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A B S T R A C T   

Healthcare traditionally relies on single-modality approaches, which limit the information available for medical 
decisions. However, advancements in technology and the availability of diverse data sources have made it 
feasible to integrate multiple modalities and gain a more comprehensive understanding of patients’ conditions. 
Multi-modality approaches involve fusing and analyzing various data types, including medical images, bio-
signals, clinical records, and other relevant sources. 

This systematic review provides a comprehensive exploration of the multi-modality approaches in healthcare, 
with a specific focus on disease diagnosis and prognosis. The adoption of multi-modality approaches in 
healthcare is crucial for personalized medicine, as it enables a comprehensive profile of each patient, considering 
their genetic makeup, imaging characteristics, clinical history, and other relevant factors. The review also dis-
cusses the technical challenges associated with fusing heterogeneous multimodal data and highlights the 
emergence of deep learning approaches as a powerful paradigm for multimodal data integration.   

1. Introduction 

Healthcare has traditionally relied on single-modality approaches, 
where medical decisions are based on analyzing a single type of data, 
such as radiology images or clinical data [1]. However, advancements in 
technology and the availability of diverse data sources have made it 
increasingly feasible and promising to integrate multiple modalities [2, 
3]. First, medical scanners are producing higher resolution digital im-
ages across modalities like MRI, CT, and PET [4]. Second, electronic 
health records now compile diverse clinical data in structured formats 
[5]. Finally, advanced analytics methods like deep learning are capable 
of modeling complex multi-modal relationships [6] 

Multi-modality approaches involve fusing and analyzing various 
data types, including medical images, biosignals, clinical records, and 
other relevant sources, to gain a more comprehensive understanding of 
patients’ conditions [7]. Each modality reveals a particular aspect of 

physiology and pathology, and effectively aggregating and analyzing 
multimodal data presents both unique opportunities and challenges [8]. 
For example, in Alzheimer’s disease diagnosis, relying solely on struc-
tural MRI scans or speech analysis [9] results in approximately 80% 
detection accuracy. However, by also incorporating complementary 
modalities like audio features, speech transcript, genomic and clinical 
assessments, multi-modality models have achieved over 90% diagnosis 
accuracy [10,11]. 

In this paper, our objective is to comprehensively review the state-of- 
the-art multimodal approaches in healthcare, analyze their benefits and 
limitations, and outline opportunities to address current challenges. 
While single-modality approaches have their merits, they often provide 
limited information and may not capture the full complexity of diseases. 
In contrast, multi-modality approaches leverage the complementary 
nature of different data sources, enabling a more holistic assessment of 
patients’ health. The adoption of multi-modality approaches in 
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healthcare is crucial for the advancement of personalized medicine [7]. 
Each patient is unique, and their healthcare journey involves dy-

namic interactions between various biological, environmental, and 
lifestyle factors. By integrating diverse modalities, healthcare practi-
tioners can obtain a comprehensive profile of each patient, considering 
their genetic makeup, imaging characteristics, clinical history, and other 
relevant factors. This comprehensive understanding enables the delivery 
of personalized healthcare interventions that are tailored to individual 
needs, ultimately improving patient outcomes and quality of life. 

Multi-modality approaches harness the richness of complementary 
information across modalities. However, developing approaches to fuse 
heterogeneous, high-dimensional multimodal data poses unique tech-
nical challenges due to data incompatibility [12]. Data types can vary 
extensively in dimensionality, representation, scale, structure, and 
spatial-temporal characteristics. Genetics data may contain thousands of 
features while medical images constitute high resolution, multi-channel 
pixel arrays. Variability in how each data type is acquired and 
pre-processed further exacerbates these incompatibilities. As a results, 
directly aggregating raw data becomes intractable due to differences in 
representation, scale, structure, and dimensionality. Traditional ma-
chine learning techniques also struggle with such complexity. As a 
result, deep learning approaches have emerged as a powerful paradigm 
for multimodal data integration. Deep neural networks can learn hier-
archical, abstract data representations that embed modality-specific 
topology and statistical dependencies [13]. Fig. 1 illustrates how mul-
timodality is applied in healthcare. Multimodal data, including both 
images and non-image information from the same patient, are utilized to 
develop AI systems for diagnostic and prognostic purposes. 

This review paper aims to provide a comprehensive overview of the 
current state of multi-modality approaches in healthcare. The primary 
objectives are as follows: (1) Provide an overview of the methods for 
fusing healthcare data; (2) Categorize and analyze the types of data 
utilized in multimodal approaches, including bioimaging, biosignals, 
and clinical data; (3) Summarize key applications where multi-modality 
is applied; and (4) Discuss limitations and outline directions for future 
work. The review synthesizes insights from 81 relevant primary studies 
published between 2012–2022 and aims to serve as a useful reference 
for readers to appreciate progress, select suitable methods, and identify 
avenues for new research. 

2. Methods 

We followed the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines to select relevant articles on 
multi-modality in healthcare. 

2.1. Related reviews 

The topic of multi-modality is highly relevant in the field of 
healthcare, and three recent reviews have been published in this area. 
However, these reviews have certain limitations in terms of their scope 
and focus: 

• Zhou et al. [14] "A review: Deep learning for medical image seg-
mentation using multi-modality fusion": This review provides an 
overview of deep learning-based approaches for multi-modal medi-
cal image segmentation. However, it solely focuses on deep learning 
methods and does not cover the broader aspects of multi-modality.  

• Huang et al. [15] "A Review of Multimodal Medical Image Fusion 
Techniques": This review specifically concentrates on multimodal 
medical image fusion methods, highlighting recent advances in 
fusion techniques based on mathematics and deep learning. How-
ever, it only partially addresses the topic of multi-modality and is 
limited to the field of medical imaging.  

• Cui et al. [16] "Deep multimodal fusion of image and non-image data 
in disease diagnosis and prognosis: a review": This review describes 
current multimodal learning workflows in disease diagnosis and 
prognosis. Unfortunately, it only analyzes 34 studies and overlooks 
the challenges associated with biosignals. 

The objective of our review is to provide a comprehensive overview 
of all multimodality approaches for disease diagnosis and prognosis in 
healthcare. This will be accomplished by incorporating both imaging 
data (2D, and 3D images) and non-imaging data (biosignals, de-
mographics, and clinical data). In addition to presenting the current 
landscape of multimodality approaches, this work will also address the 
benefits and challenges associated with multimodality, suggesting po-
tential solutions and avenues for future development. Fig. 2 shows the 
comparison between our review paper and the previous literature 
reviews. 

2.2. Literature search strategy 

This review focuses on articles published between 2012 and 2022, 
specifically within the last decade. A comprehensive search for relevant 
journal articles was conducted using scientific repositories such as 
PubMed, the Institute of Electrical and Electronics Engineers (IEEE), and 
Scopus. The keywords combined terms related to multimodality and 
healthcare. The search strategy employed a Boolean approach, 
combining various keywords such as "Multimodal," "Machine learning," 
"Deep learning," "Detection," "Classification," "Prediction," "Diagnosis," 
"Medical," "Healthcare," "Mental," and "Health" in different 

Fig. 1. Overview of multimodality in healthcare: Multiple data types, such as images and non-image data, are gathered from patients. Through multimodal learning, 
this data is processed via steps like preprocessing, feature extraction, and fusion to enable diagnosis and prognosis. 
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combinations. The search process was carried out in June 2023. 
Initially, a total of 1260 articles were identified. After removing 

duplicate articles (n=459) and excluding books, abstracts, and confer-
ence proceedings, the remaining studies were further refined by 
excluding articles not published in journals ranked in the top quartile 
(Q1) based on their impact factor. The assessment of the remaining 
studies was then based on the following criteria:  

(i) The articles described multi-modal methods for detecting or 
predicting diseases in healthcare.  

(ii) The articles described methods based on machine learning or 
deep learning models.  

(iii) The articles were published in peer-reviewed journals.  
(iv) The articles were written in English. 

Articles that did not meet these criteria, such as those written in 
languages other than English, pilot studies, studies published before 
2012, or articles not available in full text, were excluded. For each 
selected paper, we extracted key information including participant de-
mographics, data modalities, fusion techniques, analytical methods, and 
performance. After a thorough examination, a total of 446 articles were 
excluded based on these criteria. After screening over 1200 results 
published over the past decade based on defined inclusion criteria, 81 
high impact studies were selected through a rigorous process adhering to 
PRISMA guidelines. This allowed us to systematically review the latest 
advancements across healthcare domains, providing unique breadth 
compared to existing works focused on multimodal medical imaging or 
specific disease. Fig. 3 showcases the utilization of the PRISMA guideline 
for article selection. 

2.3. Multi-modality approaches 

Approaches to multimodal data integration in healthcare can vary 
depending on the specific clinical application and available modalities 
[16]. In general, there are two main categories of approaches for fusing 
information from multiple modalities:  

– Feature-level fusion: This method involves combining features 
extracted from different modalities to create a unified representa-
tion. Features are extracted from each modality separately, capturing 
their unique characteristics, and then combined to form a joint 
feature representation. Alternately, the features are fused at an 

intermediate stage after initial modality-specific processing [6]. In 
feature-level fusion, data from modalities like MRI scans and blood 
tests are processed separately into distinct feature sets capturing 
their unique characteristics. These feature sets are then aggregated 
into a combined representation for final classification.  This fusion 
approach aims to capture complementary information from different 
modalities and enhance the overall representation.  

– Decision-level fusion: In this method, decisions or predictions made 
independently by each modality are combined to reach a final de-
cision. Each modality provides its own decision based on its specific 
analysis, and these decisions are aggregated using various techniques 
such as voting, averaging, or weighted combinations [17]. For 
example, each modality like an MRI scanner and genetics lab would 
produce its own benign/malignant classification. These individual 
classifications would then be combined via methods like averaging to 
arrive at an overall diagnosis. Decision-level fusion aims to leverage 
the diversity of information provided by different modalities and 
improve the overall decision-making process. This allows flexibility 
in choosing modalities without needing end-to-end training. How-
ever, it does not model interactions between modalities like 
feature-level fusion. 

Feature-level fusion can capture interactions between modalities but 
requires compatible feature sets. Decision-level fusion is simpler to 
implement but may miss relationships between modalities. Regardless of 
the specific application or available modalities, most multimodal fusion 
methods fall into one of these two categories based on the stage at which 
fusion takes place. Fig. 4 depicts an overview of the feature-level and 
decision-level fusion approaches. 

These fusion techniques continue to advance through modern in-
novations. For instance, graph neural networks show promise for 
learning optimal combinations of multimodal data in a latent space 
[18]. Dynamic routing methods adaptively aggregate modality 

Fig. 2. Comparison of our review paper with existing literature reviews. DL: 
deep learning. 

Fig. 3. Selection of relevant articles based on PRISMA guidelines.  
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representations [19]. Deep canonical correlation analysis extracts 
shared representations [20]. Overall, data fusion is an active research 
area as investigators explore sophisticated techniques to fully leverage 
complementary multimodal data. 

2.4. Applications 

In our study, we have classified the data type of multi-modality ap-
proaches into three main categories:  

1 Bioimaging: This category involves the fusion of different types of 
medical images. Examples include combining functional images like 
PET scans with anatomical images such as CT and MRI scans. 

2 Biosignals: This category includes approaches that integrate physi-
ological monitoring signals. For instance, it involves merging mea-
surements of electrophysiological signals like 
photoplethysmography (PPG), electroencephalography (EEG), and 
electrocardiography (ECG).  

3 Mixed: This category encompasses approaches that integrate a 
combination of images, signals, and additional clinical data sources. 
For example, it involves combining medical images with physiolog-
ical measurements, as well as incorporating electronic health records 
that contain structured clinical data. 

Together, these three categories cover the common data types used 
in healthcare, including anatomical, functional, and clinical data sour-
ces. The selection of specific modalities to incorporate depends on the 
clinical question at hand and the availability of patient data. Fig. 5 

illustrates how healthcare data from multiple sources can be aggregated 
when developing multimodal AI systems. 

In addition to the three categories based on data modalities, we 
further categorized the multimodal data integration approaches based 
on the clinical application or disease domain that each study focused on. 
A total of 9 categories were identified: cognitive impairment, mental 
disorders, sleep health, cardiac diseases, COVID-19, oncology, 
ophthalmology, pediatric disorders, and other studies (miscellaneous 
applications). 

This additional layer of categorization by clinical domain provides 
more context regarding the specific patient populations and healthcare 
challenges that each approach aims to address. Together with the three 
categories based on data modalities, this dual-axis categorization 
framework offers a more comprehensive perspective on trends in this 
research field. 

3. Results 

3.1. Cognitive impairment 

Cognitive impairment refers to deterioration in cognitive abilities 
like memory, attention, judgment, and processing speed. Studies in this 
category aim to predict the diagnosis or progression of Alzheimer’s 
disease, dementia, and mild cognitive impairment using multimodal 
data. Different data modalities provide insights into the structural, 
functional, and molecular changes related to cognitive functions and 
changes in the brain. Combining sparse clinical features describing 
symptoms with high-dimensional time series data from neuroimaging 

Fig. 4. Data fusion approaches in healthcare. (a) Feature-level fusion: This approach involves extracting features independently from each modality using techniques 
like deep learning. They are then aggregated into a joint feature representation before being input to a model for prediction. (b) Decision-level fusion: each modality 
is input to a separate model which makes an independent prediction. These predictions are then fused using methods like averaging or weighted sums to reach the 
final output. 
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allows capturing pathological changes occurring at the molecular, 
cellular, systems, and behavioral levels. Table A1 summarizes the 
studies reported in this section. 

One of the most common applications of multimodality is in the 
study of Alzheimer’s disease. Zhang et al. [21] conducted a study where 
they integrated structural MRI, PET, and cognitive tests to develop a 
multivariate classification system for predicting the diagnosis and pro-
gression of Alzheimer’s disease. Liu et al. [22] proposed a multimodal 
neuroimaging feature learning framework using stacked auto-encoders 
for diagnosing different stages of Alzheimer’s disease. They fused MRI 
and PET data using a zero-masking strategy and achieved improved 
classification performance compared to single-modality methods. Shi 
et al. [23] proposed a multimodal stacked deep polynomial network for 
diagnosing Alzheimer’s disease. Their method extracted high-level fea-
tures separately from MRI and PET scans before fusing them, resulting in 
state-of-the-art multiclass classification accuracy. Bhagwat et al. [10] 
integrated longitudinal MRI, genetic, and clinical data to predict clinical 
symptom trajectories in Alzheimer’s disease. Their model effectively 
combined multimodal data from two timepoints and provided high 
prediction accuracy. Wang et al. [24] proposed a deep learning frame-
work that jointly learns Alzheimer’s diagnosis and predicts mild 
cognitive impairment by combining structural MRI, demographic, neu-
ropsychological, and genetic data. Spasov et al. [25] developed a deep 
learning model that combines structural MRI, demographic, cognitive, 
and genetic data to predict the conversion from mild cognitive impair-
ment to Alzheimer’s disease. Pelka et al. [26] fused sociodemographic 
data, APOE genotype, and MRI data using an LSTM model to improve 
the detection of amnestic mild cognitive impairment. Augmenting MRI 
with clinical data and enhancing color information boosted perfor-
mance, resulting in 90 % classification accuracy. 

Muhammed et al. [27] proposed a multimodal approach using EEG 
signals, MRI, and CSF biomarkers for early diagnosis of Alzheimer’s 
disease, achieving better performance than unimodal methods. Wang 

et al. [28] developed a multi-kernel adaptive sparse representation 
classification model using MRI, PET, and CSF data that outperformed 
single-kernel methods for diagnosing Alzheimer’s disease. Syed et al. 
presented an ensemble learning approach using audio, text, and neu-
ropsychological tests for diagnosing Alzheimer’s disease and predicting 
MMSE scores. The model integrates modalities through feature-level 
fusion and classifier-level fusion, demonstrating improved perfor-
mance over individual modalities. Song et al. [29] proposed a multi-
modal neural network model using speech, language, and 
neuropsychological tests to quantify Alzheimer’s disease severity, out-
performing methods based on individual modalities. The model captures 
complex interactions between modalities using co-attention modules 
and provides insight into multimodal integration. El-Sappagh et al. [30] 
proposed a two-layer random forest model for Alzheimer’s diagnosis and 
progression detection that integrates 11 modalities and provides mul-
tiple explanations using SHAP models. Gao et al. [31] proposed a deep 
learning framework for the imputation of missing PET images, along 
with a path-wise transfer dense convolution network for multimodal 
classification of Alzheimer’s disease. Using MRI and PET images, the 
method shows superior performance in PET image imputation and 
diagnosis compared to other state-of-the-art methods. 

Zhang et al. [32] developed a multimodal classification model that 
combines fMRI, PET, MRI, and neuropsychological assessments to cap-
ture intra-modality and inter-modality relationships using cross-modal 
interactions. The method achieves better prediction of different stages 
of Alzheimer’s disease compared to single-modality methods. Ilias et al. 
[33] proposed a multimodal deep learning model that combines speech, 
language transcripts, and neuropsychological tests to detect dementia 
and predict MMSE scores. Qiu et al. [34] developed a multimodal deep 
learning method that combines MRI, PET, CSF, genetics, and cognitive 
assessments to predict Alzheimer’s disease progression. The model 
captures both inter-modality and intra-modality relationships and 
demonstrates superior prediction compared to single-modality models. 
Velazquez et al. [35] developed a multimodal deep learning method 
using speech, language transcripts, and neuropsychological tests to 
detect Alzheimer’s disease. The model integrates modalities using gated 
multimodal units and attention mechanisms and demonstrates the 
benefit of multimodal learning. Golovanevsky et al. [36] developed a 
multimodal deep learning framework that integrates imaging, genetic, 
and clinical data to detect Alzheimer’s disease and mild cognitive 
impairment. The model uses cross-modal attention to capture in-
teractions between modalities and outperforms previous state-of-the-art 
models. El-Sappagh et al. [37] proposed an ensemble learning frame-
work for Alzheimer’s disease progression detection that integrates het-
erogeneous base learners using stacking and achieves superior 
performance compared to state-of-the-art techniques. 

Two studies investigating Parkinson’s disease using multimodal ap-
proaches have been identified. Papadopoulos et al. [38] proposed a deep 
learning framework that combines accelerometer data capturing hand 
tremors with typing data capturing fine-motor impairment during nat-
ural smartphone use to detect Parkinson’s disease and its symptoms, 
including tremor and fine-motor impairment. The results suggest that 
passively captured multimodal smartphone data can serve as an 
enhanced medium for Parkinson’s disease screening. Makarious et al. 
[39] developed a machine learning model that integrates genomics, 
transcriptomics, and clinical data to make improved predictions of 
Parkinson’s disease risk, which were validated in an external cohort. 

In addition, four other studies have utilized a multimodality frame-
work to investigate cognitive impairments such as dementia and brain 
aging. Feis et al. [40] employed MRI data to train classification models 
that distinguish presymptomatic dementia carriers from controls. Their 
model, combining diffusion and anatomical MRI features, successfully 
detected dementia mutation carriers. Kassani et al. [41] proposed a 
sparse machine learning method that utilizes multimodal fMRI data, 
including task-based and resting-state scans, to predict adolescent brain 
age. The experiments demonstrated that multimodal approaches 

Fig. 5. Different approaches used by researchers to aggregate healthcare data 
in the development of multimodal AI systems. ML: machine learning; DL: 
deep learning. 
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achieve higher classification accuracy compared to unimodal methods, 
with task-based and resting-state fMRI providing the most effective 
combination. Kang et al. [42] developed machine learning models using 
multimodal data, including neuropsychological tests, MRI, and clinical 
data, to predict amnestic mild cognitive impairment in patients. The 
multimodal model achieved higher accuracy than the model without 
MRI data, highlighting the effectiveness of the multimodality approach. 
Ko et al. [43] developed a deep learning framework that represents MRI 
and SNP data and utilizes their learned joint representation for diag-
nosing Alzheimer’s disease and mild cognitive impairment. 

The authors of these papers faced several challenges in developing 
multimodal approaches to study cognitive impairment. A key challenge 
was integrating diverse data types, including genetics, neuroimaging, 
sensor data, and clinical assessments, which have very different formats 
and dimensionality. This required developing sophisticated data inte-
gration and feature selection techniques to identify complementary in-
formation across modalities. For neurological disorders that are 
heterogeneous in their presentation like Parkinson’s and Alzheimer’s, 
capturing different symptom dimensions added complexity. The black- 
box nature of deep learning models also posed interpretability chal-
lenges that required novel analysis methods to extract biological in-
sights. Despite these hurdles, the authors demonstrated the power of 
thoughtfully combining modalities to improve disease prediction and 
subtype differentiation. 

3.2. Mental disorders 

These studies focus on the diagnosis, stratification, and treatment 
response prediction of various mental disorders including schizo-
phrenia, bipolar disorder, depression, and anxiety disorders using 
multimodal data. Integrating neuroanatomical data, functional infor-
mation, genetic biomarkers, and clinical factors from history and ex-
aminations helps obtain a more comprehensive understanding of these 
complex disorders with heterogeneous etiologies. Table A2 summarizes 
the studies reported in this section. 

We have identified three studies that utilize multimodal approaches 
to assess depression. In the work by Patel et al. [44], multi-modal MRI 
measures, along with age and cognitive scores, were used as input fea-
tures for machine learning methods to develop prediction models for 
late-life depression diagnosis and treatment response. Ding et al. [45] 
recorded EEG, eye-tracking, and galvanic skin response data from both 
depression patients and control subjects during emotional tasks. They 
extracted features from the multi-modal data and trained machine 
learning classifiers, showing that combining modalities improved clas-
sification accuracy compared to using individual modalities alone. Zhu 
et al. [46] employed an EEG-eye tracking synchronized acquisition 
system to simultaneously collect EEG and eye movement signals from 
subjects with mild depression and control subjects. By utilizing feature 
fusion strategies, they achieved up to a 7% improvement in classification 
accuracy compared to using unimodal approaches. 

Furthermore, multimodal approaches have shown benefits in the 
study of other mental disorders. Han et al. [47] developed a stacked 
autoencoder model to identify autism spectrum disorder in children by 
combining EEG and eye-tracking data. They used separate 
auto-encoders to learn features from each modality and then concate-
nated them to learn joint representations. This multimodal approach 
outperformed unimodal and feature-concatenation methods, taking 
advantage of the complementary nature of neurophysiological and 
behavioral data. Jiang et al. [48] presented an IoT-based hierarchical 
solution for stress monitoring that merged edge and cloud computing. 
They employed lightweight machine learning at the edge for real-time 
inference before selectively offloading data to the cloud for advanced 
analysis. This system achieved significantly reduced latency and energy 
costs compared to cloud-only approaches, benefiting from the integra-
tion of local and remote resources. Pan et al. [49] proposed a multi-scale 
adaptive multi-channel fusion graph convolutional network, which 

demonstrated significantly improved accuracy over baselines in the 
classification of autism spectrum disorder and major depressive disor-
der. Rahaman et al. [50] developed a deep multimodal framework that 
integrated structural and functional MRI and genomic data to predict 
schizophrenia. Their multimodal approach outperformed unimodal and 
multimodal baselines in schizophrenia prediction, and the analysis of 
salient features helped identify critical neural and genetic factors related 
to schizophrenia. Soundararajan et al. [51] proposed a biosensor 
network for analyzing Parkinson’s symptoms, integrating acoustic sen-
sors, microphones, and multi-sensor units to monitor biosignals. Their 
system achieved improved detection and prediction of Parkinson’s 
compared to existing systems. 

A major challenge in developing multimodal techniques for mental 
disorders is the heterogeneity and complexity of the data from different 
modalities like neuroimaging, biosignals, genetics, and behavioral 
measures. Effectively integrating complementary data from various 
modalities to improve the diagnosis and monitoring of mental disorders 
requires overcoming challenges in data collection, feature engineering, 
modelling correlations, managing heterogeneity, and model optimiza-
tion. The works attached make good progress on these fronts using auto- 
encoders, attention mechanisms, graph networks and other deep 
learning innovations. 

3.3. Sleep health 

This category focuses on integrating multimodal data to investigate 
sleep disorders and their impact on overall health. The goal is the 
diagnosis or assessment of sleep disorders through multimodal sleep 
monitoring signals fusion. Combining physiological biosignals, clinical 
symptoms reported in questionnaires, and sleep logs provides a more 
holistic characterization compared to a single modality. Table A3 sum-
marizes the studies reported in this section. 

Sano et al. [52] focused on multimodal ambulatory monitoring of 
physiological signals for assessing sleep patterns. The authors used 
LSTM RNN on smartphone and wearable data combining 
multi-modality. This outperformed actigraphy and achieved 
near-real-time detection with slightly reduced performance. Zhou et al. 
[53] integrated multi-modality by using the Fourier decomposition 
method (FDM) on biomedical signals, specifically electroencephalogram 
(EEG), electromyogram (EMG), and electrooculogram (EOG) data, to 
classify different stages of sleep. They demonstrated that utilizing mul-
tiple modalities improved the classification results compared to using 
single-channel EEG data alone, suggesting the potential for enhanced 
sleep disorder assessment and monitoring. Jia et al. [54] developed 
SleepPrintNet, a method for sleep stage classification that integrated 
multiple modalities, including electroencephalogram (EEG) data. They 
demonstrated that their approach achieved better classification results 
compared to existing algorithms, suggesting the potential for improved 
sleep stage assessment and monitoring. Fatimah et al. [55] proposed a 
multi-modal assessment of sleep stages using adaptive Fourier decom-
position and machine learning. They utilized electroencephalogram 
(EEG), electromyogram (EMG), and electrooculogram (EOG) data to 
improve the classification of sleep stages. Their method showed better 
classification results compared to other algorithms and highlighted the 
potential for low-cost sensor-based setups for continuous patient moni-
toring and feedback. 

The authors in the papers faced a few key challenges in developing 
automated sleep stage classification systems using multi-modality 
physiological data. One major challenge was how to efficiently extract 
relevant features that capture the discriminative characteristics of 
different sleep stages from EEG signals. While time-domain information 
provided morphological patterns, frequency-domain and spatial pat-
terns also contained useful information. Another challenge was how to 
integrate other modalities like EOG and EMG that provide supplemen-
tary cues while capturing their discriminative signatures. Existing works 
often overlooked the unique traits of different modalities and shared 
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representations across them. Developing subject-independent models 
posed additional difficulties due to inter-individual variations in sleep 
patterns. Real-time operation with portable devices brought further 
constraints of efficient computation. The authors in the reviewed papers 
attempted to address these challenges by techniques like adaptive signal 
decomposition, hierarchical neural networks, modality-specific pro-
cessing, and ensemble classifiers to leverage multi-modality for 
improving automated sleep stage classification. 

3.4. Cardiac diseases 

This category involves integrating multimodal data to improve the 
diagnosis and management of cardiac diseases, such as heart failure and 
arrhythmias. The importance of Multimodal integration combines clin-
ical data, electrocardiography (ECG), echocardiograms, cardiac imag-
ing, and genetic information to assess cardiac function, identify risk 
factors, and guide treatment decisions. Table A4 summarizes the studies 
reported in this section. 

Puyol-Antón et al. [56] presented an automated diagnostic pipeline 
for classifying dilated cardiomyopathy. The pipeline combined a 
multimodal cardiac motion atlas created from both 3D MR and US data 
with multi-view machine learning algorithms. This approach signifi-
cantly improves accuracy compared to the single modality. Zhang et al. 
[57] presented a method for detecting coronary artery disease using 
multi-modal feature fusion and hybrid feature selection. By combining 
multiple types of features, they aimed to improve the accuracy of disease 
detection. Kim et al. [58] developed a multimodal and integrative de-
cision support system for predicting postoperative cardiac events in 
multiple surgical cohorts. They incorporated multimodal features 
derived from physiological signal processing techniques and electronic 
health records (EHR) data, achieving promising results with AUROC 
values. The study demonstrated the potential of combining EHR data 
and physiological waveform data for early detection of postoperative 
deterioration events. 

There were several challenges faced by the authors of the papers 
related to cardiac diseases. First, integrating information from multiple 
data sources, such as physiological signals, and electronic health re-
cords, posed technical difficulties. The data modalities varied in 
dimensionality and representation, requiring advanced processing 
techniques for fusion. Second, patient populations across various co-
horts showed heterogeneous disease manifestations, making generaliz-
able modeling complex. Third, cardiac conditions have multifactorial 
origins, and determining etiology in individual cases remains chal-
lenging. Diverse feature extraction methods captured complementary 
information. While progress has been made, larger and more diverse 
databases will likely further enhance the capability to stratify cardiac 
conditions and personalize management. 

3.5. COVID-19 

This category focuses on integrating multimodal data to understand 
COVID-19, its impact on various organs, and the development of effec-
tive treatment strategies: Multimodal integration combines clinical data, 
laboratory results, chest imaging (such as X-rays or CT scans), genomic 
data, and patient outcomes to study disease progression, identify risk 
factors, and predict patient outcomes. Table A5 summarizes the studies 
reported in this section. 

Chen et al. [59] presented a multimodality machine learning 
approach to differentiate between severe and non-severe COVID-19 
cases. By combining clinical and laboratory features, the authors 
develop a random forest model that achieves high predictive accuracy, 
shedding light on the comprehensive understanding of COVID-19 and 
providing insights for evaluating disease severity based on common 
medical features. Sait et al. [124] developed a novel deep fusion strategy 
called CovScanNet to predict COVID-19 using breathing sounds and CXR 
images, achieving 98.72% accuracy on the validation set. Their 

implementation through a smartphone application enabled convenient 
and easily accessible screening. Zheng et al. [60] focused on the inte-
gration of multi-modal knowledge graphs in doctor-patient dialogues. 
The authors propose a method that combines textual and visual infor-
mation to enhance the understanding and effectiveness of medical 
conversations, leading to improved healthcare outcomes. Manocha et al. 
[61] proposed a preliminary COVID-19 screening method that analyzed 
cough recordings via FFT and classified them using CNN. They addi-
tionally collected breathing sounds to address gaps in their dataset and 
explored the multi-modal fusion of audio and visual features, obtaining 
95.64% accuracy. 

The authors faced several challenges when developing deep learning 
models for COVID-19 diagnosis and prognosis using multi-modal data. 
One major challenge was how to effectively integrate and fuse infor-
mation from different data modalities, such as combining text de-
scriptions with visual medical images to enhance clinical understanding. 
Integrating diverse data types increased computational complexity, 
posing implementation challenges for real-time applications. Finally, 
collecting and integrating data from multiple centers introduced further 
challenges around data collection, standardization, and ensuring pri-
vacy and security when sharing information. 

3.6. Oncology 

The studies reported in this section aim to enhance cancer diagnosis, 
treatment selection, and monitoring through multimodal data integra-
tion. Specifically, multimodal integration combines different data 
sources such as medical imaging, histopathological analyses of tumor 
tissues, and clinical patient records. The fusion of these modalities aims 
to improve the accuracy of cancer detection and characterization of 
molecular subtypes. It also seeks to support more personalized treatment 
planning and monitoring of treatment responses. Table A6 summarizes 
the studies reported in this section. 

Karim et al. [62] proposed an adversary-aware multimodal con-
volutional auto-encoder model to predict cancer susceptibility from 
multi-omics data. The model demonstrated high confidence in predict-
ing cancer types and robustness against adversarial attacks. Kanwal 
et al. [63] introduced a multimodal deep learning framework for cancer 
prognosis prediction using clinical, copy number, and RNA data. The 
experiments demonstrated high accuracy in prognosis prediction and 
improvement through multimodal fusion. 

Regarding prostate cancer, three authors proposed a multimodal 
approach based on MRI imaging. Molina et al. [64] developed an in-
cremental learning system using SVM classifiers and multimodal MRI 
features, including T2-weighted, dynamic contrast-enhanced MRI, and 
texture analysis, to classify prostate cancer. Le et al. [65] proposed a 
multimodal CNN model to diagnose prostate cancer in multi-parametric 
MRI, using apparent diffusion coefficient and T2-weighted images. Rossi 
et al. [66] proposed a siamese neural network model to retrieve prostate 
MRI images that are diagnostically similar in terms of lesion PIRADS 
scores. All authors achieved higher diagnostic metrics compared to 
current approaches and monomodal methods. 

For breast cancer assessment, multimodal approaches were used in 
the fields of radiology and pathology. Mokni et al. [67] proposed a 
multimodal CAD system that fused mammography and DCE-MRI for 
breast cancer diagnosis. They extracted texture features using the GLIP 
descriptor from each modality and achieved higher AUC compared to 
mammography and MRI individually. Yang et al. [68] developed a 
multimodal deep learning model that integrated H&E histological im-
ages and clinical data to predict recurrence risk in HER2+ breast cancer. 
They achieved a high AUC on independent blind test data. 

Multimodal approaches have also been used for the study and 
analysis of brain tumors such as gliomas. Lu et al. [69] developed a 
machine learning model using MR radiomic features to classify gliomas 
into five molecular subtypes based on histology, IDH mutation status, 
and 1p/19q codeletion status. The model improved the classification 
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performance by over 15% compared to MR alone. Li et al. [70] devel-
oped an improved 2D U-Net model for brain tumor segmentation using 
multimodal MRI. The model generates segmentation maps slice-by-slice 
and achieves higher segmentation performance compared to 
mono-modality. Wang et al. [71] proposed a 3D multitask CNN model to 
jointly segment glioma lesions and predict IDH mutation status from 
multimodal MRI. They achieved high classification performance 
compared to previous models, and experiments showed that lesion 
segmentation helps predict gene mutation. Xiao et al. [72] proposed a 
neural architecture search method called DLS-DARTS to discover 
optimal CNN architectures for classifying glioma grades using multi-
modal intraoperative imaging. Their approach outperformed manually 
designed networks and demonstrated the potential of multimodality in 
glioma grading. 

Multimodality has been employed for the study of tumors in other 
body regions, such as the abdominal area. Yang et al. [73] proposed an 
integrated deep learning model using ultrasound images and radiologist 
domain knowledge to classify thyroid nodules. Chen et al. [74] proposed 
a deep learning scheme using multi-modal MRI and model constraints 
for the noninvasive prediction of TP53 mutations in pancreatic cancer. 
Fu et al. [75] introduced a PET-CT tumor segmentation model with a 
multimodal spatial attention module that enhances tumor regions, 
improving segmentation performance over state-of-the-art methods. 
Menegotto et al. [76,77] proposed a multimodal deep learning model 
combining CT images and structured clinical data to diagnose hepato-
cellular carcinoma, achieving promising results, including 89.6% pre-
cision and 86.9% accuracy, approaching specialist performance. Gao 
et al. developed a semantic segmentation model using multi-modal ul-
trasound images to diagnose cervical lymphadenopathy related to 
COVID-19 vaccines, achieving accurate tissue detection and lymph node 
diagnosis. Hao et al. [78] proposed a deep learning model called Sur-
vivalCNN, which utilizes CT images and clinical data to predict overall 
and progression-free survival for gastric cancer patients. Ye et al. [79] 
developed a machine learning model using multi-modal MRI data to 
classify germinoma tumors in the pineal region. By evaluating models 
trained on different combinations of MRI sequences, their model ach-
ieved an AUC of 0.88 for germinoma classification. 

In oncology, effectively fusing the multi-modal data is difficult - 
simply concatenating features from different modalities may not fully 
utilize the complementary information. The authors propose various 
techniques to integrate the modalities such as constraint terms in the 
loss function, attention mechanisms, and architectural designs to share 
features. The multimodal data also increases the model complexity, 
requiring more computational resources. Additional challenges include 
utilizing 3D spatial information from volumetric scans efficiently in 2D 
networks, generating usable augmented data, and integrating radiolo-
gist domain knowledge and annotations. Despite these obstacles, the 
works demonstrate that combining modalities can improve performance 
over single-modal approaches for tasks like tumor segmentation, diag-
nosis, and survival prediction. 

3.7. Ophthalmology 

This category includes studies that focus on utilizing multimodal 
data integration to examine eye diseases. Diseases such as age-related 
macular degeneration and diabetic retinopathy are among the key 
areas of investigation. The goal of multimodal integration is to fuse 
different ophthalmic data modalities, such as retinal imaging techniques 
like fundus photography and optical coherence tomography scans. 
These images are combined with genetic profiles, clinical examination 
findings, and patient medical records. Table A7 summarizes the studies 
reported in this section. 

Chai et al. [80] developed a Bayesian deep learning model for 
glaucoma diagnosis. By considering uncertainty and integrating infor-
mation from multiple modalities, such as medical indicators, images, 
and texts, their model achieved better performance in glaucoma 

detection compared to other methods, offering potential benefits for 
managing the diagnosis of glaucoma. Hervella et al. [81] proposed a 
novel self-supervised multimodal reconstruction pre-training that 
explicitly taught networks to recognize common and exclusive charac-
teristics between modalities. Jin et al. [82] presented a multimodal deep 
learning framework with feature-level fusion for retinal imaging. By 
integrating multiple modalities, including fundus images, the proposed 
model achieved improved accuracy in identifying choroidal neo-
vascularization activity, which is crucial for diagnosing and managing 
diseases such as age-related macular degeneration. Liu et al. [83] pro-
posed a deep learning approach using multimodal fundus images for 
predicting visual impairment in retinitis pigmentosa. They integrated 
different modalities of fundus images and used a deep learning model to 
accurately predict visual impairment, which can aid in early detection 
and management of the disease. Hervella et al. [84] proposed a novel 
self-supervised pre-training approach, called multimodal image encod-
ing, which learned representations from unlabeled retinal image pairs. It 
improved grading on multiple datasets compared to supervised 
pre-training. 

The papers related to ophthalmology highlighted several research 
challenges faced by their authors. A key challenge was effectively 
exploiting multi-modality data for self-supervised deep learning ap-
proaches. Traditionally in this field, features were extracted separately 
from each modality using deep networks and then combined down-
stream into a classifier model. However, this ignored interactions be-
tween modalities. Another significant challenge was addressing 
uncertainty in diagnosis while leveraging the multiple sources of in-
formation routinely collected in clinical practice, such as medical in-
dicators, images from different modalities, and patient-reported 
outcomes/texts. Fully leveraging these diverse yet complementary data 
sources could help improve diagnostic accuracy and effectiveness. 

3.8. Pediatric disorders 

This category includes studies that apply multimodal data integra-
tion to further the understanding and management of disorders and 
other health conditions that affect children. The fusion of structural and 
functional information derived from multimodality aims to improve 
early detection capabilities for various pediatric disorders. Researchers 
also seek to support more personalized intervention planning and lon-
gitudinal monitoring of treatment responses/developmental progress 
through a holistic perspective achieved via multimodal data integration 
[85]. Table A8 summarizes the studies reported in this section. 

Petrozziello et al. [86] developed multimodal convolutional neural 
networks (MCNNs) combining fetal heart rate, uterine contractions, and 
signal quality data to predict fetal compromise during labor. However, 
their deep learning models were not suitable for detecting severe fetal 
injury without acidemia, suggesting hybrid approaches incorporating 
clinical knowledge are needed. Gao et al. [87] proposed a multimodal AI 
system combining abdominal radiographs and clinical data to diagnose 
necrotizing enterocolitis and predict the need for surgery. By integrating 
radiological and clinical data, they achieved improved diagnostic ac-
curacy and surgical predictive ability compared to either modality 
alone. Salekin et al. [88] developed a multimodal deep learning 
approach using video, audio, and physiological signals to assess 
neonatal postoperative pain. The integration of facial expressions, body 
movements, and crying sounds enabled more accurate and continuous 
pain monitoring compared to models relying on a single modality. Guez 
et al. [89] constructed a multimodal machine learning model combining 
magnetic resonance enterography and biochemical biomarkers to pre-
dict Crohn’s disease endoscopic activity in the ileum. The fusion model 
demonstrated better predictive performance than either imaging or 
biomarkers alone and was comparable to experienced clinicians. 

Integrating data from multiple sources, including brain imaging, and 
clinical assessments, requires addressing challenges related to data 
quality, privacy, and standardized assessment tools for children. 
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Challenges also include a limited number of samples, high costs of pe-
diatric imaging and lack of standardized collection methods for different 
age groups. 

3.9. Other studies 

This section collects multimodal studies that do not fall into one of 
the applications described above. The authors in each of the following 
paper developed innovative multimodal approaches and leveraged the 
strengths of combining different data modalities. Table A9 summarizes 
the studies reported in this section. 

Milosevic et al. [90] used accelerometry and surface EMG to detect 
tonic-clonic seizures, achieving robust detection of short and non-
stereotypical seizures with their multimodal approach. Yao et al. [91] 
improved infection screening at airports by using multiple vital signs, 
resulting in higher accuracy than standalone thermography in identi-
fying seasonal influenza patients. Tiulpin et al. [92] proposed a multi-
modal machine learning approach for knee osteoarthritis progression 
prediction, demonstrating improved prediction performance by 
combining radiographs and clinical data. Huang et al. [93] developed a 
multimodal fusion model for classifying Pulmonary Embolism, showing 
superior performance compared to single-modality approaches when 
combining CT scans and clinical patient data. Xue et al. [94] presented a 
multimodal approach for staging liver fibrosis using ultrasound imaging, 
demonstrating increased classification performance by including elas-
tography. Subramaniam et al. [95] proposed an automated pain recog-
nition system that emphasizes the importance of multi-modality in pain 
assessment, utilizing physiological signals and a hybrid deep learning 
network. Mattia et al. [96] used multimodal brain MRI to classify pa-
tients with anoxic brain injury, achieving improved performance with a 
3D CNN model. 

Tang et al. [97] developed a hybrid deep learning model for lung 
nodule classification, showing the advantage of fusing structured and 
unstructured multimodal patient data. Ming et al. [98] proposed a 
multimodal deep learning framework for cervical cancer classification, 
integrating PET/CT images and achieving improved recognition accu-
racy compared to single-modality approaches. Wu et al. [99] introduced 
a deep multimodal learning network for classifying lymph node metas-
tasis, outperforming single-modality networks in analyzing ultrasound 
images and elastogram modality. 

4. Discussion 

4.1. Summary of main findings 

Initially, AI tools were limited to working with a single modality. 
However, healthcare practitioners take a multimodal approach when 
making a diagnosis, as they evaluate multiple aspects and do not rely 
solely on a single biosignal or bioimage. In recent years, AI tools have 

also begun to adopt a multimodal approach, allowing them to emulate 
the decision-making process of a physician, improve their performance, 
and provide precise diagnoses. 

Fig. 6 shows the number of papers divided by machine learning (ML) 
and deep learning (DL) relative to the publication year. From the Fig., it 
can be observed that initially multimodal approaches were exclusively 
based on machine learning (2012–2017). However, starting in 2018, DL 
approaches began to emerge and within a year surpassed the number of 
ML-based papers, reaching nearly five times as many by 2022. 

A ML-based multimodal approach is simpler as it only requires 
aggregating hand-crafted features extracted from images and/or signals 
with various clinical data. This is supported by the fact that 74% of 
papers (n = 20) using ML employ feature concatenation as a data fusion 
technique. With the increasing complexity of problems analyzed and the 
pursuit of higher performance, there has been a gradual shift towards DL 
approaches, which are now considered state-of-the-art for multimodal 
approaches [23]. In recent years, there has been a prevalence of DL use 
and more sophisticated data fusion techniques like graph neural 
network [29], cross-modal attention [36], and dynamic fusion strategy 
[61]. This has also posed challenges, as researchers have had to develop 
reliable techniques for effectively extracting features computed by deep 
neural networks [8]. 

Fig. 7 illustrates the trend over the years for the various data types 
(biosignal, bioimaging, mixed) used in the multimodal approaches re-
ported in this review. In the last two years, there has been a prevalence 
of studies utilizing a mixed approach, integrating patient clinical data 
with diagnostic imaging or electrophysiological tests. In 2022, the 
number of mixed approaches greatly exceeded the other two modalities 
combined (24 papers vs. 5 papers). The sharp increase in mixed methods 
highlights the recognition that combining different sources of patient 
data, including bioimaging, biosignals, genetics, and clinical data, is key 
to fully capturing disease heterogeneity [100]. Overall, healthcare is 
progressing toward sophisticated multimodal techniques that integrate 
diverse, complementary data types to enable enhanced diagnosis, 
prognosis, and precision medicine across various disorders. This review 
reveals the great potential of fused, multiparametric data analysis to 
unlock new insights and improvements in healthcare. 

Fig.s 8 and Fig. 9 illustrate the applications and approaches currently 
employing multimodality. Specifically, Fig. 8 shows the various disease 
areas utilizing multimodal techniques, while Fig. 9 focuses on the types 
of data integrated in multimodal studies across applications. Approaches 
are categorized as bioimaging, biosignal, or mixed based on the mo-
dalities combined. 

In terms of applications, 31% of the studies reviewed (n = 25) use a 
multimodal approach for cognitive impairments, as diagnosis involves 
neurological tests, imaging, and audio recordings. Thus, the authors 
adopt multimodality to optimize performance. In oncology, there is a 
tendency to favor bioimaging over mixed approaches (11 vs. 7 papers), 
even though integrating clinical data could provide a more 

Fig. 6. Reviewed papers categorized by use of machine learning (ML) or deep learning (DL) approaches, divided by publication year.  
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comprehensive analysis. For COVID-19, mixed methods predominate, as 
radiology and symptoms are key for diagnosis. In mental health, mixed 
and biosignal approaches are equally employed (n=4 each), high-
lighting the utility of physiological and clinical data. Finally, for sleep 
health, only biosignals-based approaches are utilized, with no consid-
eration for clinical or demographic patient data. 

The performance of multimodal techniques varied across clinical 
applications. For cognitive disorders, most studies showed significant 
gains, with 5-10% improved classification accuracy over single modal-
ities [23,29]. However, multimodality only provided marginal im-
provements of 2-3% in cardiac diseases [58]. Factors impacting 

performance include heterogeneity of modalities, availability of large 
datasets, and suitability of deep learning techniques for the application. 

In Table 1, we have summarized all the open-source datasets used in 
the multimodal studies in this review paper. Notably, several datasets 
are available for cognitive impairments, especially for Alzheimer’s dis-
ease research. The ADNI (Alzheimer’s Disease Neuroimaging Initiative) 
database is used by 14 different studies. For mental disorders, open- 
source datasets facilitate studying diseases like schizophrenia. In 
oncology, most studies use the TCGA (The Cancer Genome Atlas Pro-
gram) dataset, which provides diverse tumor imaging and genetic data. 
However, many studies (43 of 81) use private datasets, restricting 
research progress on some diseases. Private datasets also hinder per-
formance comparison across approaches for the same application. 

Cognitive impairments and oncology are the two most common 
healthcare applications employing multimodal approaches. Multi-
modality is critical for studying cognitive disorders for several reasons. 
First, cognitive disorders like dementia and Alzheimer’s disease are 
highly heterogeneous in their presentation and progression. Using mo-
dalities like genetics, neuroimaging, and cognitive assessments allows 
capturing different aspects of this heterogeneity. Second, different mo-
dalities provide complementary information that on their own may not 
be sufficient for accurate diagnosis and prognosis. Combining modalities 
provides a more complete picture. Third, multimodal models can inte-
grate data acquired at different time points, enabling tracking of disease 
progression by leveraging longitudinal modalities. 

Among cognitive diseases, Alzheimer’s disease (Fig. 10) is the most 
extensively studied using multimodal approaches, often requiring the 
integration of diverse examinations for accurate diagnosis. Authors have 
applied multimodal techniques to achieve superior performance 
compared to single modalities, attaining excellent results for both Alz-
heimer’s disease detection [115] and progression estimation [10]. For 
Alzheimer’s diagnosis and monitoring, a mixed approach combining 
multiple data types has primarily been employed, as reliably detecting, 
and tracking this condition based solely on bioimaging or biosignals 
alone [37] has proven insufficient. Genetics, biomarkers, neuroimaging, 

Fig. 7. Trends in data types (biosignals, bioimaging, mixed) used in the multimodal approaches reviewed, shown by year.  

Fig. 8. Disease areas involved in the multimodal studies reviewed.  

Fig. 9. Data types integrated into the multimodal studies categorized by application area.  
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and cognitive data each provide an incomplete picture in isolation. Only 
a multimodal approach combining these sources allows constructing the 
complete timeline of Alzheimer’s onset and progression. 

Oncology accounts for 22% (n = 18) of the reviewed research, with 
highly diverse cancer applications. The most studied are prostate, 
breast, and brain tumors (Fig. 11). Typically, bioimaging approaches are 
favored over mixed methods. Many studies combine radiological and 
histological images to analyze tumor heterogeneity [69]. This multi-
modal, multiscale approach is crucial in oncology for several reasons. 
First, tumors exhibit intricate characteristics across scales, which cannot 
be adequately assessed through a single imaging method or scale alone. 
Integrating data from diverse sources like radiology, histology, and 

Table 1 
Open-access dataset used in multimodal studies in healthcare.  

Dataset Data description Application Used by 

ADNI database 
(www.adni.loni. 
usc.edu) 

data modalities included 
cognitive scores, MRI scans, 
PET images, genetics, 
medical history, 
neurological exams, 
symptoms, lab tests, and 
physical exams related to 
Alzheimer’s disease 

cognitive 
impairment 

[10,21, 
23–26, 
28–30,34, 
35,37,43] 

ADNI-TADPOLE  
[101] 

contains multimodal data 
such as MRI, PET, CSF, 
genetics, cognitive tests, 
and demographics for 
Alzheimer’s disease 
research 

cognitive 
impairment 

[27] 

EMIF-AD 
[102] 

cognitive test results and 
plasma, DNA, MRI, or 
cerebrospinal fluid (CSF) 
related to Alzheimer’s 
disease 

cognitive 
impairment 

[32] 

PDBP (www.pdbp. 
ninds.nih.gov) 

contains clinical, genetic, 
imaging and biomarker data 
associated with Parkinson’s 
disease 

cognitive 
impairment 

[39] 

PPMI (www.ppmi 
-info.org) 

includes clinical, imaging, 
omics, genetic, sensor, and 
biomarker data related to 
Parkinson 

cognitive 
impairment 

[34,39] 

COBRE dataset  
[103] 

contains resting state fMRI, 
structural MRI, and 
diffusion MRI data on 
healthy controls and 
individuals with 
schizophrenia 

mental 
disorders 

[50] 

MRPC [104] contains structural MRI, 
resting state fMRI, and DTI 
data from healthy controls 
and patients with 
schizophrenia 

mental 
disorders 

[50] 

ABIDE [105] neuroimaging (functional 
magnetic resonance 
imaging - fMRI) and 
corresponding phenotypic 
data (age, gender, and 
acquisition site) of 1112 
subjects 

mental 
disorders 

[49] 

sleep-EDF 
database [106] 

197 whole night 
polysomnographic sleep 
pattern recordings. The 
database contains 
EOG, EEG, chin EMG, and 
event markers 

sleep health [55] 

CinC Challenge  
[53] 

994 polysomnography 
(PSG) recordings following 
AASM standards, with EEG, 
EOG, EMG, and other 
physiological signals 

sleep health [55] 

MASS-SS3 sleep 
dataset [107] 

PSG recordings from 62 
healthy subjects. The 
dataset includes EEG, EOG, 
and EMG signals 

sleep health [54] 

STACOM 2011  
[108] 

MR and 3D ultrasound 
(3DUS) data from a 
dynamic phantom and 15 
datasets from healthy 
volunteers 

cardiac disease [56] 

Coswara dataset  
[109] 

dataset containing a diverse 
set of respiratory sounds 
(breathing, cough, and 
speech) and metadata about 
the patient (demographic 
information, health 
information) 

COVID-19 [61] 

TCGA (www.can 
cer.gov/ccg/re 

cancer genomics program, 
molecularly characterized 

oncology [63,68, 
69,71,76]  

Table 1 (continued ) 

Dataset Data description Application Used by 

search/genome 
-sequencin 
g/tcga) 

over 20,000 primary 
cancers and matched 
normal samples spanning 
33 cancer types 

METABRIC 
dataset [110] 

multi-modal data of 1046 
breast cancer patients with 
gene expression profiles, 
CNA profiles, along with the 
clinical data or information. 

oncology [63] 

STS dataset [111] FDGPET-CT and MR scans 
from 51 patients with lung 
cancer 

oncology [75] 

BRATS challenge  
[112] 

multimodal MRI scans for 
brain tumor segmentation, 
collected from multiple 
institutions. It includes T1, 
T1-contrast enhanced, T2, 
and FLAIR MRI modalities. 

oncology [70,71] 

Isfahan MISP  
[113] 

59 multimodal image pairs 
consisting of a color 
retinography and a 
fluorescein angiography 
image of the same eye 

ophthalmology [81,84] 

BioVid Heat Pain 
database [114] 

dataset with bio-potential 
signals (ECG, GSR, and EMG 
at Trapezius muscle) and 
facial action video signals 

other studies [95]  

Fig. 10. Reviewed studies on cognitive impairment disorders divided by 
technique and data type. ML: machine learning; DL deep learning. 
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genetics provides a more comprehensive tumor perspective. Second, 
cancer treatment decisions depend on both tumor properties and patient 
factors like genetics and medical history. Capturing both perspectives 
allows holistic understanding to guide personalized care. Finally, im-
aging at multiple scales reveals connections between macroscopic 
anatomical patterns and microscopic molecular drivers of malignancy. 
Using fusion techniques to combine multimodal and multiscale data is 
therefore essential for uncovering cancer biology and mechanisms. 

4.2. Benefits and challenges of multi-modality 

Several works have highlighted the benefits of adopting a multi-
modal framework in healthcare. A clinical study on breast cancer 
diagnosis highlighted the real-world potential of multi-modality inte-
gration [67]. By combining mammogram images and MRI scans, the 
accuracy of distinguishing malignant from benign tumors improved 
from 93% with MRI alone to 99% with the multi-modality approach. 
This enabled earlier and more reliable breast cancer detection, allowing 
physicians to start necessary treatment sooner and potentially 
improving patient outcomes. The integration of multimodal data has 
enormous potential to transform many areas of healthcare by providing 
a more comprehensive view of each patient’s unique health profile. 
Adopting a multimodal approach offers several key benefits: 

– Improved diagnostic accuracy: Combining data from different modal-
ities allows for more accurate diagnosis compared to single data 
types alone. Multimodal analysis leverages complementary infor-
mation, capturing subtleties that may be missed by individual tests or 
scans. This enables earlier and more reliable detection of disease. 
Fused multimodal data also provides a clearer picture of the under-
lying mechanisms, stage, and heterogeneity of the disease, allowing 
physicians to better select targeted therapies tailored to an 
individual. 

– Precision diagnosis: Multimodal techniques facilitate precision diag-
nosis where patients can be stratified into disease subtypes, severity 
grades, and prognostic categories based on their multiparametric 
profile. This is crucial for precision medicine.  

– Patient-centric care models: By integrating a patient’s genetics, lab 
tests, clinical history, and imaging data, multimodal models can 
predict optimal courses of treatment and response to therapies. This 
enables data-driven, personalized care. Multimodal analysis pro-
vides a more holistic understanding of the patient as a whole person, 
not just a disease. This empowers more patient-focused healthcare 
with improved quality of life. 

Overall, thoughtfully combining complementary modalities ushers 
in a new era of medicine where diagnostics, treatments, and care de-
livery can be tailored to the individual. Multimodal integration is key to 
fully realizing the promises of precision, personalized, and patient- 
centric healthcare. 

While integrating multimodal data has immense potential, there 
remain several key challenges that must be addressed:  

– Reliable and time-efficient data fusion: Effective data fusion techniques 
are needed that aggregate multimodal features without loss of critical 
information. In some studies, single modalities outperform multi-
modal approaches [83], or there is only [88] a small margin of 
improvement in the multimodal approach [28]. This indicates room 
for improvement in fusion techniques to fully leverage the comple-
mentary strengths of different modalities. These techniques must 
also be time-efficient, as multimodal pipelines have high computa-
tional costs compared to single modalities, which can hinder 
real-time applications.  

– Optimizing model complexity, interpretability, and transparency: 
Combining multiple data sources leads to inherently more complex 
multimodal models, sometimes at the expense of model interpret-
ability and transparency. Multimodal model complexity reduces 
interpretability, which is crucial in healthcare [30]. New methods 
are required to maintain model interpretability in the context of ever 
more sophisticated multimodal models by imposing appropriate 
constraints or developing techniques to approximate model me-
chanics. For critical applications, regulating model complexity or 
designing inherently interpretable models are important to provide 
clinical rationale and gain practitioner trust in automated decisions.  

– Multiscale analysis: combined modalities capture information at very 
different scales, from molecular and cellular processes to whole 
organ and organism-level phenomena. For instance, genetics and 
proteomics provide molecular insight, while medical imaging visu-
alizes macroscopic anatomy and function. Managing the integration 
of data across such a range of scales with very different semantics is 
critical for an effective multimodal approach but remains difficult 
[69].  

– Data standardization: Normalization and harmonization of data 
across different centers, scanners, and acquisition devices is essential 
prior to fusing data. Variability in how data is collected can introduce 
systematic biases that compromise the multimodal system if not 
properly addressed [37]. Careful development of data standardiza-
tion pipelines that account for acquisition differences while preser-
ving biological variance is crucial for multimodal analysis. 

In the end, thoughtfully addressing these challenges will be key to 
unlocking the full potential of multimodal techniques to provide deeper 
insights into human health. Overcoming the hurdles of multimodality 
will pave the way for a new era of data-driven healthcare. Various ap-
proaches have been proposed to address these challenges, including 
multi-view learning [116], adversarial training [117], and attention 
mechanisms [118]. However, substantial work is still required to fully 
overcome the difficulties of heterogeneous multimodal data integration 
and realize its possibilities. Fig. 12 outlines the key challenges and po-
tential benefits of multimodal research in healthcare. 

In addition to the technical aspects, it is crucial to consider the 
ethical implications of implementing multimodality approaches in 
healthcare. While integrating multimodal data has immense potential, it 

Fig. 11. Distribution of multimodal papers on oncology categorized by tech-
nique, data type and tissue under investigation. ML: machine learning; DL 
deep learning. 
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also raises ethical concerns regarding patient privacy, data security, and 
informed consent that must be carefully addressed. Studies should 
obtain necessary ethical approvals and patient data must undergo ano-
nymization. Robust data governance frameworks and consent protocols 
need to be instituted to ensure responsible data handling, protection of 
patient rights, and proper communication of risks and benefits to pa-
tients and healthcare providers. 

4.3. Future research directions 

As the field of multimodality research continues to evolve, it is 
important to highlight emerging trends and potential future directions. 
These may include the integration of wearable devices and Internet of 
Things (IoT) technologies, the exploration of novel imaging modalities, 
the application of artificial intelligence in real-time multimodal data 
analysis, and the development of decision support systems. Several po-
tential improvements and future research opportunities exist to advance 
multimodality approaches in healthcare:  

1 Enhanced data fusion techniques: The development of aggregation 
methods that balance model complexity and information retention is 
needed. Some studies show minimal performance gains over single 
modalities [28,88], indicating room for improvement in fusion 
techniques for certain applications. More advanced integration is 
required to fully leverage complementary multimodal data for 
certain applications without unnecessary model complexity. This 
could be achieved through advanced information fusion techniques 
that intelligently combine data in latent space through learned 
transformations rather than simple feature concatenation. Deep 
learning methods like variational auto-encoders and graph neural 
networks show promise for learning optimal combinations of 
multimodal data in embedded space. 

2 Adopt more mixed approaches: current works often use either bio-
imaging or biosignals alone. Integrating additional clinical data 
modalities like lab tests, and clinical data could provide more 
comprehensive analysis, especially for diseases with complex in-
teractions like cancer. This multimodal integration can better 
emulate real-world physician evaluation processes. 

3 Improved data standardization: Robust normalization and harmoni-
zation methods are essential for aggregating multi-center, multi- 
scanner, and multi-dimensional data. Heterogeneous data dynamics 
pose integration challenges and standardization can lose informa-
tion. Advances in standardization pipelines tailored to multimodal 
healthcare data could enhance analysis.  

4 Explainable AI and uncertainty quantification: While multimodal 
models achieve strong predictive performance, their complexity re-
duces interpretability compared to single-modal approaches. 
Developing explainable AI techniques and quantifying uncertainty 
estimates for multimodal models could increase clinical adoption 
where transparency is crucial [124,125]. Probabilistic multimodal 
frameworks could provide confidence intervals or reveal cases where 
a model is uncertain or unreliable [119]. Visualization approaches to 

illustrate model attention mechanisms, feature relevance, and in-
ternal representations may also prove useful for practitioners to 
distill multimodal model behaviors [30].  

5 Expanded application to segmentation tasks: Most current works apply 
multimodal fusion to classification problems, with few leveraging it 
for segmentation tasks [70,68]. Future studies should explore 
multimodal segmentation approaches, which could benefit applica-
tions like surgical planning [72], radiotherapy targeting, and 
computational pathology [120].  

6 Emerging multimodal opportunities: Some emerging areas like 
computational histology [121] and teledermatology [122] could 
benefit greatly from the strategic fusion of multiple modalities. 
Integrating dermatological images, patient history, and clinical data 
could significantly improve remote skin diagnosis to emulate 
in-person clinician analysis.  

7 Open-access mindset: Despite the significant benefits offered by 
multimodal approaches, there is currently a scarcity of open-source 
multimodal datasets. Research must focus on creating open-source 
datasets to propel technological advancements and facilitate com-
parisons among studies working on the same application. 

Overall, numerous promising opportunities exist to advance multi-
modal techniques and expand their capabilities to new applications in 
healthcare. Thoughtful innovation could enable more integrated, 
informative, and transparent healthcare analysis. 

This review has some limitations to acknowledge. The literature 
search was restricted to English articles from 2012–2022 and did not 
include a quantitative meta-analysis. Expanding the search criteria and 
performing statistical comparisons between findings could provide 
greater insights into relative multimodal performance. However, this 
review aimed to provide a comprehensive overview of current ap-
proaches and key challenges among different healthcare applications. 

5. Conclusion 

This systematic review demonstrates the vast potential of multi-
modal techniques to transform many facets of healthcare by enabling 
more accurate diagnosis, enhanced treatment planning, and tailored 
interventions for patients. The integration of data from multiple com-
plementary modalities is transforming medicine by enabling more ho-
listic analysis. Adopting multimodal systems can aid practitioners by 
providing a more comprehensive perspective of each patient for data- 
driven, personalized care. 

However, realizing this potential in clinical settings will require 
addressing key challenges around ethical data handling, model inter-
pretability, and seamless integration into practitioner workflows. Each 
modality provides a different perspective but has its limitations like 
noise, artifacts, and dimensionality issues. Modalities also possess very 
different statistical properties and spatial-temporal characteristics. This 
requires developing sophisticated AI models that can learn joint repre-
sentations while handling multimodal complexity. 

Fig. 12. Challenges and benefits of multimodal healthcare research discussed in this review.  
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Table A1 
Summary of studies that apply multi-modality approaches for cognitive impairment.  

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results (%) 

Zhang et al. [21], 
2012 

186 patients Mixed: MRI, PET, CSF, Clinical data kernel combination ML method: SVM 73.9 % accuracy in mild 
cognitive impairment 
classification 

Liu et al. [22], 2015 200 patients Bioimaging: MR, PET concatenation ML method: SAE- 
ZEROMASK 

93.32 % accuracy in 
Alzheimer’s detection 

Shi et al. [23], 2018 103 patients Bioimaging: MRI, PET deep polynomial 
network 

ML method: SVM 97.13 % accuracy in 
Alzheimer’s detection 

Bhagwat et al. [10], 
2018 

1302 patients Mixed: MRI, genetic, clinical data concatenation DL method: LSN 90 % accuracy in Alzheimer’s 
detection 

Wang et al. [24], 
2019 

119 patients Mixed: sMRI, DWI concatenation ML method: random forest 96 % accuracy in Alzheimer’s 
detection 

Spasov et al. [25], 
2019 

785 subjects Mixed: sMRI, demographic, 
neurophysical, genetic data 

concatenation DL method: CNN 87.5 % sensitivity in 
Alzheimer’s detection 

Pelka et al. [26], 
2020 

120 patients Mixed: age, marital status, education 
and gender, genetic data, MRI 

branded image DL method: LSTM 90 % accuracy in Alzheimer’s 
detection 

Muhammed et al. 
[27], 2021 

1737 patients Mixed: MRI, PET, CSF, age, gender, 
education 

concatenation ML method: random forest 80 % sensitivity in Alzheimer’s 
classification 

Wang et al. [28], 
2021 

84 patients Bioimaging: sMRI, fMRI kernel canonical 
correlation analysis 

DL method: 3DShuffleNet 96 % accuracy in Alzheimer’s 
detection 

Syed et. Al [28], 
2021 

108 subjects Mixed: audio, textual concatenation ML method: ensemble model 89.81 % accuracy in 
Alzheimer’s detection 

Song et al. [29], 
2021 

511 patients Mixed: MRI + cognitive measures +
risk factors 

graph neural network DL method: AMGNN 94.44 % accuracy in 
Alzheimer’s detection 

El-Sappagh et al. 
[30], 2021 

1048 patients Mixed: CS + NB + Genetics concatenation ML method: random forest 93.95 % accuracy in 
Alzheimer’s detection 

Gao et al. [31], 2021 1308 patients Bioimaging: MRI and PET pathwise DCN DL method: augmentation +
CNN 

92 % accuracy in Alzheimer’s 
detection 

Zhang et al. [32], 
2022 

881 patients Mixed: protein level, age, APOE 
status 

concatenation DL method: DNN 0.831 AUC in Alzheimer’s 
detection 

Ilias et al. [33], 2022 156 patients Mixed: speech, transcript concatenation DL method: BERT + ViT +
Co-Attention 

90 % accuracy in Alzheimer’s 
detection 

Qiu et al. [34], 2022 8916 patients Mixed: demographic, functional 
assessment, MRI 

concatenation DL method: CNN-CatBoost 77.7 % accuracy in Alzheimer’s 
detection 

Velazquez et al. 
[35], 2022 

383 patients Mixed: diffusion tensor imaging +
electronic health records 

concatenation DL method: ensemble model 98.81 % accuracy in 
Alzheimer’s detection 

Golovanevsky et al. 
[36], 2022 

2384 patients Mixed: clinical, genetic data + MRI cross-modal attention DL method: CNN 96.6 % accuracy in Alzheimer’s 
detection 

El-Sappagh et al. 
[37], 2022 

1371 subjects Mixed: MRI + neuropsychological 
test 

information fusion 
approach 

ML method: SVM, random 
forest 

84.95 % accuracy in 
Alzheimer’s disease progression 

(continued on next page) 
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Table A1 (continued ) 

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results (%) 

Papadopoulos et al. 
[38], 2020 

22 subjects Biosignals: postural accelerations, 
typing dynamics 

Subject embedding DL method: CNN 92.8 % sensitivity in Parkinson’s 
detection 

Makarious et al. 
[39], 2022 

383 patients Mixed: genetics, transcriptomics, 
clinico-demographic 

concatenation DL method: ensemble 
method 

98.81 % accuracy in Parkinson’s 
detection 

Feis et al.[40], 2018 103 patients Bioimaging: aMRI, DTI, rs-fMRI concatenation ML method: bvFTD 0.68 AUC in presymptomatic 
dementia prediction 

Kassani et al. [41], 
2019 

900 subjects Bioimaging: rs-fMRI, nb-fMRI, em- 
fMRI 

concatenation ML method: ELM 83.05 % accuracy in brain age 
prediction 

Kang et al. [42], 
2021 

511 patients Mixed: demographic and clinical 
data, neuropsychological test, MRI 

concatenation ML method: GBM 0.892 AUC in mild cognitive 
impairment prediction 

Ko et al. [43], 2022 734 subjects Mixed: Neuroimaging and the genetic 
data 

deep fusion DL method: generative and 
discriminative framework 

0.92 AUC in classification and 
regression task   

Table A2 
. Summary of studies that apply multi-modality approaches for mental disorders.  

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results ( %) 

Patel et al. [44], 
2015 

68 patients Mixed: MRI, demographics, cognitive 
data 

concatenation ML method: alternating 
decision tree 

87.27 % accuracy in depression 
classification and 89.47 % accuracy in 
treatment response 

Ding et al. [45], 
2019 

348 patients Biosignals: EEG, Eye-tracking and 
galvanic skin response data 

concatenation ML method: Logistic 
regression 

79.63 % accuracy in depression 
detection 

Zhu et al. [46], 2019 39 patients Biosignals: EEG, Eye-tracking data feature fusion ML method: SVM 81.88 % accuracy in depression 
recognition 

Han et al. [47], 2022 90 subjects Mixed: EEG, Eye-tracking data concatenation DL method: MMSDAE 95.56 % accuracy in autism spectrum 
disorders 

Jiang et al. [48], 
2022 

17 subjects Biosignals: ECG, EMG, 
accelerometers, blood volume 
changes, skin temperatures 

decision-level 
fusion 

DL method: Matching 
network 

96.4 % accuracy in stress monitoring 

Pan et al. [49], 2022 1645 patients Mixed: fMRI and phenotype data Knn graphs DL method: MAMF-GCN 99.24 % accuracy in mental disorder 
prediction 

Rahaman et al. [50], 
2022 

437 patients Mixed: sMRI, fMRI, Genetic ICA DL method: Autoencoder, 
FFN, attention BiLSTM 

92 % accuracy in schizophrenia 
detection 

Soundararajan et al. 
[51], 2022 

11 patients Biosignals: Acceleration + gyro 
sensors, ECG, EMG and raw voice data 

concatenation +
PCA 

DL method: VAER K. 
means + LSTM 

99.8 % accuracy in the detection of 
Parkinson’s disease   

Table A3 
. Summary of studies that apply multi-modality approaches for sleep health.  

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results ( %) 

Sano et al. [52], 
2019 

186 subjects Biosignals: Acceleration + skin 
temperature 

concatenation DL method: LSTM network Sleep/wake classification accuracy 
of 96.5 % 

Jia et al. [54], 
2021 

62 subjects Biosignals: EEG, EMG, EOG feature fusion 
module 

DL method: CNN 88.8 % of sleep stages classification 

Zhou et al. [53], 
2020 

1985 subjects Biosignals: EEG, EOG, EMG, ECG, 
SaO2, respiratory 

concatenation DL method: CRPEMA AUC of 0.844 in sleep arousal 
detection 

Fatimah et al. 
[55], 2022 

153 recordings Biosignals: EEG, chin EMG, EOG 
and event markers 

concatenation ML method: ensemble bagged 
trees algorithm 

93.44 % accuracy in 5-class sleep 
stages classification   

Table A4 
. Summary of studies that apply multi-modality approaches for cardiac diseases.  

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results ( %) 

Puyol-Anton et al. 
[56], 2019 

69 subjects Bioimaging: ultrasound, MRI motion atlas ML method: 
MvLapSVM 

92.71 % accuracy in the identification of dilated 
cardiomyopathy patients 

Zhang et al. [57], 
2020 

62 patients Biosignals: ECG, PCG, 
Holter, ECHO, BIO 

hybrid feature 
selection 

ML method: SVM 96.67 % accuracy in detection of coronary artery 
disease 

Kim et al. [58], 2022 - Mixed: EHR, ECG, ABP, PPG concatenation ML method: 
random forest 

0.82 AUC in prediction of postoperative cardiac 
events   
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Table A5 
. Summary of studies that apply multi-modality approaches for COVID-19.  

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results ( %) 

Chen et al [59, 
123], 2021 

362 subjects Mixed: clinical data, 
laboratory tests 

concatenation ML method: random forest 97.22 % accuracy in differentiating 
between severe and non-severe COVID-19 

Sait et al. [123], 
2021 

10 subjects Mixed: Breathing sounds 
and Chest X-ray 

concatenation DL method: CovScanNet 98.72 % accuracy in COVID-19 diagnosis 

Zheng et al. 
[60], 2021 

2000 subjects Mixed: X-ray, CT, 
Ultrasound, patient-doctor 
text 

temporal self-attention 
mechanism 

DL method: knowledge graph 
attention embedding model 

98.10 % accuracy in COVID-19 diagnosis 

Manocha et al. 
[61], 2022 

- Mixed: X-ray, cough dynamic fusion 
strategy 

DL method: CNN 95.64 % accuracy in COVID-19 prediction   

Table A6 
. Summary of studies that apply multi-modality approaches for oncology.  

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results ( %) 

Kanwal et al. [63], 
2022 

2797 patients Mixed: Clinical, RNA, CNA late fusion 
features 

DL method: CNN-XGBOOST 96.3 % accuracy in multi-cancer 
prognosis 

Karim et al. [62]. 
2022 

9074 patients Mixed: Gene and miRNA 
expression 

concatenation DL method: MCAE model 96.25 % precision in cancer 
susceptibility prediction 

Molina et al. [64], 
2014 

12 patients Bioimaging: T2W, DCE-PF, DCE- 
MTT 

interpolation ML method: SVM 84.4 % sensitivity in prostate 
cancer classification 

Le et al. [65], 2017 364 patients Bioimaging: ADC, T2WI concatenation ML method: SVM 89.85 % sensitivity in prostate 
cancer diagnosis 

Rossi et al. [66], 
2021 

890 subjects Bioimaging: axial T2W, HBV, 
sagittal T2W 

merging DL method: CNN 0.83 AUC in prostate image 
retrieval 

Mokni et al. [67], 
2021 

286 patients Bioimaging: DCE MRI and MGs concatenation DL method: RBFNN 0.99 AUC in breast cancer detection 

Yang et al. [79], 
2022 

250 subjects Mixed: H&E images, clinical data Feature fusion by 
MCB 

DL method: batch 
normalization layer 

0.72 AUC in prediction of breast 
cancer recurrence 

Lu et al. [69], 2018 214 subjects Mixed: MRI, survival data, 
histology, IDH, and 1p/19q status 

concatenation ML method: three-level binary 
classification model 

93.2 % accuracy in glioma 
subtyping 

Li et al. [70], 2019 274 patients Bioimaging; MRI T1, T1c, T2 raw images DL method: inception-based U- 
Net 

88.5 % sensitivity in glioma 
segmentation 

Wang et al. [71], 
2021 

121 patients Bioimaging: MRI T2-Flair, T1Gd, 
T1, T2 

concatenation DL method: SGPNet 90.7 % sensitivity in glioma 
genotype predictions 

Xiao et al. [72], 
2022 

24 patients Bioimaging: White light imaging 
and fluorescence imaging 

fusion-based DL method: DLS-DARTS 0.843 AUC in glioma grading 

Yang et al. [73], 
2020 

3090 patients Bioimaging: B-mode US image, 
elastography 

US features DL method: MCDLM 90.01 % accuracy in thyroid nodule 
classification 

Chen et al. [74], 
2021 

64 patients Bioimaging: MRI ADC, DWI, T2w feature fusion DL method: CNN 73.6 % accuracy in prediction of 
pancreatic cancer mutation 

Fu et al. [75], 
2021 

101 patients Bioimaging: PET, CT feature embedding DL method: U-NET+MSAM 81.09 % sensitivity in lung cancer 
segmentation 

Menegotto et al. 
[76], 2021 

46 patients Mixed: CT, EHR concatenation DL method: multimodal 
xception 

86.9 % accuracy in hepatocellular 
carcinoma diagnosis 

Gao et al. [77]. 
2022 

994 patients Bioimaging: grayscale and color 
Doppler US images 

features sharing 
module 

DL method: Siamese U-Net 82.54 % accuracy in cervical cancer 
classification 

Hao et al. [78], 
2022 

1061 patients Mixed: 3D contrast-enhanced CT, 
discrete clinical variables 

concatenation DL method: CNN + multi-layer 
perceptron module 

% in gastric cancer survival 
prediction 

Ye et al. [79], 
2022 

122 patients Mixed: Tumor (ROI) + T1-T1C-T2 
(MRI sequence) 

concatenation ML method: random forest +
MLP 

0.88 AUC in germinomas 
classification   

Table A7 
. Summary of studies that apply multi-modality approaches for ophthalmology.  

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results ( %) 

Chai et al. [80], 
2021 

4520 patients Mixed: retinal image, medical indicators integration module DL method: 
Bayesian MLP 

92.56 % accuracy and 0.9408 AUC in 
glaucoma diagnosis 

Hervella et al. 
[81], 2021 

1200 images Bioimaging: retinography–angiography image alignment DL method: VGG- 
Net 

0.9528 AUC in pathological myopia 

Jin et al. [82], 
2021 

176 patients Bioimaging: OCT & OCTA images feature level fusion DL method: 
UFNET 

96.77 % accuracy in the detection of age- 
related macular degeneration 

Liu et al [83], 
2021 

83 patients Bioimaging: IR, OCT raw images DL method: 
ResNet-152 

0.85 AUC in the prediction of visual 
impairment 

Hervella et al. 
[84], 2022 

1200 images Bioimaging: retinography and 
fluorescein angiography 

self-supervised pre- 
training approach 

DL method: VGG 79.44 % accuracy in diabetic retinopathy 
grading   
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Table A8 
. Summary of studies that apply multi-modality approaches for pediatric disorders.  

Author, year Participant/data 
information 

Multi-modality input Features 
fusion 

Methods Findings/Results ( %) 

Petrozziello et al. [86], 
2019 

35000 births Mixed: Uterine, FHR, Quality multimodal 
CNN 

DL method: MCNN 0.77 AUC in the detection of fetal 
compromise 

Gao et al. [87], 2021 1823 patients Mixed: abdominal radiographs, 
clinical data 

concatenation ML method: LightGBM 0.9414 AUC in the surgical prediction 
of necrotizing 
enterocolitis 

Salekin et al. [88], 
2021 

45 neonates Mixed: Audio, video decision fusion DL method: LSTM +
spectrograms 

79 % accuracy in neonatal pain 
assessment 

Itai Guez et al. [89], 
2022 

240 children Mixed: biochemical biomarkers 
and MRE scans 

fusion model ML method: random forest 0.84 AUC in the assessment of 
Crohn’s disease   

Table A9 
. Summary of studies that apply multi-modality approaches for other studies (miscellaneous applications).  

Author, year Participant/data 
information 

Multi-modality input Features fusion Methods Findings/Results ( %) 

Milosevic et al. [90], 
2016 

56 patients Biosignals: ACM, sEMG concatenation ML method: SVM 91 % accuracy in seizure 
detection 

Yao et al. [91], 2016 92 subjects Biosignals: Heart rate, 
respiration rate 

concatenation ML method: kNN 93 % sensitivity in infection 
screening 

Tiulpin et al. [92], 
2019 

2129 subjects Mixed: radiographic, clinical 
data 

tree gradient boosting DL method: CNN 0.79 AUC in osteoarthritis 
progression prediction 

Huang et al. [93], 
2020 

1837 subjects Mixed: CT, EMR/EHR late elastic average fusion DL method: PENet + NN 0.947 AUC in pulmonary 
embolism classification 

Xue at al. [94], 2020 466 patients Bioimaging: ultrasound 
image, elastography 

combine as a single image 
top and bottom 

DL method: CNN 0.95 AUC in liver fibrosis 
staging 

Subramaniam et al. 
[95], 2021 

67 subjects Biosignals: ECG, EDA concatenation DL method: CNN-LSTM 91.43 % average accuracy in 
pain monitoring 

Tang et al. [97], 2021 1010 patients Mixed: CT + structured data aggregation DL method: CNN + XGBoost 93.6 % accuracy in lung 
nodule detection 

Mattia et al. [96], 
2022 

63 patients Bioimaging: sMRI, fMRI MRI indices DL method: 3D CNN 96 % accuracy in coma 
patients 

Ming et al. [98], 2022 2020 patients Bioimaging: CT, PET volumes adaptive fusion DL method: DNN 84.3 % accuracy in cervical 
cancer classification 

Wu et al. [99], 2022 1131 patients Mixed: ultrasound images 
and clinical records 

LSTM DL method: deep multimodal 
learning network 

0.973 AUC in lymph node 
metastasis prediction  
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