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Combination of Organic-Based Reservoir Computing and
Spiking Neuromorphic Systems for a Robust and Efficient
Pattern Classification

Anna N. Matsukatova, Nikita V. Prudnikov, Vsevolod A. Kulagin, Silvia Battistoni,*
Anton A. Minnekhanov, Andrey D. Trofimov, Aleksandr A. Nesmelov,
Sergey A. Zavyalov, Yulia N. Malakhova, Matteo Parmeggiani, Alberto Ballesio,
Simone Luigi Marasso, Sergey N. Chvalun, Vyacheslav A. Demin, Andrey V. Emelyanov,*
and Victor Erokhin*

1. Introduction

The development of neuromorphic sys-
tems (NSs) based on memristive devices
has been driven mainly by the yearning
of replicating the exceptionally high
computational and energy efficiency of
biological systems in solving cognitive
tasks (pattern and speech recognition,
prediction, generalization, etc.).[1,2] Most
organic electronic devices share their work-
ing principles with those of biological syn-
apses and neurons, that is ion migration,[3]

and can effectively emulate synaptic and
neuronal properties.[4–7] Moreover, mem-
ristors could be organized in large crossbar
arrays to perform weighted vector matrix
multiplication naturally by the electrical
current summation. Being the most mas-
sively parallel operation in deep learning
algorithms, it is very resource expensive
for traditional von Neumann digital com-
puting systems.[8]
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Nowadays, neuromorphic systems based on memristors are considered prom-
ising approaches to the hardware realization of artificial intelligence systems with
efficient information processing. However, a major bottleneck in the physical
implementation of these systems is the strong dependence of their performance
on the unavoidable variations (cycle-to-cycle, c2c, or device-to-device, d2d) of
memristive devices. Recently, reservoir computing (RC) and spiking neuro-
morphic systems (SNSs) are separately proposed as valuable options to partially
mitigate this problem. Herein, both approaches are combined to create a fully
organic system based on 1) volatile polyaniline memristive devices for the res-
ervoir layer and 2) nonvolatile parylene memristors for the SNS readout layer.
This combination provides a simpler SNS training procedure compared with the
formal neural networks and results in greater robustness to device variability,
while ensuring the extraction and encoding of the input critical features (per-
formed by the polyaniline reservoir) and the analysis and classification performed
by the SNS layer. Furthermore, the spatiotemporal pattern recognition of the
system brings us closer to the implementation of efficient and reliable brain-
inspired computing systems built with partially unreliable analog elements.
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Recently, promising results in the implementation of NSs
based on memristive synapses have been demonstrated in the
realization of perceptrons,[9–11] reinforcement learning,[12]

long-/short-term memory[13] networks, and even macros.[14]

Such formal neuromorphic systems (FNSs) are usually trained
by various types of gradient descent optimization algorithms.
This algorithm has some critical issues, such as the complexity
of its hardware realization due to unreliable cycle-to-cycle (c2c)
and device-to-device (d2d) variations of memristive characteris-
tics and the necessity of the global weight update computation
and realization.[15] Several approaches have been proposed to par-
tially mitigate these problems, including spiking neuromorphic
systems (SNSs) with local training rules[16] and reservoir comput-
ing (RC).[14,17]

SNSs encode and process information in the relative timings
or rates of the spikes, and the weight update only occurs in the
presence of spikes overlap. Therefore, SNSs could be more
energy efficient than FNSs, when implemented in specialized
neuromorphic hardware, especially for processing temporal
and dynamic data.[18] SNSs can provide adaptive local training
via spike-timing-dependent plasticity (STDP)[19] or Bienenstock–
Cooper–Munro[20] protocols, which reduces the hardware
overhead in peripheral circuits compared with the realization
of the gradient descent algorithms. More importantly, SNSs
are more resilient to c2c and d2d variations than FNSs, for exam-
ple, for a spiking network the variation of 25% is acceptable for
different tasks,[21] while for the formal one the variation of 5%
could lead to convergence problems.[12]

RC systems, in turn, consist of two main parts (layers).
The reservoir part represents a dynamic system with short-term
memory that is used for the nonlinear processing of the input
signal and extracting valuable features from the inputs.
Subsequently, the readout part, which may consist of a simple
linear network, analyzes the extracted features.[22] In this organi-
zation, the training procedure is limited only to the readout layer
of the RC system, which considerably reduces the total training
cost. Several studies have demonstrated the hardware implemen-
tation of RC systems using atomic switch networks,[23] photonic
systems,[24] and memristive devices.[25–32] The results of these
demonstrations pave the way toward high-efficiency RC systems.
Nevertheless, the training of the readout layer, implemented
either in software or hardware, is still realized via various types
of power-hungry gradient descent algorithms.

In this work, we propose to combine the advantages of a res-
ervoir and a spiking computing system and create an RC system
based on organic memristive devices (OMDs) with an SNS read-
out layer. OMDs do not concede to inorganic counterparts in
their main characteristics: Roff/Ron ratio, retention, endurance,
etc.[33] Additionally, OMDs have undeniable advantages, such
as cheap and large-scale production, biological compatibility,[34]

flexibility, and the possibility of 3D stacking.[35] Several groups
have reported the realization of OMDs based on polymers.[33,36]

OMDs based on polyaniline (PANI) are used in various neuro-
morphic applications and considered promising candidates for
reservoir implementation in RC systems. Indeed, PANI-based
OMDs are well-studied three-terminal systems, operating via
redox reactions and involving ion motion in the electrolyte
layer,[37] applicable in neuromorphic circuits[10,38] and demon-
strating short-term memory effects under zero potential.[39]

Moreover, their characteristic switching time could be regulated
by the choice of the electrolyte, that is solid or liquid,[40] which
could be important for the reservoirs’ capability to map diverse
features at different timescales.[26] Here we implemented the
reservoir layer using PANI-based OMDs with a solid electrolyte.
For the readout layer, we used OMDs based on parylene (poly-
(p-xylylene), or PPX). PPX is an FDA-approved polymer widely
used in medicine and electronics due to its chemical inertness,
excellent barrier characteristics, as well as good and conformal
adhesion.[41] PPX-based OMDs work through the electrochemi-
cal metallization mechanism (i.e., ion migration), demonstrate
fairly good memristive characteristics, and can be organized
in crossbar arrays, which allow them to be used as building
blocks of hardware SNSs.[42–47] Thus, we propose an RC system
with a PANI-based reservoir layer and a PPX-based SNS readout
layer modeled in software but based on experimental results.
Furthermore in this work, we tested the effectiveness of different
approaches (FNS vs. SNS), highlighting the role and impact of
the device variations in the total performance of the RC system.

2. Results and Discussion

2.1. Concept of the Reservoir Computing System

A conceptual scheme of an RC system with a spiking readout
layer is presented in Figure 1a. Generally, a reservoir unit maps
nonlinearly an input signal u(t) into higher-dimensional compu-
tational spaces of the reservoir internal state x(t), which is then
classified by the readout layer. In our hardware realization of the
reservoir, the input image was binarized and fed to the inputs of
the reservoir as 3-bit pulse trains (Figure 1b). The reservoir layer
was implemented with PANI-based OMDs (Figure 1c), which are
volatile at zero bias.

A read voltage pulse followed each pulse train, and the cur-
rents from all read pulses were then acquired and used as the
inputs for the model of the fully connected readout layer.
The readout layer consisted of a modeled SNS based on the
experimental characteristics of the PPX-based nonvolatile
OMDs (Figure 1d) and was trained by local bioinspired STDP
rules (Figure 1e). For comparison, the readout layer was also
modeled by FNS with a gradient descent learning algorithm.

2.2. PANI-Based Memristive Reservoir Layer

The application of voltage sweeping to PANI-based OMDs indu-
ces the typical current response of the devices (Figure 2a,b
and S1, Supporting Information), revealing a considerable
and stable voltage-dependent conductance variation. A high- or
low-enough positive voltage value (U> 0.55 V and U< 0.2 V)
promotes internal redox reactions at the PANI–electrolyte
interface,[37] inducing a significant variation in the internal con-
ductance of the device. In contrast, voltages between these values
show amodest impact on the reactions of this OMD and thus can
be chosen to read the resistance. We used 0.4 V as the reading
voltage value for the device under investigation to maximize the
ratio between the current in the low- and high-resistive states.
It should be noted that even if the values of the output current
can vary d2d, the switching voltages are fixed for the realized
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device configuration, as they are determined by the redox poten-
tials of polyaniline.

If stimulated with a voltage pulse, PANI-based OMDs can
reach several internal resistive states depending on the amplitude
and duration of the voltage stimulus.[48] In this study, the
temporal evolution of the ID (Figure 2c and S2, Supporting
Information) suggests the presence of several internal resistive
states, the gain of which with respect to the initial current
(ID-after/ID-before) is large enough to avoid misclassification even
after just 1 s programming pulse (Table S1, Supporting
Information). The results of the experiments carried out to eval-
uate the device endurance are shown in Figure S3, Supporting
Information. After a short initialization, the devices remained
stable for 3� 104 cycles, corresponding to more than 24 h of con-
tinuous operation.

These features suggest the possibility of using PANI-based
memristive devices as a reservoir layer. To demonstrate this,
eight patterns corresponding to 3-pixel image rows (“0” for black
and “1” for white pixels) were converted into eight different
sequences of incoming voltage pulses. Subsequently, the
PANI-based OMD was fed with these voltage sequences in a ran-
dom order. Every bit in a pattern was applied for 150ms and at
the end of the 3-bit sequence, we applied a 100ms reading pulse
after the device was reset by a long 1000ms relaxation pulse
(Figure 2d) to avoid the accumulation of responses from
previous cycles.

The results of this experiment (Figure 2e), represented by out-
put current values measured during the reading phase, demon-
strate the ability of the PANI-based OMDs to efficiently and
reproducibly distinguish all 3-bit patterns. Each pattern produces
a distinguishable final state of the device (Figure 2f ) with no deg-
radation within 800 cycles (100 cycles for each pattern). The small
oscillations that lead to relatively wide distributions of the output
currents may be explained by the random order of the patterns,
which induce different initial states of the device during cycles
despite the relaxation period.

We also have tested liquid-based devices using compatible
protocols to assess whether this functionality is caused by the
switching kinetics of solid-electrolyte PANI-based OMDs.
The results of the reservoir experiment, shown in Figure S4,
Supporting Information, are similar to those in Figure 2e, con-
firming that the classification capability of 3-bit sequences is an
intrinsic characteristic of PANI-based OMDs independent from
the electrolyte nature. PANI-based OMDs with liquid electrolyte
are equally able to distinguish all incoming patterns, reducing
the total experimental time using bit pulses of shorter duration.
This means that for the class of PANI-based OMDs, the opera-
tional timescale of the device (resistive switching time) could be
tuned according to the classification task by varying the channel
size of the device,[49] the voltage amplitude (Figure S2,
Supporting Information), or using different electrolytes (solid
or liquid) (Figure S4, Supporting Information).

Figure 1. RC system based on memristor arrays. a) Scheme of an RC system, showing an example of the recognizable image, the input layer, the reservoir
with internal dynamics, and the readout layer. b) Encoding the image with pulses sequences fed to the inputs of the reservoir consisting of five PANI
memristors. c) Sketches of PANI and d) PPX memristors used in the reservoir and readout layers, respectively. e) An example of the STDP window
(schematically).
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2.3. Parylene-Based Memristors for Readout Layer

PPX-based OMDs are suitable for the realization of the reservoir
readout layer due to stable and reproducible resistive switching
(see Figure 3a, where 100 I–V curves of the PPX-based memris-
tive device are reported with their median curve). These devices
show typical bipolar resistive switching common for nonvolatile
memristors,[15] in which the compliance current is reached as
high-enough voltage (Uset) is applied to the structure, and the
memristor switches from the Roff to the Ron state. Then, it grad-
ually switches back to the Roff state as a voltage of opposite polar-
ity is applied. It should be noted that the PPX-based OMDs could
operate with a lower compliance current as well (see Figure S5,
Supporting Information). The resistive switching of these devi-
ces is driven by electrochemical metallization mechanism: metal
ions of the top electrode (Cu in our case) move into the polymer
layer under the action of positive voltage, and then migrate to the
bottom electrode and form a conducting filament, connecting the
upper and lower electrodes. When a negative voltage is applied,
the thinnest part of the filament ruptures due to Joule heating,
some of the metal ions return to the top electrode, and the struc-
ture switches to the high-resistive state.[50] The cumulative prob-
ability of the resistive switching characteristics calculated from
these 100 cycles (Figure 3b) demonstrates that the Uset and
Ureset values have negligible c2c variation, which is crucial for
the memristor usage in the NSs. Moreover, this type of device
demonstrates significant performance stability (inset in

Figure 3b) of Ron and Roff for the same device (c2c variation)
and 15 different devices (d2d variation). Resistance values were
measured at Uread= 0.1 V. This stability was further confirmed
by the endurance test of the PPX-based OMDs, which showed
that they can endure at least 1000 stable resistive switching cycles
(Figure S6a, Supporting Information).

The essential requirements for using these memristors in the
readout layer are the abilities to exhibit multilevel switching and
update their resistive states according to STDP rules, which
ensure the evolution of the normalized conductance depending
on the delay time between the spikes. PPX-based memristors can
claim a high level of plasticity of their internal resistive states
since they can access at least 32 states (stable for at least
300 s, Figure 3c), which were obtained via write-verify
algorithm.[51] Additionally, four of these states were chosen to
demonstrate their long-term stability (more than 104 s,
Figure S6b, Supporting Information). The possibility of access-
ing multiple and time-stable resistive states is an essential
requirement for their efficient use in artificial neural net-
works[52,53] for pattern classification and in general for the imple-
mentation of unsupervised algorithms. The number of accessible
resistive states in a device, or more in general in a memristive
system, determines the resolution with which a neuromorphic
network can process incoming data, precisely adjusting the syn-
aptic weights during the computation or the classification. A high
resolution leads to an increment in precision and accuracy of the
computing performance.

Figure 2. PANI-based memristive reservoir layer. a) Channel and b) gate current response under voltage cyclic sweeping for 20 scans (arrows show
scanning direction) with a scan rate of 0.05 V s�1. c) Switching to different resistive states by various voltage amplitudes. d) An example of a pulse
sequence used in the reservoir experiment (“101” pattern). e) Results of the reservoir experiment with 3-bit patterns. f ) Distributions of reservoir
response current values for different patterns.
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Resistive states of the PPX-based memristors could be
changed according to the STDP rules (Figure 3d) if stimulated
with pre- and postsynaptic bitriangular pulses, schematically pre-
sented in Figure 1b. The spike parameters were selected so that
one spike was insufficient for memristor switching. The obtained
results obey the STDP rule observed in biological systems con-
sidering the memristor conductance (G) as synaptic weight,[54]

regardless of the chosen initial state (G0 in the plot). In the case
of positive Δt, the postsynaptic spike is applied after the presyn-
aptic one, which follows the cause-and-effect relation and
increases the synaptic weight (ΔG> 0). On the other hand,
the opposite situation occurs in the case of negative Δt, which
decreases the synaptic weight (ΔG< 0).

Moreover, several crucial issues about the obtained STDP
dependencies were addressed. We tested different devices
under the same conditions and obtained consistent STDP win-
dows, demonstrating significant resilience to d2d variations
(Figure S6c, Supporting Information). Furthermore, the ampli-
tude of the STDP window can be precisely adjusted depending
on the spike amplitude (Figure S6d, Supporting Information).
However, it is worth mentioning that too large conductance
variations could be a limiting factor for future readout layer
implementation in scaled SNSs.

Additionally, the PPX-based memristors are endowed with
potentiation (depression) abilities (Figure S7, Supporting
Information) achievable with 50 switching pulses of 10ms
and þ1.5 (�1.5) V. Despite perceptible c2c stochasticity of the
curves, originating from the use of shorter pulses (10ms instead
of 100ms), the mean value of the coefficient of variation
(obtained from the ratio between the standard deviation and
the relative mean value - σ/μ), calculated for each experimental
point, was 6.0% (5.6%) for the potentiation (depression) curves.
The depression curve was used for the simulation of the formal
readout layer. In this way, the implementation of a two-step
weight update is suggested for the FNS readout layer, in which
at first the low-resistive state is obtained with a 100msUset pulse,
and then the desired resistive state is obtained with a required
quantity of 10ms depressing pulses. In general, devices with
the other types of resistive switching mechanism demonstrating
superior switching and synaptic properties could be used for the
readout layer realization.[55]

2.4. Readout Layer Modeling

The SNS model was established based on the created models of
the PPX-based OMDs and neurons (see Experimental Section).

Figure 3. Memristive properties of the PPX-based devices. a) Typical I–V curves of the memristors, 100 cycles (in grey). The median curve is highlighted in
black. b) The cumulative probability of the resistive switching from Roff to Ron atUset and from Ron to Roff atUreset. The voltageUset was considered equal to
the voltage at which the compliance current was reached. The voltageUreset was determined as the voltage at which the I–V curve derivative decreased by e
times. In the inset: the variation of resistances in the high- and low-resistive states. The values are given both for one device (c2c variation) and several
(15) devices (d2d variation). c) Demonstration of the multilevel resistive switching and storage of the obtained intermediate resistive states. d) The STDP
window of the memristor (for various initial conductance values). Postsynaptic spikes were applied after (or before) presynaptic ones with a varying delay
time Δt. Every point of the curves is a median of ten recorded experimental values.
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Two tasks of progressive complexity were chosen to test SNS
performance, that is, 3� 3 pattern classification (Figure 4a,c)
and 5� 3 number classification (Figure 4b,d). The capability
of facing imprecise or incomplete data is a crucial aspect of
neuromorphic computing, which could represent a limitation
for different applications. In this light, we tested our system with
the variability obtained from the STDP experiment. The coeffi-
cient of variation obtained from the STDP experiment for the
PPX-based OMDs equaled 61%. Moreover, a comparison
between SNS model results and those derived from the FNS
model (see Experimental Section for the FNS model details)
was made in order to test different approaches to the readout
layer implementation.

The first task was to classify four patterns. Inference was
carried out with the same patterns as for the training, but with

one wrong pixel (Figure 4c). Simulations show that both SNS and
FNS with experimentally derived variation reach an accuracy of
more than 95% after 200 training epochs (Figure 4e). As already
pointed out, SNSs are more energy efficient and more resilient to
c2c and d2d variations than FNSs and in fact the introduction of
high device variability only slightly decreases the classification
accuracy for the SNS (Figure S8a, Supporting Information).
In this simple task, the simulated FNS manages to reach accu-
racy of 100% in a few epochs (Figure 4e), which is better than the
results for the SNS readout layer. However, it is crucial to note
that the FNS result was obtained with a quite small coefficient of
variation σ/μ= 5.6%, which corresponds to the experimental
value obtained from the depression curve of the PPX-based
OMDs. The increase in the coefficient of variation (up to 61%,
so that the variations introduced to the SNS and FNS are the

Figure 4. Simulation results. SNS schemes for recognition of a) simple patterns and b) digits, c,d) Their corresponding images. e,f ) Accuracy of the SNS
and FNS trained with different memristive variations (specified in the legend). g,h) Confusion matrices for the SNS after 200 epochs of training with
experimental variation caused by the memristor internal stochasticity.
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same) leads to a dramatic decrease in the classification accuracy
and its volatility (Figure 4e).

The results on the digit classification confirm the above
results. In this case, the accuracy of the FNS is again higher than
that of the SNS readout layer (Figure 4f ). However, the increase
in the coefficient of variation of the FNS leads to a collapse of the
FNS training process. In contrast, introducing high device
variability again decreases the SNS classification accuracy only
slightly (Figure S8b, Supporting Information). It is worth notic-
ing that the increased complexity of the task leads to a more
noticeable accuracy variation in the FNS case, while it does
not affect the accuracy variation in the SNS case (Figure 4g,h).

Moreover, the influence of the input current confusion and
variation (Figure 2e) on the FNS and SNS models was studied.
Figure S9, Supporting Information, presents the FNS and SNS
models with and without the variation of the input current for
the task of number classification (the same as in Figure 4f ).
The input current variation does not decrease the classification
accuracy significantly, especially after 200 training epochs.
Accordingly, it can be stated that the variation in the currents
in Figure 2e should not affect FNS and SNS noticeably.

Thus, four main conclusions can be drawn. First, the FNS
readout layer is extremely sensitive to the degree of the memris-
tive variations; high variations may lead to the failure of the
training process. Second, the SNS is practically robust to the
introduced variations. Third, the expansion of the network archi-
tecture leads to an increase in the FNS accuracy variations and
does not influence the SNS accuracy variations. Finally, the
experimental input current variations do not influence the train-
ing processes of the FNS and SNS significantly.

Observed effects originate from the training procedures: in
the local training (for SNS), nonsupervision and the relative
sparseness of spike events provide extreme system adaptability,
while in the global training (for FNS), inaccuracy for each weight
incrementally degrades the total tolerance of the system. The
immunity of the SNS to variability in memristor characteristics
is related to the local nature of the training procedure and the
rate-based method of encoding the signal. Since the exact
number of spikes that come to the neuron during the exposure
of a sample at the input is unknown, the quantitative response to
each spike is less important than the qualitative one: potentiation
or depression of the synapse. After a sufficient time of applying a
sample, the dynamical equilibrium between potentiation and
depression of each synapse is naturally reached due to the
conductance-dependent character of the memristive STDP.
Therefore, the variation does not influence the training process
much. The shown degree of robustness to the variability of mem-
ristor characteristics is preferable for the readout layer and estab-
lishes one of the most substantial advantages of the SNS over the
FNS approach.

3. Conclusion

In conclusion, we have proposed a fully organic RC system with a
reservoir based on PANI OMDs and a spiking readout layer
based on PPX OMDs. Exploiting the rich dynamic of the
voltage-dependent switching time of PANI-based OMDs enables
the reservoir to extract critical features from the 3-bit input.

This ability is independent of the properties of a specific device
since it has been demonstrated in OMDs with liquid and solid
electrolytes, which have different switching kinetics and voltage
windows. The use of the SNS readout layer for the analysis and
classification allows a simpler and more energy-efficient training
procedure ensuring computing capabilities, such as spatiotem-
poral pattern recognition, with an accuracy of more than 80%.
Moreover, the SNS readout layer is shown to be exceptionally
robust to the memristive characteristic variations, showing only
a minimal accuracy decrease in the presence of large variability.
This ability arises from the local nature of the training procedure
in the SNS systems and is crucial for the successful hardware
implementation and the application of these systems in real-life
tasks. From the direct comparison between FNS and SNS, the
results obtained with the formal network are much more sensi-
tive to device variability. Besides the level of accuracy and the
great robustness to variations, our RC system has the further
advantage of being fully organic based, allowing in perspective
an easy and low-cost realization. Obtained results pave the
way for the implementation of the efficient and reliable
brain-inspired computing systems, built with partially unreliable
analog elements.

4. Experimental Section

Polyaniline-Based Devices Fabrication: Polyaniline (PANI, Mw= 105 Da,
Sigma Aldrich) was dissolved in N-methylpyrrolidone (NMP, Component-
Reaktiv, 99.7%) with a concentration of 1 g l�1 and then diluted with NMP
and toluene to obtain a solution with a concentration of 0.1 g l�1 in the 8:1
NMP/toluene (Chimmed, 99.5%) mixture. The formation of the Langmuir
layers was carried out with Minitrough (KSV, Finland) with a maximum
interfacial area of 243 cm2 under compression between moving barriers
at a speed of 7.5 cm2min�1. The surface pressure was measured
by the Wilhelmy method using a rough platinum plate with an accuracy
of 0.1 mNm�1. Langmuir layer was compressed to a pressure of
10mNm�1; after that, the active channel of the device was formed by
ten consequent transfers by the Langmuir–Schaefer (horizontal lift)
technique. PANI-based OMDs were typically realized by depositing a poly-
aniline channel on two gold electrodes acting as source and drain electro-
des. A water-based PEO solution was used as the solid electrolyte in which
a silver wire was inserted as a gate and reference electrode.[37] The SiO2/Si
substrates with gold electrodes on a chromium adhesion sublayer made by
thermal evaporation and subsequent lift-off process were used. The dis-
tance between the electrodes was 10 μm and their width was 500 μm.
Polyethylene oxide (PEO, Mw= 6·105 Da, Sigma Aldrich) was dissolved
in the 0.23 M lithium perchlorate aqueous solution with a concentration
of 80 g l�1. The obtained solution was used to form a solid electrolyte layer.
Before the deposition, the solution was diluted with a 1 M HCl aqueous
solution in a ratio of 9:1 (PEO/HCl). It was drop cast on the top of the
active channel and a silver wire was placed above, as typical for PANI-
based OMDs. Then the device was dried in airflow for 2 h. The assembling
and connection diagram is shown in Figure 1c.

Parylene-Based Devices Fabrication: PPX-based OMD is a two-electrode
device with thin layers of copper and ITO used as the top and bottom
electrodes, respectively, and PPX-MoO3 (PPX with embeddedMoO3 nano-
particles) active layer between them. The PPX-based nanocomposite
was prepared by the low-temperature vapor deposition polymerization
technology,[56] which enables the preparation of thin hybrid nanocompo-
site films with a wide range of inorganic filler content. The thickness of
the PPX-MoO3 layer was �680 nm (Figure S10, Supporting Information).
The top Cu electrodes were deposited by magnetron sputtering through a
shadow mask of 0.2� 0.5 mm2. In this way, the Cu/PPX-MoO3/ITO struc-
ture was obtained.
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Electrical Measurements: I–V curves and endurance measurements of
PANI-based devices were performed using a Keysight B2902A source-
measurement unit (SMU). The reservoir experiment was performed using
NI PXIe 4140 SMU. The memristive characteristics of the PPX-based devi-
ces were measured via the 3S SWIN EPS4 analytic probe station. Voltage
pulses were applied to the top electrode from Keithley 2636B SMU.
The bottom electrode was ground. The compliance currents (Icc) were
established at þ1mA and –50mA to avoid the thermal destruction of
the memristor during the I–V characteristic measurement. For STDP
measurements, a memristor was preliminary set to the initial state,
and two spikes were applied to the structure with the specific delay Δt
between them. Then, the conductance change was measured. These
two steps were repeated ten times in a row for the same Δt. Finally,
the median conductance change value was calculated and depicted in
the graph. All the experiments were carried out at room temperature using
custom LabVIEW programs.

SNS Readout Layer Modeling: A Python code with modified version of
the BindsNET library[57] was used to simulate the SNS readout layer.
To adapt this library to our scope, we added 1) the support of biologically
plausible bitriangular spikes; and 2) the possibility of STDP window input
from the database prepared in advance. The SNS weights were limited to
the range (0, 1) during training. Initially, all the weights were averaged and
set to 0.5. The experimentally obtained STDP windows were normalized
according to the formula Δw=ΔG/(Gon�Goff ), where ΔG is the experi-
mentally measured conductance difference (Figure 3d). This normaliza-
tion limited the variation of w to the range (0, 1), in which w plays the
role of the memristor synaptic weight.

The Voltage ThrEshold Adaptive Model (VTEAM) was chosen for the
memristive behavior description.[58] This model uses voltage dependence,
which is convenient for practical applications and offers a compromise
between the over-simplified ideal models and accurate structure-specific
models.[59] Description of the model is presented in Note S1, Supporting
Information. To run simulations, this model was implemented in Python
code. The experimentally obtained STDP windows for three different initial
states were fit in the framework of this model; thus, the memristor was
modeled and its VTEAM parameters were obtained (Table S2, Supporting
Information); the approximation is shown in Figure S11, Supporting
Information. This allowed creating the STDP database for every possible
normalized weight value with a step of 0.01 for the modeled memristor.
The spikes utilized for the database formation were different from the
experimental ones to prevent an excessive increase in Δw value. Pulses
are shown in Figure S12 and S13, Supporting Information. For the neuron
simulation, the leaky integrate-and-fire model was chosen. The neuron
activation charge threshold was equal to 0.024 or 0.036 C, depending
on the task. The refractory period after the action potential generation,
during which the neuron functioning was limited, was equal to the pulse
duration (40ms).

Starting from the PANI-based OMD electrical response, a model of the
reservoir layer with a higher number of elements was realized. In this, each
element of the reservoir layer was connected to its corresponding input of
the readout layer. The mean read current values from the reservoir layer
played the role of the inputs to the SNS layer, taking into account their
experimental dispersion (Figure S14, Supporting Information). The raw
input data was converted to the spike form. The linearly normalized input
data (ranged from 0 to 1), multiplied with an intensity value (12 Hz), rep-
resented the mean generation rate of Poisson distributed spikes. Such
intensity value provides high stability and satisfactory learning rate
because the number of pulses that are applied within the refractory peri-
ods of input neurons is low. The number of SNS inputs was doubled
because both normal and inverted values of the inputs were introduced
to the SNS. The inverted inputs were needed to equalize the intensity
of the input data. The inhibition neurons were introduced to suppress
the wrong neurons by inverted pulses during the training process.
The inhibition neurons were inactive during the inference process.
Each inhibitor corresponded to the specific class and sent inverted
pulses with a fixed rate to all output neurons, except for the one corre-
sponding to this class. The weights between the inhibition and output
neurons were not changed according to the STDP rules; their normalized

conductance was fixed and was 10 times higher than the maximum value
of normalized conductivity of PPX-based memristor to make the
suppression efficient. At the inference stage, the class corresponding to
the neuron emitting spikes with the highest rate was considered the net-
work’s output.

FNS Readout Layer Modeling: The FNS readout layer model was built as
similar to the SNS one as possible. However, some changes had to be
made. The FNS readout layer inputs were not converted to the spike form,
and initial current values from the reservoir layer were utilized. In contrast
to the SNS, the FNS architecture lacks an inhibitor layer, which is unnec-
essary for the FNS training procedure. Another difference was the neces-
sity of negative weights for the FNS, the FNS weights were limited to the
range (�1, 1). Consequently, each weight was represented by the
difference between the two memristors’ weights. The depression curve
(in Figure S7, Supporting Information) was chosen for this simulation
in order to facilitate the calculations.

For the FNS simulation, Python code was used with the imported
Pytorch machine learning framework. The FNS was programmed in a typi-
cal way with the only considerable change: the network weights were
changed in accordance with the experimental memristive data (depression
curves in Figure S7, Supporting Information). After each training epoch,
the theoretically required update for each FNS weight was calculated using
the backpropagation algorithm. Then, the nearest to theoretical, experi-
mental weight update was found, calculated as the difference between
the two mean conduction states of a memristor (both chosen from the
normalized averaged depression curve in Figure S7, Supporting
Information). As long as the depression curve had some significant c2c
variation, the chosen states of the two memristors were replaced with
corresponding normally distributed random state values (experimental
standard deviation and mean value were used). The choice of normal dis-
tribution for the weights’ selection was justified with the quantile–quantile
(Q–Q) plots (an example is presented in Figure S15, Supporting
Information, as long as the experimental points do not show severe diver-
gence from the reference line, the distribution is assumed to be normal).
In this way, each actual FNS weight was equal to the difference between
some two experimental states, considering their dispersion.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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