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Abstract: In this paper, we discuss the accuracy and the robustness of the mixed Virtual Element
Methods when dealing with highly anisotropic diffusion problems. In particular, we analyze the
performance of different approaches which are characterized by different sets of both boundary and
internal degrees of freedom in the presence of a strong anisotropy of the diffusion tensor with constant
or variable coefficients. A new definition of the boundary degrees of freedom is also proposed and
tested.
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1. Introduction

The Virtual Element Method (in short VEM) [6,7] is a generalization of the Finite Element Method
(FEM in short) that can easily handle general polytopal meshes and high-order methods. The major
difference with the FEM is that the VEM space contains suitable non-polynomial functions. For this
reason, the standard VEM discrete bilinear form is the sum of a consistency part ensuring accuracy and
a stabilization term enforcing the coercivity. In particular, the choice of the stabilization term remains
a critical part of the VEM construction [12, 26] and it is usually problem-driven. Furthermore, the
stabilization term may have possible negative effects on the conditioning of the system [16, 24] and
may become an issue in highly anisotropic diffusion problems due to its isotropic nature. Moreover,
we recall that it is crucial to employ a well-conditioned polynomial basis in the definition of the
internal degrees of freedom to obtain reliable solutions when building high-order methods. Indeed,
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the advantages of using L2-orthogonal polynomial bases against the standard monomial one have
largely been proved both for the primal version of the method [5, 11, 13, 16, 24] and for its mixed
formulation [14].

In this paper, we want to test the accuracy and the robustness of the mixed virtual element Method
when dealing with highly anisotropic diffusion tensors. For this purpose, we propose different kinds
of degrees of freedom and test them against different choices of the stabilization term for a set of
benchmark anisotropic diffusion problems. In particular, we introduce a new set of boundary degrees
of freedom which are defined as moments up to degree k ≥ 0 against an L2([0, 1])-orthonormal
polynomial basis in order to analyze the role of the boundary degrees of freedom in the conditioning
and in the accuracy of the methods. Numerical experiments show that this choice of boundary degrees
of freedom generally leads to a downward shift of the error curves. However, this approach does not
ensure an improvement of the condition number of the system matrix in all the tested cases.

The outline of the paper is as follows. In Section 2 we present the model problem. In Section 3,
after introducing the local mixed virtual element spaces and different sets of the local degrees of
freedom, we define the mixed VE formulation of the problem. In Section 4, we describe the main
properties and discuss possible choices for the stabilization term. Finally, in Section 5 we test all
the proposed approaches through different benchmark problems which are characterized by highly
anisotropic diffusion tensors, with both constant and variable coefficients.

2. The model problem

Let Ω ⊂ R2 be a bounded convex polytopal domain with boundary Γ and let nΓ be the outward unit
normal vector to the boundary. Let us consider a tensor D(x) ∈ R2×2 which is bounded, measurable,
symmetric and strongly elliptic on Ω, i.e., there exist Dmin, Dmax, independent on v and x, such that

Dmin‖v(x)‖2 ≤ v(x) · D(x)v(x) ≤ Dmax‖v(x)‖2,

holds for every v ∈ H0,ΓN (div; Ω) = {v ∈ H(div; Ω) : v · nΓN = 0} and for almost every x ∈ Ω, where
‖·‖ denotes the euclidean norm. Given f ∈ L2(Ω), gD ∈ H1/2(ΓD) and gN ∈ L2(ΓN), we consider the
following diffusion problem 

div (−D∇p) = f in Ω

p = gD on ΓD

−(D∇p) · nΓN = gN on ΓN

, (2.1)

where ΓD and ΓN such that ΓD ∪ ΓN = Γ, |ΓD| , 0 and |ΓD ∩ ΓN | = 0 denote the Dirichlet and the
Neumann boundary, respectively. In particular, in the following, we focus on diffusion problems with
a diffusion tensor of the form

D(x) = R(x)
[
Dmax 0

0 Dmin

]
(R(x))T , (2.2)

which is characterized by a high anisotropic ratio, i.e., the ratio between the smallest and largest
eigenvalues of the diffusion tensor.
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Introducing the velocity space V = H0,ΓN (div; Ω) and the pressure space Q = L2(Ω), the mixed
variational formulation of (2.1) reads:

Find (u0, p) ∈ V × Q such that u = u0 + uN and p satisfy(
D−1u, v

)
Ω
− (p, divv)Ω = −〈gD, v · nΓD〉± 1

2 ,ΓD
∀v ∈ V

(divu, q)Ω = ( f , q)Ω ∀q ∈ Q

, (2.3)

where uN ∈ H(div; Ω) is a chosen function that satisfies uN · nΓN = gN and 〈·, ·〉± 1
2 ,ΓD

denotes the duality
paring between H−1/2(ΓD) and H1/2(ΓD).

3. The mixed virtual element space

Now, let us consider a decomposition Th of Ω in star-shaped polygons E, where h, as usual, is set
to be the maximum diameter of elements E ∈ Th. We further denote by Eh,E the set of edges of an
element E ∈ Th.

For any integer k ≥ 0, we define the local virtual element space related to the velocity variable u as

Vh,k (E) =
{
v ∈ H(div; E) ∩ H(rot; E) : v · ne ∈ Pk(e)∀e ∈ Eh,E, divv ∈ Pk(E) , rotv ∈ Pk−1(E)

}
,

and the local virtual element space related to the pressure variable p as Pk(E).
The choice of the degrees of freedom in the local pressure space Pk(E) is trivial: The degrees of

freedom of a function p ∈ Pk(E) are its coefficients with respect to the polynomial basis chosen as the
basis for Pk(E). The standard polynomial basis for Pk(E) used in the VEM construction [9] is given by
the set of the nk = dimPk(E) =

(k+1)(k+2)
2 bi-dimensional scaled monomials, i.e.,

Mk(E) =

{
mα =

(
x − xE

hE

)α
: α = `(α) ∀α = 1, . . . , nk

}
, (3.1)

where xE and hE are the centroid and the diameter of the polygon E, respectively, and ` : N2 → N is
the function that maps

(0, 0) 7→ 1, (1, 0) 7→ 2, (0, 1) 7→ 3, (2, 0) 7→ 4, . . . .

A more robust choice is represented by the set of the L2(E)-orthonormal polynomials Qk(E) = {qα}
nk
α=1

introduced in [5,11,24] for the primal version of the method and then tested in the mixed case in [14].
This orthonormal polynomial basis is defined as

qβ =

nk∑
γ=1

Lk
βγmγ, ∀β = 1, . . . , nk, (3.2)

where Lk ∈ Rnk×nk is built by applying twice the modified Gram-Schmidt algorithm to the monomial
Vandermonde matrix related to a proper quadrature formula on E.

Mathematics in Engineering Volume 5, Issue 6, 1–32.
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3.1. The degrees of freedom for the velocity variable

In order to define the local degrees of freedom for the local velocity space Vh,k (E), we need to
introduce the following polynomial spaces. We introduce the (vector) polynomial space

G
∇,m
k (E) = ∇Mk+1(E) =

{
g∇,mα

}n∇k

α=1
⊂

[
Pk(E)

]2 , (3.3)

and the set G⊥,mk (E) =
{
g⊥,mα

}n⊥k

α=1
which is defined in such a way[
Pk(E)

]2
= G∇,mk (E) ⊕ G⊥,mk (E) ,

with n∇k = nk + (k + 1) and n⊥k = nk − (k + 1). The set

Gm
k (E) = G∇,mk (E) ∪ G⊥,mk (E)

represents a (vector) polynomial basis for
[
Pk(E)

]2
which allows to easily define the set of local degrees

of freedom in the mixed VEM framework [9]. Let us denote by

G
∇,q
k (E) = {g∇,qα }

n∇k
α=1 ⊂

[
Pk(E)

]2

the set of (vector) polynomials

g∇,qα =

n∇k∑
β=1

L∇,kαβ ∇qβ+1, ∀α = 1, . . . , n∇k (3.4)

such that (
g∇,qα , g∇,qβ

)
E

= δαβ, ∀α, β = 1, . . . , n∇k ,

which is obtained by orthonormalizing the gradients of polynomials belonging to Qk+1(E) through
the modified Gram-Schmidt algorithm. Now, we define G⊥,qk (E) = {g⊥,qα }

n⊥k
α=1 as the L2(E)-orthogonal

complement of G∇,qk (E) in
[
Pk(E)

]2
, which is chosen such that(

g⊥,qα , g⊥,qβ

)
E

= δαβ, ∀α, β = 1, . . . , n⊥k .

Further details about the construction of this basis can be found in [14]. Here, it was shown that it is
advisable to choose the set

G
q
k(E) = G

∇,q
k (E) ∪ G⊥,qk (E) , (3.5)

as the (vector) polynomial basis for
[
Pk(E)

]2
in order to reduce the ill-conditioning of the system matrix

and to obtain more accurate and reliable solutions for high values of the local polynomial degree and
in the presence of badly-shaped polygons.

Now, let us introduce a quadrature formula SQ = {(sQ
j ,w

Q
j )}N

Q

j=1 of order 2(k + 1) with NQ ≥ k + 2
nodes on the interval [0, 1]. We define the one-dimensional L2([0, 1])-orthonormal polynomial basis
Qk+1([0, 1]) = {t1, . . . , tk+1, tk+2} for Pk+1([0, 1]) by applying the modified Gram-Schmidt algorithm
with reorthogonalization to the Vandermonde matrix VSQ

∈ RNQ×(k+2) related to the one-dimensional

Mathematics in Engineering Volume 5, Issue 6, 1–32.
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monomial basis {1, s, . . . , sk, sk+1} and the quadrature formula SQ. More precisely, we perform
sequentially

VS
Q

= QS
Q

1 RS
Q

1 , RS
Q

1 ∈ R
(k+2)×(k+2), QS

Q

1 ∈ R
NQ×(k+2) : (QS

Q

1 )T QS
Q

1 = I,√
WSQQS

Q

1 = QS
Q

2 RS
Q

2 , RS
Q

2 ∈ R
(k+2)×(k+2), QS

Q

2 ∈ R
NQ×(k+2) : (QS

Q

2 )T QS
Q

2 = I,

where WSQ
∈ RNQ×NQ

is the diagonal matrix of quadrature weights, and then we define

t j =

k+2∑
i=1

LS
Q,k+1

ji si, ∀ j = 1, . . . , k + 2, (3.6)

where LSQ
= (RSQ

2 RSQ

1 )−T .
We remark that each polynomial in Pk+1(e), e ∈ Eh,E, can be written in terms of polynomials in

Qk+1([0, 1]) through an affine mapping Fe : [0, 1] → e. Furthermore, we recall that the modified
Gram-Schmidt algorithm is a hierarchical procedure, which means, for example, that

Qk([0, 1]) = {t1, . . . , tk+1} ⊂ Qk+1([0, 1]) ,

is a basis for Pk([0, 1]).
In Vh,k (E), we define the set of local Degrees of Freedom (DOFs in short) as the union of

(1) the set of the boundary degrees of freedom which can be chosen as

(1)a the values of vh · ne in the k + 1 Gauss quadrature points xe,Q
i internal on each edge e ∈ Eh,E,

or

(1)b the k + 1 moments on each edge e ∈ Eh,E:∫ 1

0
(vh · ne)(Fe(s)) t j(s)|e| ds, ∀ j = 1, . . . , k + 1, (3.7)

where |e| represents the length of the edge e;

(2) the set of the internal degrees of freedom which can be chosen as the internal moments computed
against

(2)a the sets of functions G∇,mk−1(E) and G⊥,mk (E):

1
|E|

∫
E

vh · g∇,mα , ∀α = 1, . . . , n∇k−1, (3.8)

1
|E|

∫
E

vh · g⊥,mα , ∀α = 1, . . . , n⊥k , (3.9)

or
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(2)b the sets of functions G∇,qk−1(E) and G⊥,qk (E):

1
|E|

∫
E

vh · g∇,qα , ∀α = 1, . . . , n∇k−1, (3.10)

1
|E|

∫
E

vh · g⊥,qα , ∀α = 1, . . . , n⊥k , (3.11)

where |E| is the area of the polygon E.

Let us denote by Ndof
E = dim Vh,k (E) = #Eh,E(k + 1) + n∇k−1 + n⊥k and let us introduce the local

Lagrangian VE basis {ϕi}
Ndof

E
i=1 related to the local degrees of freedom, where the DOF numbering first

counts the boundary DOFs and then the internal DOFs. Furthermore, for each element E ∈ Th, we
define the operators dofi : Vh,k (E)→ R which associate each function v ∈ Vh,k (E) to its i-th degree of
freedom.

Now, let us introduce the L2(E)-projector Π0,E
k : Vh,k (E) →

[
Pk(E)

]2
, which is defined by the

orthogonality condition (
v −Π0,E

k v, q
)

E
= 0, ∀q ∈

[
Pk(E)

]2 , v ∈ Vh,k (E) . (3.12)

We note that each combination of the aforementioned degrees of freedom makes the projection Π0,E
k vh

of a function vh ∈ Vh,k (E) computable. In particular, the computation ofΠ0,E
k vh with the pairs consisting

of DOFs (1)a and (2)a, and DOFs (1)a and (2)b has been largely discussed in [9, 14]. Concerning the
choice of DOFs (1)b and (2)a, we first note that, given v ∈ Vh,k (E), the orthogonality condition (3.12)
yields (

Π0,E
k v, g∇,mα

)
E

=
(
v, g∇,mα

)
E

=

∫
E

v · ∇mk+1
α+1

= −

∫
E

divv mk+1
α+1 +

∑
e∈Eh,E

∫
e

v · ne mk+1
α+1, ∀α = 1, . . . , n∇k (3.13)

and (
Π0,E

k v, g⊥,mα

)
E

=
(
v, g⊥,mα

)
E , ∀α = 1, . . . , n⊥k . (3.14)

The right-hand side of Eq (3.14) can be computed through the internal degrees of freedom (3.9). Now,
we recall that divv is a polynomial

∑nk
α=1 cαmk

α ∈ Pk(E) whose coefficients {cα}
nk
α=1 can be determined by

imposing∫
E

divv mk
β =

nk∑
α=1

cα

∫
E

mk
αmk

β = −

∫
E

v · ∇mk
β +

∑
e∈Eh,E

∫
e

v · ne mk
β, ∀β = 1, . . . , nk. (3.15)

The first term of the right-hand side of (3.15) can be computed through the internal degrees of
freedom (3.8). Furthermore, on each edge e ∈ Eh,E, we can write the trace of monomials as

(mk
β)(Fe(s)) =

k+1∑
j=1

Ce
β jt j(s), ∀s ∈ [0, 1]. (3.16)
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Thus, the second term of the right-hand side of (3.15) becomes∫
e

v · ne mk
β =

k+1∑
j=1

Ce
β j

∫ 1

0
(v · ne)(Fe(s)) t j(s)|e| ds, (3.17)

which can be computed by resorting to the boundary degrees of freedom (1)b.
In order to compute the second term of the right-hand side of Eq (3.13), we should determine the

polynomial v · ne on each edge e ∈ Eh,E. Nonetheless, if {ϕe
i }

k+1
i=1 is the local Lagrangian mixed VE basis

related to the boundary degrees of freedom defined on the edge e ∈ Eh,E, we observe that

(ϕe
i · ne)(Fe(s)) =

ti(s)
|e|

, ∀i = 1, . . . , k + 1, ∀s ∈ [0, 1], (3.18)

while ϕ · ne is the zero-polynomial on e if ϕ is related to an internal degree of freedom or to a different
edge of E. Finally, since Qk+1([0, 1]) is an L2([0, 1])-orthonormal basis for Pk+1([0, 1]), we simply have
∀α = 1, . . . , n∇k , i = 1, . . . , k + 1 and ∀e ∈ Eh,E∫

e
ϕe

i · ne mk+1
α+1 =

k+2∑
j=1

Ce
α+1, j

∫ 1

0
(ϕe

i · ne)(Fe(s)) t j(s)|e| ds =

k+2∑
j=1

Ce
α+1, j

∫ 1

0
tit j = Ce

α+1,i. (3.19)

The construction of the method with the choice of DOFs (1)b and (2)b is analogous to the one
which exploits the degrees of freedom (1)b and (2)a. Indeed, we recall that we are able to write

g∇,qα =

n∇k∑
β=1

L∇,kαβ ∇qβ+1 =

n∇k∑
β=1

nk+1∑
γ=1

L∇αβL
k+1
β+1,γ∇mk+1

γ ,

where L∇,k and Lk+1 are defined in (3.4) and (3.2), respectively.

Remark 3.1. Note that, since we define the one-dimensional polynomial basisQk([0, 1]) on the interval
[0, 1], we must perform the orthogonalization process just once. Thus, the additional cost in taking
an L2([0, 1])-orthonormal basis instead of the one-dimensional monomial basis is negligible and
independent of the number of edges of the tessellation Th.

3.2. The mixed virtual element formulation of the model problem

On each element E ∈ Th, let us define the continuous local bilinear form

aE (u, v) =
(
D−1u, v

)
E
, ∀u, v ∈ V,

and its discrete counterpart

aE
h (uh, vh) = aE

C,h (uh, vh) + S E
((

I −Π0,E
k

)
uh,

(
I −Π0,E

k

)
vh

)
, (3.20)

which is the sum of the consistency term

aE
C,h (uh, vh) =

(
D−1Π0,E

k uh,Π
0,E
k vh

)
E

Mathematics in Engineering Volume 5, Issue 6, 1–32.
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and of the stability term S E (·, ·), which is any symmetric positive-definite bilinear form that satisfies

α∗aE (v, v) ≤ S E (v, v) ≤ α∗aE (v, v) , ∀v ∈ Vh,k (E) (3.21)

for some positive constants α∗, α∗ depending on D−1 but independent on h [8, 15].
Now, let us introduce the global mixed virtual element spaces

Vh,k =
{
v ∈ H0,ΓN (div; Ω) : v|E ∈ Vh,k (E) ∀E ∈ Th

}
,

Qh,k =
{
q ∈ L2(Ω) : q|E ∈ Pk(E) ∀E ∈ Th

}
,

for the velocity and the pressure variables, respectively. In particular, as global degrees of freedom for
each vh ∈ Vh,k, we consider

• the boundary degrees of freedom of vh defined on each internal edge of the decomposition and at
edge boundary with Dirichlet boundary conditions;

• the internal degrees of freedom in each element E ∈ Th.

Furthermore, the value of the boundary DOFs at the Neumann edge is fixed in accordance with the
value of the Neumann boundary conditions.

Finally, the virtual element discretization of the problem (2.3) reads

Find (u0,h, ph) ∈ Vh,k × Qh,k such that uh = u0,h + uN,h and ph satisfy∑
E∈Th

(aE
h (uh, vh) − (ph, divvh)E) = −

∑
E∈Th

∑
e∈Eh,E :
e⊂ΓD

〈gD, vh · ne〉± 1
2 ,e

∀vh ∈ Vh,k

∑
E∈Th

(divuh, qh)E =
∑
E∈Th

( f , qh)E ∀qh ∈ Qh,k

, (3.22)

where uN,h ∈
{
v ∈ H(div; Ω) : v ∈ Vh,k (E)∀E ∈ Th

}
is such that

dofi(uN,h) = dofi(uN)

for each boundary degree of freedom i related to a Neumann edge.

4. The stabilization term

Let us introduce the elemental matrix AE ∈ RNdof
E ×Ndof

E , whose entries are defined as the application
of the local discrete bilinear form aE

h (·, ·) to the Lagrangian basis functions of Vh,k (E), i.e., ∀i, j =

1, . . . ,Ndof
E (

AE
)

i j
= aE

h

(
ϕi,ϕ j

)
= aE

C,h

(
ϕi,ϕ j

)
+ S E

(
(I −Π0,E

k )ϕi, (I −Π0,E
k )ϕ j

)
B

(
AE

C

)
i j

+
(
AE

S

)
i j
,

Mathematics in Engineering Volume 5, Issue 6, 1–32.
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where AE
C and AE

S represent the elemental matrices related to the consistency and the stability term,
respectively. The complete elemental matrix related to the mixed discretization of the problem (3.22)
reads

KE =

[
AE −(WE)T

WE 0

]
∈ R(Ndof

E +nk)×(Ndof
E +nk),

where the entries of the divergence matrix WE ∈ Rnk×Ndof
E are defined as

WE
αi = (pα,∇ · ϕi)E , ∀α = 1, . . . , nk, ∀i = 1, . . . ,Ndof

E .

Since the degrees of freedom of the velocity space are chosen in such a way the related Lagrangian
VE basis functions scale uniformly with respect to the mesh size h, the most natural mixed VEM
stabilization S E (·, ·) which satisfies (3.21) is the so-called dofi-dofi stabilization [7, 8]:

S E
dof

(
u −Π0,E

k u, v −Π0,E
k v

)
= CD−1 |E|

Ndof
E∑

i=1

dofi(u −Π0,E
k u) dofi(v −Π0,E

k v), (4.1)

where CD−1 is a constant depending on D−1. Moreover, ∀u ∈ Vh,k, from the definition of the internal
degrees of freedom and the definition (3.12) of the projector Π0,E

k , it follows

dofi(u −Π0,E
k u) =

1
|E|

(
u −Π0,E

k u, q
)

E
= 0,

∀q ∈ G∇k−1(E) ∪ G⊥k (E) ⊂
[
Pk(E)

]2 , (4.2)

for each internal degree of freedom i. Thus, in the mixed VEM construction, it is not necessary to
include the internal degrees of freedom in the stabilization procedure [8].

Furthermore, as highlighted in [10], in order to avoid to level off the stabilization term with respect
to the consistency term for the higher polynomial degrees, which would lead to a loss of accuracy, we
can choose the so-called D-recipe stabilization, defined as follows

S E
D

(
u −Π0,E

k u, v −Π0,E
k v

)
=

Ndof
E∑

i=1

S ii dofi(u −Π0,E
k u) dofi(v −Π0,E

k v), (4.3)

where S ii = CD−1 |E|max(1, (AE
C)ii) if i is related to a boundary degree of freedom and S ii = 0 otherwise,

since we do not need to include the internal degrees of freedom (see Eq (4.2)).
Usually, the constant CD−1 is taken equal to the spectral norm ‖D−1‖ = 1/Dmin, since D is assumed

to be symmetric and strongly elliptic.
Finally, the choice of the stabilization term and, in particular, of the constant CD−1 should be

dependent on the problem features and on the definition of the local degrees of freedom [7, 26].

5. Numerical experiments

In this section, we perform some numerical experiments that allow us to show the role of the
boundary degrees of freedom and of the stabilization term in preventing the ill-conditioning of the
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system matrix. To this end, we analyze the behaviour of the condition number of the global system
matrix K and of the errors

errp =

√∑
E∈Th
‖p − ph‖

2
E

‖p‖Ω
, (5.1)

erru =

√∑
E∈Th
‖u −Π0,E

k uh‖
2
E

‖u‖Ω
, (5.2)

at varying of the polynomial degree k or of the mesh size h, for different families of meshes. Given
k ≥ 0 and the mesh size h, we recall that if the solution is sufficiently smooth, the expected convergence
rates of errors (5.1) and (5.2) are O(hk+1).

In the following, we use the notation:

• Mon (a) to denote the approach which exploits the pair of DOFs (1)a and (2)a;

• Mon (b) to denote the approach which exploits the pair of DOFs (1)b and (2)a;

• Ortho (a) to denote the approach which exploits the pair of DOFs (1)a and (2)b;

• Ortho (b) to denote the approach which exploits the pair of DOFs (1)b and (2)b.

We note that we use the scaled monomial basis as the basis for the local pressure space in the monomial
approaches (Mon), while we use the Qk(E) basis in the orthonormal approaches (Ortho).

5.1. Test 1: boundary degrees of freedom

In this first test, we analyze the behaviour of the four aforementioned approaches by solving a
Poisson problem with homogeneous Dirichlet boundary conditions.

More precisely, let us set Ω = (0, 2)2, we define the forcing term f in such a way the exact pressure is

p(x, y) = sin(πx) sin(πy).

In this test, we employ the dofi-dofi stabilization term with CD−1 = 1 and we evaluate the performance
of our approaches using a set of three concave meshes {T C

hi
}3i=1. These meshes are generated through an

agglomeration process that begins with basic convex meshes at different refinement levels. The second
refinement T C

h2
is depicted in Figure 1.

In Figure 2, we show the behaviour of the condition number of the global system matrix K at varying
of the polynomial degree k, for each concave mesh T C

hi
, i = 1, 2, 3, in semilog plots. From these graphs,

we note that changing the boundary degrees of freedom from (1)a to (1)b generally does not ensure an
improvement in the condition number of the global system matrix for fixed internal degrees of freedom.
Furthermore, we observe that, in order to cure the ill-conditioning of the global system matrix, the use
of an L2(E)-orthonormal (vector) polynomial basis for

[
Pk(E)

]2
is strongly recommended, as already

highlighted in [14].
Figures 3 and 4 show the behaviour of errors (5.1) and (5.2) at varying of the polynomial degree

k for each T C
hi

, with i = 1, 2, 3, in semilog plots. Furthermore, Figures 5 and 6 show the behaviour
of such errors for decreasing values of the mesh size hi, i = 1, 2, 3, for k = 1, 3, 5, with a loglog
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scale. From these figures, we can note that changing the internal degrees of freedom from (2)a to (2)b
does not significantly modify the behaviour of errors (5.1) and (5.2), at varying of the mesh size h,
for the lower values of the polynomial degree k. In general, this is not true for the boundary degrees
of freedom. Indeed, from Figures 3 and 5, we can note that the error (5.1) is sensitive to a variation
from (1)a to (1)b of the boundary degrees of freedom, especially on the coarser meshes. As the mesh
is refined, such difference becomes smaller and smaller and the orthonormal approaches tend to behave
in the same way regardless of the type of boundary DOFs used.

Finally, for the higher values of k, the errors start to raise due to the ill-conditioning of the matrix K
in the Mon approaches, while the Ortho approaches are robust also for the higher polynomial degrees.

(a) (b)

Figure 1. Test 1. The second refinements T C
h2

. Left: the starting convex mesh. Right: the
concave mesh.
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Figure 2. Test 1. Condition number of K vs. k. Left: mesh T C
h1

. Center: mesh T C
h2

. Right:
Mesh T C

h3
.
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Figure 3. Test 1. Behaviour of errp (5.1) vs. k. Left: Mesh T C
h1

. Center: mesh T C
h2

. Right:
mesh T C

h3
.
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Figure 4. Test 1. Behaviour of erru (5.2) vs. k. Left: Mesh T C
h1

. Center: mesh T C
h2

. Right:
mesh T C

h3
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Figure 5. Test 1. Behaviour of errp (5.1) vs. h. Left: k = 1. Center: k = 3. Right: k = 5.
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Figure 6. Test 1. Behaviour of erru (5.2) vs. h. Left: k = 1. Center: k = 3. Right: k = 5.

5.2. Test 2: anisotropic diffusion problems

In this experiment, we want to analyze the sensitivity of the presented approaches to the choice
of stabilization in a context where such sensitivity becomes the main issue to overcome, namely the
diffusion problems with high anisotropic coefficients.

Equations characterized by anisotropic diffusion coefficients arise in many practical contexts, such
as the heat equation, groundwater flow, transport problems and so on. Generally, these types of
problems are expressed as parametric problems and they are numerically treated by means of ad
hoc methods, needed to avoid the so-called locking phenomenon [4]. This phenomenon occurs
experimentally when the discretization error does not decrease at the expected rate when the parameter
tends to limiting values and, in general, it is typical of the lower order schemes. These ad hoc
methods include variational crimes, i.e., modification of the bilinear form [19], and flow-aligned
grid methods [21]. In particular, in the Virtual Element context, the isotropic nature of the standard
stabilization term can become an issue in these kinds of problems and different approaches have
been studied to handle the anisotropic nature of the diffusion tensors [12, 25] mainly for the primal
formulation of the method.

Thus, we consider the test problem proposed in [23], which is a dimensionless parametric version
of problem (2.1) with a constant diffusion tensor, defined on Ω = (0, 1)2. In particular, the diffusion

tensor D =

[
1 0
0 ε

]
depends on the diffusion parameter ε ∈ [10−6, 1], which, in this case, represents also

the anisotropic ratio. In our notation, Dmin = ε (or D−1
max = 1

ε
) and Dmax = 1.

The performance of the four approaches is evaluated on two different kinds of families of meshes:
a cartesian T Q

h family and a family T DQ
h of distorted quadrilateral meshes generated from the cartesian

ones through a sine distortion. For each family of meshes, we consider four refinements {T Q
hi
}4i=1 and

{T
DQ

hi
}4i=1: the first and the last refinement of each family are shown in Figure 7.

In order to compute errors (5.1) and (5.2), we choose the parametric exact solution

p(x, y) = exp(−2π
√
εx) sin(2πy). (5.3)
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(a) (b)

(c) (d)

Figure 7. Test 2. 7(a): mesh T Q
h1

. 7(b): Mesh T DQ
h1

. 7(c): mesh T Q
h4

. 7(d): mesh T DQ
h4

.

The presence of ε at the exponent of (5.3) makes the low conductivity direction dominant when ε

tends to zero and the nearly pure Neumann boundary conditions are set, by leading, in general, to very
poor results when employing standard methods [19]. Thus, we test three different kinds of boundary
conditions (BCs in short):

• pure Dirichlet boundary conditions, i.e., ΓD = Γ;

• mixed Dirichlet-Neumann boundary conditions with ΓD = {(x, y) : x = 0 or y = 0};

• nearly pure Neumann conditions, that is we set ΓD = {(x, y) : (x = 1 and 1 − δ ≤ y ≤ 1) or (y =

1 and 1 − δ ≤ x ≤ 1)}, where δ decreases with the mesh size as 1
5·2i−1 i = 1, . . . , 4.

In the first two cases, generally, no locking phenomenon occurs.
Furthermore, we test three possible choices for the stabilization term, namely

• S1: the standard dofi-dofi stabilization with CD−1 = ‖D−1‖ = 1
ε
;

• S2: the standard dofi-dofi stabilization with CD−1 = 1;

• S3: the D-recipe stabilization with CD−1 = 1.

We observe that when ε becomes very small, the constant CD−1 related to the choice S1 becomes very
big.
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5.2.1. Effect of the anisotropy on the condition number of the global system matrix

In Figures 8 and 9 we report the behaviour of the condition number of the global system matrix at
varying of k in semilog plots, when the Dirichlet and the nearly pure Neumann boundary conditions
are set, respectively. The results are related to ε ∈ {1, 10−6} and to the T Q

h1
and the T DQ

h1
meshes.

Accordingly to results presented in [14], we observe an exponential growth in the condition number
of the matrix K when the internal DOFs (2)a are employed. A linear growth is observed instead when
resorting to the choice (2)b. Furthermore, as already pointed out in the previous test, changing the
boundary DOFs from (1)a to (1)b does not generally lead to an improvement of the behaviour of the
condition number of K.

Furthermore, we note that a sine distortion of elements causes a faster increase in the condition
number of K when the internal DOFs (2)a are used, while this growth is not so evident in the case of
the internal DOFs (2)b.

We further note that having nearly pure Neumann boundary conditions has just a small effect on
the condition number of K for the lower values of k and that the condition number of K seems to be
mainly controlled by the anisotropic effect, as observed in [23].

Finally, we observe that the pair of DOFs (1)b and (2)b reveals to be the most robust approach with
respect to the choice of the stabilization term, whereas stabilization choice S1 seems to be the worst
choice in terms of the condition number of K, if a combination of DOFs different from (1)b and (2)b
is used.
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Figure 8. Test 2. Condition number of K vs. k. Left: ε = 1. Right: ε = 10−6. First row: T Q
h1

.
Second row: T DQ

h1
. Dirichlet BCs.
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Figure 9. Test 2. Condition number of K vs. k. Left: ε = 1. Right: ε = 10−6. First row: T Q

h1
.

Second row: T DQ
h1

. Nearly pure Neumann BCs.

5.2.2. The mesh alignment and the locking phenomenon

Figures 10–12 show the behaviour of the pressure error (5.1) at varying of the polynomial degree
k related to the Dirichlet, mixed and nearly pure Neumann boundary conditions, respectively. These
results are obtained on the cartesian mesh T Q

h1
.

From these figures we observe that, after an initial decrease, the error starts to raise due to ill-
conditioning, but only when the internal DOFs (2)a are employed. Choosing internal DOFs (2)b leads
to the best performance in each tested case for the higher values of the polynomial degree k.

The error curves related to the different analyzed approaches are very similar for the lower values
of k when a cartesian mesh is used. The only exception is represented by the choice of the boundary
DOFs (1)a and stabilization term S1. In this case, error curves are slightly upward shifted for the
smaller values of ε when nearly pure Neumann boundary conditions are set.

In Figures 13–15 we report the behaviour of the pressure error (5.1) at varying of k related to the
Dirichlet, mixed and nearly pure Neumann boundary conditions, in the case of the distorted cartesian
mesh T DQ

h1
. By comparing these results with those obtained in the case of cartesian mesh, we can

observe that, in the case of distorted meshes, the considered approaches show very different behaviours
in terms of error (5.1) when ε is very small. Indeed, we highlight that the Cartesian mesh is aligned
with the directions of the anisotropy, by limiting the effect of anisotropy. The main variations are
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observed for the approaches that exploit the stabilization term S1 also in the case of distorted meshes.
Furthermore, we must observe an initial upward shift of the error curves related to the D-recipe S3 for
the lower values of the polynomial degree k with respect to the approaches that use the stabilization
term S2. Nevertheless, for the higher values of k, the stabilization terms S2 and S3 yield again similar
results and very good performance is achieved when they are combined with the internal DOFs (2)b.

In order to analyze better such differences, in Figures 16 and 17 we report the behaviour of the
errors (5.1) and (5.2) at decreasing values of the mesh size h for the lowest polynomial degree k = 0
and in the case of pure nearly Neumann conditions for the Cartesian and the distorted quadrilateral
families of meshes, respectively. In the lowest-order case, we can observe a locking phenomenon in
the pressure error when distorted quadrilateral meshes are employed, as suggested by an upward shift
of the error curves when ε → 0 and by a loss in the convergence rates, which can describe a pre-
asymptotic regime [4, 23]. As mentioned before, the locking phenomenon is typical, in general, of the
lower order methods. Indeed, looking at Figures 18 and 19, we can note that the approaches which
employed orthogonal internal DOFs show the right rates of convergence for the higher values of k. The
monomial approaches, instead, do not converge due to ill-conditioning when k is high.
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Figure 10. Test 2. Behaviour of errp (5.1) vs. k, for T Q

h1
. Left: ε = 1. Right: ε = 10−6.

Dirichlet BCs.

0 1 2 3 4 5 6 7 8 9 10
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

k

er
r p

Mon(a)-S1 Ortho(a)-S1 Mon(b)-S1 Ortho(b)-S1
Mon(a)-S2 Ortho(a)-S2 Mon(b)-S2 Ortho(b)-S2
Mon(a)-S3 Ortho(a)-S3 Mon(b)-S3 Ortho(b)-S3

(a)

0 1 2 3 4 5 6 7 8 9 10
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

k

er
r p

Mon(a)-S1 Ortho(a)-S1 Mon(b)-S1 Ortho(b)-S1
Mon(a)-S2 Ortho(a)-S2 Mon(b)-S2 Ortho(b)-S2
Mon(a)-S3 Ortho(a)-S3 Mon(b)-S3 Ortho(b)-S3

(b)
Figure 11. Test 2. Behaviour of errp (5.1) vs. k, for T Q
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. Left: ε = 1. Right: ε = 10−6. Mixed

BCs.
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Figure 12. Test 2. Behaviour of errp (5.1) vs. k, for T Q
h1

. Left: ε = 1. Right: ε = 10−6.
Nearly pure Neumann BCs.
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Figure 13. Test 2. Behaviour of errp (5.1) vs. k, for T DQ
h1

. Left: ε = 1. Right: ε = 10−6.
Dirichlet BCs.
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Figure 14. Test 2. Behaviour of errp (5.1) vs. k, for T DQ
h1

. Left: ε = 1. Right: ε = 10−6.
Mixed BCs.
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Figure 15. Test 2. Behaviour of errp (5.1) vs. k, for T DQ
h1

. Left: ε = 1. Right: ε = 10−6.
Nearly pure Neumann BCs.
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Figure 16. Test 2. Behaviour of errp (5.1) and erru (5.2) vs. h, for k = 0 and T Q
h . Left: ε = 1.

Right: ε = 10−6. Nearly pure Neumann BCs.
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Figure 17. Test 2. Behaviour of errp (5.1) and erru (5.2) vs. h, for k = 0 and T DQ

h . Left:
ε = 1. Right: ε = 10−6. Nearly pure Neumann BCs.
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Figure 18. Test 2. Behaviour of errp (5.1) and erru (5.2) vs. h, for k = 5 and T Q

h . Left: ε = 1.
Right: ε = 10−6. Nearly pure Neumann BCs.
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Figure 19. Test 2. Behaviour of errp (5.1) and erru (5.2) vs. h, for k = 5 and T DQ
h . Left:

ε = 1. Right: ε = 10−6. Nearly pure Neumann BCs.

5.3. Test 3: two magnetic islands

In the previous experiment, we considered a constant diffusion tensor with the diffusion directions
aligned with the Cartesian axes. Thus, the problem of anisotropy could be easily handled by choosing
a Cartesian family of meshes.

Now, we propose the test “Two Magnetic Islands” described in [18], where it is almost impossible
to generate an aligned mesh to solve the problem. This example models the instability phenomenon
which arises in magnetized plasma for fusion applications. More precisely, we consider a diffusion
problem in Ω = (−1, 1) × (−0.5, 0.5), with a diffusion tensor given by

D(x, y) =

[
b1(x, y) −b2(x, y)
b2(x, y) b1(x, y)

] [
D|| 0
0 D⊥

] [
b1(x, y) b2(x, y)
−b2(x, y) b1(x, y)

]
, (5.4)

where the unit vector b =
[
b1 b2

]T
represents the parallel direction to the anisotropy (or to the

magnetic field B), while D|| and D⊥ represent the parallel and the perpendicular diffusion coefficients,
respectively. In this kind of application, we observe that D|| can be greater than D⊥ by a factor of
1012 [18]. Let us now define the equilibrium magnetic field

B(x, y) =

 −π sin(πy)
2π
10 sin

(
2π

(
x − 3

2

)) (5.5)
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which is shown in Figure 20(a). By looking at this figure, we note that the magnetic field results to be
the zero-vector in the center of the “magnetic islands” (the O-points) and where the field lines cross
each other (the so-called X-points). In all the other points, we can define

b(x, y) =
B(x, y)
‖B(x, y)‖

(5.6)

and compute

D(x, y)−1 =

[
b1(x, y) −b2(x, y)
b2(x, y) b1(x, y)

]  1
D||

0
0 1

D⊥

 [ b1(x, y) b2(x, y)
−b2(x, y) b1(x, y)

]
. (5.7)

We further fix D⊥ = 1, while D|| ∈ {1, 104, 108}.
We evaluate the performance of the aforementioned approaches on a family T S

h = {T S
hi
}4i=1 of four

squared meshes, which are characterized by an edge length decreasing as 1
2i+1 , with i = 1, . . . , 4. We

note that both the O-points and X-points represent vertices of the tessellation in each refinement.
Furthermore, we define the forcing term and the boundary conditions in such a way the exact solution is

p(x, y) = cos
(

1
10

cos
(
2π

(
x −

3
2

))
+ cos(πy)

)
, (5.8)

which is shown in Figure 20(b). We test two cases, characterized by different boundary conditions,
namely

• pure Dirichlet boundary conditions ΓD = Γ;

• mixed boundary conditions, with ΓN = {(x, y) : x = −1 or x = 1}.

We note that the velocity field does not depend on the parameter D||.
In this experiment, we test three possible choices for the stabilization term, namely

• S1: the dofi-dofi stabilization with CD−1 = 1
D||

.

• S2: the D-recipe stabilization with CD−1 = 1.

• S3: a D-recipe stabilization term with

S ii = |E|

 max(nei · D−1(xei)nei , (KE
C)ii) if i is a boundary DOF

0 if i is an internal DOF
,

where xei and nei are the midpoint and the unit outward normal vector to the edge ei related to the
boundary DOF i. This stabilization term, inspired by [17], aims to take into account the actual
strength of the normal contribution of the parallel diffusion on each edge.

Figures 21 and 22 show the behaviour of the errors (5.1) and (5.2) at varying of the polynomial
degree k for the second refinement T S

h2
when the Dirichlet and mixed boundary conditions are imposed.

We decide to report only the behaviour of the Ortho approaches in these figures in order to try to better
highlight differences between the employment of boundary DOFs (1)a and (1)b.

We observe that all approaches show the right behaviour in terms of the relative pressure error (5.1)
in the case of both Dirichlet and mixed boundary conditions. This appears also evident when observing
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the behaviour of the pressure error in terms of h in Figures 23–26 for the lowest order k = 0 and for the
polynomial degree k = 2. From these figures we can note that, as usual, the choice of boundary
DOFs (1)b is characterized by smaller pressure error constants with respect to the choice (1)a.
Furthermore, approaches that employ (1)b seem to be less sensitive to the choice of the stabilization
term than approaches which exploit boundary DOFs (1)a.

(a) (b)

Figure 20. Test 3. Left: the magnetic field. Right: exact solution.
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Figure 21. Test 3. Behaviour of errp (5.1) and erru (5.2) vs. k, for T S
h2

. Left: D|| = 1. Center:
D|| = 104. Right: D|| = 108. Dirichlet BCs.
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Figure 22. Test 3. Behaviour of errp (5.1) and erru (5.2) vs. k, for T S
h2

. Left: D|| = 1. Center:
D|| = 104. Right: D|| = 108. Mixed BCs.
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Figure 23. Test 3. Behaviour of errp (5.1) and erru (5.2) vs. h, for k = 0. Left: D|| = 1.
Center: D|| = 104. Right: D|| = 108. Dirichlet BCs.
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Figure 24. Test 3. Behaviour of errp (5.1) and erru (5.2) vs. h, for k = 0. Left: D|| = 1.
Center: D|| = 104. Right: D|| = 108. Mixed BCs.
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Figure 25. Test 3. Behaviour of the errp (5.1) and erru (5.2) vs. h, for k = 2. Left: D|| = 1.
Center: D|| = 104. Right: D|| = 108. Dirichlet BCs.
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Figure 26. Test 3. Behaviour of errp (5.1) and erru (5.2) vs. h, for k = 2. Left: D|| = 1.
Center: D|| = 104. Right: D|| = 108. Mixed BCs.

However, the same conclusions do not hold true when dealing with the relative velocity error (5.2).
Indeed, we first can note that switching off the stabilization by choosing the stabilization term S1 when
D|| is big enough generally does not lead to good results in terms of the velocity error. Furthermore, we
note that, in order to achieve good results in terms of the velocity error, it is very important to enforce
the velocity on the boundary by imposing strong Neumann boundary conditions when high values of
D|| are considered. In this way, it is possible to obtain the right convergence rates in terms of the mesh
size for both the pressure and the velocity errors as can be seen in Figures 23 and 24.

Finally, we observe that, in this test case, the Ortho (a) approach seems to perform better than the
Ortho (b) approach in terms of the velocity error when highly anisotropic cases are taken into account.

5.4. Test 4: anisotropic and heterogeneous case over irregular grids

In this last experiment, we propose a benchmark anisotropic diffusion problem [20] which is deeply
analyzed in [3] and inspired by [2, 22] and which may induce the locking phenomenon on some finite
volume schemes in the mixed formulation.

More precisely, let us consider the problem (2.1) on Ω = (0, 1)2, we define the diffusion tensor as
in (5.4), with D|| = 1, D⊥ = 10−3 and the field

B(x, y) =

[
y
−x

]
, (5.9)
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which is represented in Figure 27(a). Thus, in each point different from (0, 0), we have

D(x, y) =
1

x2 + y2

[
10−3x2 + y2 (10−3 − 1)xy
(10−3 − 1)xy 10−3y2 + x2

]
.

Let us set the Dirichlet boundary conditions and the forcing term f in such a way the exact solution
is p(x, y) = sin(πx) sin(πy).

In this test case, we assess the performance of our methods by using six different refinements
of an irregular grid, which are available at [1], namely, the six refinements of the family of meshes
“mesh4 1”. The third refinement is shown in Figure 27(b).

(a) (b)

Figure 27. Test 4. Left: the field B. Right: third refinement of the irregular grid.

In this experiment, we further test four possible choices for the stabilization term, i.e.,

• S1: the dofi-dofi stabilization with CD−1 = 1
D⊥

.

• S2: the dofi-dofi stabilization with CD−1 = 1.

• S3: the D-recipe stabilization with CD−1 = 1.

• S4: a D-recipe stabilization term with

S ii = |E|

 max(nei · D−1(xei)nei , (KE
C)ii) if i is a boundary DOF

0 if i is an internal DOF
.

Figure 28 shows the behaviour of errors (5.1) and (5.2) as the polynomial degree k increases on the
coarsest mesh. From this figure, we can note that, as in the previous tests, approaches which employ
the boundary DOFs (1)b are more robust with respect to the choice of the stabilization term and lead
to more accurate results in terms of the pressure error (5.1) when the polynomial degree k is not too
high. Conversely, the Ortho (a) approach performs better than the Ortho (b) in terms of the velocity
error (5.2).
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Figure 28. Test 4. Behaviour of errp (5.1) and erru (5.2) vs. k. First refinement.
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Figure 29. Test 4. Behaviour of the errp (5.1) and erru (5.2) vs. h, for k = 0.

The same conclusions can be reached by looking at Figures 29 and 30 that show the trend of errors
as the mesh size h varies, for k = 0 and k = 2, respectively. Moreover, for the lowest polynomial degree
k = 0, the locking phenomenon occurs and we can note it by observing a severe loss of accuracy mainly
related to the velocity variable in the approaches Ortho (a)-S1 and Ortho (a)-S4. It should be noted that,
in this test case, the right convergence rate is not restored even by increasing the polynomial degree
k. For the higher values of the polynomial degree k and for each tested approach, it is worth noting
that both the errors (5.1) and (5.2) are mainly determined by local errors associated with very few cells
near the point (0, 0) where the diffusion tensor is not well-defined. These local errors are several orders
of magnitude greater than the local errors characterizing the other cells. In particular, the pairs Ortho
(a)-S1 and Ortho (a)-S4 exhibit very unstable behaviour near the point (0, 0), as illustrated in Figure 31.
This figure shows a comparison of the numerical solutions along the y = x line for the approaches
Ortho (a)-S1, Ortho (b)-S1 and Ortho (a)-S2. We omit to show the numerical solution related to the
approach Ortho (a)-S4 since its behaviour is very similar to the one related to the approach Ortho (a)-
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S1. This figure highlights how the choice of stabilization relies on the definition of the local degrees of
freedom.
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Figure 30. Test 4. Behaviour of the errp (5.1) and erru (5.2) vs. h, for k = 2.

(a) (b)

Figure 31. Test 4. Slice of the numerical solution along the line y = x for k = 2 on the
third refined mesh. Left: comparison between Ortho (a)-S1 (black line) and Ortho (b)-S1 (red
line). Right: comparison between Ortho (a)-S1 (black line) and Ortho (a)-S2 (blue line).

6. Conclusions

In this paper, we carried out the analysis of the robustness of the mixed Virtual Element Method
when problems characterized by highly anisotropic diffusion tensors are considered. Furthermore, a
new set of boundary degrees of freedom based on moments computed against an L2([0, 1])-orthonormal
basis is also introduced.

Here, we report the results obtained on a set of benchmark problems by resorting to various
approaches which differ for the sets of both the internal and the boundary degrees of freedom. For each
benchmark problem, we propose different kinds of the stabilization term and we test the sensitivity of
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each proposed approach to the choice of the stabilization term in terms of both the condition number
of the system matrix and of the errors (5.1) and (5.2).

In particular, the new set of boundary degrees of freedom seems to be more favourable in terms
of errors by leading to a downward shift of the error curves, although, this choice generally does not
ensure obtaining an improvement in the conditioning of K. Indeed, the condition number of the system
matrix seems to be mainly controlled by the choice of internal DOFs and by the anisotropic ratio.

Finally, the D-recipe version of the stabilization term with unit constant seems to be a good
alternative to build a robust method for highly anisotropic diffusion problems.
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14. S. Berrone, S. Scialó, G. Teora, Orthogonal polynomial bases in the Mixed Virtual Element
Method, arXiv, 2023. https://doi.org/10.48550/arXiv.2304.14755

15. F. Brezzi, R. S. Falk, L. D. Marini, Basic principles of mixed Virtual Element Methods, ESAIM:
Math. Modell. Numer. Anal., 48 (2014), 1227–1240. https://doi.org/10.1051/m2an/2013138

16. F. Dassi, L. Mascotto, Exploring high-order three dimensional virtual elements:
bases and stabilizations, Comput. Math. Appl., 75 (2018), 3379–3401.
https://doi.org/10.1016/j.camwa.2018.02.005

17. G. Giorgiani, H. Bufferand, F. Schwander, E. Serre, P. Tamain, A high-order non field-aligned
approach for the discretization of strongly anisotropic diffusion operators in magnetic fusion,
Comput. Phys. Commun., 254 (2020), 107375. https://doi.org/10.1016/j.cpc.2020.107375

18. D. Green, X. Hu, J. Lore, L. Mu, M. L. Stowell, An efficient high-order numerical solver
for diffusion equations with strong anisotropy, Comput. Phys. Commun., 276 (2022), 108333.
https://doi.org/10.1016/j.cpc.2022.108333

Mathematics in Engineering Volume 5, Issue 6, 1–32.

http://dx.doi.org/https://doi.org/10.1016/j.jcp.2011.08.018
http://dx.doi.org/https://doi.org/10.1142/S0218202516500160
http://dx.doi.org/https://doi.org/10.1142/S0218202512500492
http://dx.doi.org/https://doi.org/10.1051/m2an/2015067
http://dx.doi.org/https://doi.org/10.1007/978-3-319-41640-3_2
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2017.03.021
http://dx.doi.org/https://doi.org/10.1016/j.finel.2017.01.006
http://dx.doi.org/https://doi.org/10.48550/arXiv.2103.16896
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2023.10.003
http://dx.doi.org/https://doi.org/10.48550/arXiv.2304.14755
http://dx.doi.org/https://doi.org/10.1051/m2an/2013138
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2018.02.005
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2020.107375
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2022.108333


32
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