖+ ‖Kj,2‖,
it is enough to separately control the norms of the latter integral operators.

1.1. Bound for ‖Kj,1‖.
This was already proved in [19, Eq. (E.18)]:

(4.7) ‖Kj,1‖ . ‖Dτ‖L∞ .

1.2. Bound for ‖Kj,2‖.
Consider the kernel kj,2. A Taylor expansion of τ(x) centered at u gives

τ(x)− τ(u) =

∫ 1

0

Dτ(u+ t(x− u))(x− u)dt

= Dτ(u)(x− u) +

∫ 1

0

(
Dτ(u+ t(x− u))−Dτ(u)

)
(x− u)dt

= Dτ(u)(x− u) + α(u, x− u),
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where in view of the assumption on τ the remainder α(u, x − u) defined by the above
formula satisfies

(4.8) |α(u, x− u)| ≤ |Dτ |Cα|x− u|1+α.

Combining this result with a Taylor expansion of hj finally gives

kj,2(x, u) = − det(I −Dτ(u))

∫ 1

0

Dhj
(
(I − tDτ(u))(x− u)

+ (1− t)(τ(u)− τ(x))
)
α(u, x− u)dt.

We now infer a bound for ‖Kj,2‖ by controlling the norm of the kernel in view of Schur’s
lemma. First, note that the assumption ‖Dτ‖L∞ ≤ 1/2 implies | det(I − Dτ(y))| ≤ 2d.
Moreover, using Dhj(y) = 2j(d+1)Dh(2jy) and the substitution x′ = 2j(x− u) we obtain

∫

Rd

|kj,2(x, u)|dx ≤ 2d
∫

Rd

∣∣∣∣
∫ 1

0

Dh
(
(I − tDτ(u))x′

+ (1− t)2j(τ(u)− τ(2−jx′ + u))
)
2jα(u, 2−jx′)dt

∣∣∣∣dx′.

Recall that |Dh(y)| . (1+ |y|)−d−3 by assumption, and it is easy to see that for 0 ≤ t ≤ 1
we have

∣∣(I − tDτ(u))x′ + (1− t)2j(τ(u)− τ(2−jx′ + u))
∣∣ ≥ |x′|(1− ‖Dτ‖L∞)

≥ |x′|/2.
Concerning the term |2jα(u, 2−jx′)|, on the one hand, by virtue of (4.8) we have

|2jα(u, 2−jx′)| . 2−jα|Dτ |Cα|x′|1+α.

Then ∫

Rd

|kj,2(x, u)|dx . 2−jα|Dτ |Cα

∫

Rd

(1 + |x′|/2)−d−3|x′|1+αdx′ . 2−jα|Dτ |Cα.

On the other hand, we observe that

|2jα(u, 2−jx′)| = 2j|τ(2−jx′ + u)− τ(u)−Dτ(u)(2−jx′)| ≤ 2‖Dτ‖L∞|x′|,
resulting in

∫

Rd

|kj,2(x, u)|dx . ‖Dτ‖L∞

∫

Rd

(1 + |x′|/2)−d−3|x′|dx′ . ‖Dτ‖L∞ .

Combining the previous estimates gives
∫

Rd

|kj,2(x, u)|dx . min{2−jα|Dτ |Cα, ‖Dτ‖L∞},

and the same bound holds for
∫
Rd |kj,2(x, u)|du since the previous arguments apply in the

same form after the substitution u′ = 2j(x − u). As a consequence of Schur’s lemma we
thus obtain

(4.9) ‖Kj,2‖ . min{2−jα|Dτ |Cα, ‖Dτ‖L∞}.
The combination of the estimates above shows that the term I2 in (4.2) is . ‖Dτ‖L∞ .

Step 2. Bound for I1.
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Consider again the convolution operator Zj introduced in (4.3). By mimicking [19,
Lemma E.1], we will prove that if

∫
Rd h(x)dx = 0 then

(4.10)
∥∥∥

+∞∑

j=−∞

[Zj, Lτ ]
∗[Zj, Lτ ]

∥∥∥
1/2

. max
{
log

‖∆τ‖L∞

‖Dτ‖L∞

, 1
}
‖Dτ‖L∞ + |Dτ |Cα.

Consider in particular the case where h(x) = ψ(r−1x) for each r ∈ G+ and replace −∞
with −J + 1 in the summation ([Zj, Lτ ]

∗[Zj, Lτ ] is a positive operator). The resulting
bound, combined with the one for I2 proved above, will conclude the proof of (4.1) and
thus of Proposition 4.1.

To this aim, let us first remark that the nonsingular part of the commutator has been
isolated and bounded in [19, Pages 1386-1387], yielding

(4.11)
∥∥∥

+∞∑

j=−∞

[Zj , Lτ ]
∗[Zj, Lτ ]

∥∥∥
1/2

. max
{
log

‖∆τ‖L∞

‖Dτ‖L∞

, 1
}
‖Dτ‖L∞ +

∥∥∥
+∞∑

j=0

K∗
jKj

∥∥∥
1/2

.

2.1. Bound for
∥∥∑+∞

j=0K
∗
jKj

∥∥1/2
.

Recall that Kj = Kj,1 +Kj,2, hence

∥∥∥
+∞∑

j=0

K∗
jKj

∥∥∥
1/2

≤
∥∥∥

+∞∑

j=0

K∗
j,1Kj,1

∥∥∥
1/2

(4.12)

+
+∞∑

j=0

(
‖Kj,2‖+ 21/2‖Kj,1‖1/2‖Kj,2‖1/2

)
.

Using (4.7) and (4.9) above, we have that

(4.13)
+∞∑

j=0

(
‖Kj,2‖+ 21/2‖Kj,1‖1/2‖Kj,2‖1/2

)
. ‖Dτ‖L∞ + |Dτ |Cα.

2.2. Bound for
∥∥∑+∞

j=0K
∗
j,1Kj,1

∥∥1/2
.

Recall that here we are assuming that
∫
Rd h(x)dx = 0.

The goal of this section is to provide a bound for
∥∥∑+∞

j=−∞Qj

∥∥, where we set Qj =

K∗
j,1Kj,1 for j ≥ 0 and Qj = 0 for j < 0. We will apply Cotlar’s lemma [27, Chapter VII]:

if there is a sequence of positive real numbers {β(j)}j∈Z such that
∑

j∈Z β(j) <∞ and

‖Q∗
jQl‖ ≤ β(j − l)2, ‖QjQ

∗
l ‖ ≤ β(j − l)2,

then ∥∥∥
+∞∑

j=−∞

Qj

∥∥∥ ≤
+∞∑

j=−∞

β(j).

As a consequence of the self-adjointness of Qj it is enough to provide a bound for ‖QlQj‖
only, hence we resort again to Schur’s lemma.

Let k̄l,j be the integral kernel of QlQj. Using (4.4) we obtain

(4.14)

∫

Rd

|k̄l,j(y, z)|dy =
∫

Rd

∣∣∣
∫

Rd

g(u, x)g(u, x′)2dlg(y, x+ 2l(u− y))
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× 2djg(z, x′ + 2j(u− z))dxdx′du
∣∣∣dy.

Therefore, we need to prove a suitable bound for the functional

(4.15) ϕ(G) = ϕx,x′,z,j,l(G) :=

∫

Rd

∣∣∣
∫

Rd

G(u)2dlg(y, x+ 2l(u− y))

× 2djg(z, x′ + 2j(u− z))du
∣∣∣dy,

for G ∈ Cα(Rd). We restrict to the case j ≥ l ≥ 0 in view of the symmetric role of these
parameters. We will prove below that

(4.16) ϕ(G) . 2(l−j)α‖Dτ‖2L∞‖G‖Cα,

where the hidden constant does not depend on x, x′, z. We are going to apply this estimate
to G(u) := g(u, x)g(u, x′), where here x, x′ ∈ Rd play the role of parameters. We then will
prove that

(4.17) ‖G‖Cα . (1 + |x|)−d−1(1 + |x′|)−d−1‖Dτ‖L∞

(
‖Dτ‖L∞ + |Dτ |Cα

)
.

The latter bounds allow us to conclude that∫

Rd

|k̄l,j(y, z)|dy ≤
∫

Rd

ϕ(g(·, x)g(·, x′)) dx dx′

. 2(l−j)α
(
‖Dτ‖4L∞ + ‖Dτ‖3L∞|Dτ |Cα

)

. 2(l−j)α
(
‖Dτ‖L∞ + |Dτ |Cα

)4
.

The same arguments lead one to the same bound for
∫
Rd |k̄l,j(y, z)|dz. Therefore, by

Schur’s lemma we have

‖QlQj‖ . 2(l−j)α
(
‖Dτ‖L∞ + |Dτ |Cα

)4
,

and Cotlar’s lemma with β(j) = C2−|j|α/2
(
‖Dτ‖L∞ + |Dτ |Cα

)2
for a suitable constant

C > 0 finally implies that

∥∥∥
+∞∑

j=0

K∗
j,1Kj,1

∥∥∥ .
(
‖Dτ‖L∞ + |Dτ |Cα

)2
,

which combined with (4.11), (4.12) and (4.13) gives (4.10) and concludes the proof.

The proofs of (4.16) and (4.17) are given below. �

Proof of (4.16). A Taylor expansion of h in (4.5) (cf. [19, (E.30)]) implies that

(4.18) g(u, v) =
(
1− det(I −Dτ(u))

)
h
(
(I −Dτ(u))v

)

+

∫ 1

0

Dh
(
(1− t)v + t(I −Dτ(u))v

)
·Dτ(u)vdt.

Using that det(I −Dτ(u)) ≥ (1 − ‖Dτ‖L∞)d, ‖Dτ‖∞ ≤ 1/2 and the fact that h(x) and
Dh(x) by assumption decay like (1 + |x|)−d−3, we obtain (cf. [19, (E.31)]) that

(4.19) |g(u, v)| . ‖Dτ‖L∞(1 + |v|)−d−2.

Using this estimate it is easy to infer that for any G ∈ C0(Rd) we have

ϕ(G) . ‖Dτ‖2L∞‖G‖C0 .
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Moreover, the assumption
∫
Rd h(x) dx = 0 (implying

∫
Rd g(u, v) dv = 0 for all u) and (4.19)

imply that we can write g(u, v) = ∂g(u, v)/∂v1, with g(u, v) satisfying (cf. [19, (E.37)])

|g(u, v)| ≤ C‖Dτ‖∞(1 + |v|)−d−1,

and from (4.18) we have (cf. [19, (E.39)])
∣∣∣∂g(u, v)

∂v1

∣∣∣ . ‖Dτ‖∞(1 + |v|)−d−1.

Using these estimates, an integration by parts with respect to u1 (cf. [19, Page 1391])
therefore yields

ϕ(G) . 2−j‖Dτ‖2L∞‖G‖C1 + 2l−j‖Dτ‖2L∞‖G‖C0

. 2l−j‖Dτ‖2L∞‖G‖C1,

for every G ∈ C1(Rd). Note that the functional ϕ is subadditive, namely |ϕ(f + g)| ≤
|ϕ(f)|+ |ϕ(g)|. By real interpolation (see e.g., [18, Theorem 6]), since [C0, C1]α,∞ = Cα

(see e.g., [17, (1.16)]), we obtain (4.16) for every G ∈ Cα(Rd). �

Proof of (4.17). Recall that G(u) = g(u, x)g(u, x′), where g is given in (4.18). From the
very definition of the Cα norm, using the fractional Leibniz rule (2.2) and (4.19) to bound
the norm in L∞(Rd) of G, it suffices eventually to show that

(4.20) |g(·, v)|Cα . (1 + |v|)−d−1
(
‖Dτ‖L∞ + |Dτ |Cα

)
.

We use the expression in (4.18), and again the fractional Leibniz rule (2.2). Precisely, the
desired estimate (4.20) will follow from the bounds given below on the L∞ norm and Cα

seminorm in Rd (with respect to u) of the factors appearing in (4.18).

• Let b1(u) = 1− det(I −Dτ(u)). Since det(I −Dτ(u)) ≥ (1− ‖Dτ‖L∞)d we have

‖b1‖L∞ . ‖Dτ‖L∞ .

Moreover, since b1 is a polynomial in the entries of the matrixDτ(u) and ‖Dτ(u)‖L∞ ≤
1/2, we obtain

|b1|Cα . |Dτ |Cα

by a straightforward application of Schauder’s estimate (2.3).

• Define b2(u, v) = h
(
(I −Dτ(u))v

)
. Clearly

‖b2(·, v)‖L∞ . (1 + |v|)−d−3.

A bound for |b2(·, v)|Cα can be obtained using Schauder’s estimate (2.3), in partic-
ular

|b2(·, v)|Cα . |h|Lip(Bv)|b̃2(·, v)|Cα,

where we introduced the companion map b̃2(u, v) = (I − Dτ(u))v and Bv stands

for the range of the map b̃2(·, v), for fixed v.
First, we remark that

|b̃2(·, v)|Cα . |Dτ |Cα|v|.
Moreover, sinceDh(u) = O((1+|u|)−d−3) by assumption, and since Bv is contained
in the ball B(v, |v|/2), we have

|h|Lip(Bv) . (1 + |v|)−d−3.
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We then conclude that

|b2(·, v)|Cα . |Dτ |Cα(1 + |v|)−d−2

as a combination of the previous results.

• Lastly, consider the map b3 defined for 0 ≤ t ≤ 1 by

b3(u, v) = Dh
(
I − tDτ(u))v

)
·Dτ(u)v.

An application of the fractional Leibniz formula (2.2) combined with the same
estimates for b2 above with Dh in place of h finally gives

|b3(·, v)|Cα . (1 + |v|)−d−2|Dτ |Cα + (1 + |v|)−d−1|Dτ |Cα‖Dτ‖L∞

. (1 + |v|)−d−1|Dτ |Cα.

This concludes the proof of (4.20). �

Remark 4.2. It was already pointed out in [19] that the term max
{
log ‖∆τ‖L∞

‖Dτ‖L∞
, 1
}

in

(4.11) can be replaced by max{J, 1} – to be precise, it is enough to choose γ = max{J, 1}
in [19, (E.7)–(E.10)]. Therefore, we have also the estimate

(4.21) ‖SJ [PJ ](Lτf)− SJ [PJ ](f)‖
≤ C

(
2−J‖τ‖L∞ +max{J, 1}‖Dτ‖L∞ + |Dτ |Cα

)
‖U [PJ ]f‖1.

5. Stability up to ε losses for Lipschitz deformations

In this section we focus on Lipschitz deformations; in particular, we prove Theorem 1.3.
We continue to assume that φ and ψ are scattering filters in the sense of Section 2.3.

We need some preliminary results from the theory of real interpolation of Besov spaces
(cf. [30]).

Let φ0 ∈ C∞(Rd) be supported in the ball |ω| ≤ 2, with φ0(ω) = 1 for |ω| ≤ 1. Set

φj(ω) = φ0(2
−jω), j ∈ Z. The functions φ̃j := φj − φj−1, j ∈ Z, are supported in the

annuli 2j−1 ≤ |ω| ≤ 2j+1 and induce a Littlewood-Paley partition of unity of Rd \ {0}.
Recall that the Besov norms with s ∈ R, 1 ≤ p, q ≤ ∞ are accordingly defined, for a
temperate distribution f , by

‖f‖Bs
p,q

:=
(
‖φ0(D)f‖qLp +

∑

j≥1

2jsq‖φ̃j(D)f‖qLp

)1/q

,

where φ̃j(D) = F−1φ̃jF stands for the Fourier multiplier with symbol φ̃j, j ∈ Z, and
similarly φ0(D) = F−1φ0F . Obvious changes are needed if q = ∞.

Recall that for s > 0 not integer, the space Bs
∞,∞(Rd) coincides with the Hölder class

Cs(Rd) considered above. If s = 1 then B1
∞,∞(Rd) contains the space Lip(Rd) of bounded

Lipschitz function f : Rd → C, endowed with the norm

‖f‖Lip := ‖f‖L∞ + |f |Lip = ‖f‖L∞ + ‖∇f‖L∞,

where ∇f is understood in the sense of distributions or even almost everywhere.

With a temperate distribution f we also associate the set

(5.1) Af := {φj(D)f : j ≥ 0}.
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Observe that the operators φj(D), j ∈ Z, are uniformly bounded on L∞(Rd), since
F−1φ0 ∈ L1(Rd).

Lemma 5.1. Let 0 < θ < 1 and s > 1 be such that 1 = (1 − θ)s. For f ∈ B0
∞,1(R

d) and
t > 0, consider

K̃(t, f, Bs
∞,∞, B

0
∞,1) := inf

f0∈Af

{‖f0‖Bs
∞,∞

+ t‖f − f0‖B0
∞,1

}.

There exists a constant C > 0 such that, for every f ∈ B1
∞,∞(Rd),

(5.2) sup
t>1

t−θK̃(t, f, Bs
∞,∞, B

0
∞,1) ≤ C‖f‖B1

∞,∞
.

Proof. The functional K̃(t, f, Bs
∞,∞, B

0
∞,1) is just a variant of the K-functional in real

interpolation theory (cf. [30, Section 2.4.1]), defined for t > 0 and f ∈ B0
∞,1(R

d) by

K(t, f, Bs
∞,∞, B

0
∞,1) := inf{‖f0‖Bs

∞,∞
+ t‖f − f0‖B0

∞,1
: f0 ∈ Bs

∞,∞}.
It is well known that

sup
t>0

t−θK(t, f, Bs
∞,∞, B

0
∞,1) . ‖f‖B1

∞,∞

for every f ∈ B1
∞,∞(Rd), which amounts to the embedding B1

∞,∞ →֒ (Bs
∞,∞, B

0
∞,1)θ,∞. A

proof of this fact can be found in [30, Section 2.4.2], and an accurate inspection of the
latter (the part dealing with t > 1, to be precise) allows one to realize that (5.2) holds
indeed. �

We are now ready to prove Theorem 1.3. We will consider vector fields τ in the Besov
space Bs

p,q(R
d;Rd) (i.e., the components belong to Bs

p,q(R
d)), endowed with the norm

‖τ‖Bs
p,q

:=
d∑

k=1

‖τ (k)‖Bs
p,q
, τ = (τ (1), . . . , τ (d)).

Proof of Theorem 1.3. We can suppose J = 0 by virtue of a scaling argument (cf. (3.2)).
Indeed, the estimate (1.8) is invariant under the substitutions J → J−n (n ∈ Z), f(x) →
2n/2f(2nx), τ(x) → 2−nτ(2nx) and R → 2nR. We can also suppose that ‖Dτ‖L∞ ≤ ε0,
with ε0 small enough (to be fixed later on), because for ε0 < ‖Dτ‖L∞ ≤ 1/2 the estimate
(1.8) with J = 0 holds due to the fact that S0[P0] is nonexpansive on L2(Rd) and ‖Lτ‖ ≤
2d/2.

We already know from Remark 4.2 (with J = 0) that, for every s ∈ (1, 2) and τ ∈
Cs(Rd;Rd) = Bs

∞,∞(Rd;Rd) with ‖Dτ‖L∞ ≤ 1/2,

‖S0[P0](Lτf)− S0[P0](f)‖ . ‖τ‖Bs
∞,∞

‖U0[P0]f‖1.

The assumption (1.7) and the fact that f̂ is supported in the ball |ω| ≤ R imply that

(5.3) ‖S0[P0](Lτf)− S0[P0](f)‖ . logβ(e+R)‖τ‖Bs
∞,∞

‖f‖L2 .

On the other hand, if τ0, τ1 ∈ Lip(Rd;Rd) satisfy ‖Dτ0‖L∞ ≤ 1/2 and ‖Dτ1‖L∞ ≤ 1/2, a
Taylor expansion yields

‖Lτ0f − Lτ1f‖L2 ≤ ‖τ0 − τ1‖L∞

∫ 1

0

‖L(1−t)τ1+tτ0(∇f)‖L2 dt

. ‖τ0 − τ1‖L∞‖∇f‖L2
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where we used that ‖D((1 − t)τ1 + tτ0)‖L∞ ≤ 1/2. Since ‖∇f‖L2 . (1 + R)‖f‖L2 and
S0[P0] is nonexpansive, we conclude that

‖S0[P0](Lτ0f)− S0[P0](Lτ1f)‖ . (1 +R)‖τ0 − τ1‖L∞‖f‖L2(5.4)

. (1 +R)‖τ0 − τ1‖B0
∞,1

‖f‖L2,

where we used the embedding B0
∞,1(R

d;Rd) →֒ L∞(Rd;Rd) – see for instance [25, Propo-
sition 2.1].

We now resort to a nonlinear interpolation argument between (5.3) and (5.4). Set
H = ℓ2(P0, L

2(Rd)) and, for fixed f as above and τ ∈ Lip(Rd;Rd) with ‖Dτ‖L∞ ≤ 1/2,
consider

Tf (τ) := S0[P0](Lτf)− S0[P0](f).

Let s ∈ (1, 2) and θ ∈ (0, 1) be such that 1 = (1− θ)s and consider τ ∈ Lip(Rd;Rd) with
‖Dτ‖L∞ ≤ ε0. For any τ0 ∈ Bs

∞,∞(Rd;Rd) with ‖Dτ0‖L∞ ≤ 1/2 we have, by the triangle
inequality, (5.3) and (5.4), for t ≥ 1,

‖Tf(τ)‖H ≤ ‖Tf (τ0)‖H + t‖Tf(τ)− Tf (τ0)‖H
. logβ(e +R)‖τ0‖Bs

∞,∞
‖f‖L2 + t(1 +R)‖τ − τ0‖B0

∞,1
‖f‖L2

=

d∑

k=1

(
logβ(e+R)‖τ (k)0 ‖Bs

∞,∞
+ t(1 +R)‖τ (k) − τ

(k)
0 ‖B0

∞,1

)
‖f‖L2

where we expanded the Besov norms in terms of the components, that is τ = (τ (1), . . . , τ (d))

and τ0 = (τ
(1)
0 , . . . , τ

(d)
0 ).

Consider now χ ∈ C∞(Rd), supported where |ω| ≤ 1, with χ(ω) = 1 for |ω| ≤ 1/2, along

with the corresponding Fourier multiplier χ(D). We write τ
(k)
0 = χ(D)τ

(k)
0 +(1−χ(D))τ

(k)
0 .

By the triangle inequality we obtain

‖Tf(τ)‖H . logβ(e+R)

d∑

k=1

‖χ(D)τ
(k)
0 ‖Bs

∞,∞
‖f‖L2

(5.5)

+

d∑

k=1

(
logβ(e+R)‖(1− χ(D))τ

(k)
0 ‖Bs

∞,∞
+ t(1 +R)‖τ (k) − τ

(k)
0 ‖B0

∞,1

)
‖f‖L2.

Since ‖Dτ‖L∞ ≤ ε0, if ε0 is small enough and τ
(k)
0 ∈ Aτ (k) (cf. (5.1)) we have ‖Dτ (k)0 ‖L∞ ≤

C‖Dτ (k)‖L∞ ≤ 1/(2
√
d), implying in particular that ‖Dτ0‖L∞ ≤ 1/2. Moreover

‖χ(D)τ
(k)
0 ‖Bs

∞,∞
. ‖τ (k)0 ‖L∞ . ‖τ (k)‖L∞ .

We also remark that, since the Fourier transform of τ (k) − τ
(k)
0 is supported in the region

where |ω| ≥ 1 (with reference to (5.1), we have indeed that φj(ω) = 1 in the ball |ω| ≤ 1),

τ (k) − τ
(k)
0 = (1− χ(D))τ (k) − (1− χ(D))τ

(k)
0 .

In light of the facts highlighted so far, now we take the infimum of (5.5) over τ
(k)
0 ∈ Aτ (k).

For t ≥ 1 we obtain

‖Tf(τ)‖H . logβ(e +R)‖τ‖L∞‖f‖L2
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+ logβ(e+R)
d∑

k=1

K̃(t(1 +R)/ logβ(e+R), (1− χ(D))τ (k), Bs
∞,∞, B

0
∞,1)‖f‖L2

where the functional K̃ is defined in Lemma 5.1 and we used the fact that

A(1−χ(D))τ (k) = {(1− χ(D))f0 : f0 ∈ Aτ (k)}.

Finally, by multiplying the latter estimate by t−θ and then by taking the supremum for
t > 1, we obtain

‖Tf(τ)‖H .
(
logβ(e+R)‖τ‖L∞ + logβ(1−θ)(e +R)(1 +R)θ

d∑

k=1

‖(1− χ(D))τ (k)‖B1
∞,∞

)
‖f‖L2

=
(
logβ(e+R)‖τ‖L∞ + logβ(1−θ)(e+R)(1 +R)θ‖(1− χ(D))τ‖B1

∞,∞

)
‖f‖L2,

where in the first inequality we applied Lemma 5.16. On the other hand, we have

‖(1− χ(D))τ‖B1
∞,∞

. ‖Dτ‖B0
∞,∞

. ‖Dτ‖L∞ .

The second inequality is clear from the definition of the B0
∞,∞ norm. The first inequality

follows by a standard argument that we sketch here for the benefit of the reader. Let φ̃′

be a smooth function in Rd, supported in the annulus 2−2 ≤ |ω| ≤ 24, with φ̃′(ω) = 1

for 2−1 ≤ |ω| ≤ 2. Then we write φ̃j(ω) = φ̃′(2−jω)φ̃j(ω) in the definition of the Besov

norm, and we observe that the functions 2jφ̃′(2−jω)ωk/|ω|2, k = 1, . . . , d, can be written
as φ′′

k(2
−jω) for some φ′′

k smooth with compact support. Hence their inverse Fourier
transforms have L1 norm uniformly bounded with respect to j, and the corresponding
Fourier multipliers are thus uniformly bounded on L∞(Rd). Similarly, if φ′

0 is a smooth
function supported in the ball |ω| ≤ 4, with φ′

0(ω) = 1 for |ω| ≤ 2 we can write φ0 = φ′
0φ0

and observe that (1−χ(ω))φ′
0(ω)ωk/|ω|2 is a smooth function with compact support, and

hence defines a Fourier multiplier bound on L∞(Rd).

The desired estimate (1.8) is then proved since s can be chosen arbitrarily close to 1,
hence making in turn the exponent θ arbitrarily small. �
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6Precisely, since (1 +R)/ logβ(e+R) ≥ c0 for some c0 > 0 and

K̃(t(1 +R)/ logβ(e +R), f, Bs
∞,∞, B

0

∞,1) ≤ K̃(tmax{c−1

0
, 1}(1 +R)/ logβ(e+R), f, Bs

∞,∞, B
0

∞,1),

we can resort to (5.2) with t replaced by tmax{c−1

0
, 1}(1 +R)/ logβ(e +R) > 1.
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