
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Machine Learning Aided Control of Ultra-Wideband Indium Phosphide IQ Mach-Zehnder Modulators / D'Ingillo, Rocco;
D'Amico, Andrea; Usmani, Fehmida; Borraccini, Giacomo; Straullu, Stefano; Siano, Rocco; Belmonte, Michele; Curri,
Vittorio. - ELETTRONICO. - (2023), pp. 1-3. (Intervento presentato al  convegno 2023 International Conference on
Photonics in Switching and Computing (PSC) tenutosi a Mantova, Italy nel 26-29 September 2023)
[10.1109/PSC57974.2023.10297214].

Original

Machine Learning Aided Control of Ultra-Wideband Indium Phosphide IQ Mach-Zehnder Modulators

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/PSC57974.2023.10297214

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983886 since: 2023-11-20T14:49:55Z

IEEE



Machine Learning Aided Control of an Ultra-Wideband
Indium Phosphide IQ Mach-Zehnder Modulator

Rocco D’Ingillo(1), Andrea D’Amico(1), Fehmida Usmani(1),(2), Giacomo Borraccini(1), Stefano Straullu(3),
Rocco Siano(4), Michele Belmonte(4), Vittorio Curri(1)

(1)Politecnico di Torino, Italy, rocco.dingillo@polito.it;
(2)National University of Sciences & Technology (NUST), Pakistan; (3)LINKS Foundation, Italy; (4)Lumentum, Italy

Abstract A digital model of a dual-polarization IQ ultra-wideband indium phosphide Mach-Zehnder
modulator is obtained through machine learning techniques. The model is used to test optimization
algorithms that automatically set the modulator control voltages under different operative conditions
finding the optimum bias point. ©2023 The Author(s)

Introduction
Mach-Zehnder Modulators (MZMs) play a critical
role in optical communication, and their perfor-
mance heavily relies on device bias point control.
Indium Phosphide (InP) technology is promis-
ing for MZM fabrication as it can be easily in-
tegrated with other photonics components, en-
abling a more consistent usage of photonic in-
tegrated circuits (PICs)[1]. On the other hand,
the material characteristics make MZM control
more complex due to the nonlinear behavior of
the device[2], making the search for the optimal
bias point challenging. There are two main tech-
niques to optimize the operating bias point con-
trol: optical power-based[3]–[5] and dither-based
techniques[6]–[8]. Power-based techniques use
photodetectors (PDs) to monitor the modulator’s
output optical power, adjusting the bias voltage
until the desired optical power is achieved. Con-
versely, dither-based techniques use a sinusoidal
voltage signal to modulate the bias voltage and
monitor the modulator output to maintain a con-
stant output by adjusting the bias voltage[9]. The
power-based technique is simpler and can be im-
plemented by means of a minimum laboratory
equipment, while the dither-based technique is
more robust to noise and optical power fluctua-
tions at the price of more complex circuitry. This
paper presents a novel approach to search and
control the bias point of an InP ultra-wideband
(UWB) dual polarization (DP) IQ-MZM using ma-
chine learning (ML) techniques to generate a dig-
ital model of the MZM. In recent years, the use
of ML and artificial intelligence (AI) has spread
widely in the photonics industry[10],[11]. In this
study, an AI-based system learns the behavior of
the MZM and applies optimization algorithms on
the predicted model to find its optimal bias point
automatically, following a promising strategy also
proposed in recent works[12],[13]. The same tech-
niques have been applied to the actual compo-

nent in laboratory, following a ML-aided power-
based bias point control technique. The algorithm
has been validated for a structure-agnostic ap-
proach by observing different modulator settings
aiming to reach optimal performance using a lim-
ited number of measurements and minimum lab-
oratory equipment. The presented ML approach
aims to be the starting point for modulator control
algorithms moving towards a full real-time digital
twin aided control of the component through rein-
forcement or transfer learning techniques[14].

Mach-Zehnder Modulator Bias Point Control
Fig. 1 shows the simplified internal structure of
the InP DP-MZM under test, which is a Lumentum
high-bandwidth coherent driver modulator (HB-
CDM) with four-channel modulator driver inte-
grated circuits and two nested modulators de-
signed to modulate amplitude and phase of the
input light in both polarization states. Monitoring
PDs are present on the output of both X and Y
polarization and after the Polarization Beam Com-
biner (PBC). The module has one input and one
output fiber and control of the MZMs is managed
via analog differential voltage inputs to the mod-
ule through the bias signals I, Q and Ph, which
are applied to the DC electrodes of the corre-
sponding MZMs. The radio frequency (RF) in-
put contacts are located at the rear of the pack-
age[15]. To achieve Quadrature Phase Shift Key-
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Fig. 1: Internal structure of the DP IQ MZM; the integrated
components are highlighted in the red dashed box.



ing (QPSK) and Quadrature Amplitude Modula-
tion (QAM) modulation formats, the bias signals
are evaluated in order to reach a Min/Min/Quad
bias condition of the DP-MZM[5],[16]. In this con-
dition, both internal I and Q MZMs are biased at
the minimum of their respective response function
and the phase bias signal Ph is adjusted to main-
tain the quadrature between the two modulated
branch signals[17],[18].

Experimental Setup
To study and test different bias point search and
control strategies, a data collection of power mea-
surements for different input combinations of XI,
XQ, and PhX control voltages has been per-
formed using the experimental setup shown in
Fig. 2. The Y polarization modulator has been
turned off, keeping only the X polarization on, for
all the duration of the data collection. To observe
the optical carrier behavior, the HB-CDM mod-
ule is connected to a Lumentum evaluation board
controlled by a workstation via USB-to-SPI com-
munication. The modulating signal is managed
through a 8 bit 92 GS/s digital to analog con-
verter (DAC) controlled by the workstation. The
optical input is generated by a continuous wave
(CW) laser centered at 1550 nm with a launch
power of 10 dBm. The optical output is split be-
tween a Teledyne Lecroy Optical Modulation Ana-
lyzer (OMA) and a Keysight 8163A optical power
meter through a 50:50 optical splitter for observ-
ing the constellation diagrams and power mea-
surements, respectively. The power meter is also
connected to workstation via GPIB-USB interface
to monitor the power measurements through the
control terminal.

Modulator Machine-Learning Model
Due to the fine granularity of each input bias volt-
age (1 mV over a range of more than 5 V) and
the sensitivity of the HB-CDM output to variations
in input bias control, 300 000 random input com-
binations of XI, XQ, and PhX bias voltages have
been sent from the workstation to the HB-CDM
via evaluation board for data collection; a rela-
tively limited subset of the 100 billion possible re-
alizations. The power measurements have been

ML Evaluation Metrics Normalized dB
Mean Squared Error 9.39× 10−4 0.17
Mean Absolute Error 0.02 0.32
Maximum Absolute Error 0.16 1.57

R2 Score 98.22%
Tab. 1: ML modulator power model evaluation metrics, ex-
pressed in normalized units and in dBm.
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Fig. 2: Experimental setup used for data collection for ma-
chine learning training and for bias point search and control.

obtained from the power meter and saved in the
terminal. The collected data are then used to train
a deep-learning-based model[19], utilizing a deep
neural network (DNN) architecture consisting of
four dense layers and one dropout layer with 3
input features (XI, XQ and PhX) and one output
label (output power). The first three dense layers
contained 1024 neurons each and used the ReLU
activation function[20], while the final dense layer
contained a single neuron with a linear activation
function. The Adam optimizer[21] is used to opti-
mize the model’s performance on the training set
(65% of the dataset), and the Early Stopping tech-
nique is used to prevent over-fitting[22]. The model
is compiled using the Adam optimizer and moni-
tored using the mean squared error (MSE) loss
function as a metric for evaluating the model’s
performance during training[23] and monitoring a
validation set (15% of the original dataset). Then,
the model has been evaluated using the remain-
ing test set (20% of the original dataset), and
the resulting ML evaluation metrics are presented
in Tab. 1, which includes important performance
evaluation metrics such as MSE, Mean Absolute
Error (MAE)[24], Maximum Absolute Error[25], ex-
pressed in both normalized units and dB, and the
R2 Score parameter (R2S)[26], expressed in per-
centage. The high R2S percentage (> 90%) and
low error statistics values validate the accuracy of
the ML predicted model, which has been utilized
for data augmentation to cover all the cases not
measured during the data collection and for pre-

Fig. 3: Power profile of machine-learning predicted results (a)
versus power measurements (b). X-axis represents XI input
values, Y-axis XQ input values, Z-axis the output power val-
ues. On the right, the legend presents the Phase X input val-
ues. All values are normalized between 0 and 1.



dicting the performance of the bias point search
and control on the modelled polarization branch
of the modulator. A graphical comparison be-
tween the measured and predicted power values
is shown in Fig. 3; in particular, Fig. 3-a) shows
the normalized power profile of ML predicted re-
sults and Fig. 3-b) the actual power measure-
ments, also normalized, considering as input the
normalized XI, XQ and PhX input values. The
comparison of the two figures confirms the accu-
rate match of the predicted values with the mea-
sured data, also demonstrating the highly nonlin-
ear behavior of the HB-CDM response as the in-
put bias voltages vary.

Results
A bisection optimization method has been utilized
to determine the optimal Ph, I, and Q voltages
to reach the Min/Min/Quad bias condition of the
modulator. Due to the strong non-linearity of the
modulator power model, which results in signif-
icant output power variations for slight changes
in the bias control voltage, and its ability to lo-
cate global minima and maxima of continuous
functions[27], the bisection optimization performs
better than other methods such as gradient de-
scent and simulated annealing. This algorithm
finds and sets the optimal Ph bias point first,
finding through bisection the -3 dB power rela-
tive to its maximum, with I and Q voltages set
at 0 V. Then, I minimum power is identified and
subsequently Q minimum power is reached and
set, both through bisection approach, in order to
achieve the Min/Min/Quad bias condition. Initially,
the algorithm is tested on the digital model of the
X polarization power profile of the modulator and,
subsequently, it is used on the HB-CDM module,
employing the same experimental setup depicted
in Fig. 2, using power meter and internal photodi-
ode X+Y feedback for power measurements. An
average of 129 total ML simulations is required
to reach the predicted optimal bias point on the
same sample, for the X polarization, whereas an
average of 134 total measurements have been
taken on the same polarization of the real compo-
nent, resulting in a MAE of 0.39 dB between the
predicted and measured optimal power values.
The algorithm’s efficacy as a structure-agnostic
solution has been validated applying the same
approach to both X and Y polarization branches
of the HB-CDM at three different wavelengths λ1,
λ2, λ3 equal to 1550 nm, 1565 nm and 1535 nm,
respectively. The search algorithm requires a
similar number of measurements for all the po-
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Fig. 4: OMA acquisitions of 16-QAM constellation diagrams
for a) λ1, b) λ2 and c) λ3 wavelengths under test.

larization branches, as for the λ1 simulation case.
To verify the presented results, 16-QAM modulat-
ing signals at a symbol rate of 32 GBd have been
sent through the DAC to the modulator, generat-
ing constellation diagrams visible on the OMA as
illustrated in Fig. 4. The Figure shows that, ex-
cept for a necessary minimum bias adjustment
to balance the power between the two X and Y
polarization branches[18], the optimum bias points
found through the bisection algorithm are correct
and meet the Min/Min/Quad condition allowing for
a precise usage of QAM and QPSK modulation.

Conclusions
A novel machine learning aided approach for bias
point control of an InP DP IQ-MZM is presented
in this work. Generating a digital model of the
MZM and using an AI-based system to learn the
modulator behavior, it is shown that the proposed
bisection approach is effective in automatically
finding the optimal bias point. The technique
has been validated in laboratory for a structure-
agnostic approach by observing different modu-
lator settings. The results demonstrate the ef-
fectiveness of the proposed strategy in achiev-
ing optimal performance using a limited number
of measurements with simple laboratory equip-
ment thanks to the power-based bias technique,
finding the optimum bias solution using a fast and
simple method, adjusting only one polarization at
a time. The digital model-based proposed ap-
proach shows significant potentiality for real-case
applications in photonics components. It reduces
the complexity of bias point control and it can be
further enhanced evolving into a full digital twin-
based approach through the application of rein-
forcement or transfer learning techniques.
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